Red- and NIR-emitting lanthanide complexes for photo- and electroluminescent nanothermometry in the cryogenic and high-temperature range

Ratiometric luminescent thermometers, particularly lanthanide-based, become very important, and long wavelength range is of particular interest due to low signal scattering. With this in mind, a series of new red and NIR emitting lanthanide Schiff base complexes were synthesized and characterized in...

Full description

Saved in:
Bibliographic Details
Published inOptical materials Vol. 148; p. 114793
Main Authors Fedichkina, Anna D., Koshelev, Daniil S., Vashchenko, Andrey A., Goloveshkin, Alexander S., Latipov, Egor V., Burlov, Anatolii S., Dmitriev, Artem V., Chernyadyev, Andrey Yu, Lypenko, Dmitry A., Utochnikova, Valentina V.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2024
Online AccessGet full text

Cover

Loading…
Abstract Ratiometric luminescent thermometers, particularly lanthanide-based, become very important, and long wavelength range is of particular interest due to low signal scattering. With this in mind, a series of new red and NIR emitting lanthanide Schiff base complexes were synthesized and characterized in detail for use as components of luminescent thermometers. Red-emitting europium complexes demonstrated high temperature sensitivity (up to 7 %/K) in the cryogenic temperature range (80–200 K), where the ligand-to-europium luminescence intensity ratio (LIR) was used as a signal. In contrast, NIR emitting ytterbium complexes demonstrated no sensitivity in the cryogenic range; however, their luminescence was sensitive to high temperatures (300–600 K), which is currently of particular interest. Ytterbium and europium complexes were also tested in OLEDs, and due to high temperature sensitivity, europium complexes were used for the first electroluminescent thermometers. •High sensitivity of red emitting europium complexes in the cryogenic temperature range (80–200 K) obtained.•High sensitivity of NIR emitting complexes towards the high temperatures (300–600 K) obtained.•The first electroluminescent thermometry based on europium complexes obtained.
AbstractList Ratiometric luminescent thermometers, particularly lanthanide-based, become very important, and long wavelength range is of particular interest due to low signal scattering. With this in mind, a series of new red and NIR emitting lanthanide Schiff base complexes were synthesized and characterized in detail for use as components of luminescent thermometers. Red-emitting europium complexes demonstrated high temperature sensitivity (up to 7 %/K) in the cryogenic temperature range (80–200 K), where the ligand-to-europium luminescence intensity ratio (LIR) was used as a signal. In contrast, NIR emitting ytterbium complexes demonstrated no sensitivity in the cryogenic range; however, their luminescence was sensitive to high temperatures (300–600 K), which is currently of particular interest. Ytterbium and europium complexes were also tested in OLEDs, and due to high temperature sensitivity, europium complexes were used for the first electroluminescent thermometers. •High sensitivity of red emitting europium complexes in the cryogenic temperature range (80–200 K) obtained.•High sensitivity of NIR emitting complexes towards the high temperatures (300–600 K) obtained.•The first electroluminescent thermometry based on europium complexes obtained.
ArticleNumber 114793
Author Goloveshkin, Alexander S.
Fedichkina, Anna D.
Vashchenko, Andrey A.
Dmitriev, Artem V.
Lypenko, Dmitry A.
Latipov, Egor V.
Koshelev, Daniil S.
Chernyadyev, Andrey Yu
Utochnikova, Valentina V.
Burlov, Anatolii S.
Author_xml – sequence: 1
  givenname: Anna D.
  surname: Fedichkina
  fullname: Fedichkina, Anna D.
  organization: Materials Science Department, M.V. Lomonosov Moscow State University, 1/3 Leninskie Gory, Moscow, 119991, Russia
– sequence: 2
  givenname: Daniil S.
  orcidid: 0000-0001-8210-6690
  surname: Koshelev
  fullname: Koshelev, Daniil S.
  organization: Materials Science Department, M.V. Lomonosov Moscow State University, 1/3 Leninskie Gory, Moscow, 119991, Russia
– sequence: 3
  givenname: Andrey A.
  surname: Vashchenko
  fullname: Vashchenko, Andrey A.
  organization: P.N. Lebedev Physical Institute, Leninsky prosp. 53, Moscow, 119992, Russia
– sequence: 4
  givenname: Alexander S.
  surname: Goloveshkin
  fullname: Goloveshkin, Alexander S.
  organization: A.N. Nesmeyanov Institute of Organoelement Compounds, Vavilova St. 28, Moscow, 119334, Russia
– sequence: 5
  givenname: Egor V.
  orcidid: 0000-0002-6809-1952
  surname: Latipov
  fullname: Latipov, Egor V.
  organization: Department of Structural Analysis and Metrology, Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences, Leninsky Prospect 32A, Moscow, 119334, Russia
– sequence: 6
  givenname: Anatolii S.
  surname: Burlov
  fullname: Burlov, Anatolii S.
  organization: Institute of Physical and Organic Chemistry, Southern Federal University, 344090, Rostov-on-Don, Russia
– sequence: 7
  givenname: Artem V.
  orcidid: 0000-0001-5854-5669
  surname: Dmitriev
  fullname: Dmitriev, Artem V.
  organization: A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Prosp. 31, bld.4, Moscow, 119071, Russia
– sequence: 8
  givenname: Andrey Yu
  orcidid: 0000-0002-0266-4797
  surname: Chernyadyev
  fullname: Chernyadyev, Andrey Yu
  organization: A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Prosp. 31, bld.4, Moscow, 119071, Russia
– sequence: 9
  givenname: Dmitry A.
  orcidid: 0000-0002-5500-5613
  surname: Lypenko
  fullname: Lypenko, Dmitry A.
  organization: A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Prosp. 31, bld.4, Moscow, 119071, Russia
– sequence: 10
  givenname: Valentina V.
  surname: Utochnikova
  fullname: Utochnikova, Valentina V.
