Can edges help convolution neural networks in emotion recognition?

Facial emotion recognition has gained importance for its applications in diverse areas. Facial expressions of a subject, when experiencing the same emotion, have wider variations. On the other hand, different subjects experiencing the same emotion may exhibit different facial features. All these mak...

Full description

Saved in:
Bibliographic Details
Published inNeurocomputing (Amsterdam) Vol. 433; pp. 162 - 168
Main Authors Bhandari, Arkaprabha, Pal, Nikhil R.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 14.04.2021
Subjects
Online AccessGet full text
ISSN0925-2312
DOI10.1016/j.neucom.2020.12.092

Cover

Abstract Facial emotion recognition has gained importance for its applications in diverse areas. Facial expressions of a subject, when experiencing the same emotion, have wider variations. On the other hand, different subjects experiencing the same emotion may exhibit different facial features. All these make facial emotion recognition challenging. The ability of convolutional neural network (CNN) has been exploited to analyze visual imagery for different applications. It has also been used in developing automatic facial emotion recognition systems. Our objective in this study is to check if an explicit use of edges can help emotion recognition from images using CNN. Edges in an image represent discriminatory information and hence their explicit use is likely to help the training of CNNs and improve emotion recognition. Keeping this in mind we propose a two-tower CNN architecture to classify images into seven basic classes of emotion including the neutral expression. The proposed CNN has an additional tower, called edge-tower, which is simpler in architecture compared to the other tower and it uses edge images as inputs. Our experiments on two benchmark datasets demonstrate that the explicit use of edge information improves the classifier performance.
AbstractList Facial emotion recognition has gained importance for its applications in diverse areas. Facial expressions of a subject, when experiencing the same emotion, have wider variations. On the other hand, different subjects experiencing the same emotion may exhibit different facial features. All these make facial emotion recognition challenging. The ability of convolutional neural network (CNN) has been exploited to analyze visual imagery for different applications. It has also been used in developing automatic facial emotion recognition systems. Our objective in this study is to check if an explicit use of edges can help emotion recognition from images using CNN. Edges in an image represent discriminatory information and hence their explicit use is likely to help the training of CNNs and improve emotion recognition. Keeping this in mind we propose a two-tower CNN architecture to classify images into seven basic classes of emotion including the neutral expression. The proposed CNN has an additional tower, called edge-tower, which is simpler in architecture compared to the other tower and it uses edge images as inputs. Our experiments on two benchmark datasets demonstrate that the explicit use of edge information improves the classifier performance.
Author Bhandari, Arkaprabha
Pal, Nikhil R.
Author_xml – sequence: 1
  givenname: Arkaprabha
  surname: Bhandari
  fullname: Bhandari, Arkaprabha
  organization: Nissan Digital India LLP, Thiruvananthapuram, India
– sequence: 2
  givenname: Nikhil R.
  surname: Pal
  fullname: Pal, Nikhil R.
  email: nikhil@isical.ac.in
  organization: Electronics and Communication Sciences Unit and Centre for Artificial Intelligence and Machine Learning, Indian Statistical Institute, Calcutta, India
BookMark eNqFkM9OwzAMxnMYEtvgDTj0BVqcpE1bDiCY-CchcYFzlCXuyOiSKemGeHtSxokDXGzL9vfJP8_IxHmHhJxRKChQcb4uHO603xQMWGqxAlo2IdMUq5xxyo7JLMY1AK0pa6fkZqFchmaFMXvDfptp7_a-3w3WuywZBdWnNHz48B4zmzY3_nsUUPuVs2N9dUKOOtVHPP3Jc_J6d_uyeMifnu8fF9dPueYghlxgbUDzJZgKG0CouOigEQbKllaKNrzuSl62dcW5aDiDalkKg7RpWuBtzWo-J-XBVwcfY8BOboPdqPApKciRXa7lgV2O7JIymaiT7OKXTNtBjZcPQdn-P_HlQYwJbG8xyKgtOo3GphcM0nj7t8EXYT17BA
CitedBy_id crossref_primary_10_1007_s11042_023_16081_7
crossref_primary_10_1088_1742_6596_1962_1_012040
