Joint representation classification for collective face recognition
In recent years, many representation based classifications have been proposed and widely used in face recognition. However, these methods code and classify testing images separately even for image-set of the same subject. This scheme utilizes only an individual representation rather than the collect...
Saved in:
Published in | Pattern recognition Vol. 63; pp. 182 - 192 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.03.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0031-3203 1873-5142 |
DOI | 10.1016/j.patcog.2016.10.004 |
Cover
Abstract | In recent years, many representation based classifications have been proposed and widely used in face recognition. However, these methods code and classify testing images separately even for image-set of the same subject. This scheme utilizes only an individual representation rather than the collective one to classify such a set of images, doing so obviously ignores the correlation among the given set of images. In this paper, a joint representation classification (JRC) for collective face recognition is presented. JRC takes the correlation of multiple images as well as a single representation into account. Even for an image-set mixed with different subjects, JRC codes all the testing images over the base images simultaneously to facilitate recognition. To this end, the testing images are aligned into a matrix and the joint representation coding is formulated as a generalized l2,q−l2,p matrix minimization problem. A unified algorithm, named by iterative quadratic method (IQM), and its practical implementation are developed specially to solve the induced optimization problem for any q∈[1,2] and p∈(0,2]. Experimental results on three public databases show that the JRC with practical IQM not only saves much computational cost but also achieves better performance in collective face recognition than state-of-the-art methods.
•A joint representation classification (JRC) is presented.•JRC codes the collective images simultaneously.•Joint representation coding is formulated to a mixed l2,q−l2,p minimization.•A unified method is developed and its convergence is established.•Experiments confirm the collective face recognition performance of JRC over state-of-the-arts. |
---|---|
AbstractList | In recent years, many representation based classifications have been proposed and widely used in face recognition. However, these methods code and classify testing images separately even for image-set of the same subject. This scheme utilizes only an individual representation rather than the collective one to classify such a set of images, doing so obviously ignores the correlation among the given set of images. In this paper, a joint representation classification (JRC) for collective face recognition is presented. JRC takes the correlation of multiple images as well as a single representation into account. Even for an image-set mixed with different subjects, JRC codes all the testing images over the base images simultaneously to facilitate recognition. To this end, the testing images are aligned into a matrix and the joint representation coding is formulated as a generalized l2,q−l2,p matrix minimization problem. A unified algorithm, named by iterative quadratic method (IQM), and its practical implementation are developed specially to solve the induced optimization problem for any q∈[1,2] and p∈(0,2]. Experimental results on three public databases show that the JRC with practical IQM not only saves much computational cost but also achieves better performance in collective face recognition than state-of-the-art methods.
