ANTARES: Space-resolved electronic structure

The spatially resolved ARPES (nanoARPES) is a development of conventional ARPES technique achieved with the focusing of light on the sample into the spot with submicron sizes. This development is used in research of essentially small samples, for example, heterostructures build of flakes of 2D mater...

Full description

Saved in:
Bibliographic Details
Published inJournal of electron spectroscopy and related phenomena Vol. 266; p. 147362
Main Authors Avila, J., Lorcy, S., Dudin, P.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The spatially resolved ARPES (nanoARPES) is a development of conventional ARPES technique achieved with the focusing of light on the sample into the spot with submicron sizes. This development is used in research of essentially small samples, for example, heterostructures build of flakes of 2D materials, micro-crystals or polycrystalline samples, different crystal termination, domains in electronic structure. ANTARES is delivering the nanoARPES technique to user community since 2010, up to now the instrument was used with samples of various types, and that was useful to accumulate the specific experience. In this paper we report the current layout and actual performance of the ANTARES instrument at Synchrotron SOLEIL, as well as the most typical application areas. The most important and recent upgrades include focusing optics and in-operando setup. The new optical units deliver the increased flux on sample as well as the option to vary the photon energy. The in-operando setup offers the option of electrical connection to the sample being studied with nanoARPES, that promises various applications, where the most demanded now is the control of charge carrier density with applied voltage. This “gate-doping” is often applied to the heterostructures of 2D materials, that could be designed and build on purpose. The 2D heterostructures is probably the most typical field of application of the instrument, with or without in-operando option. At the same time the use case of the ANTARES instrument is still in the development by the realisation of new kinds of samples and of the new types of the experiments. •NanoARPES is a technique providing the angles resolved photoemission with spatial resolution.•ANTARES is a nanoARPES instrument launched about 10 years ago among the first instruments.•The instrument is delivering performance adequate for studies in various research areas.•Research of 2D materials and heterostructures, topological materials, superconductors, and other subjects.•In-operando electrical connections to the sample under measurement provides opportunity to study micro-devices.
AbstractList The spatially resolved ARPES (nanoARPES) is a development of conventional ARPES technique achieved with the focusing of light on the sample into the spot with submicron sizes. This development is used in research of essentially small samples, for example, heterostructures build of flakes of 2D materials, micro-crystals or polycrystalline samples, different crystal termination, domains in electronic structure. ANTARES is delivering the nanoARPES technique to user community since 2010, up to now the instrument was used with samples of various types, and that was useful to accumulate the specific experience. In this paper we report the current layout and actual performance of the ANTARES instrument at Synchrotron SOLEIL, as well as the most typical application areas. The most important and recent upgrades include focusing optics and in-operando setup. The new optical units deliver the increased flux on sample as well as the option to vary the photon energy. The in-operando setup offers the option of electrical connection to the sample being studied with nanoARPES, that promises various applications, where the most demanded now is the control of charge carrier density with applied voltage. This “gate-doping” is often applied to the heterostructures of 2D materials, that could be designed and build on purpose. The 2D heterostructures is probably the most typical field of application of the instrument, with or without in-operando option. At the same time the use case of the ANTARES instrument is still in the development by the realisation of new kinds of samples and of the new types of the experiments. •NanoARPES is a technique providing the angles resolved photoemission with spatial resolution.•ANTARES is a nanoARPES instrument launched about 10 years ago among the first instruments.•The instrument is delivering performance adequate for studies in various research areas.•Research of 2D materials and heterostructures, topological materials, superconductors, and other subjects.•In-operando electrical connections to the sample under measurement provides opportunity to study micro-devices.
ArticleNumber 147362
Author Avila, J.
Lorcy, S.
Dudin, P.
Author_xml – sequence: 1
  givenname: J.
  surname: Avila
  fullname: Avila, J.
– sequence: 2
  givenname: S.
  surname: Lorcy
  fullname: Lorcy, S.