  email: valentina.utochnikova@gmail.com
  organization: Materials Science Department, M.V. Lomonosov Moscow State University, 1/3 Leninskie Gory, Moscow, 119991, Russia
BookMark eNqFkEtOwzAURT0oEm1hBwy8gQR_8mWAhCo-lSqQKhhbrvOcuErsyHER3QHLJiWMGMDo6T7pXOmeBZpZZwGhK0piSmh2vY9dHzoZYkYYjylN8pLP0JyULI14kuXnaDEMe0IIS7Nsjj63UEVY2go_r7cRdCYEY2vcShsaaU0FWLmub-EDBqydx33jgpsAaEEF79pDZywMCmzAVloXGvCd6yD4IzYWjxErf3Q1WKO-ucbUTRSg68HLcPCAvbQ1XKAzLdsBLn_uEr093L-unqLNy-N6dbeJFCdZiHJaUc1Bg5K7VLOdBsmTomCpLnjKSsg0rYBxmqpUcqWzMk92RS4TnlcJjA--RDdTr_JuGDxooUyQwTgbvDStoEScPIq9mDyKk0cxeRzh5Bfce9NJf_wPu50wGIe9G_BiUAasgsr40aGonPm74AsfuJfC
CitedBy_id crossref_primary_10_1021_acsami_4c06466
crossref_primary_10_1134_S0022476624080122
crossref_primary_10_1038_s41598_025_89190_y
Cites_doi 10.1016/j.sna.2022.113787
10.1016/j.jallcom.2022.166421
10.1016/j.jlumin.2021.118400
10.1039/B905604C
10.1039/c2nr30663h
10.1016/j.jre.2020.01.010
10.1021/acs.chemmater.8b03675
10.1107/S0021889802019878
10.1039/D0DT02238A
10.1016/j.optmat.2017.02.052
10.1002/adom.201801239
10.1002/chem.201802219
10.1039/D1DT02269E
10.1039/D1DT04033B
10.1016/S0168-1273(07)37035-9
10.1016/j.jlumin.2018.05.002
10.1039/D1TC04600D
10.1134/S1070328414090024
10.1134/S1070328416090074
10.1016/B978-0-08-102029-6.00010-5
10.1016/j.dyepig.2020.108986
10.1039/D2DT00147K
10.1039/D0CP04909C
10.1016/j.jlumin.2015.07.033
10.1016/j.jlumin.2023.120054
10.1039/C5DT01161B
10.1039/D1NA00285F
10.1039/D1DT01316E
10.1021/jacs.6b00984
10.1039/C9DT03823J
10.1039/C6TC03586H
10.3390/ijms231810961
10.1039/C7DT04387B
10.1002/adfm.201500518
10.1039/D0TC01445A
10.1039/C6TC01484D
10.1016/j.ccr.2019.07.003
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID AAYXX
CITATION
DOI 10.1016/j.optmat.2023.114793
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
ExternalDocumentID 10_1016_j_optmat_2023_114793
S0925346723013654
GroupedDBID --K
--M
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABTAH
ABXDB
ABXRA
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFFNX
AFJKZ
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
M24
M38
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SMS
SPC
SPCBC
SPD
SPG
SSM
SSQ
SSZ
T5K
UHS
WUQ
XPP
ZMT
ZY4
~G-
AATTM
AAYWO
AAYXX
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-71d1f3efecab5f2bfea348825f83529e6f1de2315c5a3cf6974b87a437d4e3cf3
IEDL.DBID .~1
ISSN 0925-3467
IngestDate Tue Jul 01 03:50:20 EDT 2025
Thu Apr 24 22:56:02 EDT 2025
Sat Jan 04 15:43:22 EST 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-71d1f3efecab5f2bfea348825f83529e6f1de2315c5a3cf6974b87a437d4e3cf3
ORCID 0000-0002-0266-4797
0000-0002-5500-5613
0000-0001-5854-5669
0000-0001-8210-6690
0000-0002-6809-1952
ParticipantIDs crossref_citationtrail_10_1016_j_optmat_2023_114793
crossref_primary_10_1016_j_optmat_2023_114793
elsevier_sciencedirect_doi_10_1016_j_optmat_2023_114793
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2024
2024-02-00
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: February 2024
PublicationDecade 2020
PublicationTitle Optical materials
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Tcelykh, Kozhevnikova, Goloveshkin, Latipov, Gordeeva, Utochnikova (bib11) 2022; 345
Vialtsev, Tcelykh, Bobrovsky, Utochnikova (bib43) 2022; 924
Pham, Trush, Korabik, Amirkhanov, Gawryszewska (bib36) 2021; 186
Utochnikova, Kovalenko, Burlov, Marciniak, Ananyev, Kalyakina, Kurchavov, Kuzmina (bib40) 2015; 44
Eliseeva, Bünzli (bib27) 2010; 39
Marciniak, Bednarkiewicz, Kowalska, Strek (bib13) 2016; 4
Orlova, Kozhevnikova, Goloveshkin, Lepnev, Utochnikova (bib17) 2022; 51
Chow, Eliseeva, Trivedi, Nguyen, Kampf, Petoud, Pecoraro (bib35) 2016; 138
Popelensky, Utochnikova (bib5) 2020; 49
Utochnikova, Aslandukov, Vashchenko, Goloveshkin, Alexandrov, Grzibovskis, Bünzli (bib47) 2021; 50
Bünzli, V Eliseeva (bib26) 2011
Bünzli (bib39) 2016; 170
Tsujimura (bib21) 2017
Kozlov, Aslandukov, Vashchenko, Medvedko, Aleksandrov, Grzibovskis, Goloveshkin, Lepnev, Tameev, Vembris, Utochnikova (bib44) 2019; 48
Orlova, Kozhevnikova, Lepnev, Goloveshkin, Le-Deigen, Utochnikova (bib16) 2020
Burlov, Garnovskii, Alekseenko, Mistryukov, Sergienko, Zaletov, V Lukov, V Khokhlov (bib32) 1992; 18
Khudoleeva, Tcelykh, Kovalenko, Kalyakina, Goloveshkin, Lepnev, Utochnikova (bib10) 2018; 201
Bunzli, Eliseeva (bib33) 2010; 10