•A joint representation classification (JRC) is presented.•JRC codes the collective images simultaneously.•Joint representation coding is formulated to a mixed l2,q−l2,p minimization.•A unified method is developed and its convergence is established.•Experiments confirm the collective face recognition performance of JRC over state-of-the-arts. |
Author | Chen, Songcan Wang, Liping |
Author_xml | – sequence: 1 givenname: Liping surname: Wang fullname: Wang, Liping email: wlpmath@nuaa.edu.cn organization: Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China – sequence: 2 givenname: Songcan surname: Chen fullname: Chen, Songcan email: s.chen@nuaa.edu.cn organization: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China |
BookMark | eNqFkM1KAzEQgINUsFbfwMO-wK6TZDftehCk-EvBi55DOplIyropSSj49qasJw96GmaGb36-czYbw0iMXXFoOHB1vWv2JmP4aETJSqkBaE_YnK-Wsu54K2ZsDiB5LQXIM3ae0g6AL0tjztYvwY-5irSPlGjMJvswVjiYlLzzOKUuxArDMBBmf6DKGaRClIWjP_Yv2KkzQ6LLn7hg7w_3b-unevP6-Ly-29QoQeVauZaMANF3VoEiZ7cWVG-Nxc4K0feKr0THiUtC4qLnFuwWpVuuFGCPLckFu5nmYgwpRXIa_XRwjsYPmoM-6tA7PenQRx3HatFR4PYXvI_-08Sv_7DbCaPy2MFT1Ak9jUjWFwNZ2-D_HvANhTh_sQ |
CitedBy_id | crossref_primary_10_1016_j_dsp_2017_11_008 crossref_primary_10_1016_j_neucom_2018_06_041 crossref_primary_10_1145_3402445 crossref_primary_10_1631_FITEE_1800025 crossref_primary_10_1134_S1064230718030097 crossref_primary_10_1007_s11063_018_9809_5 crossref_primary_10_1109_ACCESS_2020_3007205 crossref_primary_10_1109_TCYB_2019_2903205 crossref_primary_10_1134_S1064230719040117 crossref_primary_10_1109_TKDE_2020_2978199 crossref_primary_10_1109_TPAMI_2020_2981604 |
Cites_doi | 10.1109/TNN.2011.2157521 10.1109/TPAMI.2008.79 10.1109/ICASSP.2008.4518498 10.1137/S1052623494266365 10.1109/JSTSP.2007.910971 10.1109/ICCV.2013.146 10.1109/TPAMI.2013.109 10.1093/imanum/8.1.141 10.1109/CVPR.2008.4587640 10.1007/s10107-005-0595-2 10.1093/imanum/22.1.1 10.1109/TIT.2010.2048473 10.1109/TIFS.2014.2324277 10.1109/34.927464 10.1007/s10589-014-9648-x 10.1109/34.254061 10.1093/imanum/13.3.321 10.1109/LSP.2007.898300 10.1109/CVPR.2009.5206654 10.1007/s10107-012-0613-0 10.1007/s10589-013-9553-8 10.1109/TPAMI.2007.1037 10.1109/ICCV.2011.6126277 10.1109/TPAMI.2005.92 10.1007/s00041-008-9045-x 10.1109/TPAMI.2011.282 10.1109/TIP.2012.2206039 10.1007/978-3-642-15561-1_1 10.1007/s10107-013-0722-4 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd |
Copyright_xml | – notice: 2016 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.patcog.2016.10.004 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-5142 |
EndPage | 192 |
ExternalDocumentID | 10_1016_j_patcog_2016_10_004 S0031320316303193 |
GrantInformation_xml | – fundername: Natural Science Foundation of Jiangsu Province grantid: NSFC11471159; 61661136001; 11611130018; BK20141409 |
GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-6f4ea20295d606efdbd069dadc5d2299618251e13ece1291d0dbc3f7860c9c4e3 |
IEDL.DBID | AIKHN |
ISSN | 0031-3203 |
IngestDate | Tue Jul 01 02:36:24 EDT 2025 Thu Apr 24 23:01:16 EDT 2025 Fri Feb 23 02:25:25 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Practical IQM JRC IQM SRC |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-6f4ea20295d606efdbd069dadc5d2299618251e13ece1291d0dbc3f7860c9c4e3 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1016_j_patcog_2016_10_004 crossref_primary_10_1016_j_patcog_2016_10_004 elsevier_sciencedirect_doi_10_1016_j_patcog_2016_10_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2017 2017-03-00 |
