Boron-doped Fe-N-C single-atom nanozymes specifically boost peroxidase-like activity

Boron-doped Fe-N-C single-atom nanozymes with an intrinsic charge transfer achieve the significantly enhanced peroxidase-like activities and selectivities, which opens a new route in the rational design of more advanced nanozymes at the atomic scale and bridge the gap between nanozymes and natural e...

Full description

Saved in:
Bibliographic Details
Published inNano today Vol. 35; p. 100971
Main Authors Jiao, Lei, Xu, Weiqing, Zhang, Yu, Wu, Yu, Gu, Wenling, Ge, Xiaoxiao, Chen, Bingbing, Zhu, Chengzhou, Guo, Shaojun
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Boron-doped Fe-N-C single-atom nanozymes with an intrinsic charge transfer achieve the significantly enhanced peroxidase-like activities and selectivities, which opens a new route in the rational design of more advanced nanozymes at the atomic scale and bridge the gap between nanozymes and natural enzymes. [Display omitted] •Boron-doped Fe-N-C single-atom nanozymes can be capable of selectively enhancing peroxidase-like activities.•Boron-induced charge transfer modulates the charge of Fe atom to accelerate the formation of hydroxyl radical.•Sensitive detection of acetylcholinesterase activity and corresponding pesticide was achieved. Nanomaterials with enzyme-like activities, i.e., nanozymes, have aroused wide concern in biocatalysis. Fe-N-C single-atom catalysts with atomically dispersed FeNx as active sites, defined as Fe-N-C single-atom nanozymes, have the structure similar to some heme enzymes and therefore can mimic the enzyme-like activities. However, they are still subject to the limited biocatalytic activity and selectivity because of the grand challenge in rationally tuning the electronic structure of central Fe atoms and achieving their superior performances approaching nature heme enzymes. Herein, we demonstrate that boron-doped Fe-N-C single-atom nanozymes with an intrinsic charge transfer can work much better and achieve the significantly enhanced peroxidase-like activities and selectivities. Theoretical calculations reveal that boron-induced charge transfer effects can be capable of modulating the positive charge of the central Fe atom to reduce the energy barrier of the formation of hydroxyl radical and therefore boost the peroxidase-like activity. The boron-doped Fe-N-C single-atom nanozymes can achieve vivid mimicking nature peroxidase and finally show their promising applications in the detection of enzyme activity and small molecule. This work opens a new route in the rational synthesis of more advanced nanozymes at the atomic scale and bridges the gap between nanozymes and natural enzymes.
AbstractList Boron-doped Fe-N-C single-atom nanozymes with an intrinsic charge transfer achieve the significantly enhanced peroxidase-like activities and selectivities, which opens a new route in the rational design of more advanced nanozymes at the atomic scale and bridge the gap between nanozymes and natural enzymes. [Display omitted] •Boron-doped Fe-N-C single-atom nanozymes can be capable of selectively enhancing peroxidase-like activities.•Boron-induced charge transfer modulates the charge of Fe atom to accelerate the formation of hydroxyl radical.•Sensitive detection of acetylcholinesterase activity and corresponding pesticide was achieved. Nanomaterials with enzyme-like activities, i.e., nanozymes, have aroused wide concern in biocatalysis. Fe-N-C single-atom catalysts with atomically dispersed FeNx as active sites, defined as Fe-N-C single-atom nanozymes, have the structure similar to some heme enzymes and therefore can mimic the enzyme-like activities. However, they are still subject to the limited biocatalytic activity and selectivity because of the grand challenge in rationally tuning the electronic structure of central Fe atoms and achieving their superior performances approaching nature heme enzymes. Herein, we demonstrate that boron-doped Fe-N-C single-atom nanozymes with an intrinsic charge transfer can work much better and achieve the significantly enhanced peroxidase-like activities and selectivities. Theoretical calculations reveal that boron-induced charge transfer effects can be capable of modulating the positive charge of the central Fe atom to reduce the energy barrier of the formation of hydroxyl radical and therefore boost the peroxidase-like activity. The boron-doped Fe-N-C single-atom nanozymes can achieve vivid mimicking nature peroxidase and finally show their promising applications in the detection of enzyme activity and small molecule. This work opens a new route in the rational synthesis of more advanced nanozymes at the atomic scale and bridges the gap between nanozymes and natural enzymes.
ArticleNumber 100971
Author Xu, Weiqing
Zhu, Chengzhou
Wu, Yu
Zhang, Yu
Guo, Shaojun
Jiao, Lei
Gu, Wenling
Chen, Bingbing
Ge, Xiaoxiao
Author_xml – sequence: 1
  givenname: Lei
  surname: Jiao
  fullname: Jiao, Lei
  organization: Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