Utochnikova, Grishko, Koshelev, Averin, Lepnev, Kuzmina (bib34) 2017; 74
Pham, Trush, Carneiro Neto, Korabik, Sokolnicki, Weselski, Malta, Amirkhanov, Gawryszewska (bib37) 2020; 8
Bruker (bib48) 2009
Brites, Balabhadra, Carlos (bib6) 2019; 7
Vialtsev, Dalinger, Latipov, Lepnev, Kushnir, Vatsadze, Utochnikova (bib41) 2020; 22
Coelho (bib49) 2003; 36
Dramićanin (bib2) 2018
Koshelev, Tcelykh, Mustakimov, Medved’ko, Latipov, Pavlov, Goloveshkin, Gontcharenko, Vlasova, Burlov, Lepnev, Vatsadze, Utochnikova (bib45) 2023; 263
Valentina (bib22) 2021
Pereira (bib19) 2012
Chikineva, Koshelev, Medvedko, Vashchenko, Lepnev, Goloveshkin, Utochnikova (bib25) 2021; 2
Vialtsev, Tcelykh, Kozlov, V Latipov, Bobrovsky, V Utochnikova (bib42) 2021; 239
Ananias, Almeida Paz, Carlos, Rocha (bib12) 2018; 24
Kovalenko, Bushmarinov, Burlov, Lepnev, Ilina, Utochnikova (bib15) 2018; 47
Dramićanin (bib4) 2016; 4
Utochnikova, Kalyakina, Bushmarinov, Vashchenko, Marciniak, Kaczmarek, Van Deun, Bräse, Kuzmina (bib24) 2016; 4
Belousov, Utochnikova, Kuznetsov, Andreev, Dolzhenko, Drozdov (bib9) 2014; 40
Kovalenko, Rublev, Tcelykh, Goloveshkin, Lepnev, Burlov, Vashchenko, Marciniak, Magerramov, Shikhaliyev, Vatsadze, Utochnikova (bib14) 2019; 31
Chernyadyev, Aleksandrov, Lypenko, Tsivadze (bib30) 2022; 23
Kuznetsov, Kozlov, Aslandukov, Vashchenko, Medved’ko, Latipov, Goloveshkin, Tsymbarenko, Utochnikova (bib23) 2021; 50
Dramićanin (bib3) 2018
Comby, Bünzli (bib38) 2007
Maciejewska, Bednarkiewicz, Marciniak (bib1) 2021; 3
Utochnikova, Kuzmina (bib28) 2016; 42
Tcelykh, Vashchenko, Medved’Ko, Marciniak, Aleksandrov, Goloveshkin, Lepnev, Latipov, Burlov, Utochnikova (bib31) 2022; 10
Koden (bib20) 2016
Utochnikova (bib29) 2019; 398
Kovalenko, Tcelykh, Koshelev, Vashchenko, Tsymbarenko, Goloveshkin, Aleksandrov, Burlov, Utochnikova (bib46) 2022; 51
Wang, Ananias, Carné-Sánchez, Brites, Imaz, Maspoch, Rocha, Carlos (bib8) 2015; 25
Brites, Lima, Silva, Millán, Amaral, Palacio, Carlos (bib7) 2012; 4
Vialtsev, Tcelykh, Kozlov, Latipov, Bobrovsky, Utochnikova (bib18) 2021; 239
Kovalenko (10.1016/j.optmat.2023.114793_bib46) 2022; 51
Brites (10.1016/j.optmat.2023.114793_bib6) 2019; 7
Orlova (10.1016/j.optmat.2023.114793_bib17) 2022; 51
Wang (10.1016/j.optmat.2023.114793_bib8) 2015; 25
Bunzli (10.1016/j.optmat.2023.114793_bib33) 2010; 10
Utochnikova (10.1016/j.optmat.2023.114793_bib29) 2019; 398
Utochnikova (10.1016/j.optmat.2023.114793_bib40) 2015; 44
Utochnikova (10.1016/j.optmat.2023.114793_bib34) 2017; 74
Pham (10.1016/j.optmat.2023.114793_bib36) 2021; 186
Chow (10.1016/j.optmat.2023.114793_bib35) 2016; 138
Vialtsev (10.1016/j.optmat.2023.114793_bib41) 2020; 22
Coelho (10.1016/j.optmat.2023.114793_bib49) 2003; 36
Khudoleeva (10.1016/j.optmat.2023.114793_bib10) 2018; 201
Tcelykh (10.1016/j.optmat.2023.114793_bib31) 2022; 10
Chikineva (10.1016/j.optmat.2023.114793_bib25) 2021; 2
Dramićanin (10.1016/j.optmat.2023.114793_bib2) 2018
Kozlov (10.1016/j.optmat.2023.114793_bib44) 2019; 48
Utochnikova (10.1016/j.optmat.2023.114793_bib28) 2016; 42
Bünzli (10.1016/j.optmat.2023.114793_bib26) 2011
Vialtsev (10.1016/j.optmat.2023.114793_bib43) 2022; 924
Maciejewska (10.1016/j.optmat.2023.114793_bib1) 2021; 3
Vialtsev (10.1016/j.optmat.2023.114793_bib42) 2021; 239
Koshelev (10.1016/j.optmat.2023.114793_bib45) 2023; 263
Bruker (10.1016/j.optmat.2023.114793_bib48) 2009
Kovalenko (10.1016/j.optmat.2023.114793_bib14) 2019; 31
Tcelykh (10.1016/j.optmat.2023.114793_bib11) 2022; 345
Marciniak (10.1016/j.optmat.2023.114793_bib13) 2016; 4
Pereira (10.1016/j.optmat.2023.114793_bib19) 2012
Koden (10.1016/j.optmat.2023.114793_bib20) 2016
Tsujimura (10.1016/j.optmat.2023.114793_bib21) 2017
Pham (10.1016/j.optmat.2023.114793_bib37) 2020; 8
Eliseeva (10.1016/j.optmat.2023.114793_bib27) 2010; 39
Comby (10.1016/j.optmat.2023.114793_bib38) 2007
Dramićanin (10.1016/j.optmat.2023.114793_bib3) 2018
Popelensky (10.1016/j.optmat.2023.114793_bib5) 2020; 49
Utochnikova (10.1016/j.optmat.2023.114793_bib47) 2021; 50
Burlov (10.1016/j.optmat.2023.114793_bib32) 1992; 18
Bünzli (10.1016/j.optmat.2023.114793_bib39) 2016; 170
Utochnikova (10.1016/j.optmat.2023.114793_bib24) 2016; 4
Vialtsev (10.1016/j.optmat.2023.114793_bib18) 2021; 239
Dramićanin (10.1016/j.optmat.2023.114793_bib4) 2016; 4