PublicationDateYYYYMMDD | 2017-03-01 |
PublicationDate_xml | – month: 03 year: 2017 text: March 2017 |
PublicationDecade | 2010 |
PublicationTitle | Pattern recognition |
PublicationYear | 2017 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Raydan (bib27) 1997; 7 Wang, Chen, Wang (bib24) 2014; 58 norms minimizations, IEEE International Conference on Computer Vision, 2013, pp. 1145–1152. Wright, Ma (bib3) 2010; 56 Peng, Wagner, Wright, Xu, Ma (bib7) 2012; 34 Heseltine, Pears, Austin, Chen (bib12) 2003 Brunelli, Poggio (bib11) 1993; 15 Chen, Zhou (bib21) 2014; 59 norm balls for grouped feature selection, in: Proceeding of Machine Learning and Knowledge Discovery in Databases, 2011, Athens, Greece. Barzilai, Borwein (bib25) 1988; 8 R. Chartrand, W.T. Yin, Iteratively reweighed algorithms for compressive sensing, in: Proceedings of the 33rd International Conference on Acoustics, Speech, and Signal Processing, 2008, pp. 3869–3872. Jiang, Cui, Dai (bib32) 2014; 10 Cauchy (bib33) 1847; 25 Raydan (bib26) 1993; 13 Dai, Liao (bib28) 2002; 26 Wang, Shan, Chen, Gao (bib13) 2012; 21 Fan, Chen, Lin (bib37) 2005; 6 Lu (bib22) 2014; 147 Zhu, Zuo, Zhang, Shiu, Zhang (bib14) 2014; 9 H. Wang, F.P. Nie, W.D. Cai, H. Huang, Semi-supervised robust dictionary learning via efficient Kim, Kittler, Cipolla (bib15) 2007; 29 Dai, Fletcher (bib29) 2006; 106 Chen, Ge, Wang, Ye (bib20) 2014; 143 Lee, Ho, Kriegman (bib35) 2005; 27 L. Zhang, M. Yang, X.C. in: Feng, Sparse representation or collaborative representation: which help face recognition?Proceedings of the 13th International Conference on Computer Vision, 2011, pp. 471–478. Xu, Zhang, Wang, Chang, Liang (bib10) 2010; 52 Yuan (bib30) 2006; 24 S. Suvrit, Fast projection onto Sumit, Vishal, Nasser, Rama (bib18) 2014; 36 Candès, Wakin, Boyd (bib23) 2008; 14 Rakotomamonjy, Flamary, Gasso, Canu (bib16) 2011; 22 Kim, Koh, Lustig, Boyd, Gorinevsky (bib36) 2007; 1 Fletcher (bib31) 1990; 26 J.Z. Huang, X.L. Huang, D. Metaxas, Simultaneous Image Transformation and Sparse Representation Recovery, in: CVPR, 2008. S.H. Gao, I.W.H. Tsang, L.T. Chia, Kernel sparse representation for image classification and face recognition, in: ECCV, 2010. Wright, Yang, Ganesh, Sastry, Ma (bib1) 2009; 31 A. Wagner, J. Wright, W. Xu, Y. Ma, Towards a Practical Face Recognition Sysstem: Robust Registration and Illumination by Sparse Representation, in: CVPR, 2009. Georghiades, Belhumeur, Kriegman (bib34) 2001; 23 Chartrand (bib9) 2007; 14 Peng (10.1016/j.patcog.2016.10.004_bib7) 2012; 34 Dai (10.1016/j.patcog.2016.10.004_bib29) 2006; 106 Fletcher (10.1016/j.patcog.2016.10.004_bib31) 1990; 26 Barzilai (10.1016/j.patcog.2016.10.004_bib25) 1988; 8 Fan (10.1016/j.patcog.2016.10.004_bib37) 2005; 6 Chen (10.1016/j.patcog.2016.10.004_bib20) 2014; 143 Raydan (10.1016/j.patcog.2016.10.004_bib26) 1993; 13 Xu (10.1016/j.patcog.2016.10.004_bib10) 2010; 52 Kim (10.1016/j.patcog.2016.10.004_bib15) 2007; 29 Candès (10.1016/j.patcog.2016.10.004_bib23) 2008; 14 Wright (10.1016/j.patcog.2016.10.004_bib1) 2009; 31 Brunelli (10.1016/j.patcog.2016.10.004_bib11) 1993; 15 Wang (10.1016/j.patcog.2016.10.004_bib13) 2012; 21 Lu (10.1016/j.patcog.2016.10.004_bib22) 2014; 147 10.1016/j.patcog.2016.10.004_bib6 Dai (10.1016/j.patcog.2016.10.004_bib28) 2002; 26 Wang (10.1016/j.patcog.2016.10.004_bib24) 2014; 58 10.1016/j.patcog.2016.10.004_bib8 10.1016/j.patcog.2016.10.004_bib2 10.1016/j.patcog.2016.10.004_bib4 Yuan (10.1016/j.patcog.2016.10.004_bib30) 2006; 24 10.1016/j.patcog.2016.10.004_bib5 Chen (10.1016/j.patcog.2016.10.004_bib21) 2014; 59 Wright (10.1016/j.patcog.2016.10.004_bib3) 2010; 56 Kim (10.1016/j.patcog.2016.10.004_bib36) 2007; 1 Raydan (10.1016/j.patcog.2016.10.004_bib27) 1997; 7 Cauchy (10.1016/j.patcog.2016.10.004_bib33) 1847; 25 Georghiades (10.1016/j.patcog.2016.10.004_bib34) 2001; 23 10.1016/j.patcog.2016.10.004_bib19 Zhu (10.1016/j.patcog.2016.10.004_bib14) 2014; 9 Sumit (10.1016/j.patcog.2016.10.004_bib18) 2014; 36 10.1016/j.patcog.2016.10.004_bib17 Lee (10.1016/j.patcog.2016.10.004_bib35) 2005; 27 Chartrand (10.1016/j.patcog.2016.10.004_bib9) 2007; 14 Heseltine (10.1016/j.patcog.2016.10.004_bib12) 2003 Jiang (10.1016/j.patcog.2016.10.004_bib32) 2014; 10 Rakotomamonjy (10.1016/j.patcog.2016.10.004_bib16) 2011; 22 |
References_xml | – volume: 143 start-page: 371 year: 2014 end-page: 383 ident: bib20 article-title: Complexity of unconstrained publication-title: Math. Program. Ser. A – volume: 36 start-page: 113 year: 2014 end-page: 126 ident: bib18 article-title: Joint sparse representation for robust multimodal biometrics recognition publication-title: IEEE Trans. PAMI – volume: 31 start-page: 210 year: 2009 end-page: 227 ident: bib1 article-title: Robust face recognition via sparse representation publication-title: IEEE Trans. PAMI – reference: R. Chartrand, W.T. Yin, Iteratively reweighed algorithms for compressive sensing, in: Proceedings of the 33rd International Conference on Acoustics, Speech, and Signal Processing, 2008, pp. 3869–3872. – volume: 26 start-page: 165 year: 1990 end-page: 179 ident: bib31 article-title: Low storage method for unconstrained optimization publication-title: Lect. Appl. Math. (AMS) – reference: S. Suvrit, Fast projection onto – volume: 14 start-page: 877 year: 2008 end-page: 905 ident: bib23 article-title: Enhancing sparsity by reweighed l publication-title: J. Fourier Anal. Appl. – volume: 24 start-page: 149 year: 2006 end-page: 156 ident: bib30 article-title: A new stepsize for the steepest descent method publication-title: J. Comput. Math. – volume: 22 start-page: 1307 year: 2011 end-page: 1320 ident: bib16 article-title: penalty for sparse linear and sparse multiple kernel multitask learning publication-title: IEEE Trans. Neural Netw. – reference: L. Zhang, M. Yang, X.C. in: Feng, Sparse representation or collaborative representation: which help face recognition?Proceedings of the 13th International Conference on Computer Vision, 2011, pp. 471–478. – volume: 106 start-page: 403 year: 2006 end-page: 421 ident: bib29 article-title: New algorithms for singly linearly constrained quadratic programs subject to lower and upper bounds publication-title: Math. Program. Ser. A – volume: 29 start-page: 1005 year: 2007 end-page: 1018 ident: bib15 article-title: Discriminative learning and recognition of image set classes using canonical correlations publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 34 start-page: 2233 year: 2012 end-page: 2246 ident: bib7 article-title: RASL: robust alignment by sparse and low-rank decomposition for linearly correlated image publication-title: IEEE Trans. PAMI – volume: 147 start-page: 277 year: 2014 end-page: 307 ident: bib22 