– sequence: 2
  givenname: Weiqing
  surname: Xu
  fullname: Xu, Weiqing
  organization: Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
– sequence: 3
  givenname: Yu
  surname: Zhang
  fullname: Zhang, Yu
  organization: Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
– sequence: 4
  givenname: Yu
  surname: Wu
  fullname: Wu, Yu
  organization: Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
– sequence: 5
  givenname: Wenling
  surname: Gu
  fullname: Gu, Wenling
  organization: Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
– sequence: 6
  givenname: Xiaoxiao
  surname: Ge
  fullname: Ge, Xiaoxiao
  organization: Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, PR China
– sequence: 7
  givenname: Bingbing
  surname: Chen
  fullname: Chen, Bingbing
  organization: Department of Energy Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, PR China
– sequence: 8
  givenname: Chengzhou
  orcidid: 0000-0003-0679-7965
  surname: Zhu
  fullname: Zhu, Chengzhou
  email: czzhu@mail.ccnu.edu.cn
  organization: Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
– sequence: 9
  givenname: Shaojun
  surname: Guo
  fullname: Guo, Shaojun
  email: guosj@pku.edu.cn
  organization: Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, PR China
BookMark eNqFkM1KAzEUhYNUsK2-gYt5gdRkfpKJC0GLVaHopoK7kMncSOo0GZJQrE_vlHHlQlf3cOE7cL4ZmjjvAKFLShaUUHa1XTjlkm8XOcmPLyI4PUFTWvMak7J8mwyZl0OmRX6GZjFuCSkrXlZTtLnzwTvc-h7abAX4GS-zaN17B1glv8uGYv912EHMYg_aGqtV1x2yxvuYsh6C_7StioA7-wGZ0snubTqco1OjuggXP3eOXlf3m-UjXr88PC1v11gXhCXMDBGqoJzmojG10RVnojLCCC60KXjOasJ0w6CCHCrNIGeUGAXMNKqpWsGLOSrHXh18jAGM7IPdqXCQlMijGbmVoxl5NCNHMwN2_QvTNqlkvUtB2e4_-GaEYRi2txBk1BachtYG0Em23v5d8A1n-YUN
CitedBy_id crossref_primary_10_1016_j_mattod_2023_02_010
crossref_primary_10_1021_acsami_3c01412
crossref_primary_10_1007_s10008_022_05313_9
crossref_primary_10_1016_j_jcis_2024_06_090
crossref_primary_10_1002_adfm_202213863
crossref_primary_10_1002_advs_202201520
crossref_primary_10_1021_acs_chemmater_4c03193
crossref_primary_10_1016_j_aac_2022_07_001
crossref_primary_10_1016_j_snb_2022_131927
crossref_primary_10_1016_j_addr_2022_114269
crossref_primary_10_1002_adfm_202418523
crossref_primary_10_1016_j_cclet_2022_06_073
crossref_primary_10_1002_asia_202101422
crossref_primary_10_1016_j_ccr_2024_215937
crossref_primary_10_1002_adfm_202406790
crossref_primary_10_1002_anie_202116170
crossref_primary_10_1016_j_jclepro_2023_136576
crossref_primary_10_1016_j_watres_2025_123393
crossref_primary_10_1016_j_nantod_2024_102371
crossref_primary_10_1021_acsaem_3c03122
crossref_primary_10_1039_D1TB01654G
crossref_primary_10_1039_D0CS00367K
crossref_primary_10_1039_D2SC05679H
crossref_primary_10_1002_adfm_202403386
crossref_primary_10_1002_adma_202412368
crossref_primary_10_1039_D3QM00096F
crossref_primary_10_1002_adhm_202402568
crossref_primary_10_1002_adfm_202106139
crossref_primary_10_1039_D2MA00034B
crossref_primary_10_1039_D2QM01373H
crossref_primary_10_1088_2515_7639_ac1ab7
crossref_primary_10_1016_j_biomaterials_2022_121986
crossref_primary_10_1016_j_cej_2021_133279
crossref_primary_10_1016_j_chemosphere_2023_140557
crossref_primary_10_1002_adma_202405832
crossref_primary_10_1021_acsanm_4c03947
crossref_primary_10_1021_acs_analchem_1c04018
crossref_primary_10_1021_acs_analchem_1c04496
crossref_primary_10_1016_j_snb_2024_136246
crossref_primary_10_1021_jacs_4c00791
crossref_primary_10_3390_chemosensors11090486
crossref_primary_10_1016_j_nantod_2024_102462
crossref_primary_10_1002_smll_202403878
crossref_primary_10_1021_acsnano_4c00308
crossref_primary_10_1016_j_cej_2023_141324
crossref_primary_10_1016_j_cej_2024_154482
crossref_primary_10_1021_acs_analchem_3c01005
crossref_primary_10_1021_acsanm_2c05009
crossref_primary_10_1016_j_apcatb_2023_122368
crossref_primary_10_3390_coatings14040453
crossref_primary_10_1002_admi_202202050
crossref_primary_10_1002_smll_202101907
crossref_primary_10_1016_j_mattod_2020_12_005
crossref_primary_10_1002_anie_202101924
crossref_primary_10_1016_j_bios_2022_114294
crossref_primary_10_1016_j_mattod_2021_10_032
crossref_primary_10_1021_acscatal_3c05506
crossref_primary_10_1016_j_jiec_2022_11_002
crossref_primary_10_1007_s12274_022_4665_z
crossref_primary_10_1016_j_jhazmat_2022_129853
crossref_primary_10_1016_j_talanta_2022_123487
crossref_primary_10_1016_j_nantod_2024_102236
crossref_primary_10_1021_acsnano_1c10303
crossref_primary_10_1002_smll_202311848
crossref_primary_10_1016_j_efmat_2023_08_002
crossref_primary_10_1039_D3TB01644G
crossref_primary_10_1016_j_ijbiomac_2024_137594
crossref_primary_10_1002_advs_202306911
crossref_primary_10_1021_acsami_1c22625
crossref_primary_10_1002_advs_202305823
crossref_primary_10_1016_j_snb_2021_130108
crossref_primary_10_1021_acs_analchem_2c05633
crossref_primary_10_1039_D1NJ02088A
crossref_primary_10_1002_ange_202318748
crossref_primary_10_1002_smll_202202394
crossref_primary_10_1016_j_bej_2023_109165
crossref_primary_10_1016_j_bios_2022_114662
crossref_primary_10_1021_acsanm_4c02258