Orlova (10.1016/j.optmat.2023.114793_bib16) 2020
Kuznetsov (10.1016/j.optmat.2023.114793_bib23) 2021; 50
Belousov (10.1016/j.optmat.2023.114793_bib9) 2014; 40
Brites (10.1016/j.optmat.2023.114793_bib7) 2012; 4
Kovalenko (10.1016/j.optmat.2023.114793_bib15) 2018; 47
Valentina (10.1016/j.optmat.2023.114793_bib22) 2021
Ananias (10.1016/j.optmat.2023.114793_bib12) 2018; 24
Chernyadyev (10.1016/j.optmat.2023.114793_bib30) 2022; 23
References_xml – volume: 398
  year: 2019
  ident: bib29
  article-title: The use of luminescent spectroscopy to obtain information about the composition and the structure of lanthanide coordination compounds
  publication-title: Coord. Chem. Rev.
– volume: 924
  year: 2022
  ident: bib43
  article-title: Lanthanide complexes for elevated temperature luminescence thermometry: mixture vs bimetallic compound
  publication-title: J. Alloys Compd.
– start-page: 215
  year: 2018
  end-page: 233
  ident: bib3
  article-title: Applications of luminescence thermometry in engineering
  publication-title: Lumin. Thermom.
– start-page: 217
  year: 2007
  end-page: 470
  ident: bib38
  article-title: Chapter 235 lanthanide near-infrared luminescence in molecular probes and devices
  publication-title: Handb. Phys. Chem. Rare Earths
– volume: 138
  start-page: 5100
  year: 2016
  end-page: 5109
  ident: bib35
  article-title: Ga3+/Ln3+ metallacrowns: a promising family of highly luminescent lanthanide complexes that covers visible and near-infrared domains
  publication-title: J. Am. Chem. Soc.
– volume: 263
  year: 2023
  ident: bib45
  article-title: NIR-emitting ytterbium complexes with a large Stokes shift for detection of sulfide
  publication-title: J. Lumin.
– volume: 239
  year: 2021
  ident: bib18
  article-title: Terbium and europium aromatic carboxylates in the polystyrene matrix: the first metal-organic-based material for high-temperature thermometry
  publication-title: J. Lumin.
– volume: 50
  start-page: 12806
  year: 2021
  end-page: 12813
  ident: bib47
  article-title: Identifying lifetime as one of the key parameters responsible for the low brightness of lanthanide-based OLEDs
  publication-title: Dalton Trans.
– volume: 8
  start-page: 9993
  year: 2020
  end-page: 10009
  ident: bib37
  article-title: Lanthanide complexes with N-phosphorylated carboxamide as UV converters with excellent emission quantum yield and single-ion magnet behavior
  publication-title: J. Mater. Chem. C
– volume: 10
  start-page: 1371
  year: 2022
  end-page: 1380
  ident: bib31
  article-title: Ytterbium complexes with 2-(tosylamino)-benzylidene-N-(2-halobenzoyl)-hydrazones for solution-processable NIR OLEDs
  publication-title: J. Mater. Chem. C
– volume: 4
  start-page: 9848
  year: 2016
  end-page: 9855
  ident: bib24
  article-title: Lanthanide 9-anthracenate: solution processable emitters for efficient purely NIR emitting host-free OLEDs
  publication-title: J. Mater. Chem. C
– volume: 4
  start-page: 4799
  year: 2012
  end-page: 4829
  ident: bib7
  article-title: Thermometry at the nanoscale
  publication-title: Nanoscale
– volume: 345
  year: 2022
  ident: bib11
  article-title: Sensing temperature with Tb-Eu-based luminescent thermometer: a novel approach to increase the sensitivity
  publication-title: Sensors Actuators A Phys
– volume: 25
  start-page: 2824
  year: 2015
  end-page: 2830
  ident: bib8
  article-title: Lanthanide-organic framework nanothermometers prepared by spray-drying
  publication-title: Adv. Funct. Mater.
– volume: 51
  start-page: 3833
  year: 2022
  end-page: 3838
  ident: bib46
  article-title: Record efficiency of 1000 nm electroluminescence from a solution-processable host-free OLED
  publication-title: Dalton Trans.
– volume: 31
  start-page: 759
  year: 2019
  end-page: 773
  ident: bib14
  article-title: Lanthanide complexes with 2-(Tosylamino)-benzylidene- N -(aryloyl)hydrazones: universal luminescent materials
  publication-title: Chem. Mater.
– volume: 10
  start-page: 1
  year: 2010
  end-page: 45
  ident: bib33
  publication-title: Basics of Lanthanide Photophysics
– volume: 239
  year: 2021
  ident: bib42
  article-title: Terbium and europium aromatic carboxylates in the polystyrene matrix: the first metal-organic-based material for high-temperature thermometry
  publication-title: J. Lumin.