– sequence: 3
  givenname: P.
  surname: Dudin
  fullname: Dudin, P.
  email: Pavel.Dudin@synchrotron-soleil.fr
BookMark eNqFkMtKAzEYhYNUsK2-gYs-gDPmnmkXQin1AkXB1nXIJH8gZZwpSVrw7Z0yrlzo6iwO34HvTNCo7VpA6JbgkmAi7_clNOkAtqSYspJwxSS9QGNSKVZQQeUIjTGTVUExr67QJKU9xlgJRsfobvm6W76vt4vZ9mAsFBFS15zAzaABm2PXBjtLOR5tPka4RpfeNAlufnKKPh7Xu9VzsXl7elktN4VlWOZCQu3AA6NYyspBXXsumfXKCRCggHCJlRJWzitliPGeeI6583MhagrYGzZFi2HXxi6lCF7bkE0OXZujCY0mWJ-99V4P3vrsrQfvHua_4EMMnyZ-_Yc9DFjfwSlA1MkGaC24EPsntOvC3wPfiwR2HQ
CitedBy_id crossref_primary_10_1007_s12274_024_6622_5
crossref_primary_10_1016_j_jallcom_2025_179817
crossref_primary_10_1021_acsnano_5c00256
crossref_primary_10_1103_PhysRevMaterials_8_124004
crossref_primary_10_1038_s41598_024_73795_w
Cites_doi 10.1107/S0909049510013993
10.1107/S1600576714027575
10.1021/acs.nanolett.6b00609
10.1038/s41586-019-1402-1
10.1103/PhysRevB.92.035105
10.1006/adnd.1993.1013
10.1038/s41699-019-0109-3
10.1103/PhysRevB.99.075118
10.1088/1361-6668/aaffa8
10.1080/08940886.2012.720159
10.1038/s41567-020-01041-x
10.1038/s41586-019-0927-7
10.3390/nano11112921
10.1021/acs.nanolett.8b00589
10.1021/acs.nanolett.9b00875
10.1088/0953-8984/28/44/444002
10.1063/1.5020054
10.1088/2053-1583/3/2/021009
10.1126/sciadv.1601832
10.1063/1.4802782
10.1103/PhysRevB.96.115205
10.1038/s41567-020-0974-x
10.1021/nl2031037
10.1080/08940886.2014.889549
10.1038/s42005-021-00733-x
10.1016/j.matt.2020.09.005
10.1007/s41365-021-00858-2
10.1080/08940886.2012.720162
10.1103/PhysRevB.90.035448
10.1107/S1600577519000869
10.1103/PhysRevLett.125.236403
10.1126/science.aac9439
10.1103/PhysRevLett.108.155501
10.1021/acs.nanolett.9b00649
10.1103/PhysRevB.98.115405
10.1088/0031-8949/41/6/001
10.1038/srep02439
10.1103/PhysRevB.88.075406
10.1126/sciadv.abf4387
10.1038/s41598-017-05361-6
10.1021/acsnano.8b08260
10.1080/08940886.2018.1483660
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.elspec.2023.147362
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-2526
ExternalDocumentID 10_1016_j_elspec_2023_147362
S0368204823000798
GroupedDBID --K
--M
-~X
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29K
3O-
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABXDB
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACKIV
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJQLL
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HMU
HVGLF
HX~
HZ~
IHE
J1W
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SCH
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SSK
SSQ
SSZ
T5K
TN5
UNMZH
WUQ
XFK
XPP
YK3
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-6ebdefe320668debbf463cf7d5e5e7e1460775c6987a1aff1f404df955b2e0fa3
IEDL.DBID .~1
ISSN 0368-2048
IngestDate Tue Jul 01 02:39:04 EDT 2025
