Direct integration of the third-order two point and multipoint Robin type boundary value problems
This numerical study exclusively focused on the direct two point diagonally multistep block method of order four (2DDM4) in the form of Adams-type formulas. The proposed predictor–corrector scheme was applied in this study to compute two equally spaced numerical solutions for the third-order two poi...
Saved in:
Published in | Mathematics and computers in simulation Vol. 182; pp. 411 - 427 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0378-4754 1872-7166 |
DOI | 10.1016/j.matcom.2020.10.028 |
Cover
Loading…
Abstract | This numerical study exclusively focused on the direct two point diagonally multistep block method of order four (2DDM4) in the form of Adams-type formulas. The proposed predictor–corrector scheme was applied in this study to compute two equally spaced numerical solutions for the third-order two point and multipoint boundary value problems (BVPs) subject to Robin boundary conditions concurrently at each step. The optimization of the computational costs was taken into consideration by not resolving the equation into a set of first-order differential equations. Instead, its implementation involved the use of shooting technique, which included the Newton divided difference formula employed for the iterative part, for the estimation of the initial guess. Apart from studying the local truncation error, the study also included the method analysis, including the order, stability, and convergence. The results of eight numerical problems demonstrated and highlighted competitive computational cost attained by the scheme, as compared to the existing method. |
---|---|
AbstractList | This numerical study exclusively focused on the direct two point diagonally multistep block method of order four (2DDM4) in the form of Adams-type formulas. The proposed predictor–corrector scheme was applied in this study to compute two equally spaced numerical solutions for the third-order two point and multipoint boundary value problems (BVPs) subject to Robin boundary conditions concurrently at each step. The optimization of the computational costs was taken into consideration by not resolving the equation into a set of first-order differential equations. Instead, its implementation involved the use of shooting technique, which included the Newton divided difference formula employed for the iterative part, for the estimation of the initial guess. Apart from studying the local truncation error, the study also included the method analysis, including the order, stability, and convergence. The results of eight numerical problems demonstrated and highlighted competitive computational cost attained by the scheme, as compared to the existing method. |
Author | Bachok, Norfifah Ismail, Fudziah Abdul Majid, Zanariah Mohd Nasir, Nadirah |
Author_xml | – sequence: 1 givenname: Nadirah surname: Mohd Nasir fullname: Mohd Nasir, Nadirah organization: Institute for Mathematical Research, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia – sequence: 2 givenname: Zanariah surname: Abdul Majid fullname: Abdul Majid, Zanariah email: am_zana@upm.edu.my organization: Institute for Mathematical Research, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia – sequence: 3 givenname: Fudziah surname: Ismail fullname: Ismail, Fudziah organization: Institute for Mathematical Research, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia – sequence: 4 givenname: Norfifah surname: Bachok fullname: Bachok, Norfifah organization: Institute for Mathematical Research, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia |
BookMark | eNqFkMtKAzEUhoNUsK2-gYu8wIzJ3BJdCFKvIAii65BJTjRlJimZtNK3N9Nx5UIXh3Ph_D_83wLNnHeA0DklOSW0uVjnvYzK93lBivGUk4IfoTnlrMgYbZoZmpOS8axidXWCFsOwJoSkuZ4jeWsDqIiti_ARZLTeYW9w_IRUNujMBw0Bxy-PNz49Yek07rddtNP66lvrcNxvALd-67QMe7yT3RbwJvi2g344RcdGdgOc_fQler-_e1s9Zs8vD0-rm-dMlaSJGasM0w2TqrwEKUGXtaGcK8NrWTJmmKREGc1Zw8paEkqLqkqjIlTyhrWsKpfoavJVwQ9DACOUjYdAMUjbCUrECEusxQRLjLDGa4KVxNUv8SbYPoX5T3Y9ySAF21kIYlAWnAJ9oCq0t38bfAOmD4n4 |
CitedBy_id | crossref_primary_10_1016_j_jocs_2024_102338 crossref_primary_10_4236_ijmnta_2023_123006 crossref_primary_10_1016_j_matcom_2024_04_014 crossref_primary_10_1016_j_icheatmasstransfer_2023_106849 crossref_primary_10_1088_1742_6596_1988_1_012029 crossref_primary_10_23939_mmc2022_01_001 crossref_primary_10_3390_axioms13040248 |
Cites_doi | 10.1007/s40819-018-0542-6 10.1016/j.matcom.2019.03.003 10.12988/ijma.2016.510266 10.5897/IJPS2013.4019 10.1016/j.cam.2020.112876 10.1007/s11075-010-9375-z 10.1080/0020716031000079572 10.1016/j.amc.2017.10.003 10.1007/s11075-010-9413-x 10.1080/00207169108804026 10.1109/ICMSAO.2011.5775503 10.18576/amis/100403 10.1016/j.amc.2015.08.129 10.1080/00207169908804816 10.1016/j.amc.2017.06.038 |
ContentType | Journal Article |
Copyright | 2020 International Association for Mathematics and Computers in Simulation (IMACS) |
Copyright_xml | – notice: 2020 International Association for Mathematics and Computers in Simulation (IMACS) |
DBID | AAYXX CITATION |
DOI | 10.1016/j.matcom.2020.10.028 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-7166 |
EndPage | 427 |
ExternalDocumentID | 10_1016_j_matcom_2020_10_028 S0378475420303992 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 63O 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO ABAOU ABEFU ABFNM ABJNI ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADGUI ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ARUGR AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HLZ HMJ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SES SEW SME SPC SPCBC SSB SSD SST SSW SSZ T5K TN5 WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-74f7d67ac39eaaed35f188cf85a377f7a10cfd876735a011244673c01a867b743 |
IEDL.DBID | .~1 |
ISSN | 0378-4754 |
IngestDate | Thu Apr 24 22:58:41 EDT 2025 Tue Jul 01 03:39:37 EDT 2025 Fri Feb 23 02:47:46 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Third-order differential equations Boundary value problems Robin boundary conditions Linear multistep method Shooting method |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-74f7d67ac39eaaed35f188cf85a377f7a10cfd876735a011244673c01a867b743 |
PageCount | 17 |
ParticipantIDs | crossref_citationtrail_10_1016_j_matcom_2020_10_028 crossref_primary_10_1016_j_matcom_2020_10_028 elsevier_sciencedirect_doi_10_1016_j_matcom_2020_10_028 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2021 2021-04-00 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: April 2021 |
PublicationDecade | 2020 |
PublicationTitle | Mathematics and computers in simulation |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Jator, Okunlola, Biala, Adeniyi (b14) 2018; 4 Pandey (b26) 2017; 7 El-Salam, El-Sabbagh, Zaki (b10) 2010; 6 Awoyemi, Kayode, Adoghe (b7) 2014; 9 Rach, Duan, Wazwaz, higher order, multipoint (b27) 2016; 10 Ramos, Rufai (b28) 2019 Keller (b16) 2018 Nasir, Majid, Ismail, Bachok (b24) 2018; 2018 Awoyemi (b6) 2003; 80 Agboola, Opanuga, Gbadeyan (b4) 2015; 11 Hijazi, Abdelrahim (b12) 2017; 13 Lambert (b18) 1973 Modebei, Jator, Ramos (b23) 2020; 377 Roberts (b29) 1979 Abushammala, Khuri, Sayfy (b2) 2015; 271 Mehrkanoon (b22) 2011; 57 Ackleh, Allen, Kearfott, Seshaiyer (b3) 2009 Majid, Azmi, Suleiman, Ibrahaim (b20) 2012; 41 Jator (b13) 2009; 53 Omar, Abdullahi, Kuboye (b25) 2016; 10 Caglar, Caglar, Twizell (b9) 1999; 71 Liang, Jeffrey (b19) 2011; 56 Abdullah, Majid, Senu (b1) 2013; 7 Jikantoro, Ismail, Senu, Ibrahim (b15) 2018; 320 Anakira, Alomari, Jameel, Hashim (b5) 2017; 102 Khataybeh, Hashim, Alshbool (b17) 2018 Bakar, Arifin, Nazar, Ali, Pop (b8) 2016; 7 Majid, See (b21) 2017; 314 Fatunla (b11) 1991; 41 N. Waeleh, Z.A. Majid, F. Ismail, L.L. Soon, A direct 4-point predictor–corrector block method for solving general third order odes, in: Modeling, Simulation and Applied Optimization (ICM-SAO), 2011 4th International Conference on, pp. 1–4. Liang (10.1016/j.matcom.2020.10.028_b19) 2011; 56 Jikantoro (10.1016/j.matcom.2020.10.028_b15) 2018; 320 Ramos (10.1016/j.matcom.2020.10.028_b28) 2019 Pandey (10.1016/j.matcom.2020.10.028_b26) 2017; 7 Lambert (10.1016/j.matcom.2020.10.028_b18) 1973 Keller (10.1016/j.matcom.2020.10.028_b16) 2018 Roberts (10.1016/j.matcom.2020.10.028_b29) 1979 Majid (10.1016/j.matcom.2020.10.028_b21) 2017; 314 Fatunla (10.1016/j.matcom.2020.10.028_b11) 1991; 41 Caglar (10.1016/j.matcom.2020.10.028_b9) 1999; 71 Omar (10.1016/j.matcom.2020.10.028_b25) 2016; 10 Abdullah (10.1016/j.matcom.2020.10.028_b1) 2013; 7 Majid (10.1016/j.matcom.2020.10.028_b20) 2012; 41 Jator (10.1016/j.matcom.2020.10.028_b14) 2018; 4 Hijazi (10.1016/j.matcom.2020.10.028_b12) 2017; 13 Mehrkanoon (10.1016/j.matcom.2020.10.028_b22) 2011; 57 Awoyemi (10.1016/j.matcom.2020.10.028_b7) 2014; 9 Awoyemi (10.1016/j.matcom.2020.10.028_b6) 2003; 80 El-Salam (10.1016/j.matcom.2020.10.028_b10) 2010; 6 Agboola (10.1016/j.matcom.2020.10.028_b4) 2015; 11 Anakira (10.1016/j.matcom.2020.10.028_b5) 2017; 102 Ackleh (10.1016/j.matcom.2020.10.028_b3) 2009 10.1016/j.matcom.2020.10.028_b30 Rach (10.1016/j.matcom.2020.10.028_b27) 2016; 10 Nasir (10.1016/j.matcom.2020.10.028_b24) 2018; 2018 Abushammala (10.1016/j.matcom.2020.10.028_b2) 2015; 271 Khataybeh (10.1016/j.matcom.2020.10.028_b17) 2018 Bakar (10.1016/j.matcom.2020.10.028_b8) 2016; 7 Jator (10.1016/j.matcom.2020.10.028_b13) 2009; 53 Modebei (10.1016/j.matcom.2020.10.028_b23) 2020; 377 |
References_xml | – volume: 71 start-page: 373 year: 1999 end-page: 381 ident: b9 article-title: The numerical solution of third-order boundary-value problems with fourth-degree & B-spline functions publication-title: Int. J. Comput. Math. – volume: 7 start-page: 2629 year: 2013 end-page: 2645 ident: b1 article-title: Solving third order boundary value problem using fourth order block method publication-title: Appl. Math. Sci. – volume: 41 start-page: 55 year: 1991 end-page: 63 ident: b11 article-title: Block methods for second order odes publication-title: Int. J. Comput. Math. – year: 2009 ident: b3 article-title: Classical and Modern Numerical Analysis: Theory, Methods and Practice – volume: 7 start-page: 38 year: 2016 ident: b8 article-title: Forced convection boundary layer stagnation-point flow in darcy-forchheimer porous medium past a shrinking sheet publication-title: Front. Heat Mass Transfer – volume: 6 start-page: 303 year: 2010 end-page: 309 ident: b10 article-title: The numerical solution of linear third order boundary value problems using nonpolynomial spline technique publication-title: J. Am. Sci. – volume: 271 start-page: 131 year: 2015 end-page: 141 ident: b2 article-title: A novel fixed point iteration method for the solution of third order boundary value problems publication-title: Appl. Math. Comput. – volume: 377 year: 2020 ident: b23 article-title: Block hybrid method for the numerical solution of fourth order boundary value problems publication-title: J. Comput. Appl. Math. – volume: 10 start-page: 223 year: 2016 end-page: 235 ident: b25 article-title: Predictor–corrector block method of order seven for solving third order ordinary differential equations publication-title: Int. J. Math. Anal. – year: 2018 ident: b16 article-title: Numerical Methods for Two-Point Boundary-Value Problems – year: 1979 ident: b29 article-title: Ordinary Differential Equations: A Computational Approach – volume: 7 start-page: 129 year: 2017 end-page: 138 ident: b26 article-title: A numerical method for the solution of general third order boundary value problem in ordinary differential equations publication-title: Bull. Int. Math. Virtual Inst. – volume: 2018 year: 2018 ident: b24 article-title: Diagonal block method for solving two-point boundary value problems with robin boundary conditions publication-title: Math. Probl. Eng. – reference: N. Waeleh, Z.A. Majid, F. Ismail, L.L. Soon, A direct 4-point predictor–corrector block method for solving general third order odes, in: Modeling, Simulation and Applied Optimization (ICM-SAO), 2011 4th International Conference on, pp. 1–4. – volume: 320 start-page: 452 year: 2018 end-page: 463 ident: b15 article-title: Hybrid methods for direct integration of special third order ordinary differential equations publication-title: Appl. Math. Comput. – volume: 102 start-page: 1727 year: 2017 end-page: 1744 ident: b5 article-title: Multistage optimal homotopy asymptotic method for solving boundary value problems with robin boundary conditions publication-title: Far East J. Math. Sci. – volume: 9 start-page: 7 year: 2014 end-page: 12 ident: b7 article-title: A four-point fully implicit method for the numerical integration of third-order ordinary differential equations publication-title: Int. J. Phys. Sci. – volume: 53 start-page: 37 year: 2009 end-page: 54 ident: b13 article-title: Novel finite difference schemes for third order boundary value problems publication-title: Int. J. Pure Appl. Math. – volume: 80 start-page: 985 year: 2003 end-page: 991 ident: b6 article-title: A P-stable linear multistep method for solving general third order ordinary differential equations publication-title: Int. J. Comput. Math. – volume: 314 start-page: 469 year: 2017 end-page: 483 ident: b21 article-title: Study of predictor corrector block method via multiple shooting to blasius and sakiadis flow publication-title: Appl. Math. Comput. – year: 2018 ident: b17 article-title: Solving directly third-order odes using operational matrices of bernstein polynomials method with applications to fluid flow equations publication-title: J. King Saud Univ.-Sci. – volume: 11 start-page: 2511 year: 2015 end-page: 2516 ident: b4 article-title: Solution of third order ordinary differential equations using differential transform method publication-title: Glob. J. Pure Appl. Math. – volume: 41 start-page: 623 year: 2012 end-page: 632 ident: b20 article-title: Solving directly general third order ordinary differential equations using two-point four step block method publication-title: Sains Malays. – volume: 4 start-page: 110 year: 2018 ident: b14 article-title: Direct integrators for the general third-order ordinary differential equations with an application to the Korteweg–de Vries equation publication-title: Int. J. Appl. Comput. Math. – volume: 10 start-page: 1231 year: 2016 end-page: 1242 ident: b27 article-title: Solution of higher-order multipoint nonlinear boundary value problems with high-order Robin-type boundary conditions by the Adomian decomposition method publication-title: Appl. Math. Inform. Sci. – year: 2019 ident: b28 article-title: A third-derivative two-step block falkner-type method for solving general second-order boundary-value systems publication-title: Math. Comput. Simul. – volume: 13 start-page: 89 year: 2017 end-page: 103 ident: b12 article-title: The numerical computation of three step hybrid block method for directly solving third order ordinary differential equations publication-title: Glob. J. Pure Appl. Math. – volume: 57 start-page: 53 year: 2011 end-page: 66 ident: b22 article-title: A direct variable step block multistep method for solving general third-order odes publication-title: Numer. Algorithms – volume: 56 start-page: 93 year: 2011 end-page: 106 ident: b19 article-title: An analytical approach for solving nonlinear boundary value problems in finite domains publication-title: Numer. Algorithms – year: 1973 ident: b18 article-title: Computational Methods in Ordinary Differential Equations – volume: 41 start-page: 623 year: 2012 ident: 10.1016/j.matcom.2020.10.028_b20 article-title: Solving directly general third order ordinary differential equations using two-point four step block method publication-title: Sains Malays. – volume: 4 start-page: 110 year: 2018 ident: 10.1016/j.matcom.2020.10.028_b14 article-title: Direct integrators for the general third-order ordinary differential equations with an application to the Korteweg–de Vries equation publication-title: Int. J. Appl. Comput. Math. doi: 10.1007/s40819-018-0542-6 – year: 2019 ident: 10.1016/j.matcom.2020.10.028_b28 article-title: A third-derivative two-step block falkner-type method for solving general second-order boundary-value systems publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2019.03.003 – volume: 10 start-page: 223 year: 2016 ident: 10.1016/j.matcom.2020.10.028_b25 article-title: Predictor–corrector block method of order seven for solving third order ordinary differential equations publication-title: Int. J. Math. Anal. doi: 10.12988/ijma.2016.510266 – volume: 9 start-page: 7 year: 2014 ident: 10.1016/j.matcom.2020.10.028_b7 article-title: A four-point fully implicit method for the numerical integration of third-order ordinary differential equations publication-title: Int. J. Phys. Sci. doi: 10.5897/IJPS2013.4019 – volume: 377 year: 2020 ident: 10.1016/j.matcom.2020.10.028_b23 article-title: Block hybrid method for the numerical solution of fourth order boundary value problems publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2020.112876 – volume: 56 start-page: 93 year: 2011 ident: 10.1016/j.matcom.2020.10.028_b19 article-title: An analytical approach for solving nonlinear boundary value problems in finite domains publication-title: Numer. Algorithms doi: 10.1007/s11075-010-9375-z – year: 1973 ident: 10.1016/j.matcom.2020.10.028_b18 – volume: 80 start-page: 985 year: 2003 ident: 10.1016/j.matcom.2020.10.028_b6 article-title: A P-stable linear multistep method for solving general third order ordinary differential equations publication-title: Int. J. Comput. Math. doi: 10.1080/0020716031000079572 – volume: 7 start-page: 129 year: 2017 ident: 10.1016/j.matcom.2020.10.028_b26 article-title: A numerical method for the solution of general third order boundary value problem in ordinary differential equations publication-title: Bull. Int. Math. Virtual Inst. – volume: 53 start-page: 37 year: 2009 ident: 10.1016/j.matcom.2020.10.028_b13 article-title: Novel finite difference schemes for third order boundary value problems publication-title: Int. J. Pure Appl. Math. – volume: 2018 year: 2018 ident: 10.1016/j.matcom.2020.10.028_b24 article-title: Diagonal block method for solving two-point boundary value problems with robin boundary conditions publication-title: Math. Probl. Eng. – volume: 6 start-page: 303 year: 2010 ident: 10.1016/j.matcom.2020.10.028_b10 article-title: The numerical solution of linear third order boundary value problems using nonpolynomial spline technique publication-title: J. Am. Sci. – volume: 320 start-page: 452 year: 2018 ident: 10.1016/j.matcom.2020.10.028_b15 article-title: Hybrid methods for direct integration of special third order ordinary differential equations publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2017.10.003 – year: 2009 ident: 10.1016/j.matcom.2020.10.028_b3 – volume: 57 start-page: 53 year: 2011 ident: 10.1016/j.matcom.2020.10.028_b22 article-title: A direct variable step block multistep method for solving general third-order odes publication-title: Numer. Algorithms doi: 10.1007/s11075-010-9413-x – year: 2018 ident: 10.1016/j.matcom.2020.10.028_b16 – volume: 41 start-page: 55 year: 1991 ident: 10.1016/j.matcom.2020.10.028_b11 article-title: Block methods for second order odes publication-title: Int. J. Comput. Math. doi: 10.1080/00207169108804026 – year: 1979 ident: 10.1016/j.matcom.2020.10.028_b29 – year: 2018 ident: 10.1016/j.matcom.2020.10.028_b17 article-title: Solving directly third-order odes using operational matrices of bernstein polynomials method with applications to fluid flow equations publication-title: J. King Saud Univ.-Sci. – ident: 10.1016/j.matcom.2020.10.028_b30 doi: 10.1109/ICMSAO.2011.5775503 – volume: 10 start-page: 1231 year: 2016 ident: 10.1016/j.matcom.2020.10.028_b27 article-title: Solution of higher-order multipoint nonlinear boundary value problems with high-order Robin-type boundary conditions by the Adomian decomposition method publication-title: Appl. Math. Inform. Sci. doi: 10.18576/amis/100403 – volume: 11 start-page: 2511 year: 2015 ident: 10.1016/j.matcom.2020.10.028_b4 article-title: Solution of third order ordinary differential equations using differential transform method publication-title: Glob. J. Pure Appl. Math. – volume: 271 start-page: 131 year: 2015 ident: 10.1016/j.matcom.2020.10.028_b2 article-title: A novel fixed point iteration method for the solution of third order boundary value problems publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2015.08.129 – volume: 102 start-page: 1727 year: 2017 ident: 10.1016/j.matcom.2020.10.028_b5 article-title: Multistage optimal homotopy asymptotic method for solving boundary value problems with robin boundary conditions publication-title: Far East J. Math. Sci. – volume: 71 start-page: 373 year: 1999 ident: 10.1016/j.matcom.2020.10.028_b9 article-title: The numerical solution of third-order boundary-value problems with fourth-degree & B-spline functions publication-title: Int. J. Comput. Math. doi: 10.1080/00207169908804816 – volume: 7 start-page: 38 year: 2016 ident: 10.1016/j.matcom.2020.10.028_b8 article-title: Forced convection boundary layer stagnation-point flow in darcy-forchheimer porous medium past a shrinking sheet publication-title: Front. Heat Mass Transfer – volume: 13 start-page: 89 year: 2017 ident: 10.1016/j.matcom.2020.10.028_b12 article-title: The numerical computation of three step hybrid block method for directly solving third order ordinary differential equations publication-title: Glob. J. Pure Appl. Math. – volume: 314 start-page: 469 year: 2017 ident: 10.1016/j.matcom.2020.10.028_b21 article-title: Study of predictor corrector block method via multiple shooting to blasius and sakiadis flow publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2017.06.038 – volume: 7 start-page: 2629 year: 2013 ident: 10.1016/j.matcom.2020.10.028_b1 article-title: Solving third order boundary value problem using fourth order block method publication-title: Appl. Math. Sci. |
SSID | ssj0007545 |
Score | 2.2926798 |
Snippet | This numerical study exclusively focused on the direct two point diagonally multistep block method of order four (2DDM4) in the form of Adams-type formulas.... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 411 |
SubjectTerms | Boundary value problems Linear multistep method Robin boundary conditions Shooting method Third-order differential equations |
Title | Direct integration of the third-order two point and multipoint Robin type boundary value problems |
URI | https://dx.doi.org/10.1016/j.matcom.2020.10.028 |
Volume | 182 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLdZH2YPXbZPsbjY9lmKpCr1oobew2QdUJCk1Il787c5uNj5AFDwEkmUGwmR25tvwzQxCl5HSMdWpIdRoOKBAyiDSaEWkS05aFVwUnm0xT2cLdrPkyw6atLUwjlYZYn8T0320DivDYM3herUa3kVUQGjlLAE_de1VXQU7E87LB2-fNA8Q8DRGECZOui2f8xwvAIWOM5IAZho4jpebyf5TevqScqZ7aCdgRTxuXmcfdUx5gHbbOQw4bMtDJJu4hdvWD2BqXFkM0A6u1UYT318T1y8VXlcghGWpccMk9I--Bgy7n7G48FOWNq_YNQE3OIybeTpCi-nV_WRGwugEouAMUBPBrNCpkIqOjATjU27jLFM245IKYYWMI2U1REJBuYQtDkkeblUUyywVBaCKY9Qtq9KcIGyZtVEyiiSnETMcPI9xACmxBiDERgXrIdpaLFehr7gbb_GYtwSyh7yxc-7s7FbBzj1EPrTWTV-NP-RF-zHyb_6RQ-j_VfP035pnaDtxDBbP0zlH3XrzbC4AgtRF3_tYH22Nr29n83d0-dzW |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5qe9CLb7E-c_Aau9tsmvZYitLa2ost9LZk84CKdEutiP_eSTZbFETBw8JumMAyO_nmy_JlBuAmUjpmumUoMxo3KJgyqDRaUemSk1YZF5lXW4xb_WnyMOOzCvTKszBOVhmwv8B0j9ZhpBG82VjO542niAmEVp40MU5dedUtqLnqVLwKte5g2B9vABltvJIR7ambUJ6g8zIv5IVONtJE2nTrZF6uLftPGepL1rnfh91AF0m3eKMDqJjFIeyVrRhIWJlHIAvoImX1B_Q2yS1BdofXfKWpL7FJ1u85WeZoRORCk0JM6B_9MTDi_seSzDdaWn0QVwfckNBx5vUYpvd3k16fhu4JVOE2YE1FYoVuCalYx0j0P-M2breVbXPJhLBCxpGyGsFQMC5xlWOex1sVxbLdEhkSixOoLvKFOQViE2ujZieSnEWJ4Rh8CUeeEmvkQkknS-rASo-lKpQWdx0uXtJSQ_acFn5OnZ_dKPq5DnQza1mU1vjDXpQfI_0WIimi_68zz_498xq2-5PHUToajIfnsNN0ghYv27mA6nr1Zi6RkayzqxBxnw8134c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+integration+of+the+third-order+two+point+and+multipoint+Robin+type+boundary+value+problems&rft.jtitle=Mathematics+and+computers+in+simulation&rft.au=Mohd+Nasir%2C+Nadirah&rft.au=Abdul+Majid%2C+Zanariah&rft.au=Ismail%2C+Fudziah&rft.au=Bachok%2C+Norfifah&rft.date=2021-04-01&rft.pub=Elsevier+B.V&rft.issn=0378-4754&rft.eissn=1872-7166&rft.volume=182&rft.spage=411&rft.epage=427&rft_id=info:doi/10.1016%2Fj.matcom.2020.10.028&rft.externalDocID=S0378475420303992 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4754&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4754&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4754&client=summon |