New insights into “dead lithium” during stripping in lithium metal batteries
The formation of dead Lithium during stripping process is investigated in the whole course from the electron transfer, the conversion of Li0 to Li+ and the diffusion of Li+. [Display omitted] Lithium (Li) metal attributes to the promising anode but endures the low Columbic efficiency (CE) and safety...
Saved in:
Published in | Journal of energy chemistry Vol. 62; pp. 289 - 294 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The formation of dead Lithium during stripping process is investigated in the whole course from the electron transfer, the conversion of Li0 to Li+ and the diffusion of Li+.
[Display omitted]
Lithium (Li) metal attributes to the promising anode but endures the low Columbic efficiency (CE) and safety issues from the inactive Li accumulation. The metallic Li which is isolated from the lithium anode (named dead Li0) consists the major component of the inactive Li. We systematically and meticulously investigated the formation and evaluation of dead Li0 during stripping process from electron transfer, the oxidation of Li0 to Li+ and the diffusion of Li+ through solid electrolyte interphase (SEI). The above-mentioned processes were regulated by adjusting the contact sites of electron channels, the dynamic rate of conversion from Li0 to Li+, and the structure as well as components of SEI. The design principles for achieving less dead Li0 and higher CE are proposed as a proof of concept in lithium metal batteries. This new insight sheds a comprehensive light on dead Li0 formation and guides the next-generation safe batteries for future application. |
---|---|
AbstractList | The formation of dead Lithium during stripping process is investigated in the whole course from the electron transfer, the conversion of Li0 to Li+ and the diffusion of Li+.
[Display omitted]
Lithium (Li) metal attributes to the promising anode but endures the low Columbic efficiency (CE) and safety issues from the inactive Li accumulation. The metallic Li which is isolated from the lithium anode (named dead Li0) consists the major component of the inactive Li. We systematically and meticulously investigated the formation and evaluation of dead Li0 during stripping process from electron transfer, the oxidation of Li0 to Li+ and the diffusion of Li+ through solid electrolyte interphase (SEI). The above-mentioned processes were regulated by adjusting the contact sites of electron channels, the dynamic rate of conversion from Li0 to Li+, and the structure as well as components of SEI. The design principles for achieving less dead Li0 and higher CE are proposed as a proof of concept in lithium metal batteries. This new insight sheds a comprehensive light on dead Li0 formation and guides the next-generation safe batteries for future application. |
Author | Ding, Jun-Fan Chen, Xiao-Ru Peng, Hong-Jie Zhang, Qiang Yan, Chong |
Author_xml | – sequence: 1 givenname: Xiao-Ru surname: Chen fullname: Chen, Xiao-Ru organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China – sequence: 2 givenname: Chong surname: Yan fullname: Yan, Chong organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China – sequence: 3 givenname: Jun-Fan surname: Ding fullname: Ding, Jun-Fan organization: Advanced Research Institute of Multidisciplinary Science, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China – sequence: 4 givenname: Hong-Jie surname: Peng fullname: Peng, Hong-Jie organization: Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA – sequence: 5 givenname: Qiang orcidid: 0000-0002-3929-1541 surname: Zhang fullname: Zhang, Qiang email: zhang-qiang@mails.tsinghua.edu.cn organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China |
BookMark | eNqFkEtOwzAQhr0oEqX0BixygYSJ47xYIKGKl1QBC1hbjj1tJ8qjsl0Qux4ELteTkKqwYQGzmV8afb803wkbdX2HjJ3FEMUQZ-d1VKNeYRtx4HEESQSiGLExhzINRZlmx2zqXA3DlCLmZTpmTw_4FlDnaLnybgi-D3bbD4PKBA35FW3a3fYzMBtL3TJw3tJ6vU_U_ZyDFr1qgkp5j5bQnbKjhWocTr_3hL3cXD_P7sL54-397Goe6gQyH-YCKiWKstK54km6qJRWBkyZpSbVOQcQukCBkOdoOGRClVUscp4VlRaZKYtkwi4Ovdr2zllcSE1eeeo7bxU1Mga5VyJreVAi90okJHJQMsDiF7y21Cr7_h92ecBweOyV0EqnCTuNhixqL01Pfxd8AUq6hBc |
CitedBy_id | crossref_primary_10_1007_s12274_022_5227_0 crossref_primary_10_1002_advs_202103930 crossref_primary_10_1021_acsaem_4c02011 crossref_primary_10_1016_j_cej_2023_146879 crossref_primary_10_1002_smll_202407423 crossref_primary_10_1007_s10338_024_00553_w crossref_primary_10_1039_D1TA08184E crossref_primary_10_1021_acsenergylett_4c03177 crossref_primary_10_1007_s11581_023_05280_9 crossref_primary_10_1021_acsami_2c21451 crossref_primary_10_1002_sstr_202200010 crossref_primary_10_1016_j_est_2023_109422 crossref_primary_10_1016_j_actamat_2023_119231 crossref_primary_10_1039_D3TA00121K crossref_primary_10_1002_aenm_202403195 crossref_primary_10_23919_IEN_2022_0003 crossref_primary_10_1007_s43938_024_00045_w crossref_primary_10_1002_anie_202201406 crossref_primary_10_1016_j_jechem_2023_02_005 crossref_primary_10_1016_S1872_5805_22_60573_0 crossref_primary_10_1021_acsami_3c03327 crossref_primary_10_1007_s10854_023_10722_1 crossref_primary_10_1016_j_mtsust_2024_100758 crossref_primary_10_1002_aenm_202400367 crossref_primary_10_1002_aenm_202200889 crossref_primary_10_1002_batt_202100257 crossref_primary_10_1016_j_jechem_2022_06_001 crossref_primary_10_1016_j_enchem_2021_100063 crossref_primary_10_1002_ange_202404554 crossref_primary_10_1016_j_electacta_2022_141337 crossref_primary_10_1002_anie_202107732 crossref_primary_10_1016_j_jechem_2024_09_063 crossref_primary_10_1002_aenm_202300500 crossref_primary_10_1016_j_jallcom_2023_171395 crossref_primary_10_1039_D3TA07829A crossref_primary_10_1002_cnl2_147 crossref_primary_10_1016_j_jechem_2021_12_020 crossref_primary_10_1016_j_xcrp_2024_102299 crossref_primary_10_1016_j_jechem_2023_01_059 crossref_primary_10_1016_j_cej_2022_138993 crossref_primary_10_1002_ange_202201406 crossref_primary_10_1016_j_jechem_2024_04_023 crossref_primary_10_1007_s11581_024_05474_9 crossref_primary_10_1021_acsaem_4c02955 crossref_primary_10_1016_j_esci_2024_100281 crossref_primary_10_1016_j_cej_2021_133189 crossref_primary_10_1016_j_jpowsour_2025_236534 crossref_primary_10_1039_D3SE01552A crossref_primary_10_1002_aenm_202402609 crossref_primary_10_1002_cphc_202400007 crossref_primary_10_1002_eem2_12470 crossref_primary_10_1088_1402_4896_ad8a99 crossref_primary_10_1016_j_nanoen_2024_109571 crossref_primary_10_1021_acsami_4c00420 crossref_primary_10_1149_1945_7111_ad01e7 crossref_primary_10_1016_j_jechem_2023_09_019 crossref_primary_10_2139_ssrn_4102761 crossref_primary_10_1016_j_nxnano_2024_100114 crossref_primary_10_1002_smll_202407395 crossref_primary_10_1149_1945_7111_ad92e2 crossref_primary_10_1002_sus2_191 crossref_primary_10_1021_acsnano_4c06149 crossref_primary_10_1002_aenm_202204305 crossref_primary_10_1016_j_joule_2022_07_003 crossref_primary_10_1016_j_cclet_2022_107852 crossref_primary_10_1016_j_jechem_2024_04_030 crossref_primary_10_1002_batt_202400504 crossref_primary_10_1002_aenm_202202493 crossref_primary_10_1016_j_ensm_2023_03_012 crossref_primary_10_1016_j_fmre_2022_11_005 crossref_primary_10_1002_smll_202405141 crossref_primary_10_1007_s43207_023_00354_w crossref_primary_10_1021_acs_energyfuels_1c01602 crossref_primary_10_1149_1945_7111_ad0ff3 crossref_primary_10_1002_sstr_202300476 crossref_primary_10_1016_j_carbon_2023_118174 crossref_primary_10_1021_acsenergylett_2c01845 crossref_primary_10_1149_1945_7111_acd8f5 crossref_primary_10_1016_j_cej_2024_149821 crossref_primary_10_1016_j_ensm_2021_11_033 crossref_primary_10_1002_asia_202200824 crossref_primary_10_1016_j_jechem_2021_12_049 crossref_primary_10_1016_j_rser_2025_115453 crossref_primary_10_1016_j_jechem_2022_04_042 crossref_primary_10_3390_molecules27217488 crossref_primary_10_1002_smll_202407740 crossref_primary_10_1016_j_ensm_2023_102958 crossref_primary_10_1002_anie_202404554 crossref_primary_10_1016_j_jechem_2024_02_046 crossref_primary_10_1016_j_jechem_2022_09_030 crossref_primary_10_1016_j_cej_2024_149781 crossref_primary_10_1016_j_decarb_2024_100076 crossref_primary_10_1039_D3TA00096F crossref_primary_10_1016_j_cej_2023_143681 crossref_primary_10_1039_D5EB00021A crossref_primary_10_1016_j_ensm_2024_103762 crossref_primary_10_1016_j_nanoen_2025_110840 crossref_primary_10_1002_celc_202400019 crossref_primary_10_1002_batt_202300321 crossref_primary_10_1016_j_cej_2023_144888 crossref_primary_10_1016_j_jechem_2022_02_022 crossref_primary_10_1002_inc2_12006 crossref_primary_10_1016_j_jechem_2022_10_049 crossref_primary_10_1016_j_jechem_2023_02_040 crossref_primary_10_1021_acs_iecr_2c00958 crossref_primary_10_1016_j_esci_2022_02_002 crossref_primary_10_1021_acsaem_1c03675 crossref_primary_10_1002_sus2_37 crossref_primary_10_1002_adfm_202206834 crossref_primary_10_1016_j_jechem_2021_09_007 crossref_primary_10_1016_j_jechem_2021_09_006 crossref_primary_10_1002_aenm_202302400 crossref_primary_10_1016_j_cej_2023_147077 crossref_primary_10_1016_j_jechem_2023_05_020 crossref_primary_10_1016_j_jechem_2022_04_025 crossref_primary_10_1016_j_jechem_2021_09_042 crossref_primary_10_1002_bte2_20220006 crossref_primary_10_1002_aenm_202203648 crossref_primary_10_1016_j_materresbull_2024_113249 crossref_primary_10_1016_j_jechem_2021_10_016 crossref_primary_10_1002_adma_202209114 crossref_primary_10_1016_j_ensm_2022_05_024 crossref_primary_10_1016_j_gee_2022_08_002 crossref_primary_10_1002_aenm_202203767 crossref_primary_10_3390_ma16062278 crossref_primary_10_1016_j_jechem_2024_02_063 crossref_primary_10_1016_j_jpowsour_2022_231482 crossref_primary_10_1021_acsami_3c07098 crossref_primary_10_1038_s41586_023_06992_8 crossref_primary_10_1002_adfm_202309706 crossref_primary_10_1002_EXP_20210255 crossref_primary_10_1016_j_est_2023_108274 crossref_primary_10_1002_aenm_202500566 crossref_primary_10_1002_ange_202107732 crossref_primary_10_1021_acsami_4c08605 crossref_primary_10_1002_adma_202311529 crossref_primary_10_1016_j_jechem_2024_01_043 crossref_primary_10_1038_s43246_022_00273_z crossref_primary_10_1016_j_jechem_2021_10_003 crossref_primary_10_1016_j_jechem_2023_01_022 crossref_primary_10_1002_marc_202400644 crossref_primary_10_1016_j_jechem_2022_02_046 crossref_primary_10_1016_j_est_2024_110641 crossref_primary_10_1002_chem_202301774 crossref_primary_10_1016_j_cej_2025_159627 crossref_primary_10_1021_acsaem_1c03259 crossref_primary_10_2139_ssrn_4159253 crossref_primary_10_1002_chem_202400424 crossref_primary_10_54227_elab_20220011 crossref_primary_10_1016_j_ensm_2022_11_021 crossref_primary_10_1016_j_matlet_2023_134951 crossref_primary_10_1016_j_cej_2023_148020 crossref_primary_10_1002_smll_202206000 crossref_primary_10_3390_coatings15010043 |
Cites_doi | 10.1002/advs.201500213 10.1016/j.jechem.2020.01.027 10.1016/j.jechem.2020.03.087 10.1021/jacs.9b05029 10.1002/adfm.202004189 10.1021/acsenergylett.0c00215 10.1038/s41565-019-0427-9 10.1073/pnas.1806878115 10.1016/j.ensm.2019.06.010 10.1038/s41586-019-1481-z 10.1016/j.jechem.2019.09.034 10.1002/anie.202000375 10.1016/j.chempr.2018.12.002 10.1039/D0TA05652A 10.1002/aenm.201900858 10.1016/j.jechem.2019.09.005 10.1016/j.matt.2019.05.016 10.1038/s41578-019-0165-5 10.1016/j.cclet.2020.03.015 10.1038/s41563-020-0655-2 10.1002/anie.201801513 10.1039/C7TA00371D 10.1016/j.apenergy.2020.115957 10.1007/s11426-019-9519-9 10.1021/acs.jpcc.9b11563 10.1002/anie.201908874 10.1016/j.jechem.2020.04.038 10.1016/j.chempr.2017.01.003 10.1016/j.mattod.2019.09.018 10.1016/j.matt.2020.10.014 10.1002/anie.202001989 10.1021/jacs.0c10258 10.1002/anie.201911724 10.1002/smll.201903520 10.1002/aenm.201902254 10.1016/j.jechem.2020.02.009 10.1002/anie.202012005 10.1021/acsami.0c06930 10.1016/j.jechem.2019.07.010 10.1016/j.ensm.2020.08.034 10.1016/j.nanoen.2018.01.019 10.1038/s41467-019-13774-2 10.1016/j.jechem.2019.12.024 10.1016/j.jechem.2018.11.016 10.1021/acs.nanolett.8b03902 10.1038/s41560-018-0104-5 10.1002/aenm.201903325 10.1002/adma.202000223 10.1039/C4CP03590A 10.1002/adma.201706375 10.1016/j.jechem.2020.04.044 10.1002/anie.201912217 10.1002/inf2.12000 10.1002/adma.201901820 10.1016/j.ensm.2019.09.020 10.1002/inf2.12046 10.1039/C9CS00838A 10.1016/j.jechem.2019.09.033 10.1002/aenm.201702097 |
ContentType | Journal Article |
Copyright | 2021 Science Press |
Copyright_xml | – notice: 2021 Science Press |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jechem.2021.03.048 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 294 |
ExternalDocumentID | 10_1016_j_jechem_2021_03_048 S2095495621001807 |
GroupedDBID | --M .~1 0R~ 1~. 2B. 2C0 4.4 457 4G. 5VR 5VS 7-5 8P~ 92H 92I AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFUIB AGHFR AGUBO AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CCEZO CDRFL CHBEP EBS EFJIC EFLBG EJD ENUVR FA0 FDB FEDTE FIRID FNPLU FYGXN GBLVA HVGLF HZ~ KOM M41 MO0 O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SPC SPCBC SSG SSR SSZ T5K TCJ TGT ~G- -SB -S~ 5XA 5XC AATTM AAXKI AAYWO AAYXX ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CAJEB CITATION Q-- SSH U1G U5L |
ID | FETCH-LOGICAL-c306t-740ba489bc7a235fbacad0d965d5c72004c8e4e077ed2064a9b147268bc46d983 |
IEDL.DBID | .~1 |
ISSN | 2095-4956 |
IngestDate | Thu Apr 24 23:02:24 EDT 2025 Tue Jul 01 03:48:54 EDT 2025 Fri Feb 23 02:40:29 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Lithium metal batteries Lithium dendrite growth Dead lithium Charge transfer Lithium stripping |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-740ba489bc7a235fbacad0d965d5c72004c8e4e077ed2064a9b147268bc46d983 |
ORCID | 0000-0002-3929-1541 |
PageCount | 6 |
ParticipantIDs | crossref_citationtrail_10_1016_j_jechem_2021_03_048 crossref_primary_10_1016_j_jechem_2021_03_048 elsevier_sciencedirect_doi_10_1016_j_jechem_2021_03_048 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2021 2021-11-00 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: November 2021 |
PublicationDecade | 2020 |
PublicationTitle | Journal of energy chemistry |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Xu, He, Zhang, Shi, Liu, Tian, Luo, Zhang, Liang, Liu (b0230) 2020; 48 Mistry, Mukherjee (b0255) 2020; 167 Zhang, Chen, Cheng, Li, Shen, Yan, Huang, Zhang (b0200) 2018; 57 Shi, Pei, Boyle, Xie, Yu, Zhang, Cui (b0190) 2018; 115 Wang, Zeng, Hong, Xu, Yang, Wang, Duan, Tang, Jiang (b0090) 2018; 3 Niu, Pan, Xu, Xiao, Zhang, Luo, Wang, Mei, Meng, Wang, Liu, Mai, Liu (b0045) 2019; 14 Shen, Cheng, Shi, Huang, Zhang, Yan, Li, Zhang (b0265) 2019; 37 Qin, Du, Lu, Gao, Haase, Li, Ouyang (b0010) 2020; 280 Gunnarsdottir, Amanchukwu, Menkin, Grey (b0085) 2020; 142 Lu, Zhang, Kuai, Yang, Wang, Nuli, Guo, Liang (b0115) 2020; 33 Cheng, Yan, Chen, Guan, Huang, Peng, Zhang, Yang, Zhang (b0205) 2017; 2 Wu, Zhao, Yang, Wang, Liu, Zhou (b0290) 2020; 43 Yan, Xu, Qin, Yuan, Xiao, Xu, Huang (b0320) 2019; 58 Liu, Ji, Piao, Chen, Eidson, Xu, Wang, Chen, Zhang, Deng, Hou, Jin, Wan, Li, Tu, Wang (b0135) 2020; 60 Liu, Cheng, Xu, Zhang, Yan, Huang, Zhang (b0175) 2019; 9 Zhao, Duan, Huang, Zhang, Zhang, Guo, Wan (b0210) 2019; 62 Yao, Jia, Wang, Ruan, Kong, Guan, Wang, Li, Wang, Zou, Zhou (b0285) 2020; 51 Cheng, Zhang, Zhao, Wei, Zhang, Zhang (b0145) 2016; 3 Sanchez, Kazyak, Chen, Chen, Pattison, Dasgupta (b0215) 2020; 5 Zhang, Zuo, Popovic, Lim, Yin, Maier, Guo (b0060) 2020; 33 Chen, Pei, Lin, Xie, Yang, Xu, Lin, Wang, Wang, Shi, Boyle, Cui (b0105) 2019; 9 Wang, Cui, Chu, Wu (b0070) 2020; 48 Guo, Wu, Chen, Zhong, Ai, Yang, Qian (b0275) 2020; 24 Liang, Zhao, Yuan, Chen, Zhang, Huang, Yu, Liu, Titirici, Chueh, Yu, Zhang (b0015) 2019; 1 Chen, Yao, Yan, Zhang, Cheng, Zhang (b0315) 2020; 59 Sun, Zhang, Ma, Guan, Wang, Luo (b0020) 2020; 59 Song, Shi, Li, Chen, Zhao, Chen, Zhang, Chen, Zhang (b0100) 2021; 4 Huang, Zhao, Bi, Shi, Guo, Fan, Nan (b0130) 2020; 10 Li, Chen, Chen, Zhao, Zhang, Cheng, Zhang (b0280) 2019; 2019 Yuan, Nai, Fang, Lu, Tao, Lou (b0300) 2020; 59 Chen, Wood, Kazyak, LePage, Davis, Sanchez, Dasgupta (b0170) 2017; 5 Kang, Tang, Koh, Liang, Lemmon (b0270) 2020; 44 Zhao, Gu, Gao, Hou, Ren, Qi, Zhang, Shen, Zhang, Xie (b0225) 2020; 51 Yasin, Arif, Mehtab, Lu, Yu, Muhammad, Nazir, Song (b0155) 2020; 25 Xu, Li, Zhou, Wu, Xin, Li, Goodenough (b0025) 2018; 18 Yao, Zhang, Li, Yan, Chen, Huang, Zhang (b0235) 2020; 2 Fu, Venturi, Kim, Ahmad, Ells, Viswanathan, Helms (b0195) 2020; 19 Yan, Yuan, Park, Huang (b0220) 2020; 47 Li, Jiang, Xie, Xu, Jia, Li (b0035) 2018; 30 Cheng, Zhao, Yao, Liu, Zhang (b0305) 2019; 5 Thomas, Edwards, Dobson, Owen (b0005) 2020; 51 Aryanfar, Brooks, Colussi, Hoffmann (b0080) 2014; 16 Shi, Zhang, Shen, Li, Zhang, Hou, Zhang (b0125) 2020; 31 Ding, Xu, Yan, Xiao, Liang, Yuan, Huang (b0240) 2020; 31 Chen, Xiang, Zheng, Liao, Ren, Zheng, He, Zheng, Liu, Xu, Luo, Zheng, Yang (b0065) 2020; 12 Liang, Xiao, Yan, Xu, Ding, Liang, Peng, Yuan, Huang (b0245) 2020; 48 He, Zhang, Yu, Ding, Li, Wang, Lv, Wang, Liu, Huang (b0250) 2020; 45 Liu, Yuan, Tao, Liang, Yang, Huang, Yuan, Titirici, Zhang (b0295) 2020; 2 Xu, Cheng, Yan, Zhang, Xiao, Zhao, Huang, Zhang (b0120) 2019; 1 Gunnarsdottir, Vema, Menkin, Marbella, Grey (b0150) 2020; 8 Jin, Sheng, Chen, Ju, Lu, Liu, Nai, Liu, Wang, Tao (b0075) 2021; 13 Zhang, Wang, Li, Gong, Yang (b0030) 2019; 31 Adams, Zheng, Ren, Xu, Zhang (b0055) 2018; 8 Tewari, Rangarajan, Balbuena, Barsukov, Mukherjee (b0180) 2020; 124 Zhang, Yang, Zhou (b0160) 2020; 49 Zhang, Li, Li, Zhang, Shi, Yan, Huang, Zhang (b0310) 2020; 59 Sheng, Zheng, Ju, Jin, Wang, Chen, Nai, Liu, Zhang, Liu, Tao (b0040) 2020; 32 Nan, Li, Shi, Yang, Li (b0050) 2019; 15 Li, Quan, Li, Lu, Zheng, Yu, Li, Li (b0185) 2018; 45 Yan, Li, Chen, Zhang, Cheng, Xu, Huang, Zhang (b0260) 2019; 141 Zhang, Shi, Hu, Wang, Wen, Xin, Guo (b0110) 2020; 10 Fang, Li, Zhang, Zhang, Yang, Lee, Lee, Alvarado, Schroeder, Yang, Lu, Williams, Ceja, Yang, Cai, Gu, Xu, Wang, Meng (b0165) 2019; 572 Zhao, Stalin, Zhao, Archer (b0095) 2020; 5 Pathak, Chen, Gurung, Reza, Bahrami, Pokharel, Baniya, He, Wu, Zhou, Xu, Qiao (b0140) 2020; 11 Yan (10.1016/j.jechem.2021.03.048_b0220) 2020; 47 Fang (10.1016/j.jechem.2021.03.048_b0165) 2019; 572 Mistry (10.1016/j.jechem.2021.03.048_b0255) 2020; 167 Qin (10.1016/j.jechem.2021.03.048_b0010) 2020; 280 Shi (10.1016/j.jechem.2021.03.048_b0125) 2020; 31 Zhang (10.1016/j.jechem.2021.03.048_b0060) 2020; 33 Liu (10.1016/j.jechem.2021.03.048_b0175) 2019; 9 Yasin (10.1016/j.jechem.2021.03.048_b0155) 2020; 25 Sanchez (10.1016/j.jechem.2021.03.048_b0215) 2020; 5 Sun (10.1016/j.jechem.2021.03.048_b0020) 2020; 59 Liu (10.1016/j.jechem.2021.03.048_b0295) 2020; 2 Song (10.1016/j.jechem.2021.03.048_b0100) 2021; 4 Sheng (10.1016/j.jechem.2021.03.048_b0040) 2020; 32 Jin (10.1016/j.jechem.2021.03.048_b0075) 2021; 13 Tewari (10.1016/j.jechem.2021.03.048_b0180) 2020; 124 Huang (10.1016/j.jechem.2021.03.048_b0130) 2020; 10 He (10.1016/j.jechem.2021.03.048_b0250) 2020; 45 Fu (10.1016/j.jechem.2021.03.048_b0195) 2020; 19 Xu (10.1016/j.jechem.2021.03.048_b0230) 2020; 48 Shen (10.1016/j.jechem.2021.03.048_b0265) 2019; 37 Liang (10.1016/j.jechem.2021.03.048_b0245) 2020; 48 Adams (10.1016/j.jechem.2021.03.048_b0055) 2018; 8 Nan (10.1016/j.jechem.2021.03.048_b0050) 2019; 15 Shi (10.1016/j.jechem.2021.03.048_b0190) 2018; 115 Yuan (10.1016/j.jechem.2021.03.048_b0300) 2020; 59 Guo (10.1016/j.jechem.2021.03.048_b0275) 2020; 24 Kang (10.1016/j.jechem.2021.03.048_b0270) 2020; 44 Yao (10.1016/j.jechem.2021.03.048_b0235) 2020; 2 Ding (10.1016/j.jechem.2021.03.048_b0240) 2020; 31 Xu (10.1016/j.jechem.2021.03.048_b0120) 2019; 1 Li (10.1016/j.jechem.2021.03.048_b0035) 2018; 30 Chen (10.1016/j.jechem.2021.03.048_b0170) 2017; 5 Xu (10.1016/j.jechem.2021.03.048_b0025) 2018; 18 Li (10.1016/j.jechem.2021.03.048_b0185) 2018; 45 Lu (10.1016/j.jechem.2021.03.048_b0115) 2020; 33 Gunnarsdottir (10.1016/j.jechem.2021.03.048_b0150) 2020; 8 Yan (10.1016/j.jechem.2021.03.048_b0320) 2019; 58 Yao (10.1016/j.jechem.2021.03.048_b0285) 2020; 51 Pathak (10.1016/j.jechem.2021.03.048_b0140) 2020; 11 Liang (10.1016/j.jechem.2021.03.048_b0015) 2019; 1 Chen (10.1016/j.jechem.2021.03.048_b0105) 2019; 9 Cheng (10.1016/j.jechem.2021.03.048_b0305) 2019; 5 Aryanfar (10.1016/j.jechem.2021.03.048_b0080) 2014; 16 Liu (10.1016/j.jechem.2021.03.048_b0135) 2020; 60 Cheng (10.1016/j.jechem.2021.03.048_b0205) 2017; 2 Zhang (10.1016/j.jechem.2021.03.048_b0160) 2020; 49 Niu (10.1016/j.jechem.2021.03.048_b0045) 2019; 14 Chen (10.1016/j.jechem.2021.03.048_b0315) 2020; 59 Chen (10.1016/j.jechem.2021.03.048_b0065) 2020; 12 Zhao (10.1016/j.jechem.2021.03.048_b0095) 2020; 5 Zhang (10.1016/j.jechem.2021.03.048_b0110) 2020; 10 Zhang (10.1016/j.jechem.2021.03.048_b0310) 2020; 59 Zhang (10.1016/j.jechem.2021.03.048_b0030) 2019; 31 Thomas (10.1016/j.jechem.2021.03.048_b0005) 2020; 51 Wang (10.1016/j.jechem.2021.03.048_b0070) 2020; 48 Gunnarsdottir (10.1016/j.jechem.2021.03.048_b0085) 2020; 142 Yan (10.1016/j.jechem.2021.03.048_b0260) 2019; 141 Zhao (10.1016/j.jechem.2021.03.048_b0210) 2019; 62 Wang (10.1016/j.jechem.2021.03.048_b0090) 2018; 3 Cheng (10.1016/j.jechem.2021.03.048_b0145) 2016; 3 Li (10.1016/j.jechem.2021.03.048_b0280) 2019; 2019 Wu (10.1016/j.jechem.2021.03.048_b0290) 2020; 43 Zhao (10.1016/j.jechem.2021.03.048_b0225) 2020; 51 Zhang (10.1016/j.jechem.2021.03.048_b0200) 2018; 57 |
References_xml | – volume: 33 start-page: 452 year: 2020 end-page: 459 ident: b0115 publication-title: Energy Storage Mater. – volume: 48 start-page: 145 year: 2020 end-page: 159 ident: b0070 publication-title: J. Energy Chem. – volume: 5 start-page: 11671 year: 2017 end-page: 11681 ident: b0170 publication-title: J. Mater. Chem. A – volume: 14 start-page: 594 year: 2019 end-page: 601 ident: b0045 publication-title: Nat. Nanotechnol. – volume: 9 start-page: 1900858 year: 2019 ident: b0105 publication-title: Adv. Energy Mater. – volume: 10 year: 2020 ident: b0130 publication-title: Mater. Today Nano – volume: 9 start-page: 1902254 year: 2019 ident: b0175 publication-title: Adv. Energy Mater. – volume: 25 start-page: 644 year: 2020 end-page: 678 ident: b0155 publication-title: Energy Storage Mater. – volume: 2 year: 2020 ident: b0295 publication-title: EcoMat – volume: 58 start-page: 15235 year: 2019 end-page: 15238 ident: b0320 publication-title: Angew. Chem. Int. Ed. – volume: 4 start-page: 253 year: 2021 end-page: 264 ident: b0100 publication-title: Matter – volume: 59 start-page: 3252 year: 2020 end-page: 3257 ident: b0310 publication-title: Angew. Chem. Int. Ed. – volume: 1 start-page: 317 year: 2019 end-page: 344 ident: b0120 publication-title: Matter – volume: 43 start-page: 16 year: 2020 end-page: 23 ident: b0290 publication-title: J. Energy Chem. – volume: 5 start-page: 994 year: 2020 end-page: 1004 ident: b0215 publication-title: Acs Energy Lett. – volume: 49 start-page: 3040 year: 2020 end-page: 3071 ident: b0160 publication-title: Chem. Soc. Rev. – volume: 59 start-page: 15839 year: 2020 end-page: 15843 ident: b0300 publication-title: Angew. Chem. Int. Ed. – volume: 48 start-page: 203 year: 2020 end-page: 207 ident: b0245 publication-title: J. Energy Chem. – volume: 18 start-page: 7414 year: 2018 end-page: 7418 ident: b0025 publication-title: Nano Lett. – volume: 141 start-page: 9422 year: 2019 end-page: 9429 ident: b0260 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 74 year: 2019 end-page: 96 ident: b0305 publication-title: Chem – volume: 33 start-page: 56 year: 2020 end-page: 74 ident: b0060 publication-title: Mater. Today – volume: 51 start-page: 405 year: 2020 end-page: 415 ident: b0005 publication-title: J. Energy Chem. – volume: 45 start-page: 1 year: 2020 end-page: 6 ident: b0250 publication-title: J. Energy Chem. – volume: 280 year: 2020 ident: b0010 publication-title: Appl. Energ. – volume: 32 start-page: 2000223 year: 2020 ident: b0040 publication-title: Adv. Mater. – volume: 51 start-page: 362 year: 2020 end-page: 371 ident: b0225 publication-title: J. Energy Chem. – volume: 8 start-page: 1702097 year: 2018 ident: b0055 publication-title: Adv. Energy Mater. – volume: 5 start-page: 229 year: 2020 end-page: 252 ident: b0095 publication-title: Nat. Rev. Mater. – volume: 51 start-page: 285 year: 2020 end-page: 292 ident: b0285 publication-title: J. Energy Chem. – volume: 31 start-page: 2004189 year: 2020 ident: b0125 publication-title: Adv. Funct. Mater. – volume: 15 start-page: 1903520 year: 2019 ident: b0050 publication-title: Small – volume: 2 start-page: 258 year: 2017 end-page: 270 ident: b0205 publication-title: Chem – volume: 48 start-page: 375 year: 2020 end-page: 382 ident: b0230 publication-title: J. Energy Chem. – volume: 57 start-page: 5301 year: 2018 end-page: 5305 ident: b0200 publication-title: Angew. Chem. Int. Ed. – volume: 30 start-page: 1706375 year: 2018 ident: b0035 publication-title: Adv. Mater. – volume: 2 start-page: 379 year: 2020 end-page: 388 ident: b0235 publication-title: InfoMat – volume: 37 start-page: 29 year: 2019 end-page: 34 ident: b0265 publication-title: J. Energy Chem. – volume: 31 start-page: 1901820 year: 2019 ident: b0030 publication-title: Adv. Mater. – volume: 13 year: 2021 ident: b0075 publication-title: Mater. Today Nano – volume: 142 start-page: 20814 year: 2020 end-page: 20827 ident: b0085 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 93 year: 2020 ident: b0140 publication-title: Nat. Commun. – volume: 8 start-page: 14975 year: 2020 end-page: 14992 ident: b0150 publication-title: J. Mater. Chem. A – volume: 115 start-page: 8529 year: 2018 end-page: 8534 ident: b0190 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 60 start-page: 3661 year: 2020 end-page: 3671 ident: b0135 publication-title: Angew. Chem. Int. Ed. – volume: 19 start-page: 758 year: 2020 end-page: 766 ident: b0195 publication-title: Nat. Mater. – volume: 16 start-page: 24965 year: 2014 end-page: 24970 ident: b0080 publication-title: Phys. Chem. Chem. Phys. – volume: 47 start-page: 217 year: 2020 end-page: 220 ident: b0220 publication-title: J. Energy Chem. – volume: 62 start-page: 1286 year: 2019 end-page: 1299 ident: b0210 publication-title: Sci. China Chem. – volume: 44 start-page: 68 year: 2020 end-page: 72 ident: b0270 publication-title: J. Energy Chem. – volume: 59 start-page: 7743 year: 2020 end-page: 7747 ident: b0315 publication-title: Angew. Chem. Int. Ed. – volume: 3 start-page: 1500213 year: 2016 ident: b0145 publication-title: Adv. Sci. – volume: 45 start-page: 463 year: 2018 end-page: 470 ident: b0185 publication-title: Nano Energy – volume: 24 start-page: 635 year: 2020 end-page: 643 ident: b0275 publication-title: Energy Storage Mater. – volume: 10 start-page: 1903325 year: 2020 ident: b0110 publication-title: Adv. Energy Mater. – volume: 124 start-page: 6502 year: 2020 end-page: 6511 ident: b0180 publication-title: J. Phys. Chem. C – volume: 2019 start-page: 4608940 year: 2019 ident: b0280 publication-title: Research – volume: 12 start-page: 27794 year: 2020 end-page: 27802 ident: b0065 publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 227 year: 2018 end-page: 235 ident: b0090 publication-title: Nat. Energy – volume: 572 start-page: 511 year: 2019 end-page: 515 ident: b0165 publication-title: Nature – volume: 1 start-page: 6 year: 2019 end-page: 32 ident: b0015 publication-title: InfoMat – volume: 31 start-page: 2339 year: 2020 end-page: 2342 ident: b0240 publication-title: Chinese Chem. Lett. – volume: 167 year: 2020 ident: b0255 publication-title: J. Electrochem. Soc. – volume: 59 start-page: 6665 year: 2020 end-page: 6674 ident: b0020 publication-title: Angew. Chem. Int. Ed. – volume: 3 start-page: 1500213 year: 2016 ident: 10.1016/j.jechem.2021.03.048_b0145 publication-title: Adv. Sci. doi: 10.1002/advs.201500213 – volume: 48 start-page: 203 year: 2020 ident: 10.1016/j.jechem.2021.03.048_b0245 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.01.027 – volume: 51 start-page: 405 year: 2020 ident: 10.1016/j.jechem.2021.03.048_b0005 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.03.087 – volume: 141 start-page: 9422 year: 2019 ident: 10.1016/j.jechem.2021.03.048_b0260 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b05029 – volume: 31 start-page: 2004189 year: 2020 ident: 10.1016/j.jechem.2021.03.048_b0125 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202004189 – volume: 5 start-page: 994 year: 2020 ident: 10.1016/j.jechem.2021.03.048_b0215 publication-title: Acs Energy Lett. doi: 10.1021/acsenergylett.0c00215 – volume: 14 start-page: 594 year: 2019 ident: 10.1016/j.jechem.2021.03.048_b0045 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0427-9 – volume: 115 start-page: 8529 year: 2018 ident: 10.1016/j.jechem.2021.03.048_b0190 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1806878115 – volume: 2 year: 2020 ident: 10.1016/j.jechem.2021.03.048_b0295 publication-title: EcoMat – volume: 13 year: 2021 ident: 10.1016/j.jechem.2021.03.048_b0075 publication-title: Mater. Today Nano – volume: 24 start-page: 635 year: 2020 ident: 10.1016/j.jechem.2021.03.048_b0275 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.06.010 – volume: 572 start-page: 511 year: 2019 ident: 10.1016/j.jechem.2021.03.048_b0165 publication-title: Nature doi: 10.1038/s41586-019-1481-z – volume: 47 start-page: 217 year: 2020 ident: 10.1016/j.jechem.2021.03.048_b0220 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2019.09.034 – volume: 59 start-page: 7743 year: 2020 ident: 10.1016/j.jechem.2021.03.048_b0315 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202000375 – volume: 5 start-page: 74 year: 2019 ident: 10.1016/j.jechem.2021.03.048_b0305 publication-title: Chem doi: 10.1016/j.chempr.2018.12.002 – volume: 8 start-page: 14975 year: 2020 ident: 10.1016/j.jechem.2021.03.048_b0150 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA05652A – volume: 9 start-page: 1900858 year: 2019 ident: 10.1016/j.jechem.2021.03.048_b0105 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900858 – volume: 44 start-page: 68 year: 2020 ident: 10.1016/j.jechem.2021.03.048_b0270 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2019.09.005 – volume: 1 start-page: 317 year: 2019 ident: 10.1016/j.jechem.2021.03.048_b0120 publication-title: Matter doi: 10.1016/j.matt.2019.05.016 – volume: 5 start-page: 229 year: 2020 ident: 10.1016/j.jechem.2021.03.048_b0095 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-019-0165-5 – volume: 31 start-page: 2339 year: 2020 ident: 10.1016/j.jechem.2021.03.048_b0240 publication-title: Chinese Chem. Lett. doi: 10.1016/j.cclet.2020.03.015 – volume: 19 start-page: 758 year: 2020 ident: 10.1016/j.jechem.2021.03.048_b0195 publication-title: Nat. Mater. doi: 10.1038/s41563-020-0655-2 – volume: 57 start-page: 5301 year: 2018 ident: 10.1016/j.jechem.2021.03.048_b0200 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201801513 – volume: 5 start-page: 11671 year: 2017 ident: 10.1016/j.jechem.2021.03.048_b0170 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA00371D – volume: 280 year: 2020 ident: 10.1016/j.jechem.2021.03.048_b0010 publication-title: Appl. Energ. doi: 10.1016/j.apenergy.2020.115957 – volume: 62 start-page: 1286 year: 2019 ident: 10.1016/j.jechem.2021.03.048_b0210 publication-title: Sci. China Chem. doi: 10.1007/s11426-019-9519-9 – volume: 124 start-page: 6502 year: 2020 ident: 10.1016/j.jechem.2021.03.048_b0180 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b11563 – volume: 58 start-page: 15235 year: 2019 ident: 10.1016/j.jechem.2021.03.048_b0320 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201908874 – volume: 51 start-page: 285 year: 2020 ident: 10.1016/j.jechem.2021.03.048_b0285 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.04.038 – volume: 2 start-page: 258 year: 2017 ident: 10.1016/j.jechem.2021.03.048_b0205 publication-title: Chem doi: 10.1016/j.chempr.2017.01.003 – volume: 33 start-page: 56 year: 2020 ident: 10.1016/j.jechem.2021.03.048_b0060 publication-title: Mater. Today doi: 10.1016/j.mattod.2019.09.018 – volume: 4 start-page: 253 year: 2021 ident: 10.1016/j.jechem.2021.03.048_b0100 publication-title: Matter doi: 10.1016/j.matt.2020.10.014 – volume: 59 start-page: 15839 year: 2020 ident: 10.1016/j.jechem.2021.03.048_b0300 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202001989 – volume: 142 start-page: 20814 year: 2020 ident: 10.1016/j.jechem.2021.03.048_b0085 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c10258 – volume: 59 start-page: 3252 year: 2020 ident: 10.1016/j.jechem.2021.03.048_b0310 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201911724 – volume: 15 start-page: 1903520 year: 2019 ident: 10.1016/j.jechem.2021.03.048_b0050 publication-title: Small doi: 10.1002/smll.201903520 – volume: 9 start-page: 1902254 year: 2019 ident: 10.1016/j.jechem.2021.03.048_b0175 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201902254 – volume: 10 year: 2020 ident: 10.1016/j.jechem.2021.03.048_b0130 publication-title: Mater. Today Nano – volume: 48 start-page: 375 year: 2020 ident: 10.1016/j.jechem.2021.03.048_b0230 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.02.009 – volume: 60 start-page: 3661 year: 2020 ident: 10.1016/j.jechem.2021.03.048_b0135 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202012005 – volume: 12 start-page: 27794 year: 2020 ident: 10.1016/j.jechem.2021.03.048_b0065 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c06930 – volume: 43 start-page: 16 year: 2020 ident: 10.1016/j.jechem.2021.03.048_b0290 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2019.07.010 – volume: 33 start-page: 452 year: 2020 ident: 10.1016/j.jechem.2021.03.048_b0115 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.08.034 – volume: 45 start-page: 463 year: 2018 ident: 10.1016/j.jechem.2021.03.048_b0185 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.01.019 – volume: 11 start-page: 93 year: 2020 ident: 10.1016/j.jechem.2021.03.048_b0140 publication-title: Nat. Commun. doi: 10.1038/s41467-019-13774-2 – volume: 48 start-page: 145 year: 2020 ident: 10.1016/j.jechem.2021.03.048_b0070 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2019.12.024 – volume: 37 start-page: 29 year: 2019 ident: 10.1016/j.jechem.2021.03.048_b0265 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2018.11.016 – volume: 18 start-page: 7414 year: 2018 ident: 10.1016/j.jechem.2021.03.048_b0025 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b03902 – volume: 3 start-page: 227 year: 2018 ident: 10.1016/j.jechem.2021.03.048_b0090 publication-title: Nat. Energy doi: 10.1038/s41560-018-0104-5 – volume: 10 start-page: 1903325 year: 2020 ident: 10.1016/j.jechem.2021.03.048_b0110 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903325 – volume: 167 year: 2020 ident: 10.1016/j.jechem.2021.03.048_b0255 publication-title: J. Electrochem. Soc. – volume: 32 start-page: 2000223 year: 2020 ident: 10.1016/j.jechem.2021.03.048_b0040 publication-title: Adv. Mater. doi: 10.1002/adma.202000223 – volume: 2019 start-page: 4608940 year: 2019 ident: 10.1016/j.jechem.2021.03.048_b0280 publication-title: Research – volume: 16 start-page: 24965 year: 2014 ident: 10.1016/j.jechem.2021.03.048_b0080 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP03590A – volume: 30 start-page: 1706375 year: 2018 ident: 10.1016/j.jechem.2021.03.048_b0035 publication-title: Adv. Mater. doi: 10.1002/adma.201706375 – volume: 51 start-page: 362 year: 2020 ident: 10.1016/j.jechem.2021.03.048_b0225 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.04.044 – volume: 59 start-page: 6665 year: 2020 ident: 10.1016/j.jechem.2021.03.048_b0020 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201912217 – volume: 1 start-page: 6 year: 2019 ident: 10.1016/j.jechem.2021.03.048_b0015 publication-title: InfoMat doi: 10.1002/inf2.12000 – volume: 31 start-page: 1901820 year: 2019 ident: 10.1016/j.jechem.2021.03.048_b0030 publication-title: Adv. Mater. doi: 10.1002/adma.201901820 – volume: 25 start-page: 644 year: 2020 ident: 10.1016/j.jechem.2021.03.048_b0155 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.09.020 – volume: 2 start-page: 379 year: 2020 ident: 10.1016/j.jechem.2021.03.048_b0235 publication-title: InfoMat doi: 10.1002/inf2.12046 – volume: 49 start-page: 3040 year: 2020 ident: 10.1016/j.jechem.2021.03.048_b0160 publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00838A – volume: 45 start-page: 1 year: 2020 ident: 10.1016/j.jechem.2021.03.048_b0250 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2019.09.033 – volume: 8 start-page: 1702097 year: 2018 ident: 10.1016/j.jechem.2021.03.048_b0055 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702097 |
SSID | ssj0000941295 |
Score | 2.604563 |
Snippet | The formation of dead Lithium during stripping process is investigated in the whole course from the electron transfer, the conversion of Li0 to Li+ and the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 289 |
SubjectTerms | Charge transfer Dead lithium Lithium dendrite growth Lithium metal batteries Lithium stripping |
Title | New insights into “dead lithium” during stripping in lithium metal batteries |
URI | https://dx.doi.org/10.1016/j.jechem.2021.03.048 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JSgNBEG1EL3oQV4xL6IPXMT09Pb0cgxiioggayG2YXqIRE8UkV8mH6M_5JVbNIgqi4G2WLhhqeqpe99R7Rcihc4azQdBRGlBUW0oWWeFlFAZx4Fa7ODBkI19cym5PnPXT_gI5rrkwWFZZxf4yphfRurrSqrzZehoOW9ec4S8qyN8oI6QLRrkQCmf50Uv8uc8CyxdIaVjJiOMjNKgZdEWZ130A5yAlnceF2ik2AvopQ33JOp01slrBRdoun2idLITxBln5IiK4Sa4gTtHheIKr7AkcTB_p-_zVw7ujALHvhrPR-_yNlnREil06UJHhFgbWt-koAAKntlDahIXzFul1Tm6Ou1HVJyFyAPinkRLM5kIb61TOk3Rgc5d75o1MfeoUfgZOBxGYUsFzgCC5sbFQXGrrhPRGJ9tkcfw4DjuExqkPxkqPHciFTrwBgGQ411KanHmlGySpfZO5SkQce1k8ZHW12H1WejRDj2YsycCjDRJ9Wj2VIhp_jFe127NvkyGDOP-r5e6_LffIMp6VNMN9sjh9noUDwBtT2ywmVJMstU_Pu5cfaMHWeA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5Ke1AP4hPrcw9eQzebZLN7lGJprS2CFbwt2Ue1olG03v0h-uf6S5xpkqIgCt5CdgfCl83MbHa-bwg5tlZxNvYySDyKagvBAhM7Efhx6LmRNvQM2ciDoehexWfXyXWNtCsuDJZVlr6_8Olzb13eaZVotp4mk9YlZ3hEBfEbZYQkMsobqE6V1EnjpNfvDhe_WmAHA1ENixnRJECbikQ3r_S684APstJ5OBc8xV5APwWpL4Gns0ZWy4yRnhQPtU5qPt8gK190BDfJBbgqOslfcKP9AhfTRzp7e3fw-ihk2beT14fZ2wctGIkUG3WgKMMNTKyG6YOHJJyaudgm7J23yFXndNTuBmWrhMBCzj8N0piZLJbK2DTjUTI2mc0cc0okLrEpfglW-tizNPWOQxaSKRPGKRfS2Fg4JaNtUs8fc79DaJg4r4xw2IQ8lpFTkCMpzqUQKmMulU0SVdhoW-qIYzuLe10VjN3pAlGNiGoWaUC0SYKF1VOho_HH_LSCXX9bDxpc_a-Wu_-2PCJL3dHgXJ_3hv09sowjBetwn9Snz6_-ANKPqTksl9cnzdzZKQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+insights+into+%E2%80%9Cdead+lithium%E2%80%9D+during+stripping+in+lithium+metal+batteries&rft.jtitle=Journal+of+energy+chemistry&rft.au=Chen%2C+Xiao-Ru&rft.au=Yan%2C+Chong&rft.au=Ding%2C+Jun-Fan&rft.au=Peng%2C+Hong-Jie&rft.date=2021-11-01&rft.issn=2095-4956&rft.volume=62&rft.spage=289&rft.epage=294&rft_id=info:doi/10.1016%2Fj.jechem.2021.03.048&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jechem_2021_03_048 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-4956&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-4956&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-4956&client=summon |