article-title: Iterative reweighted minimization methods for regularized unconstrained nonlinear programming publication-title: Math. Program. – volume: 14 start-page: 707 year: 2007 end-page: 710 ident: bib9 article-title: Exact reconstructions of sparse signals via nonconvex minimization publication-title: IEEE Signal Process. Lett. – volume: 59 start-page: 47 year: 2014 end-page: 61 ident: bib21 article-title: Convergence of the reweighted l publication-title: Comput. Optim. Appl. – volume: 25 start-page: 141 year: 1847 end-page: 148 ident: bib33 article-title: Méthode générale pour la résolution des systèms d′équations simultanées publication-title: Comp. Rend. Sci. Pari. – volume: 15 start-page: 1042 year: 1993 end-page: 1052 ident: bib11 article-title: Face recognition: features versue templates publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: S.H. Gao, I.W.H. Tsang, L.T. Chia, Kernel sparse representation for image classification and face recognition, in: ECCV, 2010. – volume: 21 start-page: 4466 year: 2012 end-page: 4479 ident: bib13 article-title: Manifold-manifold method distance with application to face recognition based on image set publication-title: IEEE Trans. Image Process. – volume: 27 start-page: 684 year: 2005 end-page: 698 ident: bib35 article-title: Acquiring linear subspaces for face recognition under variable lighting publication-title: IEEE Trans. PAMI – volume: 58 start-page: 409 year: 2014 end-page: 421 ident: bib24 article-title: A unified algorithm for mixed publication-title: Comput. Optim. Appl. – reference: J.Z. Huang, X.L. Huang, D. Metaxas, Simultaneous Image Transformation and Sparse Representation Recovery, in: CVPR, 2008. – reference: -norm balls for grouped feature selection, in: Proceeding of Machine Learning and Knowledge Discovery in Databases, 2011, Athens, Greece. – volume: 52 start-page: 1159 year: 2010 end-page: 1169 ident: bib10 article-title: regularizer publication-title: Sci. China: Ser. F – volume: 56 start-page: 3540 year: 2010 end-page: 3560 ident: bib3 article-title: Dense error correction via l publication-title: IEEE Trans. Inf. Theory – volume: 10 start-page: 55 year: 2014 end-page: 71 ident: bib32 article-title: Unconstrained optimization models for computing several extreme eigenpairs of real symmetric matrices publication-title: Pac. J. Optimzation – reference: A. Wagner, J. Wright, W. Xu, Y. Ma, Towards a Practical Face Recognition Sysstem: Robust Registration and Illumination by Sparse Representation, in: CVPR, 2009. – volume: 9 start-page: 1120 year: 2014 end-page: 1132 ident: bib14 article-title: Image set-based collaborative representation for face recognition publication-title: IEEE Trans. Inf. Forensics Secur. – volume: 23 start-page: 643 year: 2001 end-page: 660 ident: bib34 article-title: From few to many publication-title: IEEE Trans. PAMI – start-page: 10 year: 2003 end-page: 12 ident: bib12 article-title: Face recognition: a comparison of appearance-based approaches publication-title: Proc. 7th Digit. Image Comput.: Tech. Appl. – volume: 13 start-page: 321 year: 1993 end-page: 326 ident: bib26 article-title: On the barzilai and borwein choice of steplength for the gradient method publication-title: IMA J. Numer. Anal. – volume: 1 start-page: 606 year: 2007 end-page: 617 ident: bib36 article-title: A interior-point method for large-scale l1-regularized least squares publication-title: IEEE J. Sel. Top Signal Process. – reference: -norms