Thu Apr 24 23:03:52 EDT 2025
Fri Feb 23 02:34:37 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Band structure
NanoARPES
ARPES
2D materials
Photoemission microscopy
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-6ebdefe320668debbf463cf7d5e5e7e1460775c6987a1aff1f404df955b2e0fa3
ParticipantIDs crossref_citationtrail_10_1016_j_elspec_2023_147362
crossref_primary_10_1016_j_elspec_2023_147362
elsevier_sciencedirect_doi_10_1016_j_elspec_2023_147362
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2023
2023-07-00
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: July 2023
PublicationDecade 2020
PublicationTitle Journal of electron spectroscopy and related phenomena
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bostwick (bib6) 2012; 25
Curcio (bib16) 2020; 125
Pei (bib33) 2022; 12
Moritz (bib2) 2017; 88
Nguyen (bib17) 2019; 572
Zribi (bib31) 2019; 3
Hart (bib28) 2017; 7
Yi-Chen (bib4) 2021; 32
Joucken (bib34) 2019; 19
Giorgetta, Asensio, Avila (bib21) 2011; 1
Bao (bib40) 2021; 4
Nakayama (bib38) 2019; 19
Vogt, De PAdova, Cahangirov (bib32) 2012; 108
Coy-Diaz, Bian, Pierucci, Wang (bib24) 2015; 15
Valbuena (bib37) 2019; 99
Yi (bib36) 2018; 112
Avila (bib7) 2014; 27
Novoselov (bib12) 2016; 353
Randle (bib35) 2019; 13
Henke (bib18) 1993; 54
Benedikt (bib19) 2019; 26
Chen (bib11) 2020; 3
Koch (bib20) 2018; 31
Zhang (bib26) 2018; 18
Ben Aziza (bib25) 2018; 98
Dudin (bib8) 2010; 17–4
Damascelli (bib1) 2004; 61
Sergey (bib3) 2012; 25
Könnecke (bib22) 2015; 48
Webb (bib27) 2017; 96
Ernandes (bib29) 2021; 11
Lisi (bib13) 2021; 17
Utama (bib14) 2021; 17
Stansbury (bib30) 2021; 7
Harald (bib5) 1990; 41
Noguchi (bib10) 2019; 566
Usachov (bib9) 2011; 11
Dudin (bib39) 2019; 32
Wilson (bib15) 2017; 3
Avila, Moreau, Razado-Colambo (bib23) 2013; 3
Utama (10.1016/j.elspec.2023.147362_bib14) 2021; 17
Valbuena (10.1016/j.elspec.2023.147362_bib37) 2019; 99
Damascelli (10.1016/j.elspec.2023.147362_bib1) 2004; 61
Dudin (10.1016/j.elspec.2023.147362_bib8) 2010; 17–4
Harald (10.1016/j.elspec.2023.147362_bib5) 1990; 41
Ernandes (10.1016/j.elspec.2023.147362_bib29) 2021; 11
Moreau (10.1016/j.elspec.2023.147362_sbref24) 2013; 88
Wang (10.1016/j.elspec.2023.147362_sbref29) 2016; 28
Henke (10.1016/j.elspec.2023.147362_bib18) 1993; 54
Cahangirov (10.1016/j.elspec.2023.147362_sbref39) 2014; 90
Curcio (10.1016/j.elspec.2023.147362_bib16) 2020; 125
Ben Aziza (10.1016/j.elspec.2023.147362_bib25) 2018; 98
Joucken (10.1016/j.elspec.2023.147362_bib34) 2019; 19
Koch (10.1016/j.elspec.2023.147362_bib20) 2018; 31
Lisi (10.1016/j.elspec.2023.147362_bib13) 2021; 17
Chen (10.1016/j.elspec.2023.147362_bib11) 2020; 3
Bostwick (10.1016/j.elspec.2023.147362_bib6) 2012; 25
Avila (10.1016/j.elspec.2023.147362_bib7) 2014; 27
