Boron-doped Fe-N-C single-atom nanozymes specifically boost peroxidase-like activity
Boron-doped Fe-N-C single-atom nanozymes with an intrinsic charge transfer achieve the significantly enhanced peroxidase-like activities and selectivities, which opens a new route in the rational design of more advanced nanozymes at the atomic scale and bridge the gap between nanozymes and natural e...
Saved in:
Published in | Nano today Vol. 35; p. 100971 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Boron-doped Fe-N-C single-atom nanozymes with an intrinsic charge transfer achieve the significantly enhanced peroxidase-like activities and selectivities, which opens a new route in the rational design of more advanced nanozymes at the atomic scale and bridge the gap between nanozymes and natural enzymes.
[Display omitted]
•Boron-doped Fe-N-C single-atom nanozymes can be capable of selectively enhancing peroxidase-like activities.•Boron-induced charge transfer modulates the charge of Fe atom to accelerate the formation of hydroxyl radical.•Sensitive detection of acetylcholinesterase activity and corresponding pesticide was achieved.
Nanomaterials with enzyme-like activities, i.e., nanozymes, have aroused wide concern in biocatalysis. Fe-N-C single-atom catalysts with atomically dispersed FeNx as active sites, defined as Fe-N-C single-atom nanozymes, have the structure similar to some heme enzymes and therefore can mimic the enzyme-like activities. However, they are still subject to the limited biocatalytic activity and selectivity because of the grand challenge in rationally tuning the electronic structure of central Fe atoms and achieving their superior performances approaching nature heme enzymes. Herein, we demonstrate that boron-doped Fe-N-C single-atom nanozymes with an intrinsic charge transfer can work much better and achieve the significantly enhanced peroxidase-like activities and selectivities. Theoretical calculations reveal that boron-induced charge transfer effects can be capable of modulating the positive charge of the central Fe atom to reduce the energy barrier of the formation of hydroxyl radical and therefore boost the peroxidase-like activity. The boron-doped Fe-N-C single-atom nanozymes can achieve vivid mimicking nature peroxidase and finally show their promising applications in the detection of enzyme activity and small molecule. This work opens a new route in the rational synthesis of more advanced nanozymes at the atomic scale and bridges the gap between nanozymes and natural enzymes. |
---|---|
AbstractList | Boron-doped Fe-N-C single-atom nanozymes with an intrinsic charge transfer achieve the significantly enhanced peroxidase-like activities and selectivities, which opens a new route in the rational design of more advanced nanozymes at the atomic scale and bridge the gap between nanozymes and natural enzymes.
[Display omitted]
•Boron-doped Fe-N-C single-atom nanozymes can be capable of selectively enhancing peroxidase-like activities.•Boron-induced charge transfer modulates the charge of Fe atom to accelerate the formation of hydroxyl radical.•Sensitive detection of acetylcholinesterase activity and corresponding pesticide was achieved.
Nanomaterials with enzyme-like activities, i.e., nanozymes, have aroused wide concern in biocatalysis. Fe-N-C single-atom catalysts with atomically dispersed FeNx as active sites, defined as Fe-N-C single-atom nanozymes, have the structure similar to some heme enzymes and therefore can mimic the enzyme-like activities. However, they are still subject to the limited biocatalytic activity and selectivity because of the grand challenge in rationally tuning the electronic structure of central Fe atoms and achieving their superior performances approaching nature heme enzymes. Herein, we demonstrate that boron-doped Fe-N-C single-atom nanozymes with an intrinsic charge transfer can work much better and achieve the significantly enhanced peroxidase-like activities and selectivities. Theoretical calculations reveal that boron-induced charge transfer effects can be capable of modulating the positive charge of the central Fe atom to reduce the energy barrier of the formation of hydroxyl radical and therefore boost the peroxidase-like activity. The boron-doped Fe-N-C single-atom nanozymes can achieve vivid mimicking nature peroxidase and finally show their promising applications in the detection of enzyme activity and small molecule. This work opens a new route in the rational synthesis of more advanced nanozymes at the atomic scale and bridges the gap between nanozymes and natural enzymes. |
ArticleNumber | 100971 |
Author | Xu, Weiqing Zhu, Chengzhou Wu, Yu Zhang, Yu Guo, Shaojun Jiao, Lei Gu, Wenling Chen, Bingbing Ge, Xiaoxiao |