crossref_primary_10_1007_s40747_023_01296_w
crossref_primary_10_1016_j_neucom_2022_03_058
crossref_primary_10_1038_s41598_023_43763_x
crossref_primary_10_2339_politeknik_992720
crossref_primary_10_1038_s41598_022_21456_1
crossref_primary_10_1007_s11042_023_16556_7
crossref_primary_10_32604_cmc_2022_020084
crossref_primary_10_1016_j_neucom_2024_128196
crossref_primary_10_1155_2021_9991531
Cites_doi 10.1016/j.ins.2017.11.061
10.1016/j.jestch.2016.03.005
10.1109/TPAMI.1986.4767851
10.1109/TSMCA.2003.817057
10.1016/j.eswa.2013.11.041
10.1016/j.neucom.2014.05.008
10.1080/02564602.2014.944588
10.1109/TIP.2002.999679
10.1109/TGRS.2011.2173939
10.1109/ICSMC.2004.1398371
10.1016/j.neucom.2020.01.034
10.1007/978-981-10-8237-5_28
10.1016/j.sbspro.2015.06.477
10.1109/TSMCA.2012.2207107
10.1007/978-3-540-76858-6_45
10.1016/j.neucom.2017.08.015
10.1109/TIP.2015.2405346
10.1109/TMM.2014.2321113
10.1016/j.neucom.2020.07.120
10.1016/j.imavis.2008.08.005
10.1109/WACV.2016.7477450
10.1109/SOCPAR.2014.7007973
10.1016/0262-8856(95)01036-X
10.1016/j.neucom.2017.08.043
10.1109/TPAMI.2007.1110
10.1109/34.643893
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2020.12.092
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 168
ExternalDocumentID 10_1016_j_neucom_2020_12_092
S092523122032004X
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSH
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
AAQXK
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SEW
WUQ
XPP
ID FETCH-LOGICAL-c306t-6e7d0c3b0d5e80e0536f086d04915a1837f43497533683205b46de18890397273
IEDL.DBID AIKHN
ISSN 0925-2312
IngestDate Tue Jul 01 01:46:56 EDT 2025
Thu Apr 24 23:16:10 EDT 2025
Sun Apr 06 06:58:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Emotion recognition
Two-tower CNN
Convolutional neural network
Edge images
Edge-tower
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-6e7d0c3b0d5e80e0536f086d04915a1837f43497533683205b46de18890397273
PageCount 7
ParticipantIDs crossref_primary_10_1016_j_neucom_2020_12_092
crossref_citationtrail_10_1016_j_neucom_2020_12_092
elsevier_sciencedirect_doi_10_1016_j_neucom_2020_12_092
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-14
PublicationDateYYYYMMDD 2021-04-14
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-14
  day: 14
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kenji (b0060) 1991; 74
M. F. Valstar, M. Pantic, I. Patras, Motion history for facial action detection from face video, in: Proceedings of IEEE Int’l Conf. Systems, Man and Cybernetics (SMC’04), The Hague, Netherlands, 2004, pp. 635–640.
Zhu (b0235) 1996; 14
W. Zhen, Y. Zilu, Facial expression recognition based on local phase quantization and sparse representation, in: Proceedings of Eighth International Conference on Natural Computation (ICNC2012), 2012, pp. 222–225.
Siddiqi, Ali, Khan, Park, Lee (b0090) 2015; 24
Hegde, Seetha, Hegde (b0075) 2016; 19
S. Noh, H. Park, Y. Jin, J.-I. Park, Feature-adaptive motion energy analysis for facial expression recognition, in: International Symposium on Visual Computing, Springer, 2007, pp. 452–463.
M. Kamachi, M. Lyons, J. Gyoba, The japanese female facial expression (jaffe) database, Available
Challenges in representation learning: Facial expression recognition challenge
Canny (b0195) 1986
Zhang, Tjondronegoro, Chandran (b0040) 2014; 145
Siddiqi, Ali, Sattar, Khan, Lee (b0085) 2014; 31
Heath, Sarkar, Sanocki, Bowyer (b0205) 1997; 19
Kobayashi, Hara (b0010) 1997
Owusu, Zhan, Mao (b0110) 2014; 41
D. I. Islam, S. N. Anal, A. Datta, Facial expression recognition using 2dpca on segmented images, in: Advanced Computational and Communication Paradigms, Springer, 2018, pp. 289–297.
Wang, Huang, Hu, Anderson, Rollins, Makedon (b0120) 2010
Wang, Phillips, Dong, Zhang (b0070) 2018; 272
Zhu, Ramanan (b0170) 2012
E. Correa, A. Jonker, M. Ozo, R. Stolk, Emotion recognition using deep convolutional neural networks, Tech. rep., TU Delft (June 2016).
R. Gonzalez, R. Woods, Digital Image Processing, Pearson Education, 2011.
S. Wang, Y. Yuan, X. Zheng, X. Lu, Local and correlation attention learning for subtle facial expression recognition, Neurocomputing doi: 10.1016/j.neucom.2020.07.120.