– volume: 4
  start-page: 5559
  year: 2016
  end-page: 5563
  ident: bib13
  article-title: A new generation of highly sensitive luminescent thermometers operating in the optical window of biological tissues
  publication-title: J. Mater. Chem. C
– volume: 23
  start-page: 10961
  year: 2022
  ident: bib30
  article-title: Copper(II) etioporphyrinate as a promising photoluminescent and electroluminescent temperature sensor
  publication-title: Int. J. Mol. Sci.
– volume: 50
  start-page: 9685
  year: 2021
  end-page: 9689
  ident: bib23
  article-title: Eu(tta)3DPPZ-based organic light-emitting diodes: spin-coating vs. vacuum-deposition
  publication-title: Dalton Trans.
– year: 2016
  ident: bib20
  article-title: OLED Displays and Lighting
– volume: 3
  start-page: 4918
  year: 2021
  end-page: 4925
  ident: bib1
  article-title: NIR luminescence lifetime nanothermometry based on phonon assisted Yb3+-Nd3+energy transfer
  publication-title: Nanoscale Adv.
– volume: 40
  start-page: 627
  year: 2014
  end-page: 633
  ident: bib9
  article-title: New rare-earth metal acyl pyrazolonates: synthesis, crystals structures, and luminescence properties
  publication-title: Russ. J. Coord. Chem.
– volume: 22
  start-page: 25450
  year: 2020
  end-page: 25454
  ident: bib41
  article-title: New approach to increase the sensitivity of Tb-Eu-based luminescent thermometer
  publication-title: Phys. Chem. Chem. Phys.
– volume: 2
  year: 2021
  ident: bib25
  article-title: Ytterbium and europium complexes with naphtho[1,2]thiazol-2-carboxylic and naphtho[2,1]thiazol-2-carboxylic acid anions for OLED
  publication-title: Russ. J. Inorg. Chem.
– year: 2012
  ident: bib19
  article-title: Organic Light Emitting Diodes : the Use of Rare Earth and Transition Metals
– volume: 201
  start-page: 500
  year: 2018
  end-page: 508
  ident: bib10
  article-title: Terbium-europium fluorides surface modified with benzoate and terephthalate anions for temperature sensing: does sensitivity depend on the ligand?
  publication-title: J. Lumin.
– volume: 48
  start-page: 17298
  year: 2019
  end-page: 17309
  ident: bib44
  article-title: On the development of a new approach to the design of lanthanide-based materials for solution-processed OLEDs
  publication-title: Dalton Trans.
– volume: 24
  start-page: 11926
  year: 2018
  end-page: 11935
  ident: bib12
  article-title: Near‐infrared ratiometric luminescent thermometer based on a new lanthanide silicate
  publication-title: Chem. Eur J.
– volume: 49
  start-page: 12156
  year: 2020
  end-page: 12160
  ident: bib5
  article-title: How does the ligand affect the sensitivity of the luminescent thermometers based on Tb–Eu complexes
  publication-title: Dalton Trans.
– volume: 170
  start-page: 866
  year: 2016
  end-page: 878
  ident: bib39
  article-title: Lanthanide light for biology and medical diagnosis
  publication-title: J. Lumin.
– volume: 42
  start-page: 679
  year: 2016
  end-page: 694
  ident: bib28
  article-title: Photoluminescence of lanthanide aromatic carboxylates
  publication-title: Russ. J. Coord. Chem. Khimiya.
– volume: 7
  start-page: 1
  year: 2019
  end-page: 30
  ident: bib6
  article-title: Lanthanide-based thermometers: at the cutting-edge of luminescence thermometry
  publication-title: Adv. Opt. Mater.
– volume: 47
  start-page: 4524
  year: 2018
  end-page: 4533
  ident: bib15
  article-title: The peculiarities of complex formation and energy transfer processes in lanthanide complexes with 2-(tosylamino)-benzylidene-: N -benzoylhydrazone
  publication-title: Dalton Trans.
– start-page: 1
  year: 2011
  end-page: 45
  ident: bib26
  publication-title: Basics of Lanthanide Photophysics BT - Lanthanide Luminescence: Photophysical, Analytical and Biological Aspects
– year: 2009
  ident: bib48
  article-title: 2 User Manual
– volume: 74
  start-page: 201
  year: 2017
  end-page: 208
  ident: bib34
  article-title: Lanthanide heterometallic terephthalates: concentration quenching and the principles of the “multiphotonic emission,”
  publication-title: Opt. Mater.
– volume: 51
  start-page: 5419
  year: 2022
  end-page: 5425
  ident: bib17
  article-title: NIR luminescence thermometers based on Yb-Nd coordination compounds for the 83-393 K temperature range
  publication-title: Dalton Trans.
– volume: 39
  start-page: 189
  year: 2010
  end-page: 227
  ident: bib27
  article-title: Lanthanide luminescence for functional materials and bio-sciences
  publication-title: Chem. Soc. Rev.
– volume: 44
  start-page: 12660
  year: 2015
  end-page: 12669
  ident: bib40
  article-title: Lanthanide complexes with 2-(tosylamino)benzylidene-N--benzoylhydrazone, which exhibit high NIR emission
  publication-title: Dalton Trans.
– start-page: 235
  year: 2018
  end-page: 250
  ident: bib2
  article-title: Biomedical applications of luminescence thermometry
  publication-title: Lumin. Thermom.
– year: 2017
  ident: bib21
  article-title: OLED Display Fundamentals and Applications
– volume: 186
  year: 2021
  ident: bib36
  article-title: Nd3+ and Yb3+ complexes with N-(diphenylphosphoryl)pyrazine-2-carboxamide as UV-NIR radiation converters and single-ion magnets
  publication-title: Dyes Pigments
– volume: 36
  start-page: 86
  year: 2003
  end-page: 95
  ident: bib49
  article-title: Indexing of powder diffraction patterns by iterative use of singular value decomposition
  publication-title: J. Appl. Crystallogr.
– volume: 4
  year: 2016
  ident: bib4
  article-title: Sensing temperature via downshifting emissions of lanthanide-doped metal oxides and salts
  publication-title: A review, Methods Appl. Fluoresc.
– volume: 18
  start-page: 859
  year: 1992
  end-page: 868
  ident: bib32
  article-title: BENZOYLHYDRAZONATES of ortho-TOSYLAMINOBENZALDEHYDE
  publication-title: Koord. KHIMIYA.
– start-page: 492
  year: 2020
  end-page: 497
  ident: bib16
  article-title: NIR emitting terephthalates (SmxDyy Gd1-x-y)2(tph)3(H2O)4 for luminescence thermometry in the physiological range
  publication-title: J. Rare Earths
– year: 2021
  ident: bib22
  article-title: Utochnikova, Lanthanide complexes as OLED emitters
  publication-title: Handb. Phys. Chem. Rare Earths
– volume: 345
  year: 2022
  ident: 10.1016/j.optmat.2023.114793_bib11
  article-title: Sensing temperature with Tb-Eu-based luminescent thermometer: a novel approach to increase the sensitivity
  publication-title: Sensors Actuators A Phys
  doi: 10.1016/j.sna.2022.113787
– volume: 924
  year: 2022
  ident: 10.1016/j.optmat.2023.114793_bib43
  article-title: Lanthanide complexes for elevated temperature luminescence thermometry: mixture vs bimetallic compound
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2022.166421
– volume: 239
  year: 2021
  ident: 10.1016/j.optmat.2023.114793_bib42
  article-title: Terbium and europium aromatic carboxylates in the polystyrene matrix: the first metal-organic-based material for high-temperature thermometry
  publication-title: J. Lumin.
  doi: 10.1016/j.jlumin.2021.118400
– volume: 39
  start-page: 189
  year: 2010
  ident: 10.1016/j.optmat.2023.114793_bib27
  article-title: Lanthanide luminescence for functional materials and bio-sciences
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B905604C
– volume: 4
  start-page: 4799
  year: 2012
  ident: 10.1016/j.optmat.2023.114793_bib7
  article-title: Thermometry at the nanoscale
  publication-title: Nanoscale
  doi: 10.1039/c2nr30663h
– start-page: 492
  year: 2020
  ident: 10.1016/j.optmat.2023.114793_bib16
  article-title: NIR emitting terephthalates (SmxDyy Gd1-x-y)2(tph)3(H2O)4 for luminescence thermometry in the physiological range
  publication-title: J. Rare Earths
  doi: 10.1016/j.jre.2020.01.010
– volume: 31
  start-page: 759
  year: 2019
  ident: 10.1016/j.optmat.2023.114793_bib14
  article-title: Lanthanide complexes with 2-(Tosylamino)-benzylidene- N -(aryloyl)hydrazones: universal luminescent materials
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b03675
– volume: 36
  start-page: 86
  year: 2003
  ident: 10.1016/j.optmat.2023.114793_bib49
  article-title: Indexing of powder diffraction patterns by iterative use of singular value decomposition
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889802019878
– volume: 49
  start-page: 12156
  year: 2020
  ident: 10.1016/j.optmat.2023.114793_bib5
  article-title: How does the ligand affect the sensitivity of the luminescent thermometers based on Tb–Eu complexes
  publication-title: Dalton Trans.
  doi: 10.1039/D0DT02238A
– volume: 74
  start-page: 201
  year: 2017
  ident: 10.1016/j.optmat.2023.114793_bib34
  article-title: Lanthanide heterometallic terephthalates: concentration quenching and the principles of the “multiphotonic emission,”
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2017.02.052
– start-page: 215
  year: 2018
  ident: 10.1016/j.optmat.2023.114793_bib3
  article-title: Applications of luminescence thermometry in engineering
– volume: 7
  start-page: 1
  year: 2019
  ident: 10.1016/j.optmat.2023.114793_bib6
  article-title: Lanthanide-based thermometers: at the cutting-edge of luminescence thermometry
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201801239
– volume: 2
  year: 2021
  ident: 10.1016/j.optmat.2023.114793_bib25
  article-title: Ytterbium and europium complexes with naphtho[1,2]thiazol-2-carboxylic and naphtho[2,1]thiazol-2-carboxylic acid anions for OLED
  publication-title: Russ. J. Inorg. Chem.
– volume: 239
  year: 2021
  ident: 10.1016/j.optmat.2023.114793_bib18
  article-title: Terbium and europium aromatic carboxylates in the polystyrene matrix: the first metal-organic-based material for high-temperature thermometry
  publication-title: J. Lumin.
  doi: 10.1016/j.jlumin.2021.118400
– volume: 24
  start-page: 11926
  year: 2018
  ident: 10.1016/j.optmat.2023.114793_bib12
  article-title: Near‐infrared ratiometric luminescent thermometer based on a new lanthanide silicate
  publication-title: Chem. Eur J.
  doi: 10.1002/chem.201802219
– volume: 50
  start-page: 12806
  year: 2021
  ident: 10.1016/j.optmat.2023.114793_bib47
  article-title: Identifying lifetime as one of the key parameters responsible for the low brightness of lanthanide-based OLEDs
  publication-title: Dalton Trans.
  doi: 10.1039/D1DT02269E
– volume: 51
  start-page: 3833
  year: 2022
  ident: 10.1016/j.optmat.2023.114793_bib46
  article-title: Record efficiency of 1000 nm electroluminescence from a solution-processable host-free OLED
  publication-title: Dalton Trans.
  doi: 10.1039/D1DT04033B
– start-page: 217
  year: 2007
  ident: 10.1016/j.optmat.2023.114793_bib38
  article-title: Chapter 235 lanthanide near-infrared luminescence in molecular probes and devices
  doi: 10.1016/S0168-1273(07)37035-9
– volume: 201
  start-page: 500
  year: 2018
  ident: 10.1016/j.optmat.2023.114793_bib10
  article-title: Terbium-europium fluorides surface modified with benzoate and terephthalate anions for temperature sensing: does sensitivity depend on the ligand?
  publication-title: J. Lumin.
  doi: 10.1016/j.jlumin.2018.05.002
– volume: 10
  start-page: 1371
  year: 2022
  ident: 10.1016/j.optmat.2023.114793_bib31
  article-title: Ytterbium complexes with 2-(tosylamino)-benzylidene-N-(2-halobenzoyl)-hydrazones for solution-processable NIR OLEDs
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D1TC04600D
– volume: 40
  start-page: 627
  year: 2014
  ident: 10.1016/j.optmat.2023.114793_bib9
  article-title: New rare-earth metal acyl pyrazolonates: synthesis, crystals structures, and luminescence properties
  publication-title: Russ. J. Coord. Chem.
  doi: 10.1134/S1070328414090024
– volume: 42
  start-page: 679
  year: 2016
  ident: 10.1016/j.optmat.2023.114793_bib28
  article-title: Photoluminescence of lanthanide aromatic carboxylates
  publication-title: Russ. J. Coord. Chem. Khimiya.
  doi: 10.1134/S1070328416090074
– year: 2017
  ident: 10.1016/j.optmat.2023.114793_bib21
– volume: 10
  start-page: 1
  year: 2010
  ident: 10.1016/j.optmat.2023.114793_bib33
  publication-title: Basics of Lanthanide Photophysics
– volume: 4
  year: 2016
  ident: 10.1016/j.optmat.2023.114793_bib4
  article-title: Sensing temperature via downshifting emissions of lanthanide-doped metal oxides and salts
  publication-title: A review, Methods Appl. Fluoresc.
– start-page: 235
  year: 2018
  ident: 10.1016/j.optmat.2023.114793_bib2
  article-title: Biomedical applications of luminescence thermometry
  publication-title: Lumin. Thermom.
  doi: 10.1016/B978-0-08-102029-6.00010-5
– year: 2021
  ident: 10.1016/j.optmat.2023.114793_bib22
  article-title: Utochnikova, Lanthanide complexes as OLED emitters
– volume: 186
  year: 2021
  ident: 10.1016/j.optmat.2023.114793_bib36
  article-title: Nd3+ and Yb3+ complexes with N-(diphenylphosphoryl)pyrazine-2-carboxamide as UV-NIR radiation converters and single-ion magnets
  publication-title: Dyes Pigments
  doi: 10.1016/j.dyepig.2020.108986
– start-page: 1
  year: 2011
  ident: 10.1016/j.optmat.2023.114793_bib26
– volume: 51
  start-page: 5419
  year: 2022
  ident: 10.1016/j.optmat.2023.114793_bib17
  article-title: NIR luminescence thermometers based on Yb-Nd coordination compounds for the 83-393 K temperature range
  publication-title: Dalton Trans.
  doi: 10.1039/D2DT00147K
– volume: 22
  start-page: 25450
  year: 2020
  ident: 10.1016/j.optmat.2023.114793_bib41
  article-title: New approach to increase the sensitivity of Tb-Eu-based luminescent thermometer
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D0CP04909C
– volume: 170
  start-page: 866
  year: 2016
  ident: 10.1016/j.optmat.2023.114793_bib39
  article-title: Lanthanide light for biology and medical diagnosis
  publication-title: J. Lumin.
  doi: 10.1016/j.jlumin.2015.07.033
– volume: 263
  year: 2023
  ident: 10.1016/j.optmat.2023.114793_bib45
  article-title: NIR-emitting ytterbium complexes with a large Stokes shift for detection of sulfide
  publication-title: J. Lumin.
  doi: 10.1016/j.jlumin.2023.120054
– volume: 44
  start-page: 12660
  year: 2015
  ident: 10.1016/j.optmat.2023.114793_bib40
  article-title: Lanthanide complexes with 2-(tosylamino)benzylidene-N--benzoylhydrazone, which exhibit high NIR emission
  publication-title: Dalton Trans.
  doi: 10.1039/C5DT01161B
– volume: 3
  start-page: 4918
  year: 2021
  ident: 10.1016/j.optmat.2023.114793_bib1
  article-title: NIR luminescence lifetime nanothermometry based on phonon assisted Yb3+-Nd3+energy transfer
  publication-title: Nanoscale Adv.
  doi: 10.1039/D1NA00285F
– volume: 50
  start-page: 9685
  year: 2021
  ident: 10.1016/j.optmat.2023.114793_bib23
  article-title: Eu(tta)3DPPZ-based organic light-emitting diodes: spin-coating vs. vacuum-deposition
  publication-title: Dalton Trans.
  doi: 10.1039/D1DT01316E
– year: 2016
  ident: 10.1016/j.optmat.2023.114793_bib20
– year: 2012
  ident: 10.1016/j.optmat.2023.114793_bib19
– year: 2009
  ident: 10.1016/j.optmat.2023.114793_bib48
– volume: 138
  start-page: 5100
  year: 2016
  ident: 10.1016/j.optmat.2023.114793_bib35
  article-title: Ga3+/Ln3+ metallacrowns: a promising family of highly luminescent lanthanide complexes that covers visible and near-infrared domains
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b00984
– volume: 48
  start-page: 17298
  year: 2019
  ident: 10.1016/j.optmat.2023.114793_bib44
  article-title: On the development of a new approach to the design of lanthanide-based materials for solution-processed OLEDs
  publication-title: Dalton Trans.
  doi: 10.1039/C9DT03823J
– volume: 4
  start-page: 9848
  year: 2016
  ident: 10.1016/j.optmat.2023.114793_bib24
  article-title: Lanthanide 9-anthracenate: solution processable emitters for efficient purely NIR emitting host-free OLEDs
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC03586H
– volume: 23
  start-page: 10961
  year: 2022
  ident: 10.1016/j.optmat.2023.114793_bib30
  article-title: Copper(II) etioporphyrinate as a promising photoluminescent and electroluminescent temperature sensor
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms231810961
– volume: 47
  start-page: 4524
  year: 2018
  ident: 10.1016/j.optmat.2023.114793_bib15
  article-title: The peculiarities of complex formation and energy transfer processes in lanthanide complexes with 2-(tosylamino)-benzylidene-: N -benzoylhydrazone
  publication-title: Dalton Trans.
  doi: 10.1039/C7DT04387B
– volume: 18
  start-page: 859
  year: 1992
  ident: 10.1016/j.optmat.2023.114793_bib32
  article-title: BENZOYLHYDRAZONATES of ortho-TOSYLAMINOBENZALDEHYDE
  publication-title: Koord. KHIMIYA.
– volume: 25
  start-page: 2824
  year: 2015
  ident: 10.1016/j.optmat.2023.114793_bib8
  article-title: Lanthanide-organic framework nanothermometers prepared by spray-drying
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201500518
– volume: 8
  start-page: 9993
  year: 2020
  ident: 10.1016/j.optmat.2023.114793_bib37
  article-title: Lanthanide complexes with N-phosphorylated carboxamide as UV converters with excellent emission quantum yield and single-ion magnet behavior
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D0TC01445A
– volume: 4
  start-page: 5559
  year: 2016
  ident: 10.1016/j.optmat.2023.114793_bib13
  article-title: A new generation of highly sensitive luminescent thermometers operating in the optical window of biological tissues
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC01484D
– volume: 398
  year: 2019
  ident: 10.1016/j.optmat.2023.114793_bib29
  article-title: The use of luminescent spectroscopy to obtain information about the composition and the structure of lanthanide coordination compounds
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2019.07.003
SSID ssj0002566
Score 2.4274607
Snippet Ratiometric luminescent thermometers, particularly lanthanide-based, become very important, and long wavelength range is of particular interest due to low...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 114793
Title Red- and NIR-emitting lanthanide complexes for photo- and electroluminescent nanothermometry in the cryogenic and high-temperature range
URI https://dx.doi.org/10.1016/j.optmat.2023.114793
Volume 148
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iCF7EJz6XHLxmH026sUcRZVXcgw_wVtpkwlZ222W3gl48-7OdSVsfIAqeSkoGSmYy84V-84WxIxv102OruiJwUSqUMxq3VGAxGUpjus640FHv8PWwP7hXlw_hwwI7bXphiFZZ5_4qp_tsXb_p1KvZmWZZ57YbBaHEfY4gmrhapAmqlKYob79-0jywpPv_lThZ0Oymfc5zvIppibiwTVeIk2iujuTP5elLyTlfY6s1VuQn1eesswXIN9iy52ya-SZ7uwEreJJbPry4ETDJPIWZj3GtRkmeWeCeLw7PMOcITfl0VJRFZVBffoOJiVjvRNDkeZL7ZqxJMYFy9sKznOOQm9lLgTGWGW9H4saC1KxqKWY-o96ELXZ_fnZ3OhD1xQrC4AmhFLpne06CA5OkoQtSB4nEjRyEjvBYBH3Xs4DALzRhIo3r45kjPdaJktoqwBdymy3mRQ47jONxBXQ31fiIFDgEGNJQE1ZEojgygF0mm_WMTa06TpdfjOOGXvYYV16IyQtx5YVdJj6sppXqxh_zdeOq-Fv0xFgYfrXc-7flPlvBkaoY3AdssZw9wSEClDJt-QhssaWTi6vB8B3m_ejA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50RfQiPvFtDl7j7jbt1h5FlF0fe_AB3kqbTLCy2y5rBf0H_mxn2lQURMFTaZuBkklmvtBvvgE4NFEvPTZ-R3o2SqVvdUhbyjMUDJXWHattYLl2-HrY69_7Fw_BwwycNrUwTKt0sb-O6VW0dk_abjbbkyxr33YiL1C0zwlEM1fLn4U5VqcKWjB3MrjsDz8DMmX16pcljZds0FTQVTSvYlISNDziLuKsmxtG6ucM9SXrnC_DkoOL4qT-ohWYwXwV5ivapn5eg_cbNFIkuRHDwY3EcVaxmMWIpusxyTODoqKM4ys-C0KnYvJYlEVt4PrfUGxi4jtzNEWe5FU91rgYYzl9E1ku6Fbo6VtByyzTlR3rG0sWtHJqzGLK5QnrcH9-dnfal663gtR0SChl2DVdq9CiTtLAeqnFRNFe9gLLkCzCnu0aJOwX6CBR2vbo2JEeh4mvQuMjPVAb0MqLHDdB0IkFw04a0iXy0RLGUJrrsCLWxVEeboFq5jPWTnic-1-M4oZh9hTXXojZC3HthS2Qn1aTWnjjj_Fh46r42wKKKTf8arn9b8sDWOjfXV_FV4Ph5Q4s0hu_JnTvQqucvuAe4ZUy3Xfr8QPgCutx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Red-+and+NIR-emitting+lanthanide+complexes+for+photo-+and+electroluminescent+nanothermometry+in+the+cryogenic+and+high-temperature+range&rft.jtitle=Optical+materials&rft.au=Fedichkina%2C+Anna+D.&rft.au=Koshelev%2C+Daniil+S.&rft.au=Vashchenko%2C+Andrey+A.&rft.au=Goloveshkin%2C+Alexander+S.&rft.date=2024-02-01&rft.pub=Elsevier+B.V&rft.issn=0925-3467&rft.volume=148&rft_id=info:doi/10.1016%2Fj.optmat.2023.114793&rft.externalDocID=S0925346723013654
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-3467&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-3467&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-3467&client=summon