Author_xml | – sequence: 1 givenname: Lei surname: Jiao fullname: Jiao, Lei organization: Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China – sequence: 2 givenname: Weiqing surname: Xu fullname: Xu, Weiqing organization: Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China – sequence: 3 givenname: Yu surname: Zhang fullname: Zhang, Yu organization: Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China – sequence: 4 givenname: Yu surname: Wu fullname: Wu, Yu organization: Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China – sequence: 5 givenname: Wenling surname: Gu fullname: Gu, Wenling organization: Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China – sequence: 6 givenname: Xiaoxiao surname: Ge fullname: Ge, Xiaoxiao organization: Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, PR China – sequence: 7 givenname: Bingbing surname: Chen fullname: Chen, Bingbing organization: Department of Energy Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, PR China – sequence: 8 givenname: Chengzhou orcidid: 0000-0003-0679-7965 surname: Zhu fullname: Zhu, Chengzhou email: czzhu@mail.ccnu.edu.cn organization: Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China – sequence: 9 givenname: Shaojun surname: Guo fullname: Guo, Shaojun email: guosj@pku.edu.cn organization: Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, PR China |
BookMark | eNqFkM1KAzEUhYNUsK2-gYt5gdRkfpKJC0GLVaHopoK7kMncSOo0GZJQrE_vlHHlQlf3cOE7cL4ZmjjvAKFLShaUUHa1XTjlkm8XOcmPLyI4PUFTWvMak7J8mwyZl0OmRX6GZjFuCSkrXlZTtLnzwTvc-h7abAX4GS-zaN17B1glv8uGYv912EHMYg_aGqtV1x2yxvuYsh6C_7StioA7-wGZ0snubTqco1OjuggXP3eOXlf3m-UjXr88PC1v11gXhCXMDBGqoJzmojG10RVnojLCCC60KXjOasJ0w6CCHCrNIGeUGAXMNKqpWsGLOSrHXh18jAGM7IPdqXCQlMijGbmVoxl5NCNHMwN2_QvTNqlkvUtB2e4_-GaEYRi2txBk1BachtYG0Em23v5d8A1n-YUN |
CitedBy_id | crossref_primary_10_1016_j_mattod_2023_02_010 crossref_primary_10_1021_acsami_3c01412 crossref_primary_10_1007_s10008_022_05313_9 crossref_primary_10_1016_j_jcis_2024_06_090 crossref_primary_10_1002_adfm_202213863 crossref_primary_10_1002_advs_202201520 crossref_primary_10_1021_acs_chemmater_4c03193 crossref_primary_10_1016_j_aac_2022_07_001 crossref_primary_10_1016_j_snb_2022_131927 crossref_primary_10_1016_j_addr_2022_114269 crossref_primary_10_1002_adfm_202418523 crossref_primary_10_1016_j_cclet_2022_06_073 crossref_primary_10_1002_asia_202101422 crossref_primary_10_1016_j_ccr_2024_215937 crossref_primary_10_1002_adfm_202406790 crossref_primary_10_1002_anie_202116170 crossref_primary_10_1016_j_jclepro_2023_136576 crossref_primary_10_1016_j_watres_2025_123393 crossref_primary_10_1016_j_nantod_2024_102371 crossref_primary_10_1021_acsaem_3c03122 crossref_primary_10_1039_D1TB01654G crossref_primary_10_1039_D0CS00367K crossref_primary_10_1039_D2SC05679H crossref_primary_10_1002_adfm_202403386 crossref_primary_10_1002_adma_202412368 crossref_primary_10_1039_D3QM00096F crossref_primary_10_1002_adhm_202402568 crossref_primary_10_1002_adfm_202106139 crossref_primary_10_1039_D2MA00034B crossref_primary_10_1039_D2QM01373H crossref_primary_10_1088_2515_7639_ac1ab7 crossref_primary_10_1016_j_biomaterials_2022_121986 crossref_primary_10_1016_j_cej_2021_133279 crossref_primary_10_1016_j_chemosphere_2023_140557 crossref_primary_10_1002_adma_202405832 crossref_primary_10_1021_acsanm_4c03947 crossref_primary_10_1021_acs_analchem_1c04018 crossref_primary_10_1021_acs_analchem_1c04496 crossref_primary_10_1016_j_snb_2024_136246 crossref_primary_10_1021_jacs_4c00791 crossref_primary_10_3390_chemosensors11090486 crossref_primary_10_1016_j_nantod_2024_102462 crossref_primary_10_1002_smll_202403878 crossref_primary_10_1021_acsnano_4c00308 crossref_primary_10_1016_j_cej_2023_141324 crossref_primary_10_1016_j_cej_2024_154482 crossref_primary_10_1021_acs_analchem_3c01005 crossref_primary_10_1021_acsanm_2c05009 crossref_primary_10_1016_j_apcatb_2023_122368 crossref_primary_10_3390_coatings14040453 crossref_primary_10_1002_admi_202202050 crossref_primary_10_1002_smll_202101907 crossref_primary_10_1016_j_mattod_2020_12_005 crossref_primary_10_1002_anie_202101924 crossref_primary_10_1016_j_bios_2022_114294 crossref_primary_10_1016_j_mattod_2021_10_032 crossref_primary_10_1021_acscatal_3c05506 crossref_primary_10_1016_j_jiec_2022_11_002 crossref_primary_10_1007_s12274_022_4665_z crossref_primary_10_1016_j_jhazmat_2022_129853 crossref_primary_10_1016_j_talanta_2022_123487 crossref_primary_10_1016_j_nantod_2024_102236 crossref_primary_10_1021_acsnano_1c10303 crossref_primary_10_1002_smll_202311848 crossref_primary_10_1016_j_efmat_2023_08_002 crossref_primary_10_1039_D3TB01644G crossref_primary_10_1016_j_ijbiomac_2024_137594 crossref_primary_10_1002_advs_202306911 crossref_primary_10_1021_acsami_1c22625 crossref_primary_10_1002_advs_202305823 crossref_primary_10_1016_j_snb_2021_130108 crossref_primary_10_1021_acs_analchem_2c05633 crossref_primary_10_1039_D1NJ02088A crossref_primary_10_1002_ange_202318748 crossref_primary_10_1002_smll_202202394 crossref_primary_10_1016_j_bej_2023_109165 crossref_primary_10_1016_j_bios_2022_114662 crossref_primary_10_1021_acsanm_4c02258 crossref_primary_10_1002_advs_202403197 crossref_primary_10_1002_adhm_202401267 crossref_primary_10_1021_acs_inorgchem_3c01047 crossref_primary_10_1021_acssuschemeng_1c03357 crossref_primary_10_1021_acs_analchem_3c04339 crossref_primary_10_1016_j_coelec_2022_100994 crossref_primary_10_1016_j_bej_2022_108463 crossref_primary_10_1016_j_aca_2023_341977 crossref_primary_10_1007_s11356_023_31754_4 