.
Shan, Gong, McOwan (b0050) 2013; 27
A. Mollahosseini, D. Chan, M. H. Mahoor, Going deeper in facial expression recognition using deep neural networks, in: 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), 2016, pp. 1–10.
R. Breuer, R. Kimmel, A deep learning perspective on the origin of facial expressions, 2017, arXiv:1705.01842.
Chen, Ren, Wei, Cao, Sun (b0160) 2014
Rashid (b0105) 2016
Zhao, Wang, Men (b0115) 2007; 562–566
Zeng, Zhang, Song, Liu, Li, Dobaie (b0125) 2018; 273
S. Katiyar, A. V, Comparative analysis of common edge detection techniques in context of object extraction, IEEE Transactions on Geoscience and Remote Sensing 50 (2012) 68–78.
S. Kherchaoui, A. Houacine, Facial expression identification system with euclidean distance of facial edges, in: 2014 6th International Conference of Soft Computing and Pattern Recognition (SoCPaR), 2014, pp. 6–10. doi:10.1109/SOCPAR.2014.7007973.
Khorrami, Paine, Huang (b0145) 2015
V. Ramesh, R. Haralick, Performance characterization of edge detectors, in: Defense, Security, and Sensing, 1992.
Zhao, Pietikainen (b0055) 2007; 29
Karmakar, Pal (b0240) 2018; 430–431
Liu, Wechsler (b0035) 2002; 11
A. Gudi, Recognizing semantic features in faces using deep learning, CoRR abs/1512.00743.
Halder, Konar, Mandal, Chakraborty, Bhowmik, Pal, Nagar (b0005) 2013; 43
Gao, Leung, Hui, Tananda (b0025) 2003; 33
Zhang, Zhang (b0165) 2014
Yu, Zhang (b0155) 2015
L. H. Thai, N. D. T. Nguyen, T. S. Hai, A facial expression classification system integrating canny, principal component analysis and artificial neural network, CoRR abs/1111.4052.
Ekman, Friesen (b0015) 1978
Dahmane, Meunier (b0030) 2014; 16
Oztürka, Akdemira (b0220) 2015; 195
J. X. Y., A. Hoover, G. Jean-Baptiste, D. Goldgof, K. Bowyer, H. Bunke, A methodology for evaluating edge detection techniques for range images, in: Proc. Asian Conf. Computer Vision, 1995, pp. 415–419.
P. EKMAN, Facial action coding system (facs), A Human Face.
Fei, Yang, Li, Butler, Ijomah, Li, Zhou (b0130) 2020; 388
10.1016/j.neucom.2020.12.092_b0200
Zhao (10.1016/j.neucom.2020.12.092_b0055) 2007; 29
Liu (10.1016/j.neucom.2020.12.092_b0035) 2002; 11
10.1016/j.neucom.2020.12.092_b0225
Dahmane (10.1016/j.neucom.2020.12.092_b0030) 2014; 16
Canny (10.1016/j.neucom.2020.12.092_b0195) 1986
Oztürka (10.1016/j.neucom.2020.12.092_b0220) 2015; 195
10.1016/j.neucom.2020.12.092_b0140
10.1016/j.neucom.2020.12.092_b0020
Zeng (10.1016/j.neucom.2020.12.092_b0125) 2018; 273
Chen (10.1016/j.neucom.2020.12.092_b0160) 2014
10.1016/j.neucom.2020.12.092_b0185
10.1016/j.neucom.2020.12.092_b0065
10.1016/j.neucom.2020.12.092_b0045
10.1016/j.neucom.2020.12.092_b0100
Khorrami (10.1016/j.neucom.2020.12.092_b0145) 2015
Rashid (10.1016/j.neucom.2020.12.092_b0105) 2016
Siddiqi (10.1016/j.neucom.2020.12.092_b0090) 2015; 24
10.1016/j.neucom.2020.12.092_b0190
Halder (10.1016/j.neucom.2020.12.092_b0005) 2013; 43
10.1016/j.neucom.2020.12.092_b0135
Ekman (10.1016/j.neucom.2020.12.092_b0015) 1978
Gao (10.1016/j.neucom.2020.12.092_b0025) 2003; 33
Kenji (10.1016/j.neucom.2020.12.092_b0060) 1991; 74
10.1016/j.neucom.2020.12.092_b0215
Owusu (10.1016/j.neucom.2020.12.092_b0110) 2014; 41
Zhu (10.1016/j.neucom.2020.12.092_b0235) 1996; 14
10.1016/j.neucom.2020.12.092_b0095
10.1016/j.neucom.2020.12.092_b0150
Hegde (10.1016/j.neucom.2020.12.092_b0075) 2016; 19
Zhao (10.1016/j.neucom.2020.12.092_b0115) 2007; 562–566
Karmakar (10.1016/j.neucom.2020.12.092_b0240) 2018; 430–431
Siddiqi (10.1016/j.neucom.2020.12.092_b0085) 2014; 31
Zhang (10.1016/j.neucom.2020.12.092_b0040) 2014; 145
10.1016/j.neucom.2020.12.092_b0175
10.1016/j.neucom.2020.12.092_b0230
Wang (10.1016/j.neucom.2020.12.092_b0070) 2018; 272
Zhang (10.1016/j.neucom.2020.12.092_b0165) 2014
10.1016/j.neucom.2020.12.092_b0210
Kobayashi (10.1016/j.neucom.2020.12.092_b0010) 1997
Wang (10.1016/j.neucom.2020.12.092_b0120) 2010