crossref_primary_10_1002_advs_202403197
crossref_primary_10_1002_adhm_202401267
crossref_primary_10_1021_acs_inorgchem_3c01047
crossref_primary_10_1021_acssuschemeng_1c03357
crossref_primary_10_1021_acs_analchem_3c04339
crossref_primary_10_1016_j_coelec_2022_100994
crossref_primary_10_1016_j_bej_2022_108463
crossref_primary_10_1016_j_aca_2023_341977
crossref_primary_10_1007_s11356_023_31754_4
crossref_primary_10_1016_j_aca_2022_340478
crossref_primary_10_1016_j_snb_2023_135130
crossref_primary_10_1021_acsami_4c00560
crossref_primary_10_1016_j_colsurfb_2024_114093
crossref_primary_10_1016_j_apcatb_2024_123701
crossref_primary_10_1016_j_foodchem_2024_138383
crossref_primary_10_1016_j_microc_2024_111688
crossref_primary_10_1016_j_cclet_2024_110129
crossref_primary_10_1039_D3NR03968D
crossref_primary_10_1016_j_crbiot_2024_100205
crossref_primary_10_1002_adma_202211724
crossref_primary_10_1016_j_seppur_2023_126058
crossref_primary_10_1039_D3NR03310D
crossref_primary_10_1002_ange_202116170
crossref_primary_10_1016_j_nantod_2021_101076
crossref_primary_10_1016_j_trac_2024_117862
crossref_primary_10_1002_smll_202206657
crossref_primary_10_1016_j_bios_2024_116864
crossref_primary_10_1016_j_fochx_2024_101364
crossref_primary_10_1002_ange_202315933
crossref_primary_10_1016_j_matre_2022_100145
crossref_primary_10_1021_acsomega_4c04990
crossref_primary_10_1016_j_cej_2023_143703
crossref_primary_10_1021_acs_analchem_2c05679
crossref_primary_10_1002_adma_202209633
crossref_primary_10_1016_j_cej_2024_154203
crossref_primary_10_1016_j_jhazmat_2022_130122
crossref_primary_10_1007_s12274_023_5864_y
crossref_primary_10_1002_cctc_202301634
crossref_primary_10_1021_acsanm_4c06508
crossref_primary_10_1021_acs_analchem_1c02842
crossref_primary_10_1039_D4SC03101F
crossref_primary_10_1007_s12274_023_6119_7
crossref_primary_10_1142_S1088424623500426
crossref_primary_10_1016_j_cej_2021_128876
crossref_primary_10_1002_anie_202318748
crossref_primary_10_1016_j_jclepro_2021_129735
crossref_primary_10_1002_smll_202405624
crossref_primary_10_1002_smll_202405986
crossref_primary_10_1002_adfm_202104735
crossref_primary_10_1021_acs_analchem_3c05415
crossref_primary_10_1002_adfm_202312308
crossref_primary_10_1016_j_jhazmat_2024_134750
crossref_primary_10_1007_s12274_022_5104_x
crossref_primary_10_1002_adfm_202315376
crossref_primary_10_1002_elan_202200116
crossref_primary_10_1007_s00216_022_04149_6
crossref_primary_10_1002_adhm_202101682
crossref_primary_10_1002_adma_202204798
crossref_primary_10_1016_j_seppur_2024_130503
crossref_primary_10_1007_s00604_021_04846_6
crossref_primary_10_1016_j_apmate_2024_100191
crossref_primary_10_1021_acsami_3c04761
crossref_primary_10_1016_j_colsurfb_2023_113640
crossref_primary_10_1186_s11671_022_03693_5
crossref_primary_10_1016_j_jcis_2025_01_265
crossref_primary_10_1007_s12274_022_4274_x
crossref_primary_10_1016_j_nantod_2021_101261
crossref_primary_10_1002_smll_202301675
crossref_primary_10_1016_j_apcatb_2025_125256
crossref_primary_10_1039_D1QM00947H
crossref_primary_10_1002_ange_202101924
crossref_primary_10_1016_j_biosx_2022_100190
crossref_primary_10_1002_smll_202311584
crossref_primary_10_1016_j_bios_2024_116999
crossref_primary_10_1016_j_jcis_2024_03_045
crossref_primary_10_1073_pnas_2309102121
crossref_primary_10_1016_j_aca_2022_339604
crossref_primary_10_1016_j_inoche_2023_111110
crossref_primary_10_1002_adhm_202401630
crossref_primary_10_1002_anie_202315933
crossref_primary_10_1021_acsabm_3c00751
crossref_primary_10_1016_j_ccr_2024_215771
crossref_primary_10_1016_j_ensm_2023_102890
crossref_primary_10_1016_j_jhazmat_2022_128707
crossref_primary_10_1016_j_jhazmat_2024_135228
crossref_primary_10_1016_j_apmt_2021_101029
crossref_primary_10_1007_s11244_022_01770_8
crossref_primary_10_1016_j_nantod_2023_102007
crossref_primary_10_1002_adhm_202201733
crossref_primary_10_1021_jacs_3c05162
crossref_primary_10_1016_j_microc_2025_112673
crossref_primary_10_1016_j_apsusc_2022_155203
crossref_primary_10_1021_acsami_4c02213
crossref_primary_10_1002_ange_202413661
crossref_primary_10_1016_j_inoche_2024_113833
crossref_primary_10_1039_D4EN00097H
crossref_primary_10_1016_j_saa_2024_125328
crossref_primary_10_1016_j_jcis_2023_03_099
crossref_primary_10_1002_smll_202100664
crossref_primary_10_1016_j_apcato_2024_206969
crossref_primary_10_1002_adma_202209552
crossref_primary_10_1016_j_electacta_2022_140434
crossref_primary_10_1016_j_cclet_2022_108018
crossref_primary_10_1016_j_fuel_2023_129784
crossref_primary_10_1016_j_jcis_2022_07_158
crossref_primary_10_1021_acs_nanolett_4c01846
crossref_primary_10_1002_advs_202500430
crossref_primary_10_1016_j_fochx_2024_102093
crossref_primary_10_1021_acs_analchem_1c04665
crossref_primary_10_1016_j_jhazmat_2022_129321
crossref_primary_10_1016_j_apcatb_2021_120826
crossref_primary_10_1016_j_jechem_2024_01_004
crossref_primary_10_1039_D1NR06545A
crossref_primary_10_1002_adma_202401619
crossref_primary_10_1021_acs_analchem_2c01794
crossref_primary_10_1002_nano_202000239
crossref_primary_10_1039_D2AN01003H
crossref_primary_10_1016_j_snb_2024_135487
crossref_primary_10_1007_s11426_023_1677_4
crossref_primary_10_1021_acs_analchem_1c03987
crossref_primary_10_1016_j_cej_2021_130401
crossref_primary_10_1016_j_apcatb_2023_122618
crossref_primary_10_1016_j_ccr_2022_214896
crossref_primary_10_1007_s12274_021_3581_y
crossref_primary_10_1021_acs_langmuir_3c01754
crossref_primary_10_1002_smll_202300149
crossref_primary_10_1016_j_mtcomm_2023_107049
crossref_primary_10_1016_j_nantod_2023_101981
crossref_primary_10_1016_j_biosx_2024_100542
crossref_primary_10_1039_D1MA00605C
crossref_primary_10_1016_j_cej_2022_136918
crossref_primary_10_1016_j_bios_2025_117383
crossref_primary_10_1016_j_aca_2021_339362
crossref_primary_10_1021_acs_analchem_1c01217
crossref_primary_10_1016_j_bios_2022_114254
crossref_primary_10_1016_j_cclet_2021_03_042
crossref_primary_10_1038_s41467_022_32411_z
crossref_primary_10_3390_nano13202760
crossref_primary_10_1021_acs_chemmater_4c02213
crossref_primary_10_26599_FSHW_2022_9250168
crossref_primary_10_1016_j_cclet_2024_110096
crossref_primary_10_1002_ppsc_202300039
crossref_primary_10_1039_D3TB00238A
crossref_primary_10_1016_j_aca_2022_340510
crossref_primary_10_1016_j_snb_2024_135470
crossref_primary_10_1016_j_trac_2023_117280
crossref_primary_10_1016_j_cej_2022_139870
crossref_primary_10_1016_j_nantod_2023_101757
crossref_primary_10_1016_j_cclet_2021_07_062
crossref_primary_10_1002_inf2_12421
crossref_primary_10_1039_D3CP05403A
crossref_primary_10_1016_j_jcis_2025_02_175
crossref_primary_10_1016_j_talanta_2021_122961
crossref_primary_10_1016_j_talanta_2022_123451
crossref_primary_10_1016_j_mtcomm_2024_109091
crossref_primary_10_1016_j_ccr_2023_215209
crossref_primary_10_1002_adma_202306602
crossref_primary_10_2139_ssrn_4019509
crossref_primary_10_1007_s12274_023_5700_4
crossref_primary_10_1016_j_foodchem_2022_132985
crossref_primary_10_1021_acs_analchem_0c04084
crossref_primary_10_1016_j_ijhydene_2024_10_049
crossref_primary_10_1016_j_apmt_2021_101255
crossref_primary_10_1016_j_cis_2023_102968
crossref_primary_10_1039_D1TA02769G
crossref_primary_10_1016_j_bios_2024_116351
crossref_primary_10_1002_ange_202405937
crossref_primary_10_1021_acsabm_1c00336
crossref_primary_10_1016_j_cis_2021_102485
crossref_primary_10_1039_D2CS00191H
crossref_primary_10_2139_ssrn_4147154
crossref_primary_10_1002_anie_202413661
crossref_primary_10_1007_s00604_023_05636_y
crossref_primary_10_3390_molecules27175426
crossref_primary_10_1021_acssuschemeng_1c07907
crossref_primary_10_1039_D3NJ01625K
crossref_primary_10_1016_j_cej_2022_139411
crossref_primary_10_1002_adfm_202417013
crossref_primary_10_1007_s00216_021_03816_4
crossref_primary_10_1016_j_nantod_2023_101859
crossref_primary_10_1007_s40820_021_00661_z
crossref_primary_10_1021_acsami_1c20489
crossref_primary_10_1021_acs_analchem_4c01445
crossref_primary_10_26599_NBE_2023_9290047
crossref_primary_10_1021_acssuschemeng_3c00495
crossref_primary_10_1002_adfm_202314686
crossref_primary_10_1016_j_trac_2021_116379
crossref_primary_10_1002_anie_202405937
crossref_primary_10_1016_j_aca_2024_342715
crossref_primary_10_1007_s11426_024_2268_7
Cites_doi 10.1021/jacs.8b05223
10.1002/anie.201912182
10.1039/C8CS00457A
10.1021/acsenergylett.7b01188
10.1007/s40843-020-1334-6
10.1002/adma.201905994
10.1002/anie.201703864
10.1039/C8EE03276A
10.1021/acscatal.8b04381
10.1038/s41467-018-03903-8
10.1039/C8CS00718G
10.1038/s41467-019-09290-y
10.1021/jacs.0c02229
10.1002/anie.201905645
10.1021/jacs.8b13543
10.1002/anie.201712803
10.1002/anie.201803262
10.1021/acs.chemrev.8b00672
10.1038/s41467-017-02502-3
10.1016/j.joule.2018.06.007
10.1002/celc.201801688
10.1021/acscatal.9b00869
10.1021/jacs.7b12621
10.1039/C9TA06949F
10.1007/s12274-020-2755-3
10.1038/nnano.2007.260
10.1021/acs.analchem.9b05437
10.1021/acscatal.0c01647
10.1021/jacs.7b01686
10.1021/jacs.9b09352
10.1021/jacs.8b02798
10.1002/anie.201908289
10.1021/acs.analchem.9b02901
10.1039/C8TA00683K
10.1039/C8CC08116F
10.1038/305158a0
10.1038/s41467-018-05798-x
10.1038/s41596-018-0001-1
10.1021/jacs.9b07712
10.1039/c3cs35486e
10.1038/417463a
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.nantod.2020.100971
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1878-044X
ExternalDocumentID 10_1016_j_nantod_2020_100971
S1748013220301407
GroupedDBID ---
--K
--M
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
ADTZH
ADUVX
AEBSH
AECPX
AEFWE
AEHWI
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SPD
SSG
SSK
SSM
SST
SSU
SSZ
T5K
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-6f09a317129bf8fc57695f9f979cf3726806cb6e5e2e5c6e2610fae6fbab5d973
IEDL.DBID .~1
ISSN 1748-0132
IngestDate Thu Apr 24 23:01:53 EDT 2025
Tue Jul 01 00:15:55 EDT 2025
Fri Feb 23 02:39:18 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Peroxidase-like activities
Single-atom catalysts
Nanozymes
Biosensors
Heteroatom doping
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-6f09a317129bf8fc57695f9f979cf3726806cb6e5e2e5c6e2610fae6fbab5d973
ORCID 0000-0003-0679-7965
ParticipantIDs crossref_primary_10_1016_j_nantod_2020_100971
crossref_citationtrail_10_1016_j_nantod_2020_100971
elsevier_sciencedirect_doi_10_1016_j_nantod_2020_100971
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2020
2020-12-00
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationTitle Nano today
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Berglund, Carlsson, Smith, Szöke, Henriksen, Hajdu (bib0100) 2002; 417
Zhao, Zhang, Huang, Liu, Zhang, He, Wu, Zhang, Wu, Yang, Gu, Hu, Wan (bib0145) 2019; 10
Wan, Zhao, Shang, Peng, Chen, Pei, Zheng, Dong, Cao, Sarangi, Jiang, Zhou, Zhuang, Zhang, Wang, Li (bib0130) 2020; 142
Cao, Zhang, Wang, You, Wang, Gao, Ren, Qu (bib0240) 2019; 58
Jiao, Wan, Zhang, Zhou, Yu, Jiang (bib0150) 2018; 57
Wu, Wu, Jiao, Xu, Wang, Wei, Gu, Ren, Zhang, Zhang, Huang, Gu, Zhu (bib0075) 2020; 92
Jiang, Duan, Gao, Zhou, Fan, Tang, Xi, Bi, Tong, Gao, Xie, Tang, Nie, Liang, Yan (bib0230) 2018; 13
Yuan, Sfaelou, Qiu, Lützenkirchen-Hecht, Zhuang, Chen, Yuan, Feng, Scherf (bib0195) 2018; 3
Huang, Ren, Qu (bib0035) 2019; 119
Cheng, Dai, Sun, Liu, Zhai, Lou, Xia (bib0095) 2018; 57
Hao, Wang, Qin, Liu, Li, Lei (bib0190) 2018; 6
Xu, Guo, Tian, Zhang, Chen, Cheong, Gu, Zheng, Xiao, Liu, Li, Wang, Li (bib0225) 2020; 63
Pott, Hayashi, Mori, Mittl, Green, Hilvert (bib0105) 2018; 140
Yang, Wang, Zhu, Li, Chen, Wei, Yuan, Qu, Xu, Zhao, Wang, Li, Li, Wu, Li (bib0220) 2019; 9
Huo, Wang, Wang, Chen, Shi (bib0245) 2019; 13
Yu, Han, Wei, Huang, Gu, Peng, Ma, Zheng (bib0155) 2018; 2
Li, Xiao, Zhong, Li, Xu, Ma, Cheng, Liu, Feng, Shi, Cheng, Liu, Du, Beckman, Pan, Lin, Shao (bib0210) 2019; 9
Miao, Lang, Zhang, Kong, Peng, Yang, Wang, Cheng, He, Amini, Wu, Zheng, Tang, Cheng (bib0205) 2019; 29
Zhu, Sun, Chen, Cao, Xiong, Luo, Dong, Zheng, Zhang, Wang, Chen, Peng, Wang, Li (bib0165) 2018; 28
Fang, Li, Shen, Perez-Aguilar, Chong, Gao, Chai, Chen, Ge, Zhou (bib0025) 2018; 9
Sun, Wang, Du, Jiao, Liu, Qian, Yan, Liu, Liao, Zhang, Meng, Gu, Xiong, Yan (bib0140) 2019; 7
Jiao, Wu, Zhong, Zhang, Xu, Wu, Chen, Yan, Zhang, Gu, Gu, Beckman, Huang, Zhu (bib0120) 2020; 10
Sun, Qu, Gao, Wu, Liu, Han, Wang, Pei, Zhao, Lu (bib0160) 2018; 28
Jiang, Ni, Rosenkrans, Huang, Yan, Cai (bib0020) 2019; 48
Cao, Zhang, You, Zheng, Ren, Qu (bib0080) 2020; 59
Ge, Li, Su, Lin, Tian, Chen (bib0250) 2019; 9
Wu, Jiao, Luo, Xu, Wei, Wang, Yan, Gu, Xu, Du, Lin, Zhu (bib0255) 2019; 15
Li, Rong, Zhang, Wang, Li (bib0125) 2020; 13
Fan, Xi, Fan, Wang, Zhu, Tang, Xu, Liang, Jiang, Yan, Gao (bib0015) 2018; 9
Wu, Wang, Wang, Lou, Li, Zhu, Qin, Wei (bib0010) 2019; 48
Jiao, Xu, Yan, Wu, Liu, Du, Lin, Zhu (bib0065) 2019; 91
Li, Chen, Xiao, Gong, Li, Zheng, Zheng, Yan, Cheong, Shen, Fu, Gu, Zhuang, Chen, Wang, Peng, Li, Li (bib0050) 2018; 30
Wang, Tang, Zhou (bib0045) 2019; 141
Komkova, Karyakina, Karyakin (bib0085) 2018; 140
Zhu, Shi, Xu, Fu, Wan, Yang, Yao, Song, Zhou, Du, Beckman, Su, Lin (bib0185) 2018; 8
Zhang, Zhao, Chen, Huang, Dong, Chen, Liu, Wang, Yan, Li, Wang (bib0135) 2019; 141
Jiang, Gu, Zheng, Liu, Qiu, Wang, Li, Chen, Ji, Li (bib0175) 2019; 12
Zhao, Liao, Yu, Wei, Liu (bib0200) 2019; 6
Chen, Zhou, Liu, Yuan, Wang, Zhao, Zhao, Zhou, Wang, Xue, Yao, Xiong, Wu (bib0115) 2020
Zhu, Fu, Shi, Du, Lin (bib0055) 2017; 56
Wei, Wang (bib0005) 2013; 42
Wang, Chen, Zhang, Yao, Liu, Lin, Ju, Dong, Zheng, Yan, Zheng, Li, Wang, Yang, He, Wang, Deng, Wu, Li (bib0180) 2017; 139
Huang, Chen, Gan, Wang, Dong (bib0060) 2019; 5
Wang, Zhang, Ju, Liu, Cao, Chen, Ren, Qu (bib0235) 2018; 9
Ma, Mao, Yang, Pan, Chen, Wang, Yu, Mao, Li (bib0070) 2019; 55
Chen, Chen, Siahrostami, Higgins, Nordlund, Sokaras, Kim, Liu, Yan, Nilsson, Sinclair, Nørskov, Jaramillo, Bao (bib0170) 2018; 140
Gao, Zhuang, Nie, Zhang, Zhang, Gu, Wang, Feng, Yang, Perrett, Yan (bib0030) 2007; 2
Whitehead, Thorpe, Carter, Groucutt, Kricka (bib0090) 1983; 305
Jiao, Yan, Wu, Gu, Zhu, Du, Lin (bib0040) 2020; 59
Mun, Lee, Kim, Kim, Lee, Han, Lee (bib0215) 2019; 141
Xiang, Feng, Chen (bib0110) 2020; 32
Li (10.1016/j.nantod.2020.100971_bib0050) 2018; 30
Yu (10.1016/j.nantod.2020.100971_bib0155) 2018; 2
Xiang (10.1016/j.nantod.2020.100971_bib0110) 2020; 32
Hao (10.1016/j.nantod.2020.100971_bib0190) 2018; 6
Wu (10.1016/j.nantod.2020.100971_bib0010) 2019; 48
Jiao (10.1016/j.nantod.2020.100971_bib0065) 2019; 91
Yuan (10.1016/j.nantod.2020.100971_bib0195) 2018; 3
Zhang (10.1016/j.nantod.2020.100971_bib0135) 2019; 141
Li (10.1016/j.nantod.2020.100971_bib0210) 2019; 9
Wan (10.1016/j.nantod.2020.100971_bib0130) 2020; 142
Komkova (10.1016/j.nantod.2020.100971_bib0085) 2018; 140
Jiang (10.1016/j.nantod.2020.100971_bib0175) 2019; 12
Li (10.1016/j.nantod.2020.100971_bib0125) 2020; 13
Zhao (10.1016/j.nantod.2020.100971_bib0145) 2019; 10
Fan (10.1016/j.nantod.2020.100971_bib0015) 2018; 9
Berglund (10.1016/j.nantod.2020.100971_bib0100) 2002; 417
Wu (10.1016/j.nantod.2020.100971_bib0255) 2019; 15
Wu (10.1016/j.nantod.2020.100971_bib0075) 2020; 92
Wei (10.1016/j.nantod.2020.100971_bib0005) 2013; 42
Fang (10.1016/j.nantod.2020.100971_bib0025) 2018; 9
Yang (10.1016/j.nantod.2020.100971_bib0220) 2019; 9
Xu (10.1016/j.nantod.2020.100971_bib0225) 2020; 63
Huang (10.1016/j.nantod.2020.100971_bib0060) 2019; 5
Mun (10.1016/j.nantod.2020.100971_bib0215) 2019; 141
Jiang (10.1016/j.nantod.2020.100971_bib0230) 2018; 13
Zhu (10.1016/j.nantod.2020.100971_bib0055) 2017; 56
Whitehead (10.1016/j.nantod.2020.100971_bib0090) 1983; 305
Zhu (10.1016/j.nantod.2020.100971_bib0165) 2018; 28
Pott (10.1016/j.nantod.2020.100971_bib0105) 2018; 140
Miao (10.1016/j.nantod.2020.100971_bib0205) 2019; 29
Cheng (10.1016/j.nantod.2020.100971_bib0095) 2018; 57
Ge (10.1016/j.nantod.2020.100971_bib0250) 2019; 9
Chen (10.1016/j.nantod.2020.100971_bib0170) 2018; 140
Sun (10.1016/j.nantod.2020.100971_bib0160) 2018; 28
Jiao (10.1016/j.nantod.2020.100971_bib0040) 2020; 59
Wang (10.1016/j.nantod.2020.100971_bib0180) 2017; 139
Zhu (10.1016/j.nantod.2020.100971_bib0185) 2018; 8
Jiao (10.1016/j.nantod.2020.100971_bib0150) 2018; 57
Wang (10.1016/j.nantod.2020.100971_bib0045) 2019; 141
Gao (10.1016/j.nantod.2020.100971_bib0030) 2007; 2
Jiang (10.1016/j.nantod.2020.100971_bib0020) 2019; 48
Chen (10.1016/j.nantod.2020.100971_bib0115) 2020
Huo (10.1016/j.nantod.2020.100971_bib0245) 2019; 13
Cao (10.1016/j.nantod.2020.100971_bib0080) 2020; 59
Zhao (10.1016/j.nantod.2020.100971_bib0200) 2019; 6
Wang (10.1016/j.nantod.2020.100971_bib0235) 2018; 9
Huang (10.1016/j.nantod.2020.100971_bib0035) 2019; 119
Jiao (10.1016/j.nantod.2020.100971_bib0120) 2020; 10
Cao (10.1016/j.nantod.2020.100971_bib0240) 2019; 58
Sun (10.1016/j.nantod.2020.100971_bib0140) 2019; 7
Ma (10.1016/j.nantod.2020.100971_bib0070) 2019; 55
References_xml – volume: 13
  start-page: 1842
  year: 2020
  end-page: 1855
  ident: bib0125
  publication-title: Nano Res.
– volume: 6
  start-page: 8053
  year: 2018
  end-page: 8058
  ident: bib0190
  publication-title: J. Mater. Chem. A
– volume: 13
  start-page: 1506
  year: 2018
  end-page: 1520
  ident: bib0230
  publication-title: Nat. Protoc.
– volume: 59
  start-page: 5108
  year: 2020
  end-page: 5115
  ident: bib0080
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 1754
  year: 2019
  end-page: 1760
  ident: bib0200
  publication-title: ChemElectroChem
– volume: 2
  start-page: 577
  year: 2007
  end-page: 583
  ident: bib0030
  publication-title: Nat. Nanotechnol.
– volume: 63
  start-page: 972
  year: 2020
  end-page: 981
  ident: bib0225
  publication-title: Sci. China Mater.
– volume: 9
  start-page: 129
  year: 2018
  ident: bib0025
  publication-title: Nat. Commun.
– volume: 8
  year: 2018
  ident: bib0185
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 2158
  year: 2019
  end-page: 2163
  ident: bib0220
  publication-title: ACS Catal.
– volume: 140
  start-page: 1535
  year: 2018
  end-page: 1543
  ident: bib0105
  publication-title: J. Am. Chem. Soc.
– volume: 119
  start-page: 4357
  year: 2019
  end-page: 4412
  ident: bib0035
  publication-title: Chem. Rev.
– volume: 141
  start-page: 14115
  year: 2019
  end-page: 14119
  ident: bib0045
  publication-title: J. Am. Chem. Soc.
– volume: 59
  start-page: 2565
  year: 2020
  end-page: 2576
  ident: bib0040
  publication-title: Angew. Chem. Int. Ed.
– volume: 91
  start-page: 11994
  year: 2019
  end-page: 11999
  ident: bib0065
  publication-title: Anal. Chem.
– volume: 58
  start-page: 16236
  year: 2019
  end-page: 16242
  ident: bib0240
  publication-title: Angew. Chem. Int. Ed.
– volume: 141
  start-page: 6254
  year: 2019
  end-page: 6262
  ident: bib0215
  publication-title: J. Am. Chem. Soc.
– volume: 32
  year: 2020
  ident: bib0110
  publication-title: Adv. Mater.
– volume: 142
  start-page: 8431
  year: 2020
  end-page: 8439
  ident: bib0130
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 1610
  year: 2018
  end-page: 1622
  ident: bib0155
  publication-title: Joule
– volume: 9
  start-page: 3334
  year: 2018
  ident: bib0235
  publication-title: Nat. Commun.
– volume: 48
  start-page: 1004
  year: 2019
  end-page: 1076
  ident: bib0010
  publication-title: Chem. Soc. Rev.
– volume: 9
  start-page: 1440
  year: 2018
  ident: bib0015
  publication-title: Nat. Commun.
– volume: 55
  start-page: 159
  year: 2019
  end-page: 162
  ident: bib0070
  publication-title: Chem. Commun.
– volume: 56
  start-page: 13944
  year: 2017
  end-page: 13960
  ident: bib0055
  publication-title: Angew. Chem. Int. Ed.
– volume: 57
  start-page: 8525
  year: 2018
  end-page: 8529
  ident: bib0150
  publication-title: Angew. Chem. Int. Ed.
– volume: 30
  year: 2018
  ident: bib0050
  publication-title: Adv. Mater.
– volume: 417
  start-page: 463
  year: 2002
  end-page: 468
  ident: bib0100
  publication-title: Nature
– volume: 10
  start-page: 1278
  year: 2019
  ident: bib0145
  publication-title: Nat. Commun.
– volume: 9
  start-page: 5929
  year: 2019
  end-page: 5934
  ident: bib0210
  publication-title: ACS Catal.
– volume: 10
  start-page: 6422
  year: 2020
  end-page: 6429
  ident: bib0120
  publication-title: ACS Catal.
– volume: 13
  start-page: 2643
  year: 2019
  end-page: 2653
  ident: bib0245
  publication-title: ACS Nano
– year: 2020
  ident: bib0115
  publication-title: Small
– volume: 3
  start-page: 252
  year: 2018
  end-page: 260
  ident: bib0195
  publication-title: ACS Energy Lett.
– volume: 28
  year: 2018
  ident: bib0165
  publication-title: Adv. Funct. Mater.
– volume: 48
  start-page: 3683
  year: 2019
  end-page: 3704
  ident: bib0020
  publication-title: Chem. Soc. Rev.
– volume: 29
  year: 2019
  ident: bib0205
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 322
  year: 2019
  end-page: 333
  ident: bib0175
  publication-title: Energy Environ. Sci.
– volume: 141
  start-page: 20118
  year: 2019
  end-page: 20126
  ident: bib0135
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 9419
  year: 2017
  end-page: 9422
  ident: bib0180
  publication-title: J. Am. Chem. Soc.
– volume: 42
  start-page: 6060
  year: 2013
  end-page: 6093
  ident: bib0005
  publication-title: Chem. Soc. Rev.
– volume: 140
  start-page: 7851
  year: 2018
  end-page: 7859
  ident: bib0170
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 20952
  year: 2019
  end-page: 20957
  ident: bib0140
  publication-title: J. Mater. Chem. A
– volume: 92
  start-page: 3373
  year: 2020
  end-page: 3379
  ident: bib0075
  publication-title: Anal. Chem.
– volume: 140
  start-page: 11302
  year: 2018
  end-page: 11307
  ident: bib0085
  publication-title: J. Am. Chem. Soc.
– volume: 28
  year: 2018
  ident: bib0160
  publication-title: Adv. Funct. Mater.
– volume: 57
  start-page: 3123
  year: 2018
  end-page: 3127
  ident: bib0095
  publication-title: Angew. Chem. Int. Ed.
– volume: 5
  year: 2019
  ident: bib0060
  publication-title: Sci. Adv.
– volume: 9
  year: 2019
  ident: bib0250
  publication-title: Adv. Energy Mater.
– volume: 305
  start-page: 158
  year: 1983
  end-page: 159
  ident: bib0090
  publication-title: Nature
– volume: 15
  year: 2019
  ident: bib0255
  publication-title: Small
– volume: 140
  start-page: 11302
  year: 2018
  ident: 10.1016/j.nantod.2020.100971_bib0085
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b05223
– year: 2020
  ident: 10.1016/j.nantod.2020.100971_bib0115
  publication-title: Small
– volume: 28
  year: 2018
  ident: 10.1016/j.nantod.2020.100971_bib0160
  publication-title: Adv. Funct. Mater.
– volume: 59
  start-page: 5108
  year: 2020
  ident: 10.1016/j.nantod.2020.100971_bib0080
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201912182
– volume: 48
  start-page: 1004
  year: 2019
  ident: 10.1016/j.nantod.2020.100971_bib0010
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00457A
– volume: 8
  year: 2018
  ident: 10.1016/j.nantod.2020.100971_bib0185
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 252
  year: 2018
  ident: 10.1016/j.nantod.2020.100971_bib0195
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b01188
– volume: 63
  start-page: 972
  year: 2020
  ident: 10.1016/j.nantod.2020.100971_bib0225
  publication-title: Sci. China Mater.
  doi: 10.1007/s40843-020-1334-6
– volume: 9
  year: 2019
  ident: 10.1016/j.nantod.2020.100971_bib0250
  publication-title: Adv. Energy Mater.
– volume: 32
  year: 2020
  ident: 10.1016/j.nantod.2020.100971_bib0110
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201905994
– volume: 56
  start-page: 13944
  year: 2017
  ident: 10.1016/j.nantod.2020.100971_bib0055
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201703864
– volume: 28
  year: 2018
  ident: 10.1016/j.nantod.2020.100971_bib0165
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 322
  year: 2019
  ident: 10.1016/j.nantod.2020.100971_bib0175
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE03276A
– volume: 9
  start-page: 2158
  year: 2019
  ident: 10.1016/j.nantod.2020.100971_bib0220
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b04381
– volume: 5
  year: 2019
  ident: 10.1016/j.nantod.2020.100971_bib0060
  publication-title: Sci. Adv.
– volume: 9
  start-page: 1440
  year: 2018
  ident: 10.1016/j.nantod.2020.100971_bib0015
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03903-8
– volume: 48
  start-page: 3683
  year: 2019
  ident: 10.1016/j.nantod.2020.100971_bib0020
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00718G
– volume: 10
  start-page: 1278
  year: 2019
  ident: 10.1016/j.nantod.2020.100971_bib0145
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09290-y
– volume: 142
  start-page: 8431
  year: 2020
  ident: 10.1016/j.nantod.2020.100971_bib0130
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c02229
– volume: 59
  start-page: 2565
  year: 2020
  ident: 10.1016/j.nantod.2020.100971_bib0040
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201905645
– volume: 141
  start-page: 6254
  year: 2019
  ident: 10.1016/j.nantod.2020.100971_bib0215
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b13543
– volume: 30
  year: 2018
  ident: 10.1016/j.nantod.2020.100971_bib0050
  publication-title: Adv. Mater.
– volume: 57
  start-page: 3123
  year: 2018
  ident: 10.1016/j.nantod.2020.100971_bib0095
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201712803
– volume: 57
  start-page: 8525
  year: 2018
  ident: 10.1016/j.nantod.2020.100971_bib0150
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201803262
– volume: 119
  start-page: 4357
  year: 2019
  ident: 10.1016/j.nantod.2020.100971_bib0035
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00672
– volume: 29
  year: 2019
  ident: 10.1016/j.nantod.2020.100971_bib0205
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 129
  year: 2018
  ident: 10.1016/j.nantod.2020.100971_bib0025
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02502-3
– volume: 2
  start-page: 1610
  year: 2018
  ident: 10.1016/j.nantod.2020.100971_bib0155
  publication-title: Joule
  doi: 10.1016/j.joule.2018.06.007
– volume: 13
  start-page: 2643
  year: 2019
  ident: 10.1016/j.nantod.2020.100971_bib0245
  publication-title: ACS Nano
– volume: 6
  start-page: 1754
  year: 2019
  ident: 10.1016/j.nantod.2020.100971_bib0200
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201801688
– volume: 9
  start-page: 5929
  year: 2019
  ident: 10.1016/j.nantod.2020.100971_bib0210
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b00869
– volume: 140
  start-page: 1535
  year: 2018
  ident: 10.1016/j.nantod.2020.100971_bib0105
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b12621
– volume: 7
  start-page: 20952
  year: 2019
  ident: 10.1016/j.nantod.2020.100971_bib0140
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA06949F
– volume: 13
  start-page: 1842
  year: 2020
  ident: 10.1016/j.nantod.2020.100971_bib0125
  publication-title: Nano Res.
  doi: 10.1007/s12274-020-2755-3
– volume: 2
  start-page: 577
  year: 2007
  ident: 10.1016/j.nantod.2020.100971_bib0030
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2007.260
– volume: 92
  start-page: 3373
  year: 2020
  ident: 10.1016/j.nantod.2020.100971_bib0075
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.9b05437
– volume: 10
  start-page: 6422
  year: 2020
  ident: 10.1016/j.nantod.2020.100971_bib0120
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c01647
– volume: 139
  start-page: 9419
  year: 2017
  ident: 10.1016/j.nantod.2020.100971_bib0180
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b01686
– volume: 141
  start-page: 20118
  year: 2019
  ident: 10.1016/j.nantod.2020.100971_bib0135
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b09352
– volume: 140
  start-page: 7851
  year: 2018
  ident: 10.1016/j.nantod.2020.100971_bib0170
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b02798
– volume: 58
  start-page: 16236
  year: 2019
  ident: 10.1016/j.nantod.2020.100971_bib0240
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201908289
– volume: 91
  start-page: 11994
  year: 2019
  ident: 10.1016/j.nantod.2020.100971_bib0065
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.9b02901
– volume: 6
  start-page: 8053
  year: 2018
  ident: 10.1016/j.nantod.2020.100971_bib0190
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA00683K
– volume: 55
  start-page: 159
  year: 2019
  ident: 10.1016/j.nantod.2020.100971_bib0070
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC08116F
– volume: 15
  year: 2019
  ident: 10.1016/j.nantod.2020.100971_bib0255
  publication-title: Small
– volume: 305
  start-page: 158
  year: 1983
  ident: 10.1016/j.nantod.2020.100971_bib0090
  publication-title: Nature
  doi: 10.1038/305158a0
– volume: 9
  start-page: 3334
  year: 2018
  ident: 10.1016/j.nantod.2020.100971_bib0235
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05798-x
– volume: 13
  start-page: 1506
  year: 2018
  ident: 10.1016/j.nantod.2020.100971_bib0230
  publication-title: Nat. Protoc.
  doi: 10.1038/s41596-018-0001-1
– volume: 141
  start-page: 14115
  year: 2019
  ident: 10.1016/j.nantod.2020.100971_bib0045
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b07712
– volume: 42
  start-page: 6060
  year: 2013
  ident: 10.1016/j.nantod.2020.100971_bib0005
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c3cs35486e
– volume: 417
  start-page: 463
  year: 2002
  ident: 10.1016/j.nantod.2020.100971_bib0100
  publication-title: Nature
  doi: 10.1038/417463a
SSID ssj0045745
Score 2.6710775
Snippet Boron-doped Fe-N-C single-atom nanozymes with an intrinsic charge transfer achieve the significantly enhanced peroxidase-like activities and selectivities,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 100971
SubjectTerms Biosensors
Heteroatom doping
Nanozymes
Peroxidase-like activities
Single-atom catalysts
Title Boron-doped Fe-N-C single-atom nanozymes specifically boost peroxidase-like activity
URI https://dx.doi.org/10.1016/j.nantod.2020.100971
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXvQgPrE-yh68rt0m2d3ssRZLVezFFnoL2WQWqukDW8F68Le7k0epIAoeN-yQ8DHMfEO-mSHkKgxB8pgrBl7KWWC4z8I05EzI0CoujdC5NuexL3vD4H4kRjXSqXphUFZZxv4ipufRunzSLNFszsfj5pPj0mH-p6AoE7CjPAgUevn151rmEQiVLyrGywxvV-1zucYLtSYznBfq5XIBrVo_p6eNlNPdJ3slV6Tt4nMOSA2mh2R3Y4LgERnc4AQCls7mkNIusD7rUKz-M2Cump5Q9-rZx2oCC4otlSgLirNsRR21Xiwpzgh_H6cuj7Fs_AIUexxwlcQxGXZvB50eKxclsMQx_iWTluvYEQGXu40NbeJqCC2stlrpxPrKkyGXiZEgwAORSHBVE7cxSGtiI1Kt_BOyNZ1N4ZRQ7kMr1VJ7NnFMqpUYR0Eg9gU37qQN1Ilf4RMl5RRxXGaRRZVc7DkqUI0Q1ahAtU7Y2mpeTNH4476qoI--eUPkAv2vlmf_tjwnO3gqpCoXZGv5-gaXjnAsTSP3qAbZbt899PpfZ_zUvw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60HtSD-MT63IPXpduku5s9arFUW3Oxhd5CNpmFaPpAK6i_3t08REEUPGazQ8KwzHyTfPMNwEUQoGAxkxS9lNGOZj4N0oBRLgIjmdBcFdycu1D0x53bCZ-sQLfuhXG0yir2lzG9iNbVSqvyZmuRZa17i6WD4k9BWSbIVVhz6lS8AWuXN4N-WAfkDpfFrGK3nzqDuoOuoHk5usncSYZ6BWNAyfbPGepL1ultw1YFF8ll-UY7sIKzXdj8IiK4B6MrJ0JA0_kCU9JDGtIucR8AcqS2oJ4S--j5-9sUn4nrqnTMoDjP34hF189L4mTCX7PUpjKaZ49IXJuDmyaxD-Pe9ajbp9WsBJpY0L-kwjAVWyxg07c2gUlsGaG4UUZJlRhfeiJgItECOXrIE4G2cGImRmF0rHmqpH8Ajdl8hodAmI_tVAnlmcSCqXaiLQrB2OdM2yulsQl-7Z8oqYTE3TyLPKoZYw9R6dXIeTUqvdoE-mm1KIU0_tgva9dH3w5EZGP9r5ZH_7Y8h_X-6G4YDW_CwTFsuDslc-UEGsunFzy1-GOpz6rz9QHAINdw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Boron-doped+Fe-N-C+single-atom+nanozymes+specifically+boost+peroxidase-like+activity&rft.jtitle=Nano+today&rft.au=Jiao%2C+Lei&rft.au=Xu%2C+Weiqing&rft.au=Zhang%2C+Yu&rft.au=Wu%2C+Yu&rft.date=2020-12-01&rft.issn=1748-0132&rft.volume=35&rft.spage=100971&rft_id=info:doi/10.1016%2Fj.nantod.2020.100971&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nantod_2020_100971
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-0132&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-0132&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-0132&client=summon