crossref_primary_10_1016_j_aca_2022_340478 crossref_primary_10_1016_j_snb_2023_135130 crossref_primary_10_1021_acsami_4c00560 crossref_primary_10_1016_j_colsurfb_2024_114093 crossref_primary_10_1016_j_apcatb_2024_123701 crossref_primary_10_1016_j_foodchem_2024_138383 crossref_primary_10_1016_j_microc_2024_111688 crossref_primary_10_1016_j_cclet_2024_110129 crossref_primary_10_1039_D3NR03968D crossref_primary_10_1016_j_crbiot_2024_100205 crossref_primary_10_1002_adma_202211724 crossref_primary_10_1016_j_seppur_2023_126058 crossref_primary_10_1039_D3NR03310D crossref_primary_10_1002_ange_202116170 crossref_primary_10_1016_j_nantod_2021_101076 crossref_primary_10_1016_j_trac_2024_117862 crossref_primary_10_1002_smll_202206657 crossref_primary_10_1016_j_bios_2024_116864 crossref_primary_10_1016_j_fochx_2024_101364 crossref_primary_10_1002_ange_202315933 crossref_primary_10_1016_j_matre_2022_100145 crossref_primary_10_1021_acsomega_4c04990 crossref_primary_10_1016_j_cej_2023_143703 crossref_primary_10_1021_acs_analchem_2c05679 crossref_primary_10_1002_adma_202209633 crossref_primary_10_1016_j_cej_2024_154203 crossref_primary_10_1016_j_jhazmat_2022_130122 crossref_primary_10_1007_s12274_023_5864_y crossref_primary_10_1002_cctc_202301634 crossref_primary_10_1021_acsanm_4c06508 crossref_primary_10_1021_acs_analchem_1c02842 crossref_primary_10_1039_D4SC03101F crossref_primary_10_1007_s12274_023_6119_7 crossref_primary_10_1142_S1088424623500426 crossref_primary_10_1016_j_cej_2021_128876 crossref_primary_10_1002_anie_202318748 crossref_primary_10_1016_j_jclepro_2021_129735 crossref_primary_10_1002_smll_202405624 crossref_primary_10_1002_smll_202405986 crossref_primary_10_1002_adfm_202104735 crossref_primary_10_1021_acs_analchem_3c05415 crossref_primary_10_1002_adfm_202312308 crossref_primary_10_1016_j_jhazmat_2024_134750 crossref_primary_10_1007_s12274_022_5104_x crossref_primary_10_1002_adfm_202315376 crossref_primary_10_1002_elan_202200116 crossref_primary_10_1007_s00216_022_04149_6 crossref_primary_10_1002_adhm_202101682 crossref_primary_10_1002_adma_202204798 crossref_primary_10_1016_j_seppur_2024_130503 crossref_primary_10_1007_s00604_021_04846_6 crossref_primary_10_1016_j_apmate_2024_100191 crossref_primary_10_1021_acsami_3c04761 crossref_primary_10_1016_j_colsurfb_2023_113640 crossref_primary_10_1186_s11671_022_03693_5 crossref_primary_10_1016_j_jcis_2025_01_265 crossref_primary_10_1007_s12274_022_4274_x crossref_primary_10_1016_j_nantod_2021_101261 crossref_primary_10_1002_smll_202301675 crossref_primary_10_1016_j_apcatb_2025_125256 crossref_primary_10_1039_D1QM00947H crossref_primary_10_1002_ange_202101924 crossref_primary_10_1016_j_biosx_2022_100190 crossref_primary_10_1002_smll_202311584 crossref_primary_10_1016_j_bios_2024_116999 crossref_primary_10_1016_j_jcis_2024_03_045 crossref_primary_10_1073_pnas_2309102121 crossref_primary_10_1016_j_aca_2022_339604 crossref_primary_10_1016_j_inoche_2023_111110 crossref_primary_10_1002_adhm_202401630 crossref_primary_10_1002_anie_202315933 crossref_primary_10_1021_acsabm_3c00751 crossref_primary_10_1016_j_ccr_2024_215771 crossref_primary_10_1016_j_ensm_2023_102890 crossref_primary_10_1016_j_jhazmat_2022_128707 crossref_primary_10_1016_j_jhazmat_2024_135228 crossref_primary_10_1016_j_apmt_2021_101029 crossref_primary_10_1007_s11244_022_01770_8 crossref_primary_10_1016_j_nantod_2023_102007 crossref_primary_10_1002_adhm_202201733 crossref_primary_10_1021_jacs_3c05162 crossref_primary_10_1016_j_microc_2025_112673 crossref_primary_10_1016_j_apsusc_2022_155203 crossref_primary_10_1021_acsami_4c02213 crossref_primary_10_1002_ange_202413661 crossref_primary_10_1016_j_inoche_2024_113833 crossref_primary_10_1039_D4EN00097H crossref_primary_10_1016_j_saa_2024_125328 crossref_primary_10_1016_j_jcis_2023_03_099 crossref_primary_10_1002_smll_202100664 crossref_primary_10_1016_j_apcato_2024_206969 crossref_primary_10_1002_adma_202209552 crossref_primary_10_1016_j_electacta_2022_140434 crossref_primary_10_1016_j_cclet_2022_108018 crossref_primary_10_1016_j_fuel_2023_129784 crossref_primary_10_1016_j_jcis_2022_07_158 crossref_primary_10_1021_acs_nanolett_4c01846 crossref_primary_10_1002_advs_202500430 crossref_primary_10_1016_j_fochx_2024_102093 crossref_primary_10_1021_acs_analchem_1c04665 crossref_primary_10_1016_j_jhazmat_2022_129321 crossref_primary_10_1016_j_apcatb_2021_120826 crossref_primary_10_1016_j_jechem_2024_01_004 crossref_primary_10_1039_D1NR06545A crossref_primary_10_1002_adma_202401619 crossref_primary_10_1021_acs_analchem_2c01794 crossref_primary_10_1002_nano_202000239 crossref_primary_10_1039_D2AN01003H crossref_primary_10_1016_j_snb_2024_135487 crossref_primary_10_1007_s11426_023_1677_4 crossref_primary_10_1021_acs_analchem_1c03987 crossref_primary_10_1016_j_cej_2021_130401 crossref_primary_10_1016_j_apcatb_2023_122618 crossref_primary_10_1016_j_ccr_2022_214896 crossref_primary_10_1007_s12274_021_3581_y crossref_primary_10_1021_acs_langmuir_3c01754 crossref_primary_10_1002_smll_202300149 crossref_primary_10_1016_j_mtcomm_2023_107049 crossref_primary_10_1016_j_nantod_2023_101981 crossref_primary_10_1016_j_biosx_2024_100542 crossref_primary_10_1039_D1MA00605C crossref_primary_10_1016_j_cej_2022_136918 crossref_primary_10_1016_j_bios_2025_117383 crossref_primary_10_1016_j_aca_2021_339362 crossref_primary_10_1021_acs_analchem_1c01217 crossref_primary_10_1016_j_bios_2022_114254 crossref_primary_10_1016_j_cclet_2021_03_042 crossref_primary_10_1038_s41467_022_32411_z crossref_primary_10_3390_nano13202760 crossref_primary_10_1021_acs_chemmater_4c02213 crossref_primary_10_26599_FSHW_2022_9250168 crossref_primary_10_1016_j_cclet_2024_110096 crossref_primary_10_1002_ppsc_202300039 crossref_primary_10_1039_D3TB00238A crossref_primary_10_1016_j_aca_2022_340510 crossref_primary_10_1016_j_snb_2024_135470 crossref_primary_10_1016_j_trac_2023_117280 crossref_primary_10_1016_j_cej_2022_139870 crossref_primary_10_1016_j_nantod_2023_101757 crossref_primary_10_1016_j_cclet_2021_07_062 crossref_primary_10_1002_inf2_12421 crossref_primary_10_1039_D3CP05403A crossref_primary_10_1016_j_jcis_2025_02_175 crossref_primary_10_1016_j_talanta_2021_122961 crossref_primary_10_1016_j_talanta_2022_123451 crossref_primary_10_1016_j_mtcomm_2024_109091 crossref_primary_10_1016_j_ccr_2023_215209 crossref_primary_10_1002_adma_202306602 crossref_primary_10_2139_ssrn_4019509 crossref_primary_10_1007_s12274_023_5700_4 crossref_primary_10_1016_j_foodchem_2022_132985 crossref_primary_10_1021_acs_analchem_0c04084 crossref_primary_10_1016_j_ijhydene_2024_10_049 crossref_primary_10_1016_j_apmt_2021_101255 crossref_primary_10_1016_j_cis_2023_102968 crossref_primary_10_1039_D1TA02769G crossref_primary_10_1016_j_bios_2024_116351 crossref_primary_10_1002_ange_202405937 crossref_primary_10_1021_acsabm_1c00336 crossref_primary_10_1016_j_cis_2021_102485 crossref_primary_10_1039_D2CS00191H crossref_primary_10_2139_ssrn_4147154 crossref_primary_10_1002_anie_202413661 crossref_primary_10_1007_s00604_023_05636_y crossref_primary_10_3390_molecules27175426 crossref_primary_10_1021_acssuschemeng_1c07907 crossref_primary_10_1039_D3NJ01625K crossref_primary_10_1016_j_cej_2022_139411 crossref_primary_10_1002_adfm_202417013 crossref_primary_10_1007_s00216_021_03816_4 crossref_primary_10_1016_j_nantod_2023_101859 crossref_primary_10_1007_s40820_021_00661_z crossref_primary_10_1021_acsami_1c20489 crossref_primary_10_1021_acs_analchem_4c01445 crossref_primary_10_26599_NBE_2023_9290047 crossref_primary_10_1021_acssuschemeng_3c00495 crossref_primary_10_1002_adfm_202314686 crossref_primary_10_1016_j_trac_2021_116379 crossref_primary_10_1002_anie_202405937 crossref_primary_10_1016_j_aca_2024_342715 crossref_primary_10_1007_s11426_024_2268_7 |
Cites_doi | 10.1021/jacs.8b05223 10.1002/anie.201912182 10.1039/C8CS00457A 10.1021/acsenergylett.7b01188 10.1007/s40843-020-1334-6 10.1002/adma.201905994 10.1002/anie.201703864 10.1039/C8EE03276A 10.1021/acscatal.8b04381 10.1038/s41467-018-03903-8 10.1039/C8CS00718G 10.1038/s41467-019-09290-y 10.1021/jacs.0c02229 10.1002/anie.201905645 10.1021/jacs.8b13543 10.1002/anie.201712803 10.1002/anie.201803262 10.1021/acs.chemrev.8b00672 10.1038/s41467-017-02502-3 10.1016/j.joule.2018.06.007 10.1002/celc.201801688 10.1021/acscatal.9b00869 10.1021/jacs.7b12621 10.1039/C9TA06949F 10.1007/s12274-020-2755-3 10.1038/nnano.2007.260 10.1021/acs.analchem.9b05437 10.1021/acscatal.0c01647 10.1021/jacs.7b01686 10.1021/jacs.9b09352 10.1021/jacs.8b02798 10.1002/anie.201908289 10.1021/acs.analchem.9b02901 10.1039/C8TA00683K 10.1039/C8CC08116F 10.1038/305158a0 10.1038/s41467-018-05798-x 10.1038/s41596-018-0001-1 10.1021/jacs.9b07712 10.1039/c3cs35486e 10.1038/417463a |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.nantod.2020.100971 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1878-044X |
ExternalDocumentID | 10_1016_j_nantod_2020_100971 S1748013220301407 |
GroupedDBID | --- --K --M .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFRF ABGSF ABJNI ABMAC ABUDA ABXDB ABXRA ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADECG ADEZE ADMUD ADTZH ADUVX AEBSH AECPX AEFWE AEHWI AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHJVU AHPOS AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SPD SSG SSK SSM SST SSU SSZ T5K UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-6f09a317129bf8fc57695f9f979cf3726806cb6e5e2e5c6e2610fae6fbab5d973 |
IEDL.DBID | .~1 |
ISSN | 1748-0132 |
IngestDate | Thu Apr 24 23:01:53 EDT 2025 Tue Jul 01 00:15:55 EDT 2025 Fri Feb 23 02:39:18 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Peroxidase-like activities Single-atom catalysts Nanozymes Biosensors Heteroatom doping |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-6f09a317129bf8fc57695f9f979cf3726806cb6e5e2e5c6e2610fae6fbab5d973 |
ORCID | 0000-0003-0679-7965 |
ParticipantIDs | crossref_primary_10_1016_j_nantod_2020_100971 crossref_citationtrail_10_1016_j_nantod_2020_100971 elsevier_sciencedirect_doi_10_1016_j_nantod_2020_100971 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2020 2020-12-00 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
PublicationDecade | 2020 |
PublicationTitle | Nano today |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Berglund, Carlsson, Smith, Szöke, Henriksen, Hajdu (bib0100) 2002; 417 Zhao, Zhang, Huang, Liu, Zhang, He, Wu, Zhang, Wu, Yang, Gu, Hu, Wan (bib0145) 2019; 10 Wan, Zhao, Shang, Peng, Chen, Pei, Zheng, Dong, Cao, Sarangi, Jiang, Zhou, Zhuang, Zhang, Wang, Li (bib0130) 2020; 142 Cao, Zhang, Wang, You, Wang, Gao, Ren, Qu (bib0240) 2019; 58 Jiao, Wan, Zhang, Zhou, Yu, Jiang (bib0150) 2018; 57 Wu, Wu, Jiao, Xu, Wang, Wei, Gu, Ren, Zhang, Zhang, Huang, Gu, Zhu (bib0075) 2020; 92 Jiang, Duan, Gao, Zhou, Fan, Tang, Xi, Bi, Tong, Gao, Xie, Tang, Nie, Liang, Yan (bib0230) 2018; 13 Yuan, Sfaelou, Qiu, Lützenkirchen-Hecht, Zhuang, Chen, Yuan, Feng, Scherf (bib0195) 2018; 3 Huang, Ren, Qu (bib0035) 2019; 119 Cheng, Dai, Sun, Liu, Zhai, Lou, Xia (bib0095) 2018; 57 Hao, Wang, Qin, Liu, Li, Lei (bib0190) 2018; 6 Xu, Guo, Tian, Zhang, Chen, Cheong, Gu, Zheng, Xiao, Liu, Li, Wang, Li (bib0225) 2020; 63 Pott, Hayashi, Mori, Mittl, Green, Hilvert (bib0105) 2018; 140 Yang, Wang, Zhu, Li, Chen, Wei, Yuan, Qu, Xu, Zhao, Wang, Li, Li, Wu, Li (bib0220) 2019; 9 Huo, Wang, Wang, Chen, Shi (bib0245) 2019; 13 Yu, Han, Wei, Huang, Gu, Peng, Ma, Zheng (bib0155) 2018; 2 Li, Xiao, Zhong, Li, Xu, Ma, Cheng, Liu, Feng, Shi, Cheng, Liu, Du, Beckman, Pan, Lin, Shao (bib0210) 2019; 9 Miao, Lang, Zhang, Kong, Peng, Yang, Wang, Cheng, He, Amini, Wu, Zheng, Tang, Cheng (bib0205) 2019; 29 Zhu, Sun, Chen, Cao, Xiong, Luo, Dong, Zheng, Zhang, Wang, Chen, Peng, Wang, Li (bib0165) 2018; 28 Fang, Li, Shen, Perez-Aguilar, Chong, Gao, Chai, Chen, Ge, Zhou (bib0025) 2018; 9 Sun, Wang, Du, Jiao, Liu, Qian, Yan, Liu, Liao, Zhang, Meng, Gu, Xiong, Yan (bib0140) 2019; 7 Jiao, Wu, Zhong, Zhang, Xu, Wu, Chen, Yan, Zhang, Gu, Gu, Beckman, Huang, Zhu (bib0120) 2020; 10 Sun, Qu, Gao, Wu, Liu, Han, Wang, Pei, Zhao, Lu (bib0160) 2018; 28 Jiang, Ni, Rosenkrans, Huang, Yan, Cai (bib0020) 2019; 48 Cao, Zhang, You, Zheng, Ren, Qu (bib0080) 2020; 59 Ge, Li, Su, Lin, Tian, Chen (bib0250) 2019; 9 Wu, Jiao, Luo, Xu, Wei, Wang, Yan, Gu, Xu, Du, Lin, Zhu (bib0255) 2019; 15 Li, Rong, Zhang, Wang, Li (bib0125) 2020; 13 Fan, Xi, Fan, Wang, Zhu, Tang, Xu, Liang, Jiang, Yan, Gao (bib0015) 2018; 9 Wu, Wang, Wang, Lou, Li, Zhu, Qin, Wei (bib0010) 2019; 48 Jiao, Xu, Yan, Wu, Liu, Du, Lin, Zhu (bib0065) 2019; 91 Li, Chen, Xiao, Gong, Li, Zheng, Zheng, Yan, Cheong, Shen, Fu, Gu, Zhuang, Chen, Wang, Peng, Li, Li (bib0050) 2018; 30 Wang, Tang, Zhou (bib0045) 2019; 141 Komkova, Karyakina, Karyakin (bib0085) 2018; 140 Zhu, Shi, Xu, Fu, Wan, Yang, Yao, Song, Zhou, Du, Beckman, Su, Lin (bib0185) 2018; 8 Zhang, Zhao, Chen, Huang, Dong, Chen, Liu, Wang, Yan, Li, Wang (bib0135) 2019; 141 Jiang, Gu, Zheng, Liu, Qiu, Wang, Li, Chen, Ji, Li (bib0175) 2019; 12 Zhao, Liao, Yu, Wei, Liu (bib0200) 2019; 6 Chen, Zhou, Liu, Yuan, Wang, Zhao, Zhao, Zhou, Wang, Xue, Yao, Xiong, Wu (bib0115) 2020 Zhu, Fu, Shi, Du, Lin (bib0055) 2017; 56 Wei, Wang (bib0005) 2013; 42 Wang, Chen, Zhang, Yao, Liu, Lin, Ju, Dong, Zheng, Yan, Zheng, Li, Wang, Yang, He, Wang, Deng, Wu, Li (bib0180) 2017; 139 Huang, Chen, Gan, Wang, Dong (bib0060) 2019; 5 Wang, Zhang, Ju, Liu, Cao, Chen, Ren, Qu (bib0235) 2018; 9 Ma, Mao, Yang, Pan, Chen, Wang, Yu, Mao, Li (bib0070) 2019; 55 Chen, Chen, Siahrostami, Higgins, Nordlund, Sokaras, Kim, Liu, Yan, Nilsson, Sinclair, Nørskov, Jaramillo, Bao (bib0170) 2018; 140 Gao, Zhuang, Nie, Zhang, Zhang, Gu, Wang, Feng, Yang, Perrett, Yan (bib0030) 2007; 2 Whitehead, Thorpe, Carter, Groucutt, Kricka (bib0090) 1983; 305 Jiao, Yan, Wu, Gu, Zhu, Du, Lin (bib0040) 2020; 59 Mun, Lee, Kim, Kim, Lee, Han, Lee (bib0215) 2019; 141 Xiang, Feng, Chen (bib0110) 2020; 32 Li (10.1016/j.nantod.2020.100971_bib0050) 2018; 30 Yu (10.1016/j.nantod.2020.100971_bib0155) 2018; 2 Xiang (10.1016/j.nantod.2020.100971_bib0110) 2020; 32 Hao (10.1016/j.nantod.2020.100971_bib0190) 2018; 6 Wu (10.1016/j.nantod.2020.100971_bib0010) 2019; 48 Jiao (10.1016/j.nantod.2020.100971_bib0065) 2019; 91 Yuan (10.1016/j.nantod.2020.100971_bib0195) 2018; 3 Zhang (10.1016/j.nantod.2020.100971_bib0135) 2019; 141 Li (10.1016/j.nantod.2020.100971_bib0210) 2019; 9 Wan (10.1016/j.nantod.2020.100971_bib0130) 2020; 142 Komkova (10.1016/j.nantod.2020.100971_bib0085) 2018; 140 Jiang (10.1016/j.nantod.2020.100971_bib0175) 2019; 12 Li (10.1016/j.nantod.2020.100971_bib0125) 2020; 13 Zhao (10.1016/j.nantod.2020.100971_bib0145) 2019; 10 Fan (10.1016/j.nantod.2020.100971_bib0015) 2018; 9 Berglund (10.1016/j.nantod.2020.100971_bib0100) 2002; 417 Wu (10.1016/j.nantod.2020.100971_bib0255) 2019; 15 Wu (10.1016/j.nantod.2020.100971_bib0075) 2020; 92 Wei (10.1016/j.nantod.2020.100971_bib0005) 2013; 42 Fang (10.1016/j.nantod.2020.100971_bib0025) 2018; 9 Yang (10.1016/j.nantod.2020.100971_bib0220) 2019; 9 Xu (10.1016/j.nantod.2020.100971_bib0225) 2020; 63 Huang (10.1016/j.nantod.2020.100971_bib0060) 2019; 5 Mun (10.1016/j.nantod.2020.100971_bib0215) 2019; 141 Jiang (10.1016/j.nantod.2020.100971_bib0230) 2018; 13 Zhu (10.1016/j.nantod.2020.100971_bib0055) 2017; 56 Whitehead (10.1016/j.nantod.2020.100971_bib0090) 1983; 305 Zhu (10.1016/j.nantod.2020.100971_bib0165) 2018; 28 Pott (10.1016/j.nantod.2020.100971_bib0105) 2018; 140 Miao (10.1016/j.nantod.2020.100971_bib0205) 2019; 29 Cheng (10.1016/j.nantod.2020.100971_bib0095) 2018; 57 Ge (10.1016/j.nantod.2020.100971_bib0250) 2019; 9 Chen (10.1016/j.nantod.2020.100971_bib0170) 2018; 140 Sun (10.1016/j.nantod.2020.100971_bib0160) 2018; 28 Jiao (10.1016/j.nantod.2020.100971_bib0040) 2020; 59 Wang (10.1016/j.nantod.2020.100971_bib0180) 2017; 139 Zhu (10.1016/j.nantod.2020.100971_bib0185) 2018; 8 Jiao (10.1016/j.nantod.2020.100971_bib0150) 2018; 57 Wang (10.1016/j.nantod.2020.100971_bib0045) 2019; 141 Gao (10.1016/j.nantod.2020.100971_bib0030) 2007; 2 Jiang (10.1016/j.nantod.2020.100971_bib0020) 2019; 48 Chen (10.1016/j.nantod.2020.100971_bib0115) 2020 Huo (10.1016/j.nantod.2020.100971_bib0245) 2019; 13 Cao (10.1016/j.nantod.2020.100971_bib0080) 2020; 59 Zhao (10.1016/j.nantod.2020.100971_bib0200) 2019; 6 Wang (10.1016/j.nantod.2020.100971_bib0235) 2018; 9 Huang (10.1016/j.nantod.2020.100971_bib0035) 2019; 119 Jiao (10.1016/j.nantod.2020.100971_bib0120) 2020; 10 Cao (10.1016/j.nantod.2020.100971_bib0240) 2019; 58 Sun (10.1016/j.nantod.2020.100971_bib0140) 2019; 7 Ma (10.1016/j.nantod.2020.100971_bib0070) 2019; 55 |
References_xml | – volume: 13 start-page: 1842 year: 2020 end-page: 1855 ident: bib0125 publication-title: Nano Res. – volume: 6 start-page: 8053 year: 2018 end-page: 8058 ident: bib0190 publication-title: J. Mater. Chem. A – volume: 13 start-page: 1506 year: 2018 end-page: 1520 ident: bib0230 publication-title: Nat. Protoc. – volume: 59 start-page: 5108 year: 2020 end-page: 5115 ident: bib0080 publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 1754 year: 2019 end-page: 1760 ident: bib0200 publication-title: ChemElectroChem – volume: 2 start-page: 577 year: 2007 end-page: 583 ident: bib0030 publication-title: Nat. Nanotechnol. – volume: 63 start-page: 972 year: 2020 end-page: 981 ident: bib0225 publication-title: Sci. China Mater. – volume: 9 start-page: 129 year: 2018 ident: bib0025 publication-title: Nat. Commun. – volume: 8 year: 2018 ident: bib0185 publication-title: Adv. Energy Mater. – volume: 9 start-page: 2158 year: 2019 end-page: 2163 ident: bib0220 publication-title: ACS Catal. – volume: 140 start-page: 1535 year: 2018 end-page: 1543 ident: bib0105 publication-title: J. Am. Chem. Soc. – volume: 119 start-page: 4357 year: 2019 end-page: 4412 ident: bib0035 publication-title: Chem. Rev. – volume: 141 start-page: 14115 year: 2019 end-page: 14119 ident: bib0045 publication-title: J. Am. Chem. Soc. – volume: 59 start-page: 2565 year: 2020 end-page: 2576 ident: bib0040 publication-title: Angew. Chem. Int. Ed. – volume: 91 start-page: 11994 year: 2019 end-page: 11999 ident: bib0065 publication-title: Anal. Chem. – volume: 58 start-page: 16236 year: 2019 end-page: 16242 ident: bib0240 publication-title: Angew. Chem. Int. Ed. – volume: 141 start-page: 6254 year: 2019 end-page: 6262 ident: bib0215 publication-title: J. Am. Chem. Soc. – volume: 32 year: 2020 ident: bib0110 publication-title: Adv. Mater. – volume: 142 start-page: 8431 year: 2020 end-page: 8439 ident: bib0130 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 1610 year: 2018 end-page: 1622 ident: bib0155 publication-title: Joule – volume: 9 start-page: 3334 year: 2018 ident: bib0235 publication-title: Nat. Commun. – volume: 48 start-page: 1004 year: 2019 end-page: 1076 ident: bib0010 publication-title: Chem. Soc. Rev. – volume: 9 start-page: 1440 year: 2018 ident: bib0015 publication-title: Nat. Commun. – volume: 55 start-page: 159 year: 2019 end-page: 162 ident: bib0070 publication-title: Chem. Commun. – volume: 56 start-page: 13944 year: 2017 end-page: 13960 ident: bib0055 publication-title: Angew. Chem. Int. Ed. – volume: 57 start-page: 8525 year: 2018 end-page: 8529 ident: bib0150 publication-title: Angew. Chem. Int. Ed. – volume: 30 year: 2018 ident: bib0050 publication-title: Adv. Mater. – volume: 417 start-page: 463 year: 2002 end-page: 468 ident: bib0100 publication-title: Nature – volume: 10 start-page: 1278 year: 2019 ident: bib0145 publication-title: Nat. Commun. – volume: 9 start-page: 5929 year: 2019 end-page: 5934 ident: bib0210 publication-title: ACS Catal. – volume: 10 start-page: 6422 year: 2020 end-page: 6429 ident: bib0120 publication-title: ACS Catal. – volume: 13 start-page: 2643 year: 2019 end-page: 2653 ident: bib0245 publication-title: ACS Nano – year: 2020 ident: bib0115 publication-title: Small – volume: 3 start-page: 252 year: 2018 end-page: 260 ident: bib0195 publication-title: ACS Energy Lett. – volume: 28 year: 2018 ident: bib0165 publication-title: Adv. Funct. Mater. – volume: 48 start-page: 3683 year: 2019 end-page: 3704 ident: bib0020 publication-title: Chem. Soc. Rev. – volume: 29 year: 2019 ident: bib0205 publication-title: Adv. Funct. Mater. – volume: 12 start-page: 322 year: 2019 end-page: 333 ident: bib0175 publication-title: Energy Environ. Sci. – volume: 141 start-page: 20118 year: 2019 end-page: 20126 ident: bib0135 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 9419 year: 2017 end-page: 9422 ident: bib0180 publication-title: J. Am. Chem. Soc. – volume: 42 start-page: 6060 year: 2013 end-page: 6093 ident: bib0005 publication-title: Chem. Soc. Rev. – volume: 140 start-page: 7851 year: 2018 end-page: 7859 ident: bib0170 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 20952 year: 2019 end-page: 20957 ident: bib0140 publication-title: J. Mater. Chem. A – volume: 92 start-page: 3373 year: 2020 end-page: 3379 ident: bib0075 publication-title: Anal. Chem. – volume: 140 start-page: 11302 year: 2018 end-page: 11307 ident: bib0085 publication-title: J. Am. Chem. Soc. – volume: 28 year: 2018 ident: bib0160 publication-title: Adv. Funct. Mater. – volume: 57 start-page: 3123 year: 2018 end-page: 3127 ident: bib0095 publication-title: Angew. Chem. Int. Ed. – volume: 5 year: 2019 ident: bib0060 publication-title: Sci. Adv. – volume: 9 year: 2019 ident: bib0250 publication-title: Adv. Energy Mater. – volume: 305 start-page: 158 year: 1983 end-page: 159 ident: bib0090 publication-title: Nature – volume: 15 year: 2019 ident: bib0255 publication-title: Small – volume: 140 start-page: 11302 year: 2018 ident: 10.1016/j.nantod.2020.100971_bib0085 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b05223 – year: 2020 ident: 10.1016/j.nantod.2020.100971_bib0115 publication-title: Small – volume: 28 year: 2018 ident: 10.1016/j.nantod.2020.100971_bib0160 publication-title: Adv. Funct. Mater. – volume: 59 start-page: 5108 year: 2020 ident: 10.1016/j.nantod.2020.100971_bib0080 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201912182 – volume: 48 start-page: 1004 year: 2019 ident: 10.1016/j.nantod.2020.100971_bib0010 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00457A – volume: 8 year: 2018 ident: 10.1016/j.nantod.2020.100971_bib0185 publication-title: Adv. Energy Mater. – volume: 3 start-page: 252 year: 2018 ident: 10.1016/j.nantod.2020.100971_bib0195 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b01188 – volume: 63 start-page: 972 year: 2020 ident: 10.1016/j.nantod.2020.100971_bib0225 publication-title: Sci. China Mater. doi: 10.1007/s40843-020-1334-6 – volume: 9 year: 2019 ident: 10.1016/j.nantod.2020.100971_bib0250 publication-title: Adv. Energy Mater. – volume: 32 year: 2020 ident: 10.1016/j.nantod.2020.100971_bib0110 publication-title: Adv. Mater. doi: 10.1002/adma.201905994 – volume: 56 start-page: 13944 year: 2017 ident: 10.1016/j.nantod.2020.100971_bib0055 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201703864 – volume: 28 year: 2018 ident: 10.1016/j.nantod.2020.100971_bib0165 publication-title: Adv. Funct. Mater. – volume: 12 start-page: 322 year: 2019 ident: 10.1016/j.nantod.2020.100971_bib0175 publication-title: Energy Environ. Sci. doi: 10.1039/C8EE03276A – volume: 9 start-page: 2158 year: 2019 ident: 10.1016/j.nantod.2020.100971_bib0220 publication-title: ACS Catal. doi: 10.1021/acscatal.8b04381 – volume: 5 year: 2019 ident: 10.1016/j.nantod.2020.100971_bib0060 publication-title: Sci. Adv. – volume: 9 start-page: 1440 year: 2018 ident: 10.1016/j.nantod.2020.100971_bib0015 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03903-8 – volume: 48 start-page: 3683 year: 2019 ident: 10.1016/j.nantod.2020.100971_bib0020 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00718G – volume: 10 start-page: 1278 year: 2019 ident: 10.1016/j.nantod.2020.100971_bib0145 publication-title: Nat. Commun. doi: 10.1038/s41467-019-09290-y – volume: 142 start-page: 8431 year: 2020 ident: 10.1016/j.nantod.2020.100971_bib0130 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c02229 – volume: 59 start-page: 2565 year: 2020 ident: 10.1016/j.nantod.2020.100971_bib0040 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201905645 – volume: 141 start-page: 6254 year: 2019 ident: 10.1016/j.nantod.2020.100971_bib0215 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b13543 – volume: 30 year: 2018 ident: 10.1016/j.nantod.2020.100971_bib0050 publication-title: Adv. Mater. – volume: 57 start-page: 3123 year: 2018 ident: 10.1016/j.nantod.2020.100971_bib0095 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201712803 – volume: 57 start-page: 8525 year: 2018 ident: 10.1016/j.nantod.2020.100971_bib0150 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201803262 – volume: 119 start-page: 4357 year: 2019 ident: 10.1016/j.nantod.2020.100971_bib0035 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00672 – volume: 29 year: 2019 ident: 10.1016/j.nantod.2020.100971_bib0205 publication-title: Adv. Funct. Mater. – volume: 9 start-page: 129 year: 2018 ident: 10.1016/j.nantod.2020.100971_bib0025 publication-title: Nat. Commun. doi: 10.1038/s41467-017-02502-3 – volume: 2 start-page: 1610 year: 2018 ident: 10.1016/j.nantod.2020.100971_bib0155 publication-title: Joule doi: 10.1016/j.joule.2018.06.007 – volume: 13 start-page: 2643 year: 2019 ident: 10.1016/j.nantod.2020.100971_bib0245 publication-title: ACS Nano – volume: 6 start-page: 1754 year: 2019 ident: 10.1016/j.nantod.2020.100971_bib0200 publication-title: ChemElectroChem doi: 10.1002/celc.201801688 – volume: 9 start-page: 5929 year: 2019 ident: 10.1016/j.nantod.2020.100971_bib0210 publication-title: ACS Catal. doi: 10.1021/acscatal.9b00869 – volume: 140 start-page: 1535 year: 2018 ident: 10.1016/j.nantod.2020.100971_bib0105 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b12621 – volume: 7 start-page: 20952 year: 2019 ident: 10.1016/j.nantod.2020.100971_bib0140 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA06949F – volume: 13 start-page: 1842 year: 2020 ident: 10.1016/j.nantod.2020.100971_bib0125 publication-title: Nano Res. doi: 10.1007/s12274-020-2755-3 – volume: 2 start-page: 577 year: 2007 ident: 10.1016/j.nantod.2020.100971_bib0030 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2007.260 – volume: 92 start-page: 3373 year: 2020 ident: 10.1016/j.nantod.2020.100971_bib0075 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b05437 – volume: 10 start-page: 6422 year: 2020 ident: 10.1016/j.nantod.2020.100971_bib0120 publication-title: ACS Catal. doi: 10.1021/acscatal.0c01647 – volume: 139 start-page: 9419 year: 2017 ident: 10.1016/j.nantod.2020.100971_bib0180 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b01686 – volume: 141 start-page: 20118 year: 2019 ident: 10.1016/j.nantod.2020.100971_bib0135 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b09352 – volume: 140 start-page: 7851 year: 2018 ident: 10.1016/j.nantod.2020.100971_bib0170 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b02798 – volume: 58 start-page: 16236 year: 2019 ident: 10.1016/j.nantod.2020.100971_bib0240 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201908289 – volume: 91 start-page: 11994 year: 2019 ident: 10.1016/j.nantod.2020.100971_bib0065 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b02901 – volume: 6 start-page: 8053 year: 2018 ident: 10.1016/j.nantod.2020.100971_bib0190 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA00683K – volume: 55 start-page: 159 year: 2019 ident: 10.1016/j.nantod.2020.100971_bib0070 publication-title: Chem. Commun. doi: 10.1039/C8CC08116F – volume: 15 year: 2019 ident: 10.1016/j.nantod.2020.100971_bib0255 publication-title: Small – volume: 305 start-page: 158 year: 1983 ident: 10.1016/j.nantod.2020.100971_bib0090 publication-title: Nature doi: 10.1038/305158a0 – volume: 9 start-page: 3334 year: 2018 ident: 10.1016/j.nantod.2020.100971_bib0235 publication-title: Nat. Commun. doi: 10.1038/s41467-018-05798-x – volume: 13 start-page: 1506 year: 2018 ident: 10.1016/j.nantod.2020.100971_bib0230 publication-title: Nat. Protoc. doi: 10.1038/s41596-018-0001-1 – volume: 141 start-page: 14115 year: 2019 ident: 10.1016/j.nantod.2020.100971_bib0045 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b07712 – volume: 42 start-page: 6060 year: 2013 ident: 10.1016/j.nantod.2020.100971_bib0005 publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs35486e – volume: 417 start-page: 463 year: 2002 ident: 10.1016/j.nantod.2020.100971_bib0100 publication-title: Nature doi: 10.1038/417463a |
SSID | ssj0045745 |
Score | 2.6710775 |
Snippet | Boron-doped Fe-N-C single-atom nanozymes with an intrinsic charge transfer achieve the significantly enhanced peroxidase-like activities and selectivities,... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 100971 |
SubjectTerms | Biosensors Heteroatom doping Nanozymes Peroxidase-like activities Single-atom catalysts |
Title | Boron-doped Fe-N-C single-atom nanozymes specifically boost peroxidase-like activity |
URI | https://dx.doi.org/10.1016/j.nantod.2020.100971 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXvQgPrE-yh68rt0m2d3ssRZLVezFFnoL2WQWqukDW8F68Le7k0epIAoeN-yQ8DHMfEO-mSHkKgxB8pgrBl7KWWC4z8I05EzI0CoujdC5NuexL3vD4H4kRjXSqXphUFZZxv4ipufRunzSLNFszsfj5pPj0mH-p6AoE7CjPAgUevn151rmEQiVLyrGywxvV-1zucYLtSYznBfq5XIBrVo_p6eNlNPdJ3slV6Tt4nMOSA2mh2R3Y4LgERnc4AQCls7mkNIusD7rUKz-M2Cump5Q9-rZx2oCC4otlSgLirNsRR21Xiwpzgh_H6cuj7Fs_AIUexxwlcQxGXZvB50eKxclsMQx_iWTluvYEQGXu40NbeJqCC2stlrpxPrKkyGXiZEgwAORSHBVE7cxSGtiI1Kt_BOyNZ1N4ZRQ7kMr1VJ7NnFMqpUYR0Eg9gU37qQN1Ilf4RMl5RRxXGaRRZVc7DkqUI0Q1ahAtU7Y2mpeTNH4476qoI--eUPkAv2vlmf_tjwnO3gqpCoXZGv5-gaXjnAsTSP3qAbZbt899PpfZ_zUvw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60HtSD-MT63IPXpduku5s9arFUW3Oxhd5CNpmFaPpAK6i_3t08REEUPGazQ8KwzHyTfPMNwEUQoGAxkxS9lNGOZj4N0oBRLgIjmdBcFdycu1D0x53bCZ-sQLfuhXG0yir2lzG9iNbVSqvyZmuRZa17i6WD4k9BWSbIVVhz6lS8AWuXN4N-WAfkDpfFrGK3nzqDuoOuoHk5usncSYZ6BWNAyfbPGepL1ultw1YFF8ll-UY7sIKzXdj8IiK4B6MrJ0JA0_kCU9JDGtIucR8AcqS2oJ4S--j5-9sUn4nrqnTMoDjP34hF189L4mTCX7PUpjKaZ49IXJuDmyaxD-Pe9ajbp9WsBJpY0L-kwjAVWyxg07c2gUlsGaG4UUZJlRhfeiJgItECOXrIE4G2cGImRmF0rHmqpH8Ajdl8hodAmI_tVAnlmcSCqXaiLQrB2OdM2yulsQl-7Z8oqYTE3TyLPKoZYw9R6dXIeTUqvdoE-mm1KIU0_tgva9dH3w5EZGP9r5ZH_7Y8h_X-6G4YDW_CwTFsuDslc-UEGsunFzy1-GOpz6rz9QHAINdw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Boron-doped+Fe-N-C+single-atom+nanozymes+specifically+boost+peroxidase-like+activity&rft.jtitle=Nano+today&rft.au=Jiao%2C+Lei&rft.au=Xu%2C+Weiqing&rft.au=Zhang%2C+Yu&rft.au=Wu%2C+Yu&rft.date=2020-12-01&rft.issn=1748-0132&rft.volume=35&rft.spage=100971&rft_id=info:doi/10.1016%2Fj.nantod.2020.100971&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nantod_2020_100971 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-0132&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-0132&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-0132&client=summon |