Fei (10.1016/j.neucom.2020.12.092_b0130) 2020; 388
10.1016/j.neucom.2020.12.092_b0080
10.1016/j.neucom.2020.12.092_b0180
Yu (10.1016/j.neucom.2020.12.092_b0155) 2015
Zhu (10.1016/j.neucom.2020.12.092_b0170) 2012
Shan (10.1016/j.neucom.2020.12.092_b0050) 2013; 27
Heath (10.1016/j.neucom.2020.12.092_b0205) 1997; 19
References_xml – reference: P. EKMAN, Facial action coding system (facs), A Human Face.
– volume: 388
  start-page: 212
  year: 2020
  end-page: 227
  ident: b0130
  article-title: Deep convolution network based emotion analysis towards mental health care
  publication-title: Neurocomputing
– start-page: 3732
  year: 1997
  end-page: 3737
  ident: b0010
  article-title: Facial interaction between animated 3d face robot and human beings
  publication-title: Proceedings of 1997 IEEE International Conference on Computational Cybernetics and Simulation
– reference: A. Gudi, Recognizing semantic features in faces using deep learning, CoRR abs/1512.00743.
– reference: V. Ramesh, R. Haralick, Performance characterization of edge detectors, in: Defense, Security, and Sensing, 1992.
– reference: S. Wang, Y. Yuan, X. Zheng, X. Lu, Local and correlation attention learning for subtle facial expression recognition, Neurocomputing doi: 10.1016/j.neucom.2020.07.120.
– start-page: 1036
  year: 2014
  end-page: 1041
  ident: b0165
  article-title: Improving multiview face detection with multi-task deep convolutional neural networks
  publication-title: IEEE Winter Conference on Applications of Computer Vision
– reference: D. I. Islam, S. N. Anal, A. Datta, Facial expression recognition using 2dpca on segmented images, in: Advanced Computational and Communication Paradigms, Springer, 2018, pp. 289–297.
– volume: 16
  start-page: 1574
  year: 2014
  end-page: 1584
  ident: b0030
  article-title: Prototype-based modeling for facial expression analysis
  publication-title: IEEE Transactions on Multimedia
– reference: A. Mollahosseini, D. Chan, M. H. Mahoor, Going deeper in facial expression recognition using deep neural networks, in: 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), 2016, pp. 1–10.
– volume: 272
  start-page: 668
  year: 2018
  end-page: 676
  ident: b0070
  article-title: Intelligent facial emotion recognition based on stationary wavelet entropy and jaya algorithm
  publication-title: Neurocomputing
– start-page: 7
  year: 2010
  ident: b0120
  article-title: Emotion detection via discriminative kernel method
  publication-title: Proceedings of the 3rd International Conference on Pervasive Technologies Related to Assistive Environments
– volume: 14
  start-page: 21
  year: 1996
  end-page: 34
  ident: b0235
  article-title: Efficient evaluations of edge connectivity and width uniformity
  publication-title: Image and Vision Computing
– reference: Challenges in representation learning: Facial expression recognition challenge,
– year: 1978
  ident: b0015
  article-title: Facial Action Coding System
– volume: 19
  start-page: 1338
  year: 1997
  end-page: 1359
  ident: b0205
  article-title: A robust visual method for assessing the relative performance of edge detection algorithms
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 11
  start-page: 467
  year: 2002
  end-page: 476
  ident: b0035
  article-title: Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition
  publication-title: IEEE Transactions on Image processing
– volume: 195
  start-page: 2675
  year: 2015
  end-page: 2682
  ident: b0220
  article-title: Comparison of edge detection algorithms for texture analysis on glass production
  publication-title: Procedia-Social and Behavioral Sciences
– reference: W. Zhen, Y. Zilu, Facial expression recognition based on local phase quantization and sparse representation, in: Proceedings of Eighth International Conference on Natural Computation (ICNC2012), 2012, pp. 222–225.
