Reconfigurable optoelectronic memristor for in-sensor computing applications
Inspired by human brain and visual system, optoelectronic memristors-based neuromorphic computing has attracted the interests of researchers to overcome the limitation of traditional von Neumann architecture. With advantages of highly parallel computing and massive interconnection, the optical memri...
Saved in:
Published in | Nano energy Vol. 89; p. 106291 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Inspired by human brain and visual system, optoelectronic memristors-based neuromorphic computing has attracted the interests of researchers to overcome the limitation of traditional von Neumann architecture. With advantages of highly parallel computing and massive interconnection, the optical memristors could construct light-inspired artificial neural network for neuromorphic computing tasks. Besides, nonvolatile optoelectronic memristors provide a promising path for reconfigurable logic operations, greatly promoting the development of novel in-memory computing technology. In this work, the photoelectric perception, storage and in situ computing functions were integrated in optoelectronic memristors array, which could greatly decrease the footprint of multifunctional device and improve the work efficiency of chip. The neuromorphic computing capability of the photonic memristors was verified using face images of different people with accuracy of 86.7%. Moreover, with the advantages of photoelectric cooperative modulation, the reconfigurable logic functions including “AND” and “OR” were achieved by optoelectronic memristors. The present results demonstrate the attractive bio-inspired in-sensor computing behaviors of the optoelectronic memristors, opening up potential applications of optoelectronic memristors in next-generation reconfigurable sensing-memory-computing integrated paradigms.
[Display omitted]
•Reconfigurable optoelectronic memristors array for artificial visual system was fabricated.•The optoelectronic memristors array exhibited highly integrated in situ sensing-memory-computing capabilities.•The Boolean logic computations of “AND/OR” gates were implemented successfully.•Neuromorphic computing tasks of face recognition with accuracy of 86.7% was demonstrated. |
---|---|
AbstractList | Inspired by human brain and visual system, optoelectronic memristors-based neuromorphic computing has attracted the interests of researchers to overcome the limitation of traditional von Neumann architecture. With advantages of highly parallel computing and massive interconnection, the optical memristors could construct light-inspired artificial neural network for neuromorphic computing tasks. Besides, nonvolatile optoelectronic memristors provide a promising path for reconfigurable logic operations, greatly promoting the development of novel in-memory computing technology. In this work, the photoelectric perception, storage and in situ computing functions were integrated in optoelectronic memristors array, which could greatly decrease the footprint of multifunctional device and improve the work efficiency of chip. The neuromorphic computing capability of the photonic memristors was verified using face images of different people with accuracy of 86.7%. Moreover, with the advantages of photoelectric cooperative modulation, the reconfigurable logic functions including “AND” and “OR” were achieved by optoelectronic memristors. The present results demonstrate the attractive bio-inspired in-sensor computing behaviors of the optoelectronic memristors, opening up potential applications of optoelectronic memristors in next-generation reconfigurable sensing-memory-computing integrated paradigms.
[Display omitted]
•Reconfigurable optoelectronic memristors array for artificial visual system was fabricated.•The optoelectronic memristors array exhibited highly integrated in situ sensing-memory-computing capabilities.•The Boolean logic computations of “AND/OR” gates were implemented successfully.•Neuromorphic computing tasks of face recognition with accuracy of 86.7% was demonstrated. |
ArticleNumber | 106291 |
Author | Wang, Tian-Yu Ji, Li Sun, Qing-Qing Li, Qing-Xuan Chen, Lin Zhang, David Wei Meng, Jia-Lin He, Zhen-Yu Zhu, Hao |