De PAdova (10.1016/j.elspec.2023.147362_sbref38) 2013; 102
Pei (10.1016/j.elspec.2023.147362_bib33) 2022; 12
Yi (10.1016/j.elspec.2023.147362_bib36) 2018; 112
Moritz (10.1016/j.elspec.2023.147362_bib2) 2017; 88
Coy-Diaz (10.1016/j.elspec.2023.147362_sbref26) 2015; 15
Randle (10.1016/j.elspec.2023.147362_bib35) 2019; 13
Novoselov (10.1016/j.elspec.2023.147362_bib12) 2016; 353
Wilson (10.1016/j.elspec.2023.147362_bib15) 2017; 3
Dudin (10.1016/j.elspec.2023.147362_bib39) 2019; 32
Benedikt (10.1016/j.elspec.2023.147362_bib19) 2019; 26
Usachov (10.1016/j.elspec.2023.147362_bib9) 2011; 11
Avila (10.1016/j.elspec.2023.147362_sbref23) 2013; 3
Hart (10.1016/j.elspec.2023.147362_bib28) 2017; 7
Sergey (10.1016/j.elspec.2023.147362_bib3) 2012; 25
Webb (10.1016/j.elspec.2023.147362_bib27) 2017; 96
Yi-Chen (10.1016/j.elspec.2023.147362_bib4) 2021; 32
Pierucci (10.1016/j.elspec.2023.147362_sbref28) 2016; 16
Zribi (10.1016/j.elspec.2023.147362_bib31) 2019; 3
Razado-Colambo (10.1016/j.elspec.2023.147362_sbref25) 2015; 92
Zhang (10.1016/j.elspec.2023.147362_bib26) 2018; 18
Bao (10.1016/j.elspec.2023.147362_bib40) 2021; 4
Nguyen (10.1016/j.elspec.2023.147362_bib17) 2019; 572
Vogt (10.1016/j.elspec.2023.147362_sbref37) 2012; 108
Stansbury (10.1016/j.elspec.2023.147362_bib30) 2021; 7
Giorgetta (10.1016/j.elspec.2023.147362_bib21) 2011; 1
Noguchi (10.1016/j.elspec.2023.147362_bib10) 2019; 566
Nakayama (10.1016/j.elspec.2023.147362_bib38) 2019; 19
Könnecke (10.1016/j.elspec.2023.147362_bib22) 2015; 48
Bian (10.1016/j.elspec.2023.147362_sbref27) 2016; 3
References_xml – volume: 27
  start-page: 24
  year: 2014
  end-page: 30
  ident: bib7
  publication-title: Synchrotron Radiat. N.
– volume: 98
  year: 2018
  ident: bib25
  publication-title: Phys. Rev. B.
– volume: 96
  year: 2017
  ident: bib27
  publication-title: Phys. Rev. B.
– volume: 41
  start-page: 737
  year: 1990
  ident: bib5
  publication-title: Phys. Scr.
– volume: 353
  start-page: 6298
  year: 2016
  ident: bib12
  publication-title: Science
– volume: 17
  start-page: 189
  year: 2021
  end-page: 193
  ident: bib13
  publication-title: Nat. Phys.
– volume: 19
  start-page: 3737
  year: 2019
  end-page: 3742
  ident: bib38
  publication-title: Nano Lett.
– volume: 12
  year: 2022
  ident: bib33
  publication-title: Phys. Rev. X.
– volume: 4
  start-page: 229
  year: 2021
  ident: bib40
  publication-title: Commun. Phys.
– volume: 572
  start-page: 220
  year: 2019
  end-page: 223
  ident: bib17
  publication-title: Nature
– volume: 3
  start-page: 27
  year: 2019
  ident: bib31
  publication-title: npj 2D Mater. Appl.
– volume: 11
  start-page: 5401
  year: 2011
  end-page: 5407
  ident: bib9
  publication-title: Nano Lett.
– volume: 88
  year: 2017
  ident: bib2
  publication-title: Rev. Sci. Instrum.
– volume: 54
  start-page: 181
  year: 1993
  end-page: 342
  ident: bib18
  article-title: X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50–30000 eV, Z=1-92
  publication-title: At. Data Nucl. Data Tables
– volume: 25
  start-page: 6
  year: 2012
  end-page: 12
  ident: bib3
  publication-title: Synchrotron Radiat. N.,
– volume: 13
  start-page: 803
  year: 2019
  end-page: 811
  ident: bib35
  publication-title: ACS Nano
– volume: 17–4
  start-page: 445
  year: 2010
  end-page: 450
  ident: bib8
  publication-title: J. Synchrotron Radiat.
– volume: 7
  year: 2021
  ident: bib30
  publication-title: Sci. Adv.
– volume: 48
  start-page: 301
  year: 2015
  end-page: 305
  ident: bib22
  publication-title: J. Appl. Cryst.
– volume: 1
  year: 2011
  ident: bib21
  publication-title: Diam. Light Source Proc.
– volume: 32
  start-page: 31
  year: 2021
  ident: bib4
  publication-title: Nucl. Sci. Tech.
– volume: 7
  start-page: 5145
  year: 2017
  ident: bib28
  publication-title: Sci. Rep.
– volume: 19
  start-page: 2682
  year: 2019
  end-page: 2687
  ident: bib34
  publication-title: Nano Lett.
– volume: 31
  start-page: 50
  year: 2018
  end-page: 52
  ident: bib20
  publication-title: Synchrotron Radiat. N.
– volume: 3
  start-page: 2439
  year: 2013
  ident: bib23
  publication-title: Sci. Rep.
– volume: 566
  start-page: 518
  year: 2019
  end-page: 522
  ident: bib10
  publication-title: Nature
– volume: 112
  year: 2018
  ident: bib36
  publication-title: Appl. Phys. Lett.
– volume: 3
  start-page: 2055
  year: 2020
  end-page: 2065
  ident: bib11
  publication-title: Matter
– volume: 61
  year: 2004
  ident: bib1
  publication-title: Phys. Scr.
– volume: 26
  start-page: 467
  year: 2019
  end-page: 472
  ident: bib19
  publication-title: J. Synchrotron Radiat.
– volume: 15
  start-page: 1135
  year: 2015
  end-page: 1140
  ident: bib24
  publication-title: ACS Nano
– volume: 99
  year: 2019
  ident: bib37
  publication-title: Phys. Rev. B.
– volume: 125
  year: 2020
  ident: bib16
  publication-title: Phys. Rev. Lett.
– volume: 18
  start-page: 4664
  year: 2018
  end-page: 4668
  ident: bib26
  publication-title: Nano Lett.
– volume: 17
  start-page: 184
  year: 2021
  end-page: 188
  ident: bib14
  publication-title: Nat. Phys.
– volume: 25
  start-page: 19
  year: 2012
  end-page: 25
  ident: bib6
  publication-title: Synchrotron Radiat. N.
– volume: 11
  start-page: 2921
  year: 2021
  ident: bib29
  publication-title: Nanomaterials
– volume: 108
  year: 2012
  ident: bib32
  publication-title: Phys. Rev. Lett.
– volume: 3
  year: 2017
  ident: bib15
  publication-title: Sci. Adv.
– volume: 32
  year: 2019
  ident: bib39
  publication-title: Supercond. Sci. Technol.
– volume: 17–4
  start-page: 445
  year: 2010
  ident: 10.1016/j.elspec.2023.147362_bib8
  publication-title: J. Synchrotron Radiat.
  doi: 10.1107/S0909049510013993
– volume: 48
  start-page: 301
  year: 2015
  ident: 10.1016/j.elspec.2023.147362_bib22
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S1600576714027575
– volume: 16
  start-page: 4054
  issue: 7
  year: 2016
  ident: 10.1016/j.elspec.2023.147362_sbref28
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b00609
– volume: 572
  start-page: 220
  year: 2019
  ident: 10.1016/j.elspec.2023.147362_bib17
  publication-title: Nature
  doi: 10.1038/s41586-019-1402-1
– volume: 92
  issue: 3
  year: 2015
  ident: 10.1016/j.elspec.2023.147362_sbref25
  publication-title: Phys. Rev. B.
  doi: 10.1103/PhysRevB.92.035105
– volume: 54
  start-page: 181
  issue: 2
  year: 1993
  ident: 10.1016/j.elspec.2023.147362_bib18
  article-title: X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50–30000 eV, Z=1-92
  publication-title: At. Data Nucl. Data Tables
  doi: 10.1006/adnd.1993.1013
– volume: 3
  start-page: 27
  year: 2019
  ident: 10.1016/j.elspec.2023.147362_bib31
  publication-title: npj 2D Mater. Appl.
  doi: 10.1038/s41699-019-0109-3
– volume: 99
  issue: 7
  year: 2019
  ident: 10.1016/j.elspec.2023.147362_bib37
  publication-title: Phys. Rev. B.
  doi: 10.1103/PhysRevB.99.075118
– volume: 32
  issue: 4
  year: 2019
  ident: 10.1016/j.elspec.2023.147362_bib39
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/1361-6668/aaffa8
– volume: 15
  start-page: 1135
  issue: 2
  year: 2015
  ident: 10.1016/j.elspec.2023.147362_sbref26
  publication-title: ACS Nano
– volume: 25
  start-page: 6
  issue: 5
  year: 2012
  ident: 10.1016/j.elspec.2023.147362_bib3
  publication-title: Synchrotron Radiat. N.,
  doi: 10.1080/08940886.2012.720159
– volume: 17
  start-page: 189
  year: 2021
  ident: 10.1016/j.elspec.2023.147362_bib13
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-020-01041-x
– volume: 566
  start-page: 518
  year: 2019
  ident: 10.1016/j.elspec.2023.147362_bib10
  publication-title: Nature
  doi: 10.1038/s41586-019-0927-7
– volume: 11
  start-page: 2921
  issue: 11
  year: 2021
  ident: 10.1016/j.elspec.2023.147362_bib29
  publication-title: Nanomaterials
  doi: 10.3390/nano11112921
– volume: 1
  issue: Issue MEDSI­6
  year: 2011
  ident: 10.1016/j.elspec.2023.147362_bib21
  publication-title: Diam. Light Source Proc.
– volume: 18
  start-page: 4664
  issue: 8
  year: 2018
  ident: 10.1016/j.elspec.2023.147362_bib26
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b00589
– volume: 19
  start-page: 3737
  issue: 6
  year: 2019
  ident: 10.1016/j.elspec.2023.147362_bib38
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b00875
– volume: 61
  year: 2004
  ident: 10.1016/j.elspec.2023.147362_bib1
  publication-title: Phys. Scr.
– volume: 28
  issue: 44
  year: 2016
  ident: 10.1016/j.elspec.2023.147362_sbref29
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/28/44/444002
– volume: 112
  issue: 5
  year: 2018
  ident: 10.1016/j.elspec.2023.147362_bib36
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5020054
– volume: 3
  issue: 2
  year: 2016
  ident: 10.1016/j.elspec.2023.147362_sbref27
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/3/2/021009
– volume: 3
  year: 2017
  ident: 10.1016/j.elspec.2023.147362_bib15
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1601832
– volume: 102
  issue: 16
  year: 2013
  ident: 10.1016/j.elspec.2023.147362_sbref38
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4802782
– volume: 96
  issue: 11
  year: 2017
  ident: 10.1016/j.elspec.2023.147362_bib27
  publication-title: Phys. Rev. B.
  doi: 10.1103/PhysRevB.96.115205
– volume: 17
  start-page: 184
  year: 2021
  ident: 10.1016/j.elspec.2023.147362_bib14
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-020-0974-x
– volume: 11
  start-page: 5401
  issue: 12
  year: 2011
  ident: 10.1016/j.elspec.2023.147362_bib9
  publication-title: Nano Lett.
  doi: 10.1021/nl2031037
– volume: 27
  start-page: 24
  issue: 2
  year: 2014
  ident: 10.1016/j.elspec.2023.147362_bib7
  publication-title: Synchrotron Radiat. N.
  doi: 10.1080/08940886.2014.889549
– volume: 4
  start-page: 229
  year: 2021
  ident: 10.1016/j.elspec.2023.147362_bib40
  publication-title: Commun. Phys.
  doi: 10.1038/s42005-021-00733-x
– volume: 3
  start-page: 2055
  year: 2020
  ident: 10.1016/j.elspec.2023.147362_bib11
  publication-title: Matter
  doi: 10.1016/j.matt.2020.09.005
– volume: 32
  start-page: 31
  year: 2021
  ident: 10.1016/j.elspec.2023.147362_bib4
  publication-title: Nucl. Sci. Tech.
  doi: 10.1007/s41365-021-00858-2
– volume: 25
  start-page: 19
  issue: 5
  year: 2012
  ident: 10.1016/j.elspec.2023.147362_bib6
  publication-title: Synchrotron Radiat. N.
  doi: 10.1080/08940886.2012.720162
– volume: 90
  issue: 3
  year: 2014
  ident: 10.1016/j.elspec.2023.147362_sbref39
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.035448
– volume: 26
  start-page: 467
  issue: 2
  year: 2019
  ident: 10.1016/j.elspec.2023.147362_bib19
  publication-title: J. Synchrotron Radiat.
  doi: 10.1107/S1600577519000869
– volume: 88
  year: 2017
  ident: 10.1016/j.elspec.2023.147362_bib2
  publication-title: Rev. Sci. Instrum.
– volume: 125
  year: 2020
  ident: 10.1016/j.elspec.2023.147362_bib16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.236403
– volume: 353
  start-page: 6298
  year: 2016
  ident: 10.1016/j.elspec.2023.147362_bib12
  publication-title: Science
  doi: 10.1126/science.aac9439
– volume: 108
  issue: 15
  year: 2012
  ident: 10.1016/j.elspec.2023.147362_sbref37
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.155501
– volume: 19
  start-page: 2682
  issue: 4
  year: 2019
  ident: 10.1016/j.elspec.2023.147362_bib34
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b00649
– volume: 98
  issue: 11
  year: 2018
  ident: 10.1016/j.elspec.2023.147362_bib25
  publication-title: Phys. Rev. B.
  doi: 10.1103/PhysRevB.98.115405
– volume: 41
  start-page: 737
  year: 1990
  ident: 10.1016/j.elspec.2023.147362_bib5
  publication-title: Phys. Scr.
  doi: 10.1088/0031-8949/41/6/001
– volume: 3
  start-page: 2439
  year: 2013
  ident: 10.1016/j.elspec.2023.147362_sbref23
  publication-title: Sci. Rep.
  doi: 10.1038/srep02439
– volume: 88
  issue: 7
  year: 2013
  ident: 10.1016/j.elspec.2023.147362_sbref24
  publication-title: Phys. Rev. B.
  doi: 10.1103/PhysRevB.88.075406
– volume: 7
  issue: 37
  year: 2021
  ident: 10.1016/j.elspec.2023.147362_bib30
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abf4387
– volume: 7
  start-page: 5145
  year: 2017
  ident: 10.1016/j.elspec.2023.147362_bib28
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-05361-6
– volume: 13
  start-page: 803
  issue: 1
  year: 2019
  ident: 10.1016/j.elspec.2023.147362_bib35
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b08260
– volume: 31
  start-page: 50
  issue: 4
  year: 2018
  ident: 10.1016/j.elspec.2023.147362_bib20
  publication-title: Synchrotron Radiat. N.
  doi: 10.1080/08940886.2018.1483660
– volume: 12
  issue: 2
  year: 2022
  ident: 10.1016/j.elspec.2023.147362_bib33
  publication-title: Phys. Rev. X.
SSID ssj0007532
Score 2.4081728
Snippet The spatially resolved ARPES (nanoARPES) is a development of conventional ARPES technique achieved with the focusing of light on the sample into the spot with...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 147362
SubjectTerms 2D materials
ARPES
Band structure
NanoARPES
Photoemission microscopy
Title ANTARES: Space-resolved electronic structure
URI https://dx.doi.org/10.1016/j.elspec.2023.147362
Volume 266
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KRfAiPrE-Sg4eXdtkX4m3UCxVsZe20FvYZGehUtqi1aO_3dlsYhVEwUMOCRlIvky-mWFnviXkUhsWQ6w0DYucUy6EpjqONMVDJWEibDdy08iPQzmY8PupmDZIr56FcW2VFfd7Ti_ZurrSqdDsrGazzgi5N3ays5hEY6BL3MAv58p5-fX7ps0D03G_kiCdR_C4Hp8re7ww_KzACRlGDClDMRn9HJ6-hJz-HtmtcsUg9Y-zTxqwOCDbZc9m8XJIrtLhOEUAb4IRFr5AsXBezt_ABJutbQIvD_v6DEdk0r8d9wa02vyAFpjFr6mE3IAF5uTWYwN5brlkhVVGgAAFSHBOvK6QCQIdamtDy7vc2ESIPIKu1eyYNBfLBZyQoEgAMJGTzGCxZY3VkbISVGidUgv-gS3C6nfOikoZ3G1QMc_qFrCnzCOVOaQyj1SL0E-rlVfG-ON-VcOZffvCGZL3r5an_7Y8IzvuzLfXnpMmYg4XmESs83bpJW2yld49DIYfJ0HFXQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qi-hFfGJ95uDRpc1j8_AWiiW1bS5tobewyc5CpbRFq7_f2W5SFUTBQy5JBpIvm29m2JlvAO6EdEMMA8HsIveYx7lgInQEoyOI7IirtqO7kYepn0y8pymf1qBT9cLossqS-w2nb9i6PNMq0WytZrPWiLg31LKzFESTo4vCHWhodSpeh0bc6yfplpApIjebCb5eFF5YddBtyrzIA61Qaxk6LrFG4PrOzx7qi9fpHsJBGS5asXmiI6jh4hh2N2WbxesJ3MfpOCYMH6wR5b7IKHdezt9RWp_TbSyjEPv2gqcw6T6OOwkr5x-wggL5NfMxl6jQ1YrrocQ8V57vFiqQHDkGSByn9esKPyKsbaGUrby2J1XEee5gWwn3DOqL5QLPwSoiRIrlfFdSvqWkEk6gfAxspcVa6Cdsglu9c1aU4uB6RsU8q6rAnjODVKaRygxSTWBbq5URx_jj_qCCM_v2kTPi718tL_5teQt7yXg4yAa9tH8J-_qKqba9gjrhj9cUU6zzm3LNfAADI8gO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ANTARES%3A+Space-resolved+electronic+structure&rft.jtitle=Journal+of+electron+spectroscopy+and+related+phenomena&rft.au=Avila%2C+J.&rft.au=Lorcy%2C+S.&rft.au=Dudin%2C+P.&rft.date=2023-07-01&rft.pub=Elsevier+B.V&rft.issn=0368-2048&rft.eissn=1873-2526&rft.volume=266&rft_id=info:doi/10.1016%2Fj.elspec.2023.147362&rft.externalDocID=S0368204823000798
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0368-2048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0368-2048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0368-2048&client=summon