Thermal safety of dendritic lithium against non-aqueous electrolyte in pouch-type lithium metal batteries
With the rise of the specific surface areas of Li deposits, the initial exothermic temperature between Li metal and electrolyte reduces gradually. The heat release of per gram Li increases firstly and then reduces in a working battery. [Display omitted] A quantitative relationship between safety iss...
Saved in:
Published in | Journal of energy chemistry Vol. 72; pp. 158 - 165 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the rise of the specific surface areas of Li deposits, the initial exothermic temperature between Li metal and electrolyte reduces gradually. The heat release of per gram Li increases firstly and then reduces in a working battery.
[Display omitted]
A quantitative relationship between safety issues and dendritic lithium (Li) has been rarely investigated yet. Herein the thermal stability of Li deposits with distinct surface area against non-aqueous electrolyte in pouch-type Li metal batteries is probed. The thermal runaway temperatures of Li metal batteries obtained by accelerating rate calorimeter are reduced from 211 °C for Li foil to 111 °C for cycled Li. The initial exothermic temperature is reduced from 194 °C for routine Li foil to 142 °C for 49.5 m2 g−1 dendrite. Li with different specific surface areas can regulate the reaction routes during the temperature range from 50 to 300 °C. The mass percent of Li foil and highly dendritic Li reacting with ethylene carbonate is higher than that of moderately dendritic Li. This contribution can strengthen the understanding of the thermal runaway mechanism and shed fresh light on the rational design of safe Li metal batteries. |
---|---|
AbstractList | With the rise of the specific surface areas of Li deposits, the initial exothermic temperature between Li metal and electrolyte reduces gradually. The heat release of per gram Li increases firstly and then reduces in a working battery.
[Display omitted]
A quantitative relationship between safety issues and dendritic lithium (Li) has been rarely investigated yet. Herein the thermal stability of Li deposits with distinct surface area against non-aqueous electrolyte in pouch-type Li metal batteries is probed. The thermal runaway temperatures of Li metal batteries obtained by accelerating rate calorimeter are reduced from 211 °C for Li foil to 111 °C for cycled Li. The initial exothermic temperature is reduced from 194 °C for routine Li foil to 142 °C for 49.5 m2 g−1 dendrite. Li with different specific surface areas can regulate the reaction routes during the temperature range from 50 to 300 °C. The mass percent of Li foil and highly dendritic Li reacting with ethylene carbonate is higher than that of moderately dendritic Li. This contribution can strengthen the understanding of the thermal runaway mechanism and shed fresh light on the rational design of safe Li metal batteries. |
Author | Shi, Peng Yuan, Hong Zhang, Qiang Yang, Shi-Jie Ding, Jun-Fan Huang, Jia-Qi Cheng, Xin-Bing Liu, Lei Jiang, Feng-Ni Chen, Xiang |
Author_xml | – sequence: 1 givenname: Feng-Ni surname: Jiang fullname: Jiang, Feng-Ni organization: College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China – sequence: 2 givenname: Shi-Jie surname: Yang fullname: Yang, Shi-Jie organization: Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China – sequence: 3 givenname: Xin-Bing surname: Cheng fullname: Cheng, Xin-Bing email: chengxb@seu.edu.cn organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China – sequence: 4 givenname: Peng surname: Shi fullname: Shi, Peng organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China – sequence: 5 givenname: Jun-Fan surname: Ding fullname: Ding, Jun-Fan organization: Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China – sequence: 6 givenname: Xiang surname: Chen fullname: Chen, Xiang organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China – sequence: 7 givenname: Hong surname: Yuan fullname: Yuan, Hong organization: Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China – sequence: 8 givenname: Lei surname: Liu fullname: Liu, Lei email: liulei@tyut.edu.cn organization: College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China – sequence: 9 givenname: Jia-Qi surname: Huang fullname: Huang, Jia-Qi organization: Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China – sequence: 10 givenname: Qiang orcidid: 0000-0002-3929-1541 surname: Zhang fullname: Zhang, Qiang email: zhang-qiang@mails.tsinghua.edu.cn organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China |
BookMark | eNqFkD1PwzAQQD0UiVL6Dxj8BxLOSewQBiRU8SVVYimz5dhn4iofxXaQ8u9JVcTAALfc9N7p3gVZ9EOPhFwxSBkwcb1P96gb7NIMsiwFngLwBVlmUPGkqLg4J-sQ9jBPVbCs4kvidg36TrU0KItxooOlBnvjXXSati42buyoeleuD5HO1xL1MeIwBoot6uiHdopIXU8Pw6ibJE4H_KE6jLO3VjGidxguyZlVbcD1916Rt8eH3eY52b4-vWzut4nOQcRE6Lqsc2FtmWPFblRZMNBgDAfUTPDc5BmKTOW2NDxHa4ArBlkFJdQViqLOV-T25NV-CMGjldpFFd3QR69cKxnIYyu5l6dW8thKApdzqxkufsEH7zrlp_-wuxOG82OfDr0M2mGv0Tg_Z5JmcH8LvgDEPowQ |
CitedBy_id | crossref_primary_10_1016_j_jechem_2023_01_030 crossref_primary_10_1016_j_jechem_2024_12_004 crossref_primary_10_1007_s11665_023_08901_6 crossref_primary_10_1016_j_jechem_2024_01_036 crossref_primary_10_1016_j_partic_2023_02_010 crossref_primary_10_1016_j_xcrp_2024_102354 crossref_primary_10_1002_celc_202200957 crossref_primary_10_1016_j_jechem_2023_04_044 crossref_primary_10_1016_j_jechem_2024_12_006 crossref_primary_10_1016_j_jechem_2023_02_030 crossref_primary_10_1016_S1872_5805_23_60773_5 crossref_primary_10_1039_D3QM00029J crossref_primary_10_1063_5_0177345 crossref_primary_10_1039_D2QI02416K crossref_primary_10_1016_j_jpowsour_2023_233249 crossref_primary_10_1016_j_partic_2022_11_009 crossref_primary_10_1016_j_jechem_2024_02_046 crossref_primary_10_1016_j_jechem_2025_02_004 crossref_primary_10_1021_acsenergylett_4c00621 crossref_primary_10_1021_acsami_2c09287 crossref_primary_10_1016_j_jechem_2024_01_073 crossref_primary_10_1016_j_jechem_2022_09_034 crossref_primary_10_1002_aenm_202301742 crossref_primary_10_1039_D3YA00035D crossref_primary_10_1002_elt2_8 crossref_primary_10_3390_batteries9060296 crossref_primary_10_1016_j_jechem_2023_08_054 crossref_primary_10_1021_acsanm_2c04500 crossref_primary_10_1016_j_partic_2023_04_005 crossref_primary_10_1016_j_jechem_2023_02_040 crossref_primary_10_1016_j_cclet_2024_110009 crossref_primary_10_1016_j_etran_2023_100279 crossref_primary_10_1039_D2NR04158H crossref_primary_10_1016_j_jechem_2024_08_029 crossref_primary_10_1016_j_etran_2024_100333 crossref_primary_10_1021_acsami_2c14575 crossref_primary_10_1021_acsaem_4c01618 crossref_primary_10_1016_j_jechem_2024_03_015 crossref_primary_10_1002_cssc_202401401 crossref_primary_10_1002_adma_202405086 crossref_primary_10_1016_j_jechem_2023_08_040 crossref_primary_10_1016_j_cclet_2022_107767 crossref_primary_10_1039_D3EE00441D crossref_primary_10_1002_aenm_202202518 crossref_primary_10_1021_acsami_2c20616 crossref_primary_10_1039_D3TA02916F crossref_primary_10_1002_adma_202209114 crossref_primary_10_1002_cnl2_182 crossref_primary_10_1016_j_jechem_2023_08_045 crossref_primary_10_1016_j_jechem_2023_10_016 crossref_primary_10_1002_adma_202307370 crossref_primary_10_1021_acs_energyfuels_4c02174 crossref_primary_10_1016_j_jechem_2023_09_050 crossref_primary_10_1007_s11705_022_2286_4 crossref_primary_10_3390_molecules28104106 crossref_primary_10_1039_D2TA07035A crossref_primary_10_1016_j_apsusc_2022_154468 crossref_primary_10_1002_sus2_70004 crossref_primary_10_1016_j_jechem_2024_07_004 crossref_primary_10_1021_acs_jpcc_2c07797 crossref_primary_10_1039_D4EE03468F crossref_primary_10_20517_energymater_2023_109 crossref_primary_10_1002_metm_6 crossref_primary_10_1016_j_partic_2023_03_001 crossref_primary_10_1007_s12598_022_02256_y crossref_primary_10_1016_j_jechem_2023_07_029 crossref_primary_10_1149_1945_7111_ad01e7 crossref_primary_10_1016_j_susmat_2024_e01170 crossref_primary_10_1016_j_jechem_2024_01_005 crossref_primary_10_1016_j_jechem_2022_08_013 crossref_primary_10_1016_j_jechem_2023_06_002 crossref_primary_10_1016_j_jechem_2024_08_054 crossref_primary_10_1016_j_jechem_2024_08_053 crossref_primary_10_1016_j_seppur_2025_131654 crossref_primary_10_1016_j_jechem_2024_01_009 crossref_primary_10_1016_j_jechem_2024_04_030 crossref_primary_10_1016_j_jechem_2024_12_018 crossref_primary_10_1021_acsaem_3c00728 crossref_primary_10_1016_j_jechem_2024_05_025 crossref_primary_10_1021_acsenergylett_4c01583 crossref_primary_10_1016_j_jechem_2024_11_059 crossref_primary_10_1016_j_ensm_2023_03_012 crossref_primary_10_1016_j_jechem_2024_11_014 crossref_primary_10_1021_acsami_2c18752 crossref_primary_10_1002_adma_202414047 crossref_primary_10_1016_j_ensm_2022_08_018 crossref_primary_10_1002_adfm_202503266 crossref_primary_10_1021_acs_langmuir_3c01121 crossref_primary_10_1016_j_partic_2023_01_005 crossref_primary_10_1016_j_jechem_2024_09_047 crossref_primary_10_1016_j_est_2023_109759 crossref_primary_10_1007_s12598_023_02417_7 crossref_primary_10_1016_j_jechem_2023_03_051 |
Cites_doi | 10.1016/j.joule.2020.03.012 10.1016/j.jechem.2020.07.028 10.1016/j.etran.2019.100034 10.1016/j.jpowsour.2018.03.034 10.1021/acsami.1c05966 10.1016/j.jechem.2022.01.019 10.1016/j.ensm.2018.06.022 10.1038/s41560-021-00789-7 10.1016/j.jechem.2021.05.043 10.1002/smtd.202100441 10.1016/j.jpowsour.2017.05.061 10.1016/j.jpowsour.2021.229946 10.1149/1945-7111/ababd2 10.1039/D1TA02615A 10.1002/anie.202102593 10.1016/j.nanoen.2017.08.005 10.1002/adfm.201704391 10.1002/adfm.202105253 10.1016/j.ensm.2020.10.018 10.1007/s002149900065 10.1016/j.ensm.2019.03.005 10.1016/j.cjche.2021.03.021 10.1016/j.ensm.2021.07.009 10.1016/j.jechem.2020.10.017 10.1016/j.jechem.2021.05.045 10.34133/2021/1205324 10.1002/aenm.201701398 10.1021/acsnano.0c03344 10.1016/j.ensm.2020.11.029 10.1149/1945-7111/ac0b25 10.1002/adfm.202009925 10.1016/j.actamat.2010.12.040 10.1002/inf2.12224 10.1002/adma.202100804 10.1016/j.partic.2020.12.003 10.1016/j.jechem.2021.03.031 10.1016/j.jechem.2021.12.049 10.1016/j.cclet.2020.03.015 10.1002/aenm.201903441 10.1016/j.jechem.2019.05.003 10.1021/acs.nanolett.6b04755 10.1038/nnano.2017.16 10.1016/j.nanoen.2018.04.078 10.1016/j.jechem.2019.08.008 10.1002/smsc.202100058 10.1021/acsami.1c06029 10.1016/j.jechem.2021.03.025 10.1016/j.ensm.2021.04.020 10.1016/j.ijplas.2009.11.006 10.1021/jp810292n 10.1002/adfm.202111026 10.1007/s12209-020-00241-z 10.1021/acsami.1c01246 10.1149/2.0041906jes 10.1016/j.ensm.2020.04.035 10.1002/sus2.4 10.1021/acsami.9b16589 10.1016/S0378-7753(03)00254-4 10.1038/s41586-019-1481-z |
ContentType | Journal Article |
Copyright | 2022 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences |
Copyright_xml | – notice: 2022 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jechem.2022.05.005 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 165 |
ExternalDocumentID | 10_1016_j_jechem_2022_05_005 S2095495622002571 |
GroupedDBID | --M .~1 0R~ 1~. 2B. 2C0 4.4 457 4G. 5VR 5VS 7-5 8P~ 92H 92I AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFUIB AGHFR AGUBO AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CCEZO CDRFL CHBEP EBS EFJIC EFLBG EJD ENUVR FA0 FDB FEDTE FIRID FNPLU FYGXN GBLVA HVGLF HZ~ KOM M41 MO0 O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SPC SPCBC SSG SSR SSZ T5K TCJ TGT ~G- -SB -S~ 5XA 5XC AATTM AAXKI AAYWO AAYXX ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CAJEB CITATION Q-- SSH U1G U5L |
ID | FETCH-LOGICAL-c306t-6cb7b36ff73e918a7410c0dd50ec1653d32e62a3f7d53efd05a1029070b9e64b3 |
IEDL.DBID | .~1 |
ISSN | 2095-4956 |
IngestDate | Thu Apr 24 23:12:49 EDT 2025 Tue Jul 01 03:48:58 EDT 2025 Fri Feb 23 02:40:42 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Pouch-type cell Lithium dendrite growth Battery safety Lithium metal anode Thermal runaway |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-6cb7b36ff73e918a7410c0dd50ec1653d32e62a3f7d53efd05a1029070b9e64b3 |
ORCID | 0000-0002-3929-1541 |
PageCount | 8 |
ParticipantIDs | crossref_citationtrail_10_1016_j_jechem_2022_05_005 crossref_primary_10_1016_j_jechem_2022_05_005 elsevier_sciencedirect_doi_10_1016_j_jechem_2022_05_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2022 2022-09-00 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: September 2022 |
PublicationDecade | 2020 |
PublicationTitle | Journal of energy chemistry |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Fang, Li, Zhang, Zhang, Yang, Lee, Lee, Alvarado, Schroeder, Yang, Lu, Williams, Ceja, Yang, Cai, Gu, Xu, Wang, Meng (b0270) 2019; 572 Zhang, Zhang, Yuan, Huang (b0285) 2021; 1 Yun, Xi, Gu, Tian, Chen, Feng, Qian, Xiong (b0015) 2022; 66 Fear, Parmananda, Kabra, Carter, Love, Mukherjee (b0220) 2021; 35 Marenich, Cramer, Truhlar (b0280) 2009; 113 Xu, Wu, Jia, Zhang, Xu, Wang (b0310) 2020; 14 Chen, Nolan, Lu, Wang, Yu, Mo, Chen, Huang, Li (b0110) 2020; 4 Zhang, Deng, Zhou, He, Liang, Zhao, Guo, Liu (b0105) 2021; 21 Lu, Zhao, Yuan, Cheng, Huang, Zhang (b0085) 2021; 31 Yuan, Wu, Bai, Li, Chen, Wang, Wu (b0255) 2019; 16 Liu, Yuan, Tao, Liang, Yang, Huang, Yuan, Titirici, Zhang (b0030) 2020; 2 Raghavachari (b0275) 2000; 103 Geng, Lu, Li, Qiu, Wang, Peng, Huang, Li, Yu, Li (b0045) 2019; 23 Hu, Han, Mei, Liu, Sun, Yang, Zhao (b0265) 2021; 19 Perea, Dontigny, Zaghib (b0125) 2017; 359 Galushkin, Yazvinskaya, Galushkin (b0295) 2019; 166 Ye, Xiao, Cheng, Cui, Jiang, Qu (b0250) 2018; 49 Ding, Xu, Yan, Xiao, Liang, Yuan, Huang (b0050) 2020; 31 Tan, Yue, Tian, Ma, Wan, Xiao, Zhang, Yin, Wen, Xin, Guo (b0080) 2021; 39 Wu, Wang, Li, Chen, Wu (b0185) 2021; 3 Xie, Cui, Manthiram (b0190) 2021; 33 Yuan, Liu (b0200) 2020; 43 He, Wang, Zhou, Qi, Wu, Li, Hu, Ma (b0055) 2021; 5 Chen, Shang, Niu (b0065) 2021; 13 Cheng, Liu, Yuan, Peng, Tang, Huang, Zhang (b0005) 2021; 1 Yang, Xu, Cheng, Wang, Chen, Xiao, Yuan, Liu, Chen, Zhu, Huang, Zhang (b0300) 2021; 37 Xu, Li, Cheng, Hou, Nie, Ai, Dai, Feng, Ci (b0010) 2020; 41 Yang, Yao, Xu, Jiang, Chen, Liu, Yuan, Huang, Cheng (b0315) 2021; 9 Beese, Mohr (b0145) 2011; 59 Chen, Kang, Zhao, Wang, Liu, Li, Liang, He, Li, Tavajohi, Li (b0165) 2021; 59 Zhang, Wei, Chen, Zhu, Han, Tang, Hua, Dai, Ye (b0215) 2021; 13 Liu, Duan, Feng, Ma, Sun, Wang (b0230) 2020; 29 D. Ren, H. Hsu, R. Li, X. Feng, D. Guo, X. Han, L. Lu, X. He, S. Gao, J. Hou, Y. Li, Y. Wang, M. Ouyang, eTransportation 2 (2019) 100034. Zhang, Wu, Tang, Liu, Tian, Zhou, Zhang, Zhang, Zhang, Cui (b0040) 2021; 168 Huang, Xue, Xiao, Wang, Li, Zhang, Meng (b0120) 2020; 30 Cai, Yan, Yao, Xu, Chen, Huang, Zhang (b0225) 2021; 60 Wang, Yuan, Zhu, Wang, Huang, Wang, Xu (b0170) 2021; 55 Liu, Li, Xu, Shi, Zhang, Xu, Cheng, Huang (b0060) 2021; 37 Liu, Cheng, Zhang, Shi, Shen, Chen, Li, Huang, Zhang (b0260) 2020; 26 Shen, Zhang, Ding, Huang, Xu, Chen, Yan, Su, Chen, Liu, Zhang (b0020) 2021; 2021 Ouyang, Zong, Wang, Xu, Mo, Lai, Xu, Miao, Liu (b0095) 2021; 42 Chen, Yao, Yang, Pan, Yu, Zhang, Li (b0115) 2021; 13 Yuan, Chang, Yan, Zhou, Qian, Yuan, Liu (b0160) 2021; 62 Yamaki, Baba, Katayama, Takatsuji, Egashira, Okada (b0210) 2003; 119–121 Puthusseri, Parmananda, Mukherjee, Pol (b0130) 2020; 167 Li, Feng, Ren, Ouyang, Lu, Han (b0195) 2019; 11 Ren, Ding, Fu, Huang (b0235) 2021; 34 Xu, Pang, Chen, Ma, Wang, Chai, Wang, An, Zhou, Cui, Chen (b0320) 2018; 8 Lee, Ren, Niu, Yu, Engelhard, Cho, Ryou, Jin, Kim, Liu, Xu, Zhang (b0245) 2017; 27 Zhou, Dong, Lv, Xu, Huang, Wang, Cui, Cui (b0205) 2019; 10 Mohr, Dunand, Kim (b0175) 2010; 26 Lin, Liu, Cui (b0135) 2017; 12 Liu, Yang, Zhang, Li, Gao, Duan, Sun, Wang (b0155) 2022; 65 Xu, Jiang, Yang, Xiao, Liu, Liu, Liu, Cheng (b0075) 2022; 69 Tan, Wang, Tian, Xin, Guo (b0140) 2021; 31 Wu, Lochala, Taverne, Xiao (b0240) 2017; 40 Fernandes, Bry, de Persis (b0290) 2018; 389 Wu, Chen, Yao, Hu, Huang, Meng, Ma, Wu, Cui, Li (b0035) 2021; 501 Yang, Shen, Cheng, Jiang, Zhang, Liu, Liu, Yuan (b0100) 2022; 69 Liu, Cheng, Chong, Yuan, Huang, Zhang (b0025) 2021; 57 Jin, Liu, Sheng, Li, Liu, Yuan, Nai, Ju, Zhang, Liu, Wang, Lin, Lu, Tao (b0070) 2021; 6 Sheng, Hu, Liu, Ju, Lu, Liu, Nai, Wang, Zhang, Tao (b0090) 2021; 32 Liu, Feng, Rahe, Li, Lu, He, Sauer, Ouyang (b0180) 2021; 61 Pei, Zheng, Shi, Li, Cui (b0305) 2017; 17 Beese (10.1016/j.jechem.2022.05.005_b0145) 2011; 59 Xu (10.1016/j.jechem.2022.05.005_b0320) 2018; 8 Hu (10.1016/j.jechem.2022.05.005_b0265) 2021; 19 Pei (10.1016/j.jechem.2022.05.005_b0305) 2017; 17 Xu (10.1016/j.jechem.2022.05.005_b0010) 2020; 41 Wu (10.1016/j.jechem.2022.05.005_b0185) 2021; 3 Tan (10.1016/j.jechem.2022.05.005_b0080) 2021; 39 Galushkin (10.1016/j.jechem.2022.05.005_b0295) 2019; 166 Xu (10.1016/j.jechem.2022.05.005_b0075) 2022; 69 Zhang (10.1016/j.jechem.2022.05.005_b0105) 2021; 21 10.1016/j.jechem.2022.05.005_b0150 Huang (10.1016/j.jechem.2022.05.005_b0120) 2020; 30 Yuan (10.1016/j.jechem.2022.05.005_b0200) 2020; 43 Xu (10.1016/j.jechem.2022.05.005_b0310) 2020; 14 Yamaki (10.1016/j.jechem.2022.05.005_b0210) 2003; 119–121 Ye (10.1016/j.jechem.2022.05.005_b0250) 2018; 49 Liu (10.1016/j.jechem.2022.05.005_b0060) 2021; 37 Liu (10.1016/j.jechem.2022.05.005_b0230) 2020; 29 Marenich (10.1016/j.jechem.2022.05.005_b0280) 2009; 113 Jin (10.1016/j.jechem.2022.05.005_b0070) 2021; 6 Lee (10.1016/j.jechem.2022.05.005_b0245) 2017; 27 Lin (10.1016/j.jechem.2022.05.005_b0135) 2017; 12 