Author_xml | – sequence: 1 givenname: Tian-Yu surname: Wang fullname: Wang, Tian-Yu email: tywang@fudan.edu.cn organization: State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China – sequence: 2 givenname: Jia-Lin surname: Meng fullname: Meng, Jia-Lin organization: State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China – sequence: 3 givenname: Qing-Xuan surname: Li fullname: Li, Qing-Xuan organization: State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China – sequence: 4 givenname: Zhen-Yu surname: He fullname: He, Zhen-Yu organization: State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China – sequence: 5 givenname: Hao surname: Zhu fullname: Zhu, Hao organization: State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China – sequence: 6 givenname: Li surname: Ji fullname: Ji, Li organization: State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China – sequence: 7 givenname: Qing-Qing surname: Sun fullname: Sun, Qing-Qing email: qqsun@fudan.edu.cn organization: State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China – sequence: 8 givenname: Lin surname: Chen fullname: Chen, Lin email: linchen@fudan.edu.cn organization: State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China – sequence: 9 givenname: David Wei surname: Zhang fullname: Zhang, David Wei organization: State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China |
BookMark | eNqFkM9KAzEQxnOoYK19Aw_7AluTbDfpehCk-A8Kgug5ZLOTMmU3WZJU8O1NXU8edGCYYYbvY-Z3QWbOOyDkitEVo0xcH1ZOOw9uxSlneSR4w2ZkzjljJd_U9TlZxnigOUTNJONzsnsF453F_THotofCj8lDDyYF79AUAwwBY_KhsDnRlRFczJ3xw3hM6PaFHscejU7oXbwkZ1b3EZY_dUHeH-7ftk_l7uXxeXu3K01FRSqlAFnxVhteWWls3UCzAWY4ZRUXVtK2q_hGCqmbbm06WjObV5zRRraU2tpWC3Iz-ZrgYwxglcH0fUIKGnvFqDrhUAc14VAnHGrCkcXrX-Ix4KDD53-y20kG-bEPhKCiQXAGOgwZl-o8_m3wBXBxgQY |
CitedBy_id | crossref_primary_10_1039_D4TC04535A crossref_primary_10_1021_acsphotonics_3c00448 crossref_primary_10_1002_admt_202400464 crossref_primary_10_1088_2634_4386_acd4e2 crossref_primary_10_1007_s43939_024_00077_7 crossref_primary_10_1002_adma_202300329 crossref_primary_10_1039_D4MH00291A crossref_primary_10_1007_s12274_024_6966_x crossref_primary_10_1002_aisy_202200068 crossref_primary_10_1063_5_0197199 crossref_primary_10_1002_aelm_202400834 crossref_primary_10_1002_adfm_202302899 crossref_primary_10_7498_aps_71_20220463 crossref_primary_10_1002_aelm_202300108 crossref_primary_10_1039_D3MH01584J crossref_primary_10_1039_D4TC05075D crossref_primary_10_1038_s41467_022_35628_0 crossref_primary_10_3390_nano14191573 crossref_primary_10_3390_s24165156 crossref_primary_10_7498_aps_71_20220226 crossref_primary_10_1021_acsnano_4c09199 crossref_primary_10_1063_5_0078332 crossref_primary_10_1002_advs_202403043 crossref_primary_10_1038_s41467_022_32790_3 crossref_primary_10_1002_adfm_202300343 crossref_primary_10_1002_adma_202203830 crossref_primary_10_1039_D4MH00064A crossref_primary_10_1002_aelm_202201195 crossref_primary_10_1016_j_mtnano_2022_100233 crossref_primary_10_1002_smll_202309945 crossref_primary_10_1039_D2NH00536K crossref_primary_10_1038_s41528_023_00262_3 crossref_primary_10_1021_acsphotonics_4c02399 crossref_primary_10_1002_adma_202301063 crossref_primary_10_1021_acsaelm_2c00495 crossref_primary_10_1021_acsnano_3c07384 crossref_primary_10_1039_D5NR00456J crossref_primary_10_34133_icomputing_0043 crossref_primary_10_1002_smll_202309851 crossref_primary_10_1021_acsmaterialslett_2c00911 crossref_primary_10_1002_adom_202202105 crossref_primary_10_1007_s43939_022_00032_4 crossref_primary_10_1002_adma_202416897 crossref_primary_10_1038_s41598_022_23404_5 crossref_primary_10_1039_D3MA00069A crossref_primary_10_1088_2632_959X_ad1695 crossref_primary_10_1002_adfm_202423548 crossref_primary_10_1002_advs_202207688 crossref_primary_10_1021_acsaelm_4c01682 crossref_primary_10_1021_acsnano_4c00424 crossref_primary_10_1126_sciadv_ado8516 crossref_primary_10_1021_acsanm_4c02194 crossref_primary_10_1021_acs_jpclett_4c02238 crossref_primary_10_1039_D4CE00933A crossref_primary_10_1002_smtd_202201679 crossref_primary_10_1002_inf2_12479 crossref_primary_10_1063_5_0151205 crossref_primary_10_1021_acsaelm_3c01462 crossref_primary_10_1038_s41467_022_29364_8 crossref_primary_10_1002_smtd_202402151 crossref_primary_10_1007_s40820_022_00945_y crossref_primary_10_1126_sciadv_adh9889 crossref_primary_10_1002_sstr_202200150 crossref_primary_10_1039_D3MH01461D crossref_primary_10_1063_5_0129642 crossref_primary_10_1002_adma_202403150 crossref_primary_10_1002_adma_202407476 crossref_primary_10_1088_2752_5724_acda4d crossref_primary_10_1038_s41528_024_00313_3 crossref_primary_10_1002_smtd_202401341 crossref_primary_10_1007_s40843_022_2237_2 crossref_primary_10_1038_s41565_024_01794_z crossref_primary_10_1002_adfm_202423314 crossref_primary_10_1088_1361_6463_ad8bd0 crossref_primary_10_1021_acsphotonics_3c01862 crossref_primary_10_1103_PhysRevApplied_18_064038 crossref_primary_10_1109_LED_2023_3306348 crossref_primary_10_1021_acsami_4c19505 crossref_primary_10_1063_5_0181090 crossref_primary_10_1039_D1TC03282H crossref_primary_10_1002_adfm_202213894 crossref_primary_10_1002_advs_202106092 crossref_primary_10_1002_inf2_12644 crossref_primary_10_1109_LED_2021_3127489 crossref_primary_10_1021_acsaelm_4c01977 crossref_primary_10_1166_mex_2023_2457 crossref_primary_10_1002_adfm_202209969 crossref_primary_10_3390_app14062633 crossref_primary_10_1002_adfm_202110976 crossref_primary_10_3389_fnano_2022_940825 crossref_primary_10_3390_nano12132217 crossref_primary_10_1002_adma_202310704 crossref_primary_10_1088_1361_6528_ada9a3 crossref_primary_10_1088_2752_5724_ad119e |
Cites_doi | 10.1038/s41565-020-0647-z 10.1002/adma.201801232 10.1038/s41467-021-21404-z 10.1016/j.nanoen.2021.105815 10.1016/j.nanoen.2019.104035 10.1038/s41928-020-00501-9 10.1002/adma.201900903 10.1002/adma.201902761 10.1038/s41928-021-00586-w 10.1038/s41928-019-0331-1 10.1039/C9NR04195H 10.1038/ncomms15199 10.1021/acsnano.0c06874 10.1002/advs.201901265 10.1038/s41565-020-0694-5 10.1039/D0MH01730B 10.1038/s41467-020-19806-6 10.1021/acsnano.0c08921 10.1002/adfm.201300509 10.1038/s41928-020-00473-w 10.1002/adfm.201908901 10.1039/C9NH00341J 10.1038/s41586-020-2038-x 10.1038/s41467-018-04933-y 10.1021/acs.nanolett.9b00180 10.1038/s41563-019-0291-x 10.1002/adfm.202005413 10.1038/d41586-020-00592-6 10.1039/D0NH00348D 10.1364/PRJ.7.000110 10.1016/j.nanoen.2019.104095 10.1038/s41565-019-0501-3 10.1038/s41586-019-1677-2 10.1021/acs.nanolett.0c00298 10.1126/sciadv.aau8170 10.1021/acs.nanolett.9b05271 10.1109/LED.2017.2719161 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.nanoen.2021.106291 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_nanoen_2021_106291 S2211285521005462 |
GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FNPLU FYGXN GBLVA HZ~ JARJE KOM M41 MAGPM MO0 O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SPC SPCBC SSM SSR SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-76e732bac23f7cf59e98e1c201326f70bd328767a9d4cd051f20121097b00f5f3 |
IEDL.DBID | .~1 |
ISSN | 2211-2855 |
IngestDate | Thu Apr 24 23:01:53 EDT 2025 Tue Jul 01 00:56:47 EDT 2025 Fri Feb 23 02:43:31 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | In-sensor computing Boolean logic gate Optoelectronic memristor Face recognition Neuromorphic computing |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-76e732bac23f7cf59e98e1c201326f70bd328767a9d4cd051f20121097b00f5f3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_nanoen_2021_106291 crossref_primary_10_1016_j_nanoen_2021_106291 elsevier_sciencedirect_doi_10_1016_j_nanoen_2021_106291 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2021 2021-11-00 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: November 2021 |
PublicationDecade | 2020 |
PublicationTitle | Nano energy |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Wang, Meng, He, Chen, Zhu, Sun, Ding, Zhou, Zhang (bib22) 2020; 7 Duan, Li, Chiang, Chen, Pan, Zhou, Chien, He, Xue, Liu, Chang, Miao (bib40) 2019; 11 Kang, Kim, Oh, Park, Dugasani, Kang, Choi, Choi, Lee, Park, Heo, Park, Neuromorphic (bib30) 2019; 6 Boybat, Le Gallo, Nandakumar, Moraitis, Parnell, Tuma, Rajendran, Leblebici, Sebastian, Eleftheriou (bib19) 2018; 9 Roy, Jaiswal, Panda (bib10) 2019; 575 Tan, Zhou, Tao, Rosen, van Dijken (bib7) 2021; 12 Bera, Peng, Lourembam, Shen, Sun, Wu (bib41) 2013; 23 Belhumeur, Hespanha, Kriegman (bib43) 1997; 19 Zhuge, Wang, Zhuge (bib34) 2019; 13 Danial, Pikhay, Herbelin, Wainstein, Gupta, Wald, Roizin, Daniel, Kvatinsky (bib16) 2019; 2 Kumar, Lim, Kim, Seo (bib24) 2020; 14 Tang, Yuan, Shen, Wang, Rao, He, Sun, Li, Zhang, Li, Gao, Qian, Bi, Song, Yang, Wu (bib12) 2019; 31 Qian, Oh, Choi, Kim, Sun, Huang, Yang, Gao, Park, Cho (bib37) 2019; 66 Yue, Liu, Lake, Parker (bib14) 2019; 5 Zhou, Chai (bib1) 2020; 3 Wang, Meng, Rao, He, Chen, Zhu, Sun, Ding, Bao, Zhou, Zhang (bib15) 2020; 20 Meng, Wang, Chen, Sun, Zhu, Ji, Ding, Bao, Zhou, Zhang (bib17) 2021; 83 Gong, Yu, Zhou, Wei, Ma, Han, Zhang, Ni, Li, Xu (bib20) 2020; 30 Chen, Mahmoodi, Shi, Mahata, Yuan, Liang, Wen, Hui, Akinwande, Strukov, Lanza (bib25) 2020; 3 Ahmed, Tahir, Low, Ren, Tawfik, Mayes, Kuriakose, Nawaz, Spencer, Chen, Bhaskaran, Sriram, Walia (bib27) 2020 Hu, Yuan, Ren, Wang, Yang, Zhou, Zeng, Han, Ruan (bib42) 2018; 30 Wang, Lv, Chen, Wang, Zhou, Zhou, Chen, Han (bib39) 2018; 30 Xia, Yang (bib11) 2019; 18 Meng, Wang, He, Chen, Zhu, Ji, Sun, Ding, Bao, Zhou, Zhang (bib33) 2021; 8 Choi, Leem, Kim, Taqieddin, Cho, Cho, Lee, Seung, Bae, Song, Hyeon, Aluru, Nam, Kim (bib5) 2020; 11 Zhou, Zhou, Chen, Choy, Wang, Zhang, Lin, Yu, Kang, Wong, Chai (bib6) 2019; 14 Chai (bib8) 2020; 579 Yao, Wu, Gao, Eryilmaz, Huang, Zhang, Zhang, Deng, Shi, Wong, Qian (bib44) 2017; 8 Mennel, Symonowicz, Wachter, Polyushkin, Molina-Mendoza, Mueller (bib2) 2020; 579 Yeon, Lin, Choi, Tan, Park, Lee, Lee, Xu, Gao, Wu, Qian, Nie, Kim, Kim (bib18) 2020; 15 Kim, Lee (bib29) 2019; 19 Ma, Zhu, Xu, Liu, Zheng, Ju, Li, Ni, Hu, Chai, Wu, Kim, Li (bib35) 2020; 30 He, Nie, Liu, Jiang, Shi, Wan (bib28) 2019; 31 Sangwan, Hersam (bib13) 2020; 15 Hou, Li, Zhang, Li, Qi, Chen, Wang, Yao, Yu, Lu, Zhang (bib4) 2021; 15 Chen, Wang, Wang, Gu, Ye, Chai, Ye, Chen, Xie, Zhou, Hu, Li, Zhang, Wang, Wang, Miao, Wang, Chen, Lu, Zhou, Hu (bib9) 2021; 4 Yin, Huang, Xiao, Peng, Zhu, Zhang, Pi, Yang (bib38) 2020; 20 Han, Ge, Ma, Yu, Wei, Zhao, Yao, Gong, Qiu, Xu (bib23) 2020; 5 Wang, Liang, Wang, Wang, Li, Wang, Gao, Pan, Liu, Liu, Yang, Liu, Song, Wang, Cheng, Wang, Chen, Wang, Watanabe, Taniguchi, Yang, Miao (bib3) 2020; 6 Wu, Wu, Gao, Deng, Yu, Qian (bib21) 2017; 38 Xu, Hou, Tang, Yu, Yu, Shu, Zhang (bib36) 2019; 7 Seo, Lee, Go, Pei, Jung, Jeong, Lee, Park, Kim, Yang, Yang, Lee (bib31) 2019; 65 Lu, Li, Sun, Pang, Chen, Minari, Liu, Song (bib32) 2020 Wang, Meng, He, Chen, Zhu, Sun, Ding, Zhou, Zhang (bib26) 2019; 4 Duan (10.1016/j.nanoen.2021.106291_bib40) 2019; 11 Tan (10.1016/j.nanoen.2021.106291_bib7) 2021; 12 Roy (10.1016/j.nanoen.2021.106291_bib10) 2019; 575 Wang (10.1016/j.nanoen.2021.106291_bib15) 2020; 20 Chen (10.1016/j.nanoen.2021.106291_bib25) 2020; 3 Choi (10.1016/j.nanoen.2021.106291_bib5) 2020; 11 Kim (10.1016/j.nanoen.2021.106291_bib29) 2019; 19 Wu (10.1016/j.nanoen.2021.106291_bib21) 2017; 38 Hu (10.1016/j.nanoen.2021.106291_bib42) 2018; 30 Tang (10.1016/j.nanoen.2021.106291_bib12) 2019; 31 Xia (10.1016/j.nanoen.2021.106291_bib11) 2019; 18 Zhuge (10.1016/j.nanoen.2021.106291_bib34) 2019; 13 Han (10.1016/j.nanoen.2021.106291_bib23) 2020; 5 Xu (10.1016/j.nanoen.2021.106291_bib36) 2019; 7 Boybat (10.1016/j.nanoen.2021.106291_bib19) 2018; 9 Hou (10.1016/j.nanoen.2021.106291_bib4) 2021; 15 Meng (10.1016/j.nanoen.2021.106291_bib17) 2021; 83 Wang (10.1016/j.nanoen.2021.106291_bib22) 2020; 7 Bera (10.1016/j.nanoen.2021.106291_bib41) 2013; 23 Yue (10.1016/j.nanoen.2021.106291_bib14) 2019; 5 He (10.1016/j.nanoen.2021.106291_bib28) 2019; 31 Wang (10.1016/j.nanoen.2021.106291_bib39) 2018; 30 Gong (10.1016/j.nanoen.2021.106291_bib20) 2020; 30 Sangwan (10.1016/j.nanoen.2021.106291_bib13) 2020; 15 Zhou (10.1016/j.nanoen.2021.106291_bib1) 2020; 3 Wang (10.1016/j.nanoen.2021.106291_bib3) 2020; 6 Mennel (10.1016/j.nanoen.2021.106291_bib2) 2020; 579 Chai (10.1016/j.nanoen.2021.106291_bib8) 2020; 579 Yin (10.1016/j.nanoen.2021.106291_bib38) 2020; 20 Danial (10.1016/j.nanoen.2021.106291_bib16) 2019; 2 Kumar (10.1016/j.nanoen.2021.106291_bib24) 2020; 14 Lu (10.1016/j.nanoen.2021.106291_bib32) 2020 Zhou (10.1016/j.nanoen.2021.106291_bib6) 2019; 14 Seo (10.1016/j.nanoen.2021.106291_bib31) 2019; 65 Yao (10.1016/j.nanoen.2021.106291_bib44) 2017; 8 Ahmed (10.1016/j.nanoen.2021.106291_bib27) 2020 Qian (10.1016/j.nanoen.2021.106291_bib37) 2019; 66 Ma (10.1016/j.nanoen.2021.106291_bib35) 2020; 30 Kang (10.1016/j.nanoen.2021.106291_bib30) 2019; 6 Belhumeur (10.1016/j.nanoen.2021.106291_bib43) 1997; 19 Chen (10.1016/j.nanoen.2021.106291_bib9) 2021; 4 Wang (10.1016/j.nanoen.2021.106291_bib26) 2019; 4 Yeon (10.1016/j.nanoen.2021.106291_bib18) 2020; 15 Meng (10.1016/j.nanoen.2021.106291_bib33) 2021; 8 |
References_xml | – volume: 7 start-page: 110 year: 2019 end-page: 115 ident: bib36 article-title: Silicon-on-insulator-based microwave photonic filter with widely adjustable bandwidth publication-title: Photonics Res. – volume: 19 start-page: 2044 year: 2019 end-page: 2050 ident: bib29 article-title: Ferroelectric analog synaptic transistors publication-title: Nano Lett. – volume: 19 start-page: 711 year: 1997 end-page: 720 ident: bib43 article-title: Eigenfaces vs. fisherfaces: recognition using class specific linear projection publication-title: ITPAM – volume: 3 start-page: 638 year: 2020 end-page: 645 ident: bib25 article-title: Wafer-scale integration of two-dimensional materials in high-density memristive crossbar arrays for artificial neural networks publication-title: Nat. Electron. – year: 2020 ident: bib27 article-title: Fully light-controlled memory and neuromorphic computation in layered black phosphorus publication-title: Adv. Mater. – volume: 31 year: 2019 ident: bib12 article-title: Bridging biological and artificial neural networks with emerging neuromorphic devices: fundamentals, progress, and challenges publication-title: Adv. Mater. – year: 2020 ident: bib32 article-title: Solution-processed electronics for artificial synapses publication-title: Mater. Horiz. – volume: 30 year: 2020 ident: bib35 article-title: Optoelectronic perovskite synapses for neuromorphic computing publication-title: Adv. Funct. Mater. – volume: 579 start-page: 32 year: 2020 end-page: 33 ident: bib8 article-title: In-sensor computing for machine vision publication-title: Nature – volume: 83 year: 2021 ident: bib17 article-title: Energy-efficient flexible photoelectric device with 2D/0D hybrid structure for bio-inspired artificial heterosynapse application publication-title: Nano Energy – volume: 8 year: 2017 ident: bib44 article-title: Face classification using electronic synapses publication-title: Nat. Commun. – volume: 20 start-page: 3378 year: 2020 end-page: 3387 ident: bib38 article-title: Optically stimulated synaptic devices based on the hybrid structure of silicon nanomembrane and perovskite publication-title: Nano Lett. – volume: 15 start-page: 574 year: 2020 end-page: 579 ident: bib18 article-title: Alloying conducting channels for reliable neuromorphic computing publication-title: Nat. Nanotechnol. – volume: 3 start-page: 664 year: 2020 end-page: 671 ident: bib1 article-title: Near-sensor and in-sensor computing publication-title: Nat. Electron. – volume: 9 year: 2018 ident: bib19 article-title: Neuromorphic computing with multi-memristive synapses publication-title: Nat. Commun. – volume: 5 start-page: 1324 year: 2020 end-page: 1331 ident: bib23 article-title: Mixed receptors of AMPA and NMDA emulated using a ‘Polka Dot’-structured two-dimensional conjugated polymer-based artificial synapse publication-title: Nanoscale Horiz. – volume: 4 start-page: 1293 year: 2019 end-page: 1301 ident: bib26 article-title: Fully transparent, flexible and waterproof synapses with pattern recognition in organic environments publication-title: Nanoscale Horiz. – volume: 66 year: 2019 ident: bib37 article-title: Solar-stimulated optoelectronic synapse based on organic heterojunction with linearly potentiated synaptic weight for neuromorphic computing publication-title: Nano Energy – volume: 18 start-page: 309 year: 2019 end-page: 323 ident: bib11 article-title: Memristive crossbar arrays for brain-inspired computing publication-title: Nat. Mater. – volume: 11 year: 2020 ident: bib5 article-title: Curved neuromorphic image sensor array using a MoS2-organic heterostructure inspired by the human visual recognition system publication-title: Nat. Commun. – volume: 14 start-page: 776 year: 2019 end-page: 782 ident: bib6 article-title: Optoelectronic resistive random access memory for neuromorphic vision sensors publication-title: Nat. Nanotechnol. – volume: 6 year: 2020 ident: bib3 article-title: Gate-tunable van der Waals heterostructure for reconfigurable neural network vision sensor publication-title: Sci. Adv. – volume: 14 start-page: 14108 year: 2020 end-page: 14117 ident: bib24 article-title: Environment-adaptable photonic–electronic-coupled neuromorphic angular visual system publication-title: ACS Nano – volume: 65 year: 2019 ident: bib31 article-title: Versatile neuromorphic electronics by modulating synaptic decay of single organic synaptic transistor: from artificial neural networks to neuro-prosthetics publication-title: Nano Energy – volume: 20 start-page: 4111 year: 2020 end-page: 4120 ident: bib15 article-title: Three-dimensional nanoscale flexible memristor networks with ultralow power for information transmission and processing application publication-title: Nano Lett. – volume: 13 year: 2019 ident: bib34 article-title: Photonic synapses for ultrahigh-speed neuromorphic computing publication-title: Phys. Status Solidi (RRL)– Rapid Res. Lett. – volume: 11 start-page: 17590 year: 2019 end-page: 17599 ident: bib40 article-title: An electro-photo-sensitive synaptic transistor for edge neuromorphic visual systems publication-title: Nanoscale – volume: 15 start-page: 517 year: 2020 end-page: 528 ident: bib13 article-title: Neuromorphic nanoelectronic materials publication-title: Nat. Nanotechnol. – volume: 23 start-page: 4977 year: 2013 end-page: 4984 ident: bib41 article-title: A versatile light-switchable nanorod memory: wurtzite ZnO on perovskite SrTiO3 publication-title: Adv. Funct. Mater. – volume: 8 start-page: 538 year: 2021 end-page: 546 ident: bib33 article-title: Flexible boron nitride-based memristor for in situ digital and analogue neuromorphic computing applications publication-title: Mater. Horiz. – volume: 575 start-page: 607 year: 2019 end-page: 617 ident: bib10 article-title: Towards spike-based machine intelligence with neuromorphic computing publication-title: Nature – volume: 5 year: 2019 ident: bib14 article-title: A brain-plausible neuromorphic on-the-fly learning system implemented with magnetic domain wall analog memristors publication-title: Sci. Adv. – volume: 2 start-page: 596 year: 2019 end-page: 605 ident: bib16 article-title: Two-terminal floating-gate transistors with a low-power memristive operation mode for analogue neuromorphic computing publication-title: Nat. Electron. – volume: 4 start-page: 357 year: 2021 end-page: 363 ident: bib9 article-title: Unipolar barrier photodetectors based on van der Waals heterostructures publication-title: Nat. Electron. – volume: 579 start-page: 62 year: 2020 end-page: 66 ident: bib2 article-title: Ultrafast machine vision with 2D material neural network image sensors publication-title: Nature – volume: 12 year: 2021 ident: bib7 article-title: Bioinspired multisensory neural network with crossmodal integration and recognition publication-title: Nat. Commun. – volume: 15 start-page: 1497 year: 2021 end-page: 1508 ident: bib4 article-title: Large-scale and flexible optical synapses for neuromorphic computing and integrated visible information sensing memory processing publication-title: ACS Nano – volume: 38 start-page: 1019 year: 2017 end-page: 1022 ident: bib21 article-title: Improving analog switching in HfOx-based resistive memory with a thermal enhanced layer publication-title: IEEE Electron Device Lett. – volume: 31 year: 2019 ident: bib28 article-title: Spatiotemporal information processing emulated by multiterminal neuro-transistor networks publication-title: Adv. Mater. – volume: 30 year: 2018 ident: bib39 article-title: Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing publication-title: Adv. Mater. – volume: 30 year: 2018 ident: bib42 article-title: Phosphorene/ZnO nano-heterojunctions for broadband photonic nonvolatile memory applications publication-title: Adv. Mater. – volume: 30 year: 2020 ident: bib20 article-title: Lateral artificial synapses on hybrid perovskite platelets with modulated neuroplasticity publication-title: Adv. Funct. Mater. – volume: 7 year: 2020 ident: bib22 article-title: Ultralow power wearable heterosynapse with photoelectric synergistic modulation publication-title: Adv. Sci. – volume: 6 year: 2019 ident: bib30 article-title: A neuromorphic device implemented on a Salmon-DNA electrolyte and its application to artificial neural networks publication-title: Adv. Sci. – volume: 15 start-page: 517 year: 2020 ident: 10.1016/j.nanoen.2021.106291_bib13 article-title: Neuromorphic nanoelectronic materials publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-0647-z – volume: 30 year: 2018 ident: 10.1016/j.nanoen.2021.106291_bib42 article-title: Phosphorene/ZnO nano-heterojunctions for broadband photonic nonvolatile memory applications publication-title: Adv. Mater. doi: 10.1002/adma.201801232 – volume: 12 year: 2021 ident: 10.1016/j.nanoen.2021.106291_bib7 article-title: Bioinspired multisensory neural network with crossmodal integration and recognition publication-title: Nat. Commun. doi: 10.1038/s41467-021-21404-z – volume: 83 year: 2021 ident: 10.1016/j.nanoen.2021.106291_bib17 article-title: Energy-efficient flexible photoelectric device with 2D/0D hybrid structure for bio-inspired artificial heterosynapse application publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.105815 – year: 2020 ident: 10.1016/j.nanoen.2021.106291_bib27 article-title: Fully light-controlled memory and neuromorphic computation in layered black phosphorus publication-title: Adv. Mater. – volume: 65 year: 2019 ident: 10.1016/j.nanoen.2021.106291_bib31 article-title: Versatile neuromorphic electronics by modulating synaptic decay of single organic synaptic transistor: from artificial neural networks to neuro-prosthetics publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104035 – volume: 3 start-page: 664 year: 2020 ident: 10.1016/j.nanoen.2021.106291_bib1 article-title: Near-sensor and in-sensor computing publication-title: Nat. Electron. doi: 10.1038/s41928-020-00501-9 – volume: 31 year: 2019 ident: 10.1016/j.nanoen.2021.106291_bib28 article-title: Spatiotemporal information processing emulated by multiterminal neuro-transistor networks publication-title: Adv. Mater. doi: 10.1002/adma.201900903 – volume: 30 year: 2018 ident: 10.1016/j.nanoen.2021.106291_bib39 article-title: Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing publication-title: Adv. Mater. – volume: 31 year: 2019 ident: 10.1016/j.nanoen.2021.106291_bib12 article-title: Bridging biological and artificial neural networks with emerging neuromorphic devices: fundamentals, progress, and challenges publication-title: Adv. Mater. doi: 10.1002/adma.201902761 – volume: 4 start-page: 357 year: 2021 ident: 10.1016/j.nanoen.2021.106291_bib9 article-title: Unipolar barrier photodetectors based on van der Waals heterostructures publication-title: Nat. Electron. doi: 10.1038/s41928-021-00586-w – volume: 2 start-page: 596 year: 2019 ident: 10.1016/j.nanoen.2021.106291_bib16 article-title: Two-terminal floating-gate transistors with a low-power memristive operation mode for analogue neuromorphic computing publication-title: Nat. Electron. doi: 10.1038/s41928-019-0331-1 – volume: 6 year: 2020 ident: 10.1016/j.nanoen.2021.106291_bib3 article-title: Gate-tunable van der Waals heterostructure for reconfigurable neural network vision sensor publication-title: Sci. Adv. – volume: 11 start-page: 17590 year: 2019 ident: 10.1016/j.nanoen.2021.106291_bib40 article-title: An electro-photo-sensitive synaptic transistor for edge neuromorphic visual systems publication-title: Nanoscale doi: 10.1039/C9NR04195H – volume: 8 year: 2017 ident: 10.1016/j.nanoen.2021.106291_bib44 article-title: Face classification using electronic synapses publication-title: Nat. Commun. doi: 10.1038/ncomms15199 – volume: 14 start-page: 14108 year: 2020 ident: 10.1016/j.nanoen.2021.106291_bib24 article-title: Environment-adaptable photonic–electronic-coupled neuromorphic angular visual system publication-title: ACS Nano doi: 10.1021/acsnano.0c06874 – volume: 6 year: 2019 ident: 10.1016/j.nanoen.2021.106291_bib30 article-title: A neuromorphic device implemented on a Salmon-DNA electrolyte and its application to artificial neural networks publication-title: Adv. Sci. doi: 10.1002/advs.201901265 – volume: 15 start-page: 574 year: 2020 ident: 10.1016/j.nanoen.2021.106291_bib18 article-title: Alloying conducting channels for reliable neuromorphic computing publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-0694-5 – volume: 8 start-page: 538 year: 2021 ident: 10.1016/j.nanoen.2021.106291_bib33 article-title: Flexible boron nitride-based memristor for in situ digital and analogue neuromorphic computing applications publication-title: Mater. Horiz. doi: 10.1039/D0MH01730B – volume: 11 year: 2020 ident: 10.1016/j.nanoen.2021.106291_bib5 article-title: Curved neuromorphic image sensor array using a MoS2-organic heterostructure inspired by the human visual recognition system publication-title: Nat. Commun. doi: 10.1038/s41467-020-19806-6 – volume: 15 start-page: 1497 year: 2021 ident: 10.1016/j.nanoen.2021.106291_bib4 article-title: Large-scale and flexible optical synapses for neuromorphic computing and integrated visible information sensing memory processing publication-title: ACS Nano doi: 10.1021/acsnano.0c08921 – volume: 13 year: 2019 ident: 10.1016/j.nanoen.2021.106291_bib34 article-title: Photonic synapses for ultrahigh-speed neuromorphic computing publication-title: Phys. Status Solidi (RRL)– Rapid Res. Lett. – volume: 23 start-page: 4977 year: 2013 ident: 10.1016/j.nanoen.2021.106291_bib41 article-title: A versatile light-switchable nanorod memory: wurtzite ZnO on perovskite SrTiO3 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201300509 – volume: 3 start-page: 638 year: 2020 ident: 10.1016/j.nanoen.2021.106291_bib25 article-title: Wafer-scale integration of two-dimensional materials in high-density memristive crossbar arrays for artificial neural networks publication-title: Nat. Electron. doi: 10.1038/s41928-020-00473-w – volume: 30 year: 2020 ident: 10.1016/j.nanoen.2021.106291_bib35 article-title: Optoelectronic perovskite synapses for neuromorphic computing publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201908901 – volume: 4 start-page: 1293 year: 2019 ident: 10.1016/j.nanoen.2021.106291_bib26 article-title: Fully transparent, flexible and waterproof synapses with pattern recognition in organic environments publication-title: Nanoscale Horiz. doi: 10.1039/C9NH00341J – volume: 19 start-page: 711 year: 1997 ident: 10.1016/j.nanoen.2021.106291_bib43 article-title: Eigenfaces vs. fisherfaces: recognition using class specific linear projection publication-title: ITPAM – volume: 579 start-page: 62 year: 2020 ident: 10.1016/j.nanoen.2021.106291_bib2 article-title: Ultrafast machine vision with 2D material neural network image sensors publication-title: Nature doi: 10.1038/s41586-020-2038-x – volume: 9 year: 2018 ident: 10.1016/j.nanoen.2021.106291_bib19 article-title: Neuromorphic computing with multi-memristive synapses publication-title: Nat. Commun. doi: 10.1038/s41467-018-04933-y – volume: 7 year: 2020 ident: 10.1016/j.nanoen.2021.106291_bib22 article-title: Ultralow power wearable heterosynapse with photoelectric synergistic modulation publication-title: Adv. Sci. – volume: 19 start-page: 2044 year: 2019 ident: 10.1016/j.nanoen.2021.106291_bib29 article-title: Ferroelectric analog synaptic transistors publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b00180 – volume: 18 start-page: 309 year: 2019 ident: 10.1016/j.nanoen.2021.106291_bib11 article-title: Memristive crossbar arrays for brain-inspired computing publication-title: Nat. Mater. doi: 10.1038/s41563-019-0291-x – volume: 30 year: 2020 ident: 10.1016/j.nanoen.2021.106291_bib20 article-title: Lateral artificial synapses on hybrid perovskite platelets with modulated neuroplasticity publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202005413 – volume: 579 start-page: 32 year: 2020 ident: 10.1016/j.nanoen.2021.106291_bib8 article-title: In-sensor computing for machine vision publication-title: Nature doi: 10.1038/d41586-020-00592-6 – volume: 5 start-page: 1324 year: 2020 ident: 10.1016/j.nanoen.2021.106291_bib23 article-title: Mixed receptors of AMPA and NMDA emulated using a ‘Polka Dot’-structured two-dimensional conjugated polymer-based artificial synapse publication-title: Nanoscale Horiz. doi: 10.1039/D0NH00348D – volume: 7 start-page: 110 year: 2019 ident: 10.1016/j.nanoen.2021.106291_bib36 article-title: Silicon-on-insulator-based microwave photonic filter with widely adjustable bandwidth publication-title: Photonics Res. doi: 10.1364/PRJ.7.000110 – year: 2020 ident: 10.1016/j.nanoen.2021.106291_bib32 article-title: Solution-processed electronics for artificial synapses publication-title: Mater. Horiz. – volume: 66 year: 2019 ident: 10.1016/j.nanoen.2021.106291_bib37 article-title: Solar-stimulated optoelectronic synapse based on organic heterojunction with linearly potentiated synaptic weight for neuromorphic computing publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104095 – volume: 14 start-page: 776 year: 2019 ident: 10.1016/j.nanoen.2021.106291_bib6 article-title: Optoelectronic resistive random access memory for neuromorphic vision sensors publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0501-3 – volume: 575 start-page: 607 year: 2019 ident: 10.1016/j.nanoen.2021.106291_bib10 article-title: Towards spike-based machine intelligence with neuromorphic computing publication-title: Nature doi: 10.1038/s41586-019-1677-2 – volume: 20 start-page: 3378 year: 2020 ident: 10.1016/j.nanoen.2021.106291_bib38 article-title: Optically stimulated synaptic devices based on the hybrid structure of silicon nanomembrane and perovskite publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c00298 – volume: 5 year: 2019 ident: 10.1016/j.nanoen.2021.106291_bib14 article-title: A brain-plausible neuromorphic on-the-fly learning system implemented with magnetic domain wall analog memristors publication-title: Sci. Adv. doi: 10.1126/sciadv.aau8170 – volume: 20 start-page: 4111 year: 2020 ident: 10.1016/j.nanoen.2021.106291_bib15 article-title: Three-dimensional nanoscale flexible memristor networks with ultralow power for information transmission and processing application publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b05271 – volume: 38 start-page: 1019 year: 2017 ident: 10.1016/j.nanoen.2021.106291_bib21 article-title: Improving analog switching in HfOx-based resistive memory with a thermal enhanced layer publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2017.2719161 |
SSID | ssj0000651712 |
Score | 2.5683725 |
Snippet | Inspired by human brain and visual system, optoelectronic memristors-based neuromorphic computing has attracted the interests of researchers to overcome the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 106291 |
SubjectTerms | Boolean logic gate Face recognition In-sensor computing Neuromorphic computing Optoelectronic memristor |
Title | Reconfigurable optoelectronic memristor for in-sensor computing applications |
URI | https://dx.doi.org/10.1016/j.nanoen.2021.106291 |
Volume | 89 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqDKwmia2E9djVVGVVxeo1C2yHRsF0aRq05XfzjmPUiQEElti-aLocr5H7u47hK65FLJPtcGS-gozljCsfCqxSEItqVXaStec_DSJxlN2PwtnLTRsemFcWWWt-yudXmrreqVXc7O3SNPeM4HYhfRDsD_O7yj1MGPcSfnNR7D5zwImNuBl0tPtx46g6aAry7wymeXGAaGSAJYiIoKfLdSW1RkdoP3aXfQG1RsdopbJjtDeFojgMXp0EWRm09f10rVBefmiyL-G23hzMy_hA5YeuKdemuEVBK5wpctxDvAEbzuHfYKmo9uX4RjXMxKwBme_wDwynBIlNaGWaxsKI_om0MSlUCLLfZVQiIki-CQJ0wmcQEscipsvOJw3G1p6itpZnpkz5PlcqNAk4D9FlhkSSBnKwAhfmkgxqnQH0YYvsa4BxN0ci_e4qRR7iytuxo6bccXNDsIbqkUFoPHHft6wPP4mCDHo-F8pz_9NeYF23V3VYniJ2sVyba7A1yhUtxSmLtoZ3D2MJ59NQNUN |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07a8MwEBYhGdoOpU-aPj10FbEly4rGEBqS5rE0gWxCkqXi0tghdf5_JT_SFEoL3YzsM-Ys3X2n030HwCMVTHSx0lBgX8IwjEMofSwgi4kS2EhlhCtOns6i4SJ8XpJlA_TrWhh3rLKy_aVNL6x1NdKptNlZJ0nnBdnYBXWJ9T8Odzg73HLsVKQJWr3ReDjbbbVYLxvQIu_pRKCTqYvoipNeqUgz7bhQUWCHIsSCn53UnuMZnIDjCjF6vfKjTkFDp2fgaI9H8BxMXBCZmuR1u3GVUF62zrOv_jbeSq8KBoGNZxGql6Tww8au9koVHR3sG7z9NPYFWAye5v0hrNokQGXxfg5ppClGUiiEDVWGMM26OlDIZVEiQ30ZYxsWRfavxKGK7SI0yBG5-YzaJWeIwZegmWapvgKeT5kkOrYQKjKhRoEQRASa-UJHMsRStQGu9cJVxSHuWlm88_qw2BsvtcmdNnmpzTaAO6l1yaHxx_O0Vjn_Nhe4NfO_Sl7_W_IBHAzn0wmfjGbjG3Do7pQVh7egmW-2-s5Cj1zeV1PrE6ii174 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconfigurable+optoelectronic+memristor+for+in-sensor+computing+applications&rft.jtitle=Nano+energy&rft.au=Wang%2C+Tian-Yu&rft.au=Meng%2C+Jia-Lin&rft.au=Li%2C+Qing-Xuan&rft.au=He%2C+Zhen-Yu&rft.date=2021-11-01&rft.pub=Elsevier+Ltd&rft.issn=2211-2855&rft.volume=89&rft_id=info:doi/10.1016%2Fj.nanoen.2021.106291&rft.externalDocID=S2211285521005462 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon |