ANTARES: Space-resolved electronic structure
The spatially resolved ARPES (nanoARPES) is a development of conventional ARPES technique achieved with the focusing of light on the sample into the spot with submicron sizes. This development is used in research of essentially small samples, for example, heterostructures build of flakes of 2D mater...
Saved in:
Published in | Journal of electron spectroscopy and related phenomena Vol. 266; p. 147362 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The spatially resolved ARPES (nanoARPES) is a development of conventional ARPES technique achieved with the focusing of light on the sample into the spot with submicron sizes. This development is used in research of essentially small samples, for example, heterostructures build of flakes of 2D materials, micro-crystals or polycrystalline samples, different crystal termination, domains in electronic structure. ANTARES is delivering the nanoARPES technique to user community since 2010, up to now the instrument was used with samples of various types, and that was useful to accumulate the specific experience. In this paper we report the current layout and actual performance of the ANTARES instrument at Synchrotron SOLEIL, as well as the most typical application areas. The most important and recent upgrades include focusing optics and in-operando setup. The new optical units deliver the increased flux on sample as well as the option to vary the photon energy. The in-operando setup offers the option of electrical connection to the sample being studied with nanoARPES, that promises various applications, where the most demanded now is the control of charge carrier density with applied voltage. This “gate-doping” is often applied to the heterostructures of 2D materials, that could be designed and build on purpose. The 2D heterostructures is probably the most typical field of application of the instrument, with or without in-operando option. At the same time the use case of the ANTARES instrument is still in the development by the realisation of new kinds of samples and of the new types of the experiments.
•NanoARPES is a technique providing the angles resolved photoemission with spatial resolution.•ANTARES is a nanoARPES instrument launched about 10 years ago among the first instruments.•The instrument is delivering performance adequate for studies in various research areas.•Research of 2D materials and heterostructures, topological materials, superconductors, and other subjects.•In-operando electrical connections to the sample under measurement provides opportunity to study micro-devices. |
---|---|
AbstractList | The spatially resolved ARPES (nanoARPES) is a development of conventional ARPES technique achieved with the focusing of light on the sample into the spot with submicron sizes. This development is used in research of essentially small samples, for example, heterostructures build of flakes of 2D materials, micro-crystals or polycrystalline samples, different crystal termination, domains in electronic structure. ANTARES is delivering the nanoARPES technique to user community since 2010, up to now the instrument was used with samples of various types, and that was useful to accumulate the specific experience. In this paper we report the current layout and actual performance of the ANTARES instrument at Synchrotron SOLEIL, as well as the most typical application areas. The most important and recent upgrades include focusing optics and in-operando setup. The new optical units deliver the increased flux on sample as well as the option to vary the photon energy. The in-operando setup offers the option of electrical connection to the sample being studied with nanoARPES, that promises various applications, where the most demanded now is the control of charge carrier density with applied voltage. This “gate-doping” is often applied to the heterostructures of 2D materials, that could be designed and build on purpose. The 2D heterostructures is probably the most typical field of application of the instrument, with or without in-operando option. At the same time the use case of the ANTARES instrument is still in the development by the realisation of new kinds of samples and of the new types of the experiments.
•NanoARPES is a technique providing the angles resolved photoemission with spatial resolution.•ANTARES is a nanoARPES instrument launched about 10 years ago among the first instruments.•The instrument is delivering performance adequate for studies in various research areas.•Research of 2D materials and heterostructures, topological materials, superconductors, and other subjects.•In-operando electrical connections to the sample under measurement provides opportunity to study micro-devices. |
ArticleNumber | 147362 |
Author | Avila, J. Lorcy, S. Dudin, P. |
Author_xml | – sequence: 1 givenname: J. surname: Avila fullname: Avila, J. – sequence: 2 givenname: S. surname: Lorcy fullname: Lorcy, S. – sequence: 3 givenname: P. surname: Dudin fullname: Dudin, P. email: Pavel.Dudin@synchrotron-soleil.fr |
BookMark | eNqFkMtKAzEYhYNUsK2-gYs-gDPmnmkXQin1AkXB1nXIJH8gZZwpSVrw7Z0yrlzo6iwO34HvTNCo7VpA6JbgkmAi7_clNOkAtqSYspJwxSS9QGNSKVZQQeUIjTGTVUExr67QJKU9xlgJRsfobvm6W76vt4vZ9mAsFBFS15zAzaABm2PXBjtLOR5tPka4RpfeNAlufnKKPh7Xu9VzsXl7elktN4VlWOZCQu3AA6NYyspBXXsumfXKCRCggHCJlRJWzitliPGeeI6583MhagrYGzZFi2HXxi6lCF7bkE0OXZujCY0mWJ-99V4P3vrsrQfvHua_4EMMnyZ-_Yc9DFjfwSlA1MkGaC24EPsntOvC3wPfiwR2HQ |
CitedBy_id | crossref_primary_10_1007_s12274_024_6622_5 crossref_primary_10_1016_j_jallcom_2025_179817 crossref_primary_10_1021_acsnano_5c00256 crossref_primary_10_1103_PhysRevMaterials_8_124004 crossref_primary_10_1038_s41598_024_73795_w |
Cites_doi | 10.1107/S0909049510013993 10.1107/S1600576714027575 10.1021/acs.nanolett.6b00609 10.1038/s41586-019-1402-1 10.1103/PhysRevB.92.035105 10.1006/adnd.1993.1013 10.1038/s41699-019-0109-3 10.1103/PhysRevB.99.075118 10.1088/1361-6668/aaffa8 10.1080/08940886.2012.720159 10.1038/s41567-020-01041-x 10.1038/s41586-019-0927-7 10.3390/nano11112921 10.1021/acs.nanolett.8b00589 10.1021/acs.nanolett.9b00875 10.1088/0953-8984/28/44/444002 10.1063/1.5020054 10.1088/2053-1583/3/2/021009 10.1126/sciadv.1601832 10.1063/1.4802782 10.1103/PhysRevB.96.115205 10.1038/s41567-020-0974-x 10.1021/nl2031037 10.1080/08940886.2014.889549 10.1038/s42005-021-00733-x 10.1016/j.matt.2020.09.005 10.1007/s41365-021-00858-2 10.1080/08940886.2012.720162 10.1103/PhysRevB.90.035448 10.1107/S1600577519000869 10.1103/PhysRevLett.125.236403 10.1126/science.aac9439 10.1103/PhysRevLett.108.155501 10.1021/acs.nanolett.9b00649 10.1103/PhysRevB.98.115405 10.1088/0031-8949/41/6/001 10.1038/srep02439 10.1103/PhysRevB.88.075406 10.1126/sciadv.abf4387 10.1038/s41598-017-05361-6 10.1021/acsnano.8b08260 10.1080/08940886.2018.1483660 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. |
Copyright_xml | – notice: 2023 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.elspec.2023.147362 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1873-2526 |
ExternalDocumentID | 10_1016_j_elspec_2023_147362 S0368204823000798 |
GroupedDBID | --K --M -~X .GJ .~1 0R~ 1B1 1RT 1~. 1~5 29K 3O- 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABEFU ABFNM ABFRF ABJNI ABMAC ABNEU ABXDB ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACKIV ACNNM ACRLP ADBBV ADECG ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJQLL AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HMU HVGLF HX~ HZ~ IHE J1W KOM M36 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SCH SDF SDG SDP SES SEW SPC SPCBC SPD SSK SSQ SSZ T5K TN5 UNMZH WUQ XFK XPP YK3 ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-6ebdefe320668debbf463cf7d5e5e7e1460775c6987a1aff1f404df955b2e0fa3 |