minimizations, IEEE International Conference on Computer Vision, 2013, pp. 1145–1152. – volume: 8 start-page: 141 year: 1988 end-page: 148 ident: bib25 article-title: Two-point step size gradient methods publication-title: IMA J. Numer. Anal. – volume: 7 start-page: 26 year: 1997 end-page: 33 ident: bib27 article-title: The barzilai and borwein gradient method for the large scale unconstrained minimization problem publication-title: SIAM J. Optim. – volume: 26 start-page: 1 year: 2002 end-page: 10 ident: bib28 article-title: -linear convergence of the barzilai and borwein gradient method publication-title: IMA J. Numer. Anal. – reference: H. Wang, F.P. Nie, W.D. Cai, H. Huang, Semi-supervised robust dictionary learning via efficient – volume: 6 start-page: 1889 year: 2005 end-page: 1918 ident: bib37 article-title: Working set selection using second order information for training SVM publication-title: J. Mach. Learn. Res. – volume: 22 start-page: 1307 issue: 8 year: 2011 ident: 10.1016/j.patcog.2016.10.004_bib16 article-title: lp−lq penalty for sparse linear and sparse multiple kernel multitask learning publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2011.2157521 – volume: 25 start-page: 141 year: 1847 ident: 10.1016/j.patcog.2016.10.004_bib33 article-title: Méthode générale pour la résolution des systèms d′équations simultanées publication-title: Comp. Rend. Sci. Pari. – volume: 31 start-page: 210 issue: 2 year: 2009 ident: 10.1016/j.patcog.2016.10.004_bib1 article-title: Robust face recognition via sparse representation publication-title: IEEE Trans. PAMI doi: 10.1109/TPAMI.2008.79 – ident: 10.1016/j.patcog.2016.10.004_bib8 doi: 10.1109/ICASSP.2008.4518498 – volume: 7 start-page: 26 year: 1997 ident: 10.1016/j.patcog.2016.10.004_bib27 article-title: The barzilai and borwein gradient method for the large scale unconstrained minimization problem publication-title: SIAM J. Optim. doi: 10.1137/S1052623494266365 – ident: 10.1016/j.patcog.2016.10.004_bib17 – volume: 1 start-page: 606 issue: 4 year: 2007 ident: 10.1016/j.patcog.2016.10.004_bib36 article-title: A interior-point method for large-scale l1-regularized least squares publication-title: IEEE J. Sel. Top Signal Process. doi: 10.1109/JSTSP.2007.910971 – ident: 10.1016/j.patcog.2016.10.004_bib19 doi: 10.1109/ICCV.2013.146 – volume: 36 start-page: 113 issue: 1 year: 2014 ident: 10.1016/j.patcog.2016.10.004_bib18 article-title: Joint sparse representation for robust multimodal biometrics recognition publication-title: IEEE Trans. PAMI doi: 10.1109/TPAMI.2013.109 – volume: 8 start-page: 141 year: 1988 ident: 10.1016/j.patcog.2016.10.004_bib25 article-title: Two-point step size gradient methods publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/8.1.141 – ident: 10.1016/j.patcog.2016.10.004_bib5 doi: 10.1109/CVPR.2008.4587640 – volume: 106 start-page: 403 year: 2006 ident: 10.1016/j.patcog.2016.10.004_bib29 article-title: New algorithms for singly linearly constrained quadratic programs subject to lower and upper bounds publication-title: Math. Program. Ser. A doi: 10.1007/s10107-005-0595-2 – volume: 26 start-page: 1 year: 2002 ident: 10.1016/j.patcog.2016.10.004_bib28 article-title: R-linear convergence of the barzilai and borwein gradient method publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/22.1.1 – volume: 56 start-page: 3540 issue: 7 year: 2010 ident: 10.1016/j.patcog.2016.10.004_bib3 article-title: Dense error correction via l1 minimizatioin publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2010.2048473 – volume: 9 start-page: 1120 issue: 7 year: 2014 ident: 10.1016/j.patcog.2016.10.004_bib14 article-title: Image set-based collaborative representation for face recognition publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2014.2324277 – volume: 23 start-page: 643 issue: 6 year: 2001 ident: 10.1016/j.patcog.2016.10.004_bib34 article-title: From few to many publication-title: IEEE Trans. PAMI doi: 10.1109/34.927464 – volume: 58 start-page: 409 year: 2014 ident: 10.1016/j.patcog.2016.10.004_bib24 article-title: A unified algorithm for mixed l2,p-minimizations and its application in feature selection publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-014-9648-x – volume: 15 start-page: 1042 issue: 10 year: 1993 ident: 10.1016/j.patcog.2016.10.004_bib11 article-title: Face recognition: features versue templates publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.254061 – start-page: 10 year: 2003 ident: 10.1016/j.patcog.2016.10.004_bib12 article-title: Face recognition: a comparison of appearance-based approaches publication-title: Proc. 7th Digit. Image Comput.: Tech. Appl. – volume: 13 start-page: 321 year: 1993 ident: 10.1016/j.patcog.2016.10.004_bib26 article-title: On the barzilai and borwein choice of steplength for the gradient method publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/13.3.321 – volume: 24 start-page: 149 issue: 2 year: 2006 ident: 10.1016/j.patcog.2016.10.004_bib30 article-title: A new stepsize for the steepest descent method publication-title: J. Comput. Math. – volume: 14 start-page: 707 issue: 10 year: 2007 ident: 10.1016/j.patcog.2016.10.004_bib9 article-title: Exact reconstructions of sparse signals via nonconvex minimization publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2007.898300 – ident: 10.1016/j.patcog.2016.10.004_bib6 doi: 10.1109/CVPR.2009.5206654 – volume: 143 start-page: 371 year: 2014 ident: 10.1016/j.patcog.2016.10.004_bib20 article-title: Complexity of unconstrained L2−Lp minimization publication-title: Math. Program. Ser. A doi: 10.1007/s10107-012-0613-0 – volume: 59 start-page: 47 year: 2014 ident: 10.1016/j.patcog.2016.10.004_bib21 article-title: Convergence of the reweighted l1 minimization algorithm for l2−lp minimization publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-013-9553-8 – volume: 29 start-page: 1005 issue: 6 year: 2007 ident: 10.1016/j.patcog.2016.10.004_bib15 article-title: Discriminative learning and recognition of image set classes using canonical correlations publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2007.1037 – volume: 26 start-page: 165 year: 1990 ident: 10.1016/j.patcog.2016.10.004_bib31 article-title: Low storage method for unconstrained optimization publication-title: Lect. Appl. Math. (AMS) – ident: 10.1016/j.patcog.2016.10.004_bib2 doi: 10.1109/ICCV.2011.6126277 – volume: 52 start-page: 1159 issue: 6 year: 2010 ident: 10.1016/j.patcog.2016.10.004_bib10 article-title: L12 regularizer publication-title: Sci. China: Ser. F – volume: 27 start-page: 684 issue: 5 year: 2005 ident: 10.1016/j.patcog.2016.10.004_bib35 article-title: Acquiring linear subspaces for face recognition under variable lighting publication-title: IEEE Trans. PAMI doi: 10.1109/TPAMI.2005.92 – volume: 10 start-page: 55 issue: 1 year: 2014 ident: 10.1016/j.patcog.2016.10.004_bib32 article-title: Unconstrained optimization models for computing several extreme eigenpairs of real symmetric matrices publication-title: Pac. J. Optimzation – volume: 14 start-page: 877 issue: 5 year: 2008 ident: 10.1016/j.patcog.2016.10.004_bib23 article-title: Enhancing sparsity by reweighed l1 minimization publication-title: J. Fourier Anal. Appl. doi: 10.1007/s00041-008-9045-x – volume: 34 start-page: 2233 issue: 11 year: 2012 ident: 10.1016/j.patcog.2016.10.004_bib7 article-title: RASL: robust alignment by sparse and low-rank decomposition for linearly correlated image publication-title: IEEE Trans. PAMI doi: 10.1109/TPAMI.2011.282 – volume: 6 start-page: 1889 year: 2005 ident: 10.1016/j.patcog.2016.10.004_bib37 article-title: Working set selection using second order information for training SVM publication-title: J. Mach. Learn. Res. – volume: 21 start-page: 4466 issue: 10 year: 2012 ident: 10.1016/j.patcog.2016.10.004_bib13 article-title: Manifold-manifold method distance with application to face recognition based on image set publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2012.2206039 – ident: 10.1016/j.patcog.2016.10.004_bib4 doi: 10.1007/978-3-642-15561-1_1 – volume: 147 start-page: 277 year: 2014 ident: 10.1016/j.patcog.2016.10.004_bib22 article-title: Iterative reweighted minimization methods for regularized unconstrained nonlinear programming publication-title: Math. Program. doi: 10.1007/s10107-013-0722-4 |
SSID | ssj0017142 |
Score | 2.3036523 |
Snippet | In recent years, many representation based classifications have been proposed and widely used in face recognition. However, these methods code and classify... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 182 |
SubjectTerms | IQM JRC Practical IQM SRC |
Title | Joint representation classification for collective face recognition |
URI | https://dx.doi.org/10.1016/j.patcog.2016.10.004 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qe_HiW6yPsgev22afSY6lWGrFniz0FrKPSEWSIvXqb3c32RQFUfASyJKBMNl884V83wzArTQ24YoTbAuuMFckwYmILY6oViZJhKXWm5MfF3K25POVWHVg0nphvKwyYH-D6TVah5VRyOZos157j69vO-gOknkrDtuDHmWpFF3oje8fZovdz4SY8KZpOCPYB7QOulrmtXGIVz17jZcc1jIv_nOF-lJ1pkdwEOgiGjd3dAwdW57AYTuKAYU38xQm82pdblHdorK1E5VIe2rstUDNqeOnyD_3BuNQkWuLdgKiqjyD5fTuaTLDYT4C1o7ob7EsuM1pRFNh3GeILYwykUxNbrQw1JUZSbwv1RJmtXVlnZjIKM2KOJGRTjW37By6ZVXaC0CCS0qtMUIWjpAIqjiNlUlzpRKpC0X7wNqcZDo0D_czLF6zViX2kjWZzHwm_arLZB_wLmrTNM_44_q4TXf2bRNkDt9_jbz8d-QV7FNfqWtZ2TV0t2_v9sbxjK0awN7wgwzCbvoENejTyQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qPejFt1ife_C6bbLZ3SRHKUqtbU8t9Bayj0hFkiLx6m93J4-iIApeAll2IEw233yB75sBuJXGRlxxn9qMK8qVH9FIhJZ6TCsTRcIyi-bk6UyOFny8FMsODFsvDMoqG-yvMb1C62Zl0GRzsF6t0OOLbQfdRQZoxQm2YJuLIERdX_9jo_PAAd91y_DAp7i99c9VIq-1w7viGRVesl-JvPjP9elLzXk4gL2GLJK7-nkOoWPzI9hvBzGQ5rs8huG4WOUlqRpUtmainGgkxqgEqm8dOyX41muEI1mqLdnIh4r8BBYP9_PhiDbTEah2NL-kMuM2ZR6LhXE_ITYzyngyNqnRwjBXZKSPrlTrB1ZbV9R94xmlgyyMpKdjzW1wCt28yO0ZEMElY9YYITNHRwRTnIXKxKlSkdSZYj0I2pwkumkdjhMsXpNWI_aS1JlMMJO46jLZA7qJWtetM_7YH7bpTr4dgcSh-6-R5_-OvIGd0Xw6SSaPs6cL2GVYsyuB2SV0y7d3e-UYR6muqxP1Cf521JQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+representation+classification+for+collective+face+recognition&rft.jtitle=Pattern+recognition&rft.au=Wang%2C+Liping&rft.au=Chen%2C+Songcan&rft.date=2017-03-01&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.eissn=1873-5142&rft.volume=63&rft.spage=182&rft.epage=192&rft_id=info:doi/10.1016%2Fj.patcog.2016.10.004&rft.externalDocID=S0031320316303193 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |