Fast-convergent federated learning with class-weighted aggregation

Recently, federated learning has attracted great attention due to its advantage of enabling model training in a distributed manner. Instead of uploading data for centralized training, it allows devices to keep local data private and only send parameters to server. Then the server aggregates local mo...

Full description

Saved in:
Bibliographic Details
Published inJournal of systems architecture Vol. 117; p. 102125
Main Authors Ma, Zezhong, Zhao, Mengying, Cai, Xiaojun, Jia, Zhiping
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recently, federated learning has attracted great attention due to its advantage of enabling model training in a distributed manner. Instead of uploading data for centralized training, it allows devices to keep local data private and only send parameters to server. Then the server aggregates local models to derive a global model. In this paper, we study the aggregation problem in federated learning, especially with non-independently and identically distributed data. Since existing scheme may degrade the representative of local models after aggregation, we propose to reallocate weights of local models based on contributions to each class. Then two class-weighted aggregation strategies are developed to improve the communication efficiency in federated learning. Evaluation shows that the proposed schemes reduce 30.49% and 23.59% of communication costs compared with FedAvg.
AbstractList Recently, federated learning has attracted great attention due to its advantage of enabling model training in a distributed manner. Instead of uploading data for centralized training, it allows devices to keep local data private and only send parameters to server. Then the server aggregates local models to derive a global model. In this paper, we study the aggregation problem in federated learning, especially with non-independently and identically distributed data. Since existing scheme may degrade the representative of local models after aggregation, we propose to reallocate weights of local models based on contributions to each class. Then two class-weighted aggregation strategies are developed to improve the communication efficiency in federated learning. Evaluation shows that the proposed schemes reduce 30.49% and 23.59% of communication costs compared with FedAvg.
ArticleNumber 102125
Author Zhao, Mengying
Ma, Zezhong
Cai, Xiaojun
Jia, Zhiping
Author_xml – sequence: 1
  givenname: Zezhong
  surname: Ma
  fullname: Ma, Zezhong
– sequence: 2
  givenname: Mengying
  orcidid: 0000-0001-7891-5436
  surname: Zhao
  fullname: Zhao, Mengying
  email: zhaomengying@sdu.edu.cn
– sequence: 3
  givenname: Xiaojun
  surname: Cai
  fullname: Cai, Xiaojun
– sequence: 4
  givenname: Zhiping
  surname: Jia
  fullname: Jia, Zhiping
BookMark eNqFkM9OwzAMhyM0JLbBG3DoC3TEadM_HJBgYoA0iQucI5M6XaaSoiTatLenWzlxgJMtW99P9jdjE9c7Yuwa-AI4FDfbRTgE9HohuIBhJEDIMzaFqszSAgo5GfqsytKyEHDBZiFsOedSgpiyhxWGmOre7ci35GJiqCGPkZqkI_TOujbZ27hJdIchpHuy7ea4xLb11GK0vbtk5wa7QFc_dc7eV49vy-d0_fr0srxfpzrjRUzLvGnKyiDPai6hNBqxro1ETkJjLrEquCnpQ2hpjCSuhaC6bkrMsQCAHLI5y8dc7fsQPBn15e0n-oMCro4e1FaNHtTRgxo9DNjtL0zbeDo8erTdf_DdCNPw2M6SV0Fbcpoa60lH1fT274BvkcV-2Q
CitedBy_id crossref_primary_10_1007_s11227_024_06715_4
crossref_primary_10_1109_TITS_2024_3362909
crossref_primary_10_3390_s23177358
crossref_primary_10_1007_s00607_022_01078_1
crossref_primary_10_1186_s12911_024_02798_4
crossref_primary_10_3390_app14072720
crossref_primary_10_1109_ACCESS_2023_3284976
crossref_primary_10_1016_j_sysarc_2022_102690
crossref_primary_10_3390_jsan13010001
crossref_primary_10_1109_COMST_2024_3399612
crossref_primary_10_1007_s42486_023_00141_w
crossref_primary_10_1016_j_dss_2023_114084
crossref_primary_10_1016_j_measurement_2024_116275
crossref_primary_10_1631_FITEE_2400279
crossref_primary_10_1016_j_eswa_2023_122440
crossref_primary_10_3390_e25040606
crossref_primary_10_3390_electronics12091972
crossref_primary_10_3390_diagnostics13203166
crossref_primary_10_1109_TVT_2022_3148872
crossref_primary_10_1109_TNET_2023_3257236
crossref_primary_10_1007_s11704_024_40065_x
crossref_primary_10_3390_app13031911
crossref_primary_10_3390_app122312080
crossref_primary_10_1109_TPDS_2023_3240767
crossref_primary_10_3390_sym15071369
crossref_primary_10_3390_sym14020195
Cites_doi 10.1109/TNNLS.2019.2953131
10.1109/TII.2019.2942190
10.1109/5.726791
10.1109/TNNLS.2019.2944481
10.1109/TIFS.2019.2929409
10.1016/j.ijmedinf.2018.01.007
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.sysarc.2021.102125
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6165
ExternalDocumentID 10_1016_j_sysarc_2021_102125
S138376212100093X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
U5U
UHS
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-74dd78fa0390517fcaa99f5a0e2ca45a860f7eb2c5ff5e0c22e99d7a4a6111413
IEDL.DBID .~1
ISSN 1383-7621
IngestDate Tue Jul 01 00:29:17 EDT 2025
Thu Apr 24 23:09:23 EDT 2025
Fri Feb 23 02:43:51 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Aggregation
Federated learning
Non-IID Data
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-74dd78fa0390517fcaa99f5a0e2ca45a860f7eb2c5ff5e0c22e99d7a4a6111413
ORCID 0000-0001-7891-5436
ParticipantIDs crossref_primary_10_1016_j_sysarc_2021_102125
crossref_citationtrail_10_1016_j_sysarc_2021_102125
elsevier_sciencedirect_doi_10_1016_j_sysarc_2021_102125
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2021
2021-08-00
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: August 2021
PublicationDecade 2020
PublicationTitle Journal of systems architecture
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Leroy, Coucke, Lavril, Gisselbrecht, Dureau (b6) 2019
Xiao, Rasul, Vollgraf (b30) 2017
Bagdasaryan, Veit, Hua, Estrin, Shmatikov (b11) 2020; vol. 108
Lalitha, Kilinc, Javidi, Koushanfar (b9) 2019
Konečnỳ, McMahan, Yu, Richtárik, Suresh, Bacon (b22) 2016
Lu, Huang, Dai, Maharjan, Zhang (b8) 2020; 16
Li, Sanjabi, Beirami, Smith (b27) 2019
Krizhevsky, Hinton (b31) 2009
Chen, Sun, Jin (b25) 2020; 31
Bonawitz, Ivanov, Kreuter, Marcedone, McMahan, Patel, Ramage, Segal, Seth (b14) 2017
McMahan, Moore, Ramage, Hampson, y Arcas (b1) 2017; vol. 54
Hard, Rao, Mathews, Ramaswamy, Beaufays, Augenstein, Eichner, Kiddon, Ramage (b4) 2018
Wang, Kaplan, Niu, Li (b19) 2020
Fung, Yoon, Beschastnikh (b28) 2018
Zhao, Li, Lai, Suda, Civin, Chandra (b7) 2018
Yang, Andrew, Eichner, Sun, Li, Kong, Ramage, Beaufays (b5) 2018
Lin, Han, Mao, Wang, Dally (b21) 2017
Mohri, Sivek, Suresh (b26) 2019
Abadi, Chu, Goodfellow, McMahan, Mironov, Talwar, Zhang (b13) 2016
Truex, Baracaldo, Anwar, Steinke, Ludwig, Zhang, Zhou (b15) 2019
Caldas, Konečny, McMahan, Talwalkar (b23) 2018
Li, Huang, Yang, Wang, Zhang (b17) 2019
Brisimi, Chen, Mela, Olshevsky, Paschalidis, Shi (b2) 2018; 112
Nishio, Yonetani (b24) 2019
Melis, Song, De Cristofaro, Shmatikov (b10) 2019
Xu, Li, Liu, Yang, Lin (b12) 2020; 15
Khaled, Mishchenko, Richtárik (b16) 2019
Sheller, Reina, Edwards, Martin, Bakas (b3) 2018
Sattler, Wiedemann, Müller, Samek (b18) 2020; 31
LeCun, Bottou, Bengio, Haffner (b29) 1998; 86
Han, Mao, Dally (b20) 2015
Yang (10.1016/j.sysarc.2021.102125_b5) 2018
Fung (10.1016/j.sysarc.2021.102125_b28) 2018
Lin (10.1016/j.sysarc.2021.102125_b21) 2017
LeCun (10.1016/j.sysarc.2021.102125_b29) 1998; 86
Brisimi (10.1016/j.sysarc.2021.102125_b2) 2018; 112
Abadi (10.1016/j.sysarc.2021.102125_b13) 2016
McMahan (10.1016/j.sysarc.2021.102125_b1) 2017; vol. 54
Bonawitz (10.1016/j.sysarc.2021.102125_b14) 2017
Lalitha (10.1016/j.sysarc.2021.102125_b9) 2019
Mohri (10.1016/j.sysarc.2021.102125_b26) 2019
Sattler (10.1016/j.sysarc.2021.102125_b18) 2020; 31
Zhao (10.1016/j.sysarc.2021.102125_b7) 2018
Truex (10.1016/j.sysarc.2021.102125_b15) 2019
Han (10.1016/j.sysarc.2021.102125_b20) 2015
Khaled (10.1016/j.sysarc.2021.102125_b16) 2019
Caldas (10.1016/j.sysarc.2021.102125_b23) 2018
Li (10.1016/j.sysarc.2021.102125_b27) 2019
Leroy (10.1016/j.sysarc.2021.102125_b6) 2019
Bagdasaryan (10.1016/j.sysarc.2021.102125_b11) 2020; vol. 108
Wang (10.1016/j.sysarc.2021.102125_b19) 2020
Nishio (10.1016/j.sysarc.2021.102125_b24) 2019
Li (10.1016/j.sysarc.2021.102125_b17) 2019
Konečnỳ (10.1016/j.sysarc.2021.102125_b22) 2016
Xu (10.1016/j.sysarc.2021.102125_b12) 2020; 15
Lu (10.1016/j.sysarc.2021.102125_b8) 2020; 16
Melis (10.1016/j.sysarc.2021.102125_b10) 2019
Chen (10.1016/j.sysarc.2021.102125_b25) 2020; 31
Xiao (10.1016/j.sysarc.2021.102125_b30) 2017
Krizhevsky (10.1016/j.sysarc.2021.102125_b31) 2009
Hard (10.1016/j.sysarc.2021.102125_b4) 2018
Sheller (10.1016/j.sysarc.2021.102125_b3) 2018
References_xml – start-page: 1175
  year: 2017
  end-page: 1191
  ident: b14
  article-title: Practical secure aggregation for privacy-preserving machine learning
  publication-title: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security
– year: 2017
  ident: b21
  article-title: Deep gradient compression: Reducing the communication bandwidth for distributed training
– year: 2018
  ident: b23
  article-title: Expanding the reach of federated learning by reducing client resource requirements
– volume: 31
  start-page: 3400
  year: 2020
  end-page: 3413
  ident: b18
  article-title: Robust and communication-efficient federated learning from non-i.i.d. data
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: b29
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
– year: 2018
  ident: b4
  article-title: Federated learning for mobile keyboard prediction
– year: 2019
  ident: b16
  article-title: First analysis of local gd on heterogeneous data
– year: 2019
  ident: b27
  article-title: Fair resource allocation in federated learning
– year: 2018
  ident: b5
  article-title: Applied federated learning: Improving google keyboard query suggestions
– volume: 112
  start-page: 59
  year: 2018
  end-page: 67
  ident: b2
  article-title: Federated learning of predictive models from federated electronic health records
  publication-title: Int. J. Med. Inform.
– year: 2018
  ident: b7
  article-title: Federated learning with non-iid data
– year: 2019
  ident: b17
  article-title: On the convergence of fedavg on non-iid data
– start-page: 691
  year: 2019
  end-page: 706
  ident: b10
  article-title: Exploiting unintended feature leakage in collaborative learning
  publication-title: 2019 IEEE Symposium on Security and Privacy (SP)
– start-page: 1
  year: 2019
  end-page: 7
  ident: b24
  article-title: Client selection for federated learning with heterogeneous resources in mobile edge
  publication-title: ICC 2019 - 2019 IEEE International Conference on Communications (ICC)
– start-page: 1698
  year: 2020
  end-page: 1707
  ident: b19
  article-title: Optimizing federated learning on non-iid data with reinforcement learning
  publication-title: IEEE INFOCOM 2020-IEEE Conference on Computer Communications
– volume: vol. 54
  start-page: 1273
  year: 2017
  end-page: 1282
  ident: b1
  publication-title: Communication-Efficient Learning of Deep Networks from Decentralized Data
– start-page: 92
  year: 2018
  end-page: 104
  ident: b3
  article-title: Multi-institutional deep learning modeling without sharing patient data: A feasibility study on brain tumor segmentation
  publication-title: International MICCAI Brainlesion Workshop
– start-page: 1
  year: 2019
  end-page: 11
  ident: b15
  article-title: A hybrid approach to privacy-preserving federated learning
  publication-title: Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security
– year: 2017
  ident: b30
  article-title: Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms
– start-page: 6341
  year: 2019
  end-page: 6345
  ident: b6
  article-title: Federated learning for keyword spotting
  publication-title: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– volume: 31
  start-page: 4229
  year: 2020
  end-page: 4238
  ident: b25
  article-title: Communication-efficient federated deep learning with layerwise asynchronous model update and temporally weighted aggregation
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 15
  start-page: 911
  year: 2020
  end-page: 926
  ident: b12
  article-title: Verifynet: Secure and verifiable federated learning
  publication-title: IEEE Trans. Inf. Forensics Secur.
– volume: vol. 108
  start-page: 2938
  year: 2020
  end-page: 2948
  ident: b11
  article-title: How to backdoor federated learning
  publication-title: Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics
– year: 2009
  ident: b31
  article-title: Learning Multiple Layers of Features from Tiny Images
– start-page: 308
  year: 2016
  end-page: 318
  ident: b13
  article-title: Deep learning with differential privacy
  publication-title: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security
– year: 2015
  ident: b20
  article-title: Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding
– year: 2019
  ident: b9
  article-title: Peer to peer federated learning on graphs
– year: 2016
  ident: b22
  article-title: Federated learning: Strategies for improving communication efficiency
– year: 2018
  ident: b28
  article-title: Mitigating sybils in federated learning poisoning
– volume: 16
  start-page: 4177
  year: 2020
  end-page: 4186
  ident: b8
  article-title: Blockchain and federated learning for privacy-preserved data sharing in industrial IoT
  publication-title: IEEE Trans. Ind. Inf.
– year: 2019
  ident: b26
  article-title: Agnostic federated learning
– start-page: 1698
  year: 2020
  ident: 10.1016/j.sysarc.2021.102125_b19
  article-title: Optimizing federated learning on non-iid data with reinforcement learning
– volume: 31
  start-page: 4229
  issue: 10
  year: 2020
  ident: 10.1016/j.sysarc.2021.102125_b25
  article-title: Communication-efficient federated deep learning with layerwise asynchronous model update and temporally weighted aggregation
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2019.2953131
– volume: 16
  start-page: 4177
  issue: 6
  year: 2020
  ident: 10.1016/j.sysarc.2021.102125_b8
  article-title: Blockchain and federated learning for privacy-preserved data sharing in industrial IoT
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2019.2942190
– volume: vol. 54
  start-page: 1273
  year: 2017
  ident: 10.1016/j.sysarc.2021.102125_b1
– year: 2016
  ident: 10.1016/j.sysarc.2021.102125_b22
– year: 2018
  ident: 10.1016/j.sysarc.2021.102125_b4
– year: 2019
  ident: 10.1016/j.sysarc.2021.102125_b26
– start-page: 308
  year: 2016
  ident: 10.1016/j.sysarc.2021.102125_b13
  article-title: Deep learning with differential privacy
– volume: vol. 108
  start-page: 2938
  year: 2020
  ident: 10.1016/j.sysarc.2021.102125_b11
  article-title: How to backdoor federated learning
– year: 2009
  ident: 10.1016/j.sysarc.2021.102125_b31
– year: 2018
  ident: 10.1016/j.sysarc.2021.102125_b23
– year: 2017
  ident: 10.1016/j.sysarc.2021.102125_b21
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 10.1016/j.sysarc.2021.102125_b29
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– year: 2015
  ident: 10.1016/j.sysarc.2021.102125_b20
– volume: 31
  start-page: 3400
  issue: 9
  year: 2020
  ident: 10.1016/j.sysarc.2021.102125_b18
  article-title: Robust and communication-efficient federated learning from non-i.i.d. data
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2019.2944481
– start-page: 1
  year: 2019
  ident: 10.1016/j.sysarc.2021.102125_b24
  article-title: Client selection for federated learning with heterogeneous resources in mobile edge
– volume: 15
  start-page: 911
  year: 2020
  ident: 10.1016/j.sysarc.2021.102125_b12
  article-title: Verifynet: Secure and verifiable federated learning
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2019.2929409
– volume: 112
  start-page: 59
  year: 2018
  ident: 10.1016/j.sysarc.2021.102125_b2
  article-title: Federated learning of predictive models from federated electronic health records
  publication-title: Int. J. Med. Inform.
  doi: 10.1016/j.ijmedinf.2018.01.007
– start-page: 691
  year: 2019
  ident: 10.1016/j.sysarc.2021.102125_b10
  article-title: Exploiting unintended feature leakage in collaborative learning
– start-page: 6341
  year: 2019
  ident: 10.1016/j.sysarc.2021.102125_b6
  article-title: Federated learning for keyword spotting
– year: 2018
  ident: 10.1016/j.sysarc.2021.102125_b5
– year: 2017
  ident: 10.1016/j.sysarc.2021.102125_b30
– year: 2019
  ident: 10.1016/j.sysarc.2021.102125_b17
– start-page: 1175
  year: 2017
  ident: 10.1016/j.sysarc.2021.102125_b14
  article-title: Practical secure aggregation for privacy-preserving machine learning
– year: 2019
  ident: 10.1016/j.sysarc.2021.102125_b16
– year: 2018
  ident: 10.1016/j.sysarc.2021.102125_b28
– year: 2019
  ident: 10.1016/j.sysarc.2021.102125_b9
– start-page: 1
  year: 2019
  ident: 10.1016/j.sysarc.2021.102125_b15
  article-title: A hybrid approach to privacy-preserving federated learning
– year: 2019
  ident: 10.1016/j.sysarc.2021.102125_b27
– start-page: 92
  year: 2018
  ident: 10.1016/j.sysarc.2021.102125_b3
  article-title: Multi-institutional deep learning modeling without sharing patient data: A feasibility study on brain tumor segmentation
– year: 2018
  ident: 10.1016/j.sysarc.2021.102125_b7
SSID ssj0005512
Score 2.4332123
Snippet Recently, federated learning has attracted great attention due to its advantage of enabling model training in a distributed manner. Instead of uploading data...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102125
SubjectTerms Aggregation
Federated learning
Non-IID Data
Title Fast-convergent federated learning with class-weighted aggregation
URI https://dx.doi.org/10.1016/j.sysarc.2021.102125
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5KvXjxLdZHycHr2jx2s8mxFktV7EULvYXJZrdUpBYbES_-dneSjVQQBY9JZiDMTmZnNt98A3BeoIyVDO0KJDpm3EZhlieRYSrQItAmV341JeJuHI8m_GYqpi0YNL0wBKt0sb-O6VW0dnd6zpq95Xzeuw-ouIpDYsCiunxKHexckpdffKzBPET9x9MKM5Ju2ucqjNfqfWXdyVaJYUAcBgENzP5pe1rbcoY7sOVyRa9fv84utPRiD7abOQye-yz34XKIq5JV-HFqpSw9QwwRNoksPDcUYubReaunKFVmb9VpqH2IM1tsz6qlOYDJ8OphMGJuNgJTNskvmeRFIRODfkQEW9IoxDQ1An0dKuQCk9g30lbNShgjtK_CUKdpIZFjbKOb3bkOob14Xugj8LSPKc8jDLjhPNQxouSoJSotcjRGdiBqTJIpRxxO8yuesgYh9pjVhszIkFltyA6wL61lTZzxh7xsrJ19c4DMxvZfNY__rXkCm3RV4_lOoV2-vOozm2OUebdyoi5s9K9vR-NPRXTTGw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2V9gAXdkRZc-BqNYsdJ8dSUQW6XGil3qKJY1dFqFQ0CPH32InDIiGQuMYeKRpPZnHevAG4ypGHgvv6BCIZEqq9MMmiQBHhSeZJlQm3nBIxGofJlN7N2KwBvboXxsAqre-vfHrpre2TjtVmZ7VYdO49U1yFvmHAMnX5bANahp2KNaHVvR0k40-kB6t-eur9xAjUHXQlzGv9ttYWpQtF3zM0Bp6Zmf1ThPoSdfq7sG3TRadbvdEeNORyH3bqUQyO_TIP4LqP64KUEHLTTVk4ypBE6Dwyd-xciLljrlwdYbJl8lpeiOpFnOt6e16eziFM-zeTXkLseAQidJ5fEE7znEcK3cBwbHElEONYMXSlL5AyjEJXcV04C6YUk67wfRnHOUeKoXZwOngdQXP5tJTH4EgXY5oF6FFFqS9DRE5RchSSZagUb0NQqyQVljvcjLB4TGuQ2ENaKTI1ikwrRbaBfEitKu6MP_bzWtvpNxtItXv_VfLk35KXsJlMRsN0eDsenMKWWangfWfQLJ5f5LlOOYrswprUO43H1cw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast-convergent+federated+learning+with+class-weighted+aggregation&rft.jtitle=Journal+of+systems+architecture&rft.au=Ma%2C+Zezhong&rft.au=Zhao%2C+Mengying&rft.au=Cai%2C+Xiaojun&rft.au=Jia%2C+Zhiping&rft.date=2021-08-01&rft.pub=Elsevier+B.V&rft.issn=1383-7621&rft.eissn=1873-6165&rft.volume=117&rft_id=info:doi/10.1016%2Fj.sysarc.2021.102125&rft.externalDocID=S138376212100093X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1383-7621&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1383-7621&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1383-7621&client=summon