IEDL.DBID | .~1 |
ISSN | 0368-2048 |
IngestDate | Tue Jul 01 02:39:04 EDT 2025 Thu Apr 24 23:03:52 EDT 2025 Fri Feb 23 02:34:37 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Band structure NanoARPES ARPES 2D materials Photoemission microscopy |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-6ebdefe320668debbf463cf7d5e5e7e1460775c6987a1aff1f404df955b2e0fa3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_elspec_2023_147362 crossref_primary_10_1016_j_elspec_2023_147362 elsevier_sciencedirect_doi_10_1016_j_elspec_2023_147362 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2023 2023-07-00 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: July 2023 |
PublicationDecade | 2020 |
PublicationTitle | Journal of electron spectroscopy and related phenomena |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Bostwick (bib6) 2012; 25 Curcio (bib16) 2020; 125 Pei (bib33) 2022; 12 Moritz (bib2) 2017; 88 Nguyen (bib17) 2019; 572 Zribi (bib31) 2019; 3 Hart (bib28) 2017; 7 Yi-Chen (bib4) 2021; 32 Joucken (bib34) 2019; 19 Giorgetta, Asensio, Avila (bib21) 2011; 1 Bao (bib40) 2021; 4 Nakayama (bib38) 2019; 19 Vogt, De PAdova, Cahangirov (bib32) 2012; 108 Coy-Diaz, Bian, Pierucci, Wang (bib24) 2015; 15 Valbuena (bib37) 2019; 99 Yi (bib36) 2018; 112 Avila (bib7) 2014; 27 Novoselov (bib12) 2016; 353 Randle (bib35) 2019; 13 Henke (bib18) 1993; 54 Benedikt (bib19) 2019; 26 Chen (bib11) 2020; 3 Koch (bib20) 2018; 31 Zhang (bib26) 2018; 18 Ben Aziza (bib25) 2018; 98 Dudin (bib8) 2010; 17–4 Damascelli (bib1) 2004; 61 Sergey (bib3) 2012; 25 Könnecke (bib22) 2015; 48 Webb (bib27) 2017; 96 Ernandes (bib29) 2021; 11 Lisi (bib13) 2021; 17 Utama (bib14) 2021; 17 Stansbury (bib30) 2021; 7 Harald (bib5) 1990; 41 Noguchi (bib10) 2019; 566 Usachov (bib9) 2011; 11 Dudin (bib39) 2019; 32 Wilson (bib15) 2017; 3 Avila, Moreau, Razado-Colambo (bib23) 2013; 3 Utama (10.1016/j.elspec.2023.147362_bib14) 2021; 17 Valbuena (10.1016/j.elspec.2023.147362_bib37) 2019; 99 Damascelli (10.1016/j.elspec.2023.147362_bib1) 2004; 61 Dudin (10.1016/j.elspec.2023.147362_bib8) 2010; 17–4 Harald (10.1016/j.elspec.2023.147362_bib5) 1990; 41 Ernandes (10.1016/j.elspec.2023.147362_bib29) 2021; 11 Moreau (10.1016/j.elspec.2023.147362_sbref24) 2013; 88 Wang (10.1016/j.elspec.2023.147362_sbref29) 2016; 28 Henke (10.1016/j.elspec.2023.147362_bib18) 1993; 54 Cahangirov (10.1016/j.elspec.2023.147362_sbref39) 2014; 90 Curcio (10.1016/j.elspec.2023.147362_bib16) 2020; 125 Ben Aziza (10.1016/j.elspec.2023.147362_bib25) 2018; 98 Joucken (10.1016/j.elspec.2023.147362_bib34) 2019; 19 Koch (10.1016/j.elspec.2023.147362_bib20) 2018; 31 Lisi (10.1016/j.elspec.2023.147362_bib13) 2021; 17 Chen (10.1016/j.elspec.2023.147362_bib11) 2020; 3 Bostwick (10.1016/j.elspec.2023.147362_bib6) 2012; 25 Avila (10.1016/j.elspec.2023.147362_bib7) 2014; 27 De PAdova (10.1016/j.elspec.2023.147362_sbref38) 2013; 102 Pei (10.1016/j.elspec.2023.147362_bib33) 2022; 12 Yi (10.1016/j.elspec.2023.147362_bib36) 2018; 112 Moritz (10.1016/j.elspec.2023.147362_bib2) 2017; 88 Coy-Diaz (10.1016/j.elspec.2023.147362_sbref26) 2015; 15 Randle (10.1016/j.elspec.2023.147362_bib35) 2019; 13 Novoselov (10.1016/j.elspec.2023.147362_bib12) 2016; 353 Wilson (10.1016/j.elspec.2023.147362_bib15) 2017; 3 Dudin (10.1016/j.elspec.2023.147362_bib39) 2019; 32 Benedikt (10.1016/j.elspec.2023.147362_bib19) 2019; 26 Usachov (10.1016/j.elspec.2023.147362_bib9) 2011; 11 Avila (10.1016/j.elspec.2023.147362_sbref23) 2013; 3 Hart (10.1016/j.elspec.2023.147362_bib28) 2017; 7 Sergey (10.1016/j.elspec.2023.147362_bib3) 2012; 25 Webb (10.1016/j.elspec.2023.147362_bib27) 2017; 96 Yi-Chen (10.1016/j.elspec.2023.147362_bib4) 2021; 32 Pierucci (10.1016/j.elspec.2023.147362_sbref28) 2016; 16 Zribi (10.1016/j.elspec.2023.147362_bib31) 2019; 3 Razado-Colambo (10.1016/j.elspec.2023.147362_sbref25) 2015; 92 Zhang (10.1016/j.elspec.2023.147362_bib26) 2018; 18 Bao (10.1016/j.elspec.2023.147362_bib40) 2021; 4 Nguyen (10.1016/j.elspec.2023.147362_bib17) 2019; 572 Vogt (10.1016/j.elspec.2023.147362_sbref37) 2012; 108 Stansbury (10.1016/j.elspec.2023.147362_bib30) 2021; 7 Giorgetta (10.1016/j.elspec.2023.147362_bib21) 2011; 1 Noguchi (10.1016/j.elspec.2023.147362_bib10) 2019; 566 Nakayama (10.1016/j.elspec.2023.147362_bib38) 2019; 19 Könnecke (10.1016/j.elspec.2023.147362_bib22) 2015; 48 Bian (10.1016/j.elspec.2023.147362_sbref27) 2016; 3 |
References_xml | – volume: 27 start-page: 24 year: 2014 end-page: 30 ident: bib7 publication-title: Synchrotron Radiat. N. – volume: 98 year: 2018 ident: bib25 publication-title: Phys. Rev. B. – volume: 96 year: 2017 ident: bib27 publication-title: Phys. Rev. B. – volume: 41 start-page: 737 year: 1990 ident: bib5 publication-title: Phys. Scr. – volume: 353 start-page: 6298 year: 2016 ident: bib12 publication-title: Science – volume: 17 start-page: 189 year: 2021 end-page: 193 ident: bib13 publication-title: Nat. Phys. – volume: 19 start-page: 3737 year: 2019 end-page: 3742 ident: bib38 publication-title: Nano Lett. – volume: 12 year: 2022 ident: bib33 publication-title: Phys. Rev. X. – volume: 4 start-page: 229 year: 2021 ident: bib40 publication-title: Commun. Phys. – volume: 572 start-page: 220 year: 2019 end-page: 223 ident: bib17 publication-title: Nature – volume: 3 start-page: 27 year: 2019 ident: bib31 publication-title: npj 2D Mater. Appl. – volume: 11 start-page: 5401 year: 2011 end-page: 5407 ident: bib9 publication-title: Nano Lett. – volume: 88 year: 2017 ident: bib2 publication-title: Rev. Sci. Instrum. – volume: 54 start-page: 181 year: 1993 end-page: 342 ident: bib18 article-title: X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50–30000 eV, Z=1-92 publication-title: At. Data Nucl. Data Tables – volume: 25 start-page: 6 year: 2012 end-page: 12 ident: bib3 publication-title: Synchrotron Radiat. N., – volume: 13 start-page: 803 year: 2019 end-page: 811 ident: bib35 publication-title: ACS Nano – volume: 17–4 start-page: 445 year: 2010 end-page: 450 ident: bib8 publication-title: J. Synchrotron Radiat. – volume: 7 year: 2021 ident: bib30 publication-title: Sci. Adv. – volume: 48 start-page: 301 year: 2015 end-page: 305 ident: bib22 publication-title: J. Appl. Cryst. – volume: 1 year: 2011 ident: bib21 publication-title: Diam. Light Source Proc. – volume: 32 start-page: 31 year: 2021 ident: bib4 publication-title: Nucl. Sci. Tech. – volume: 7 start-page: 5145 year: 2017 ident: bib28 publication-title: Sci. Rep. – volume: 19 start-page: 2682 year: 2019 end-page: 2687 ident: bib34 publication-title: Nano Lett. – volume: 31 start-page: 50 year: 2018 end-page: 52 ident: bib20 publication-title: Synchrotron Radiat. N. – volume: 3 start-page: 2439 year: 2013 ident: bib23 publication-title: Sci. Rep. – volume: 566 start-page: 518 year: 2019 end-page: 522 ident: bib10 publication-title: Nature – volume: 112 year: 2018 ident: bib36 publication-title: Appl. Phys. Lett. – volume: 3 start-page: 2055 year: 2020 end-page: 2065 ident: bib11 publication-title: Matter – volume: 61 year: 2004 ident: bib1 publication-title: Phys. Scr. – volume: 26 start-page: 467 year: 2019 end-page: 472 ident: bib19 publication-title: J. Synchrotron Radiat. – volume: 15 start-page: 1135 year: 2015 end-page: 1140 ident: bib24 publication-title: ACS Nano – volume: 99 year: 2019 ident: bib37 publication-title: Phys. Rev. B. – volume: 125 year: 2020 ident: bib16 publication-title: Phys. Rev. Lett. – volume: 18 start-page: 4664 year: 2018 end-page: 4668 ident: bib26 publication-title: Nano Lett. – volume: 17 start-page: 184 year: 2021 end-page: 188 ident: bib14 publication-title: Nat. Phys. – volume: 25 start-page: 19 year: 2012 end-page: 25 ident: bib6 publication-title: Synchrotron Radiat. N. – volume: 11 start-page: 2921 year: 2021 ident: bib29 publication-title: Nanomaterials – volume: 108 year: 2012 ident: bib32 publication-title: Phys. Rev. Lett. – volume: 3 year: 2017 ident: bib15 publication-title: Sci. Adv. – volume: 32 year: 2019 ident: bib39 publication-title: Supercond. Sci. Technol. – volume: 17–4 start-page: 445 year: 2010 ident: 10.1016/j.elspec.2023.147362_bib8 publication-title: J. Synchrotron Radiat. doi: 10.1107/S0909049510013993 – volume: 48 start-page: 301 year: 2015 ident: 10.1016/j.elspec.2023.147362_bib22 publication-title: J. Appl. Cryst. doi: 10.1107/S1600576714027575 – volume: 16 start-page: 4054 issue: 7 year: 2016 ident: 10.1016/j.elspec.2023.147362_sbref28 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b00609 – volume: 572 start-page: 220 year: 2019 ident: 10.1016/j.elspec.2023.147362_bib17 publication-title: Nature doi: 10.1038/s41586-019-1402-1 – volume: 92 issue: 3 year: 2015 ident: 10.1016/j.elspec.2023.147362_sbref25 publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.92.035105 – volume: 54 start-page: 181 issue: 2 year: 1993 ident: 10.1016/j.elspec.2023.147362_bib18 article-title: X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50–30000 eV, Z=1-92 publication-title: At. Data Nucl. Data Tables doi: 10.1006/adnd.1993.1013 – volume: 3 start-page: 27 year: 2019 ident: 10.1016/j.elspec.2023.147362_bib31 publication-title: npj 2D Mater. Appl. doi: 10.1038/s41699-019-0109-3 – volume: 99 issue: 7 year: 2019 ident: 10.1016/j.elspec.2023.147362_bib37 publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.99.075118 – volume: 32 issue: 4 year: 2019 ident: 10.1016/j.elspec.2023.147362_bib39 publication-title: Supercond. Sci. Technol. doi: 10.1088/1361-6668/aaffa8 – volume: 15 start-page: 1135 issue: 2 year: 2015 ident: 10.1016/j.elspec.2023.147362_sbref26 publication-title: ACS Nano – volume: 25 start-page: 6 issue: 5 year: 2012 ident: 10.1016/j.elspec.2023.147362_bib3 publication-title: Synchrotron Radiat. N., doi: 10.1080/08940886.2012.720159 – volume: 17 start-page: 189 year: 2021 ident: 10.1016/j.elspec.2023.147362_bib13 publication-title: Nat. Phys. doi: 10.1038/s41567-020-01041-x – volume: 566 start-page: 518 year: 2019 ident: 10.1016/j.elspec.2023.147362_bib10 publication-title: Nature doi: 10.1038/s41586-019-0927-7 – volume: 11 start-page: 2921 issue: 11 year: 2021 ident: 10.1016/j.elspec.2023.147362_bib29 publication-title: Nanomaterials doi: 10.3390/nano11112921 – volume: 1 issue: Issue MEDSI6 year: 2011 ident: 10.1016/j.elspec.2023.147362_bib21 publication-title: Diam. Light Source Proc. – volume: 18 start-page: 4664 issue: 8 year: 2018 ident: 10.1016/j.elspec.2023.147362_bib26 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b00589 – volume: 19 start-page: 3737 issue: 6 year: 2019 ident: 10.1016/j.elspec.2023.147362_bib38 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b00875 – volume: 61 year: 2004 ident: 10.1016/j.elspec.2023.147362_bib1 publication-title: Phys. Scr. – volume: 28 issue: 44 year: 2016 ident: 10.1016/j.elspec.2023.147362_sbref29 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/28/44/444002 – volume: 112 issue: 5 year: 2018 ident: 10.1016/j.elspec.2023.147362_bib36 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5020054 – volume: 3 issue: 2 year: 2016 ident: 10.1016/j.elspec.2023.147362_sbref27 publication-title: 2D Mater. doi: 10.1088/2053-1583/3/2/021009 – volume: 3 year: 2017 ident: 10.1016/j.elspec.2023.147362_bib15 publication-title: Sci. Adv. doi: 10.1126/sciadv.1601832 – volume: 102 issue: 16 year: 2013 ident: 10.1016/j.elspec.2023.147362_sbref38 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4802782 – volume: 96 issue: 11 year: 2017 ident: 10.1016/j.elspec.2023.147362_bib27 publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.96.115205 – volume: 17 start-page: 184 year: 2021 ident: 10.1016/j.elspec.2023.147362_bib14 publication-title: Nat. Phys. doi: 10.1038/s41567-020-0974-x – volume: 11 start-page: 5401 issue: 12 year: 2011 ident: 10.1016/j.elspec.2023.147362_bib9 publication-title: Nano Lett. doi: 10.1021/nl2031037 – volume: 27 start-page: 24 issue: 2 year: 2014 ident: 10.1016/j.elspec.2023.147362_bib7 publication-title: Synchrotron Radiat. N. doi: 10.1080/08940886.2014.889549 – volume: 4 start-page: 229 year: 2021 ident: 10.1016/j.elspec.2023.147362_bib40 publication-title: Commun. Phys. doi: 10.1038/s42005-021-00733-x – volume: 3 start-page: 2055 year: 2020 ident: 10.1016/j.elspec.2023.147362_bib11 publication-title: Matter doi: 10.1016/j.matt.2020.09.005 – volume: 32 start-page: 31 year: 2021 ident: 10.1016/j.elspec.2023.147362_bib4 publication-title: Nucl. Sci. Tech. doi: 10.1007/s41365-021-00858-2 – volume: 25 start-page: 19 issue: 5 year: 2012 ident: 10.1016/j.elspec.2023.147362_bib6 publication-title: Synchrotron Radiat. N. doi: 10.1080/08940886.2012.720162 – volume: 90 issue: 3 year: 2014 ident: 10.1016/j.elspec.2023.147362_sbref39 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.035448 – volume: 26 start-page: 467 issue: 2 year: 2019 ident: 10.1016/j.elspec.2023.147362_bib19 publication-title: J. Synchrotron Radiat. doi: 10.1107/S1600577519000869 – volume: 88 year: 2017 ident: 10.1016/j.elspec.2023.147362_bib2 publication-title: Rev. Sci. Instrum. – volume: 125 year: 2020 ident: 10.1016/j.elspec.2023.147362_bib16 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.236403 – volume: 353 start-page: 6298 year: 2016 ident: 10.1016/j.elspec.2023.147362_bib12 publication-title: Science doi: 10.1126/science.aac9439 – volume: 108 issue: 15 year: 2012 ident: 10.1016/j.elspec.2023.147362_sbref37 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.155501 – volume: 19 start-page: 2682 issue: 4 year: 2019 ident: 10.1016/j.elspec.2023.147362_bib34 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b00649 – volume: 98 issue: 11 year: 2018 ident: 10.1016/j.elspec.2023.147362_bib25 publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.98.115405 – volume: 41 start-page: 737 year: 1990 ident: 10.1016/j.elspec.2023.147362_bib5 publication-title: Phys. Scr. doi: 10.1088/0031-8949/41/6/001 – volume: 3 start-page: 2439 year: 2013 ident: 10.1016/j.elspec.2023.147362_sbref23 publication-title: Sci. Rep. doi: 10.1038/srep02439 – volume: 88 issue: 7 year: 2013 ident: 10.1016/j.elspec.2023.147362_sbref24 publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.88.075406 – volume: 7 issue: 37 year: 2021 ident: 10.1016/j.elspec.2023.147362_bib30 publication-title: Sci. Adv. doi: 10.1126/sciadv.abf4387 – volume: 7 start-page: 5145 year: 2017 ident: 10.1016/j.elspec.2023.147362_bib28 publication-title: Sci. Rep. doi: 10.1038/s41598-017-05361-6 – volume: 13 start-page: 803 issue: 1 year: 2019 ident: 10.1016/j.elspec.2023.147362_bib35 publication-title: ACS Nano doi: 10.1021/acsnano.8b08260 – volume: 31 start-page: 50 issue: 4 year: 2018 ident: 10.1016/j.elspec.2023.147362_bib20 publication-title: Synchrotron Radiat. N. doi: 10.1080/08940886.2018.1483660 – volume: 12 issue: 2 year: 2022 ident: 10.1016/j.elspec.2023.147362_bib33 publication-title: Phys. Rev. X. |
SSID | ssj0007532 |
Score | 2.4081728 |
Snippet | The spatially resolved ARPES (nanoARPES) is a development of conventional ARPES technique achieved with the focusing of light on the sample into the spot with... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 147362 |
SubjectTerms | 2D materials ARPES Band structure NanoARPES Photoemission microscopy |
Title | ANTARES: Space-resolved electronic structure |
URI | https://dx.doi.org/10.1016/j.elspec.2023.147362 |
Volume | 266 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KRfAiPrE-Sg4eXdtkX4m3UCxVsZe20FvYZGehUtqi1aO_3dlsYhVEwUMOCRlIvky-mWFnviXkUhsWQ6w0DYucUy6EpjqONMVDJWEibDdy08iPQzmY8PupmDZIr56FcW2VFfd7Ti_ZurrSqdDsrGazzgi5N3ays5hEY6BL3MAv58p5-fX7ps0D03G_kiCdR_C4Hp8re7ww_KzACRlGDClDMRn9HJ6-hJz-HtmtcsUg9Y-zTxqwOCDbZc9m8XJIrtLhOEUAb4IRFr5AsXBezt_ABJutbQIvD_v6DEdk0r8d9wa02vyAFpjFr6mE3IAF5uTWYwN5brlkhVVGgAAFSHBOvK6QCQIdamtDy7vc2ESIPIKu1eyYNBfLBZyQoEgAMJGTzGCxZY3VkbISVGidUgv-gS3C6nfOikoZ3G1QMc_qFrCnzCOVOaQyj1SL0E-rlVfG-ON-VcOZffvCGZL3r5an_7Y8IzvuzLfXnpMmYg4XmESs83bpJW2yld49DIYfJ0HFXQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qi-hFfGJ95uDRpc1j8_AWiiW1bS5tobewyc5CpbRFq7_f2W5SFUTBQy5JBpIvm29m2JlvAO6EdEMMA8HsIveYx7lgInQEoyOI7IirtqO7kYepn0y8pymf1qBT9cLossqS-w2nb9i6PNMq0WytZrPWiLg31LKzFESTo4vCHWhodSpeh0bc6yfplpApIjebCb5eFF5YddBtyrzIA61Qaxk6LrFG4PrOzx7qi9fpHsJBGS5asXmiI6jh4hh2N2WbxesJ3MfpOCYMH6wR5b7IKHdezt9RWp_TbSyjEPv2gqcw6T6OOwkr5x-wggL5NfMxl6jQ1YrrocQ8V57vFiqQHDkGSByn9esKPyKsbaGUrby2J1XEee5gWwn3DOqL5QLPwSoiRIrlfFdSvqWkEk6gfAxspcVa6Cdsglu9c1aU4uB6RsU8q6rAnjODVKaRygxSTWBbq5URx_jj_qCCM_v2kTPi718tL_5teQt7yXg4yAa9tH8J-_qKqba9gjrhj9cUU6zzm3LNfAADI8gO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ANTARES%3A+Space-resolved+electronic+structure&rft.jtitle=Journal+of+electron+spectroscopy+and+related+phenomena&rft.au=Avila%2C+J.&rft.au=Lorcy%2C+S.&rft.au=Dudin%2C+P.&rft.date=2023-07-01&rft.pub=Elsevier+B.V&rft.issn=0368-2048&rft.eissn=1873-2526&rft.volume=266&rft_id=info:doi/10.1016%2Fj.elspec.2023.147362&rft.externalDocID=S0368204823000798 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0368-2048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0368-2048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0368-2048&client=summon |