– reference: M. F. Valstar, M. Pantic, I. Patras, Motion history for facial action detection from face video, in: Proceedings of IEEE Int’l Conf. Systems, Man and Cybernetics (SMC’04), The Hague, Netherlands, 2004, pp. 635–640.
– start-page: 19
  year: 2015
  end-page: 27
  ident: b0145
  article-title: Do deep neural networks learn facial action units when doing expression recognition?
  publication-title: 2015 IEEE International Conference on Computer Vision Workshop (ICCVW)
– start-page: 679
  year: 1986
  end-page: 698
  ident: b0195
  article-title: A computational approach to edge detection
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-8
– volume: 33
  start-page: 407
  year: 2003
  end-page: 412
  ident: b0025
  article-title: Facial expression recognition from line-based caricatures
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans
– reference: J. X. Y., A. Hoover, G. Jean-Baptiste, D. Goldgof, K. Bowyer, H. Bunke, A methodology for evaluating edge detection techniques for range images, in: Proc. Asian Conf. Computer Vision, 1995, pp. 415–419.
– reference: E. Correa, A. Jonker, M. Ozo, R. Stolk, Emotion recognition using deep convolutional neural networks, Tech. rep., TU Delft (June 2016).
– start-page: 435
  year: 2015
  end-page: 442
  ident: b0155
  article-title: Image based static facial expression recognition with multiple deep network learning
  publication-title: Proceedings of the 2015 ACM on International Conference on Multimodal Interaction
– volume: 430–431
  start-page: 444
  year: 2018
  end-page: 466
  ident: b0240
  article-title: How to make a neural network say don’t know
  publication-title: Information Sciences
– reference: S. Kherchaoui, A. Houacine, Facial expression identification system with euclidean distance of facial edges, in: 2014 6th International Conference of Soft Computing and Pattern Recognition (SoCPaR), 2014, pp. 6–10. doi:10.1109/SOCPAR.2014.7007973.
– reference: R. Gonzalez, R. Woods, Digital Image Processing, Pearson Education, 2011.
– volume: 24
  start-page: 1386
  year: 2015
  end-page: 1398
  ident: b0090
  article-title: Human facial expression recognition using stepwise linear discriminant analysis and hidden conditional random fields
  publication-title: IEEE Transactions on Image Processing
– volume: 41
  start-page: 3383
  year: 2014
  end-page: 3390
  ident: b0110
  article-title: A neural-adaboost based facial expression recognition system
  publication-title: Expert Systems with Applications
– volume: 273
  start-page: 643
  year: 2018
  end-page: 649
  ident: b0125
  article-title: Facial expression recognition via learning deep sparse autoencoders
  publication-title: Neurocomputing
– start-page: 109
  year: 2014
  end-page: 122
  ident: b0160
  article-title: Joint cascade face detection and alignment
  publication-title: Computer Vision – ECCV 2014
– start-page: 73
  year: 2016
  end-page: 84
  ident: b0105
  article-title: Convolutional neural networks based method for improving facial expression recognition
  publication-title: The International Symposium on Intelligent Systems Technologies and Applications
– reference: M. Kamachi, M. Lyons, J. Gyoba, The japanese female facial expression (jaffe) database, Available:
– volume: 145
  start-page: 451
  year: 2014
  end-page: 464
  ident: b0040
  article-title: Random gabor based templates for facial expression recognition in images with facial occlusion
  publication-title: Neurocomputing
– reference: S. Noh, H. Park, Y. Jin, J.-I. Park, Feature-adaptive motion energy analysis for facial expression recognition, in: International Symposium on Visual Computing, Springer, 2007, pp. 452–463.
– reference: L. H. Thai, N. D. T. Nguyen, T. S. Hai, A facial expression classification system integrating canny, principal component analysis and artificial neural network, CoRR abs/1111.4052.
– volume: 19
  start-page: 1321
  year: 2016
  end-page: 1333
  ident: b0075
  article-title: Kernel locality preserving symmetrical weighted fisher discriminant analysis based subspace approach for expression recognition
  publication-title: Engineering Science and Technology, an International Journal
– start-page: 2879
  year: 2012
  end-page: 2886
  ident: b0170
  article-title: Face detection, pose estimation, and landmark localization in the wild
  publication-title: 2012 IEEE Conference on Computer Vision and Pattern Recognition
– reference: .
– volume: 31
  start-page: 277
  year: 2014
  end-page: 286
  ident: b0085
  article-title: Depth camera-based facial expression recognition system using multilayer scheme
  publication-title: IETE Technical Review
– volume: 29
  start-page: 915
  year: 2007
  end-page: 928
  ident: b0055
  article-title: Dynamic texture recognition using local binary patterns with an application to facial expressions
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 562–566
  year: 2007
  ident: b0115
  article-title: Facial complex expression recognition based on fuzzy kernel clustering and support vector machine
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 27
  start-page: 803
  year: 2013
  end-page: 816
  ident: b0050
  article-title: Facial expression recognition based on local binary patterns: a comprehensive study
  publication-title: Image and Vision Computing
– volume: 74
  start-page: 3474
  year: 1991
  end-page: 3483
  ident: b0060
  article-title: Recognition of facial expression from optical flow
  publication-title: IEICE Transactions on Information and Systems
– volume: 43
  start-page: 587
  year: 2013
  end-page: 605
  ident: b0005
  article-title: General and interval type-2 fuzzy face-space approach to emotion recognition
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– reference: R. Breuer, R. Kimmel, A deep learning perspective on the origin of facial expressions, 2017, arXiv:1705.01842.
– reference: S. Katiyar, A. V, Comparative analysis of common edge detection techniques in context of object extraction, IEEE Transactions on Geoscience and Remote Sensing 50 (2012) 68–78.
– volume: 430–431
  start-page: 444
  year: 2018
  ident: 10.1016/j.neucom.2020.12.092_b0240
  article-title: How to make a neural network say don’t know
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2017.11.061
– volume: 19
  start-page: 1321
  issue: 3
  year: 2016
  ident: 10.1016/j.neucom.2020.12.092_b0075
  article-title: Kernel locality preserving symmetrical weighted fisher discriminant analysis based subspace approach for expression recognition
  publication-title: Engineering Science and Technology, an International Journal
  doi: 10.1016/j.jestch.2016.03.005
– start-page: 679
  year: 1986
  ident: 10.1016/j.neucom.2020.12.092_b0195
  article-title: A computational approach to edge detection
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-8
  doi: 10.1109/TPAMI.1986.4767851
– start-page: 3732
  year: 1997
  ident: 10.1016/j.neucom.2020.12.092_b0010
  article-title: Facial interaction between animated 3d face robot and human beings
– volume: 33
  start-page: 407
  issue: 3
  year: 2003
  ident: 10.1016/j.neucom.2020.12.092_b0025
  article-title: Facial expression recognition from line-based caricatures
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans
  doi: 10.1109/TSMCA.2003.817057
– volume: 41
  start-page: 3383
  issue: 7
  year: 2014
  ident: 10.1016/j.neucom.2020.12.092_b0110
  article-title: A neural-adaboost based facial expression recognition system
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.11.041
– volume: 145
  start-page: 451
  year: 2014
  ident: 10.1016/j.neucom.2020.12.092_b0040
  article-title: Random gabor based templates for facial expression recognition in images with facial occlusion
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.05.008
– volume: 31
  start-page: 277
  issue: 4
  year: 2014
  ident: 10.1016/j.neucom.2020.12.092_b0085
  article-title: Depth camera-based facial expression recognition system using multilayer scheme
  publication-title: IETE Technical Review
  doi: 10.1080/02564602.2014.944588
– volume: 11
  start-page: 467
  issue: 4
  year: 2002
  ident: 10.1016/j.neucom.2020.12.092_b0035
  article-title: Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition
  publication-title: IEEE Transactions on Image processing
  doi: 10.1109/TIP.2002.999679
– ident: 10.1016/j.neucom.2020.12.092_b0210
  doi: 10.1109/TGRS.2011.2173939
– ident: 10.1016/j.neucom.2020.12.092_b0065
  doi: 10.1109/ICSMC.2004.1398371
– volume: 388
  start-page: 212
  year: 2020
  ident: 10.1016/j.neucom.2020.12.092_b0130
  article-title: Deep convolution network based emotion analysis towards mental health care
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.01.034
– start-page: 73
  year: 2016
  ident: 10.1016/j.neucom.2020.12.092_b0105
  article-title: Convolutional neural networks based method for improving facial expression recognition
– ident: 10.1016/j.neucom.2020.12.092_b0080
  doi: 10.1007/978-981-10-8237-5_28
– ident: 10.1016/j.neucom.2020.12.092_b0180
– start-page: 1036
  year: 2014
  ident: 10.1016/j.neucom.2020.12.092_b0165
  article-title: Improving multiview face detection with multi-task deep convolutional neural networks
– start-page: 7
  year: 2010
  ident: 10.1016/j.neucom.2020.12.092_b0120
  article-title: Emotion detection via discriminative kernel method
– volume: 195
  start-page: 2675
  year: 2015
  ident: 10.1016/j.neucom.2020.12.092_b0220
  article-title: Comparison of edge detection algorithms for texture analysis on glass production
  publication-title: Procedia-Social and Behavioral Sciences
  doi: 10.1016/j.sbspro.2015.06.477
– start-page: 19
  year: 2015
  ident: 10.1016/j.neucom.2020.12.092_b0145
  article-title: Do deep neural networks learn facial action units when doing expression recognition?
– ident: 10.1016/j.neucom.2020.12.092_b0150
– start-page: 2879
  year: 2012
  ident: 10.1016/j.neucom.2020.12.092_b0170
  article-title: Face detection, pose estimation, and landmark localization in the wild
– volume: 43
  start-page: 587
  issue: 3
  year: 2013
  ident: 10.1016/j.neucom.2020.12.092_b0005
  article-title: General and interval type-2 fuzzy face-space approach to emotion recognition
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
  doi: 10.1109/TSMCA.2012.2207107
– start-page: 109
  year: 2014
  ident: 10.1016/j.neucom.2020.12.092_b0160
  article-title: Joint cascade face detection and alignment
– ident: 10.1016/j.neucom.2020.12.092_b0175
– ident: 10.1016/j.neucom.2020.12.092_b0100
  doi: 10.1007/978-3-540-76858-6_45
– ident: 10.1016/j.neucom.2020.12.092_b0020
– volume: 272
  start-page: 668
  year: 2018
  ident: 10.1016/j.neucom.2020.12.092_b0070
  article-title: Intelligent facial emotion recognition based on stationary wavelet entropy and jaya algorithm
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.08.015
– year: 1978
  ident: 10.1016/j.neucom.2020.12.092_b0015
– volume: 24
  start-page: 1386
  issue: 4
  year: 2015
  ident: 10.1016/j.neucom.2020.12.092_b0090
  article-title: Human facial expression recognition using stepwise linear discriminant analysis and hidden conditional random fields
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2015.2405346
– ident: 10.1016/j.neucom.2020.12.092_b0215
– volume: 16
  start-page: 1574
  issue: 6
  year: 2014
  ident: 10.1016/j.neucom.2020.12.092_b0030
  article-title: Prototype-based modeling for facial expression analysis
  publication-title: IEEE Transactions on Multimedia
  doi: 10.1109/TMM.2014.2321113
– ident: 10.1016/j.neucom.2020.12.092_b0095
  doi: 10.1016/j.neucom.2020.07.120
– ident: 10.1016/j.neucom.2020.12.092_b0230
– ident: 10.1016/j.neucom.2020.12.092_b0045
– volume: 27
  start-page: 803
  issue: 6
  year: 2013
  ident: 10.1016/j.neucom.2020.12.092_b0050
  article-title: Facial expression recognition based on local binary patterns: a comprehensive study
  publication-title: Image and Vision Computing
  doi: 10.1016/j.imavis.2008.08.005
– ident: 10.1016/j.neucom.2020.12.092_b0140
  doi: 10.1109/WACV.2016.7477450
– ident: 10.1016/j.neucom.2020.12.092_b0190
– ident: 10.1016/j.neucom.2020.12.092_b0185
  doi: 10.1109/SOCPAR.2014.7007973
– volume: 562–566
  year: 2007
  ident: 10.1016/j.neucom.2020.12.092_b0115
  article-title: Facial complex expression recognition based on fuzzy kernel clustering and support vector machine
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 14
  start-page: 21
  year: 1996
  ident: 10.1016/j.neucom.2020.12.092_b0235
  article-title: Efficient evaluations of edge connectivity and width uniformity
  publication-title: Image and Vision Computing
  doi: 10.1016/0262-8856(95)01036-X
– volume: 273
  start-page: 643
  year: 2018
  ident: 10.1016/j.neucom.2020.12.092_b0125
  article-title: Facial expression recognition via learning deep sparse autoencoders
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.08.043
– volume: 74
  start-page: 3474
  issue: 10
  year: 1991
  ident: 10.1016/j.neucom.2020.12.092_b0060
  article-title: Recognition of facial expression from optical flow
  publication-title: IEICE Transactions on Information and Systems
– start-page: 435
  year: 2015
  ident: 10.1016/j.neucom.2020.12.092_b0155
  article-title: Image based static facial expression recognition with multiple deep network learning
– volume: 29
  start-page: 915
  issue: 6
  year: 2007
  ident: 10.1016/j.neucom.2020.12.092_b0055
  article-title: Dynamic texture recognition using local binary patterns with an application to facial expressions
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2007.1110
– ident: 10.1016/j.neucom.2020.12.092_b0135
– volume: 19
  start-page: 1338
  issue: 12
  year: 1997
  ident: 10.1016/j.neucom.2020.12.092_b0205
  article-title: A robust visual method for assessing the relative performance of edge detection algorithms
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.643893
– ident: 10.1016/j.neucom.2020.12.092_b0225
– ident: 10.1016/j.neucom.2020.12.092_b0200
SSID ssj0017129
Score 2.3757575
Snippet Facial emotion recognition has gained importance for its applications in diverse areas. Facial expressions of a subject, when experiencing the same emotion,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 162
SubjectTerms Convolutional neural network
Edge images
Edge-tower
Emotion recognition
Two-tower CNN
Title Can edges help convolution neural networks in emotion recognition?
URI https://dx.doi.org/10.1016/j.neucom.2020.12.092
Volume 433
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED71sbDwRpRH5YHVNHFsJxlLRVVAdIFK3SwncURRFSLarvx2fIlTgYRAYo18UXS5x2f7uzuAK8xhhumcytwYyhMtqY50ShPD4sjX2rAIq5Efp3Iy4_dzMW_BqKmFQVqli_11TK-itXsycNoclIvF4MmLmd1F-ayaAe7xeRu6LIil6EB3ePcwmW4vE0Kf1S33mKAo0FTQVTSvwmyQNsIsbKrOBWP2c4b6knXG-7Dr4CIZ1l90AC1THMJeM4qBOM88gpuRLggeja3Ii1mWBMnkzqgItqy07yhqwveKLOzKengP2dKHLOg-htn49nk0oW48Ak0tzl9TacLMS4PEy4SJPBzxIHO7Qcks5veFtq4a5jzgWDgbSOu3nki4zIwfRbFnQYiFLSfQKd4KcwokiI2UYc40kxkPsjzCH5jFHO8IhUlED4JGJSp1vcNxhMVSNSSxV1UrUqEilc-UVWQP6FaqrHtn_LE-bLStvtmAsuH9V8mzf0ueww5Dlgp2b-QX0Fm_b8ylhRnrpA_t6w-_74zpEyi_0SU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VMsDCG1GeHlhNE8d2khEqqgJtF1qpm-UkjiiqQkXbld-OL3EqkBBIrNHZii73-Ox8dwdwjTnMMJ1TmRtDeaIl1ZFOaWJYHPlaGxZhNfJgKHtj_jgRkwZ06loYpFW62F_F9DJauydtp832fDptP3sxs6con5UzwD0-2YBNLoIQeX03H2uehx_6rGq4xwRF8bp-riR5FWaFpBFmQVN5Kxizn_PTl5zT3YMdBxbJbfU--9AwxQHs1oMYiPPLQ7jr6ILgxdiCvJjZnCCV3JkUwYaVdo-ionsvyNRKVqN7yJo8ZCH3EYy796NOj7rhCDS1KH9JpQkzLw0SLxMm8nDAg8zt8SSziN8X2jpqmPOAY9lsIK3XeiLhMjN-FMWehSAWtBxDs3grzAmQIDZShjnTTGY8yPIIP18Wc_xDKEwiWhDUKlGp6xyOAyxmqqaIvapKkQoVqXymrCJbQNer5lXnjD_kw1rb6psFKBvcf115-u-VV7DVGw36qv8wfDqDbYZ8FezjyM-huXxfmQsLOJbJZWlQn-X60fA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Can+edges+help+convolution+neural+networks+in+emotion+recognition%3F&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Bhandari%2C+Arkaprabha&rft.au=Pal%2C+Nikhil+R.&rft.date=2021-04-14&rft.issn=0925-2312&rft.volume=433&rft.spage=162&rft.epage=168&rft_id=info:doi/10.1016%2Fj.neucom.2020.12.092&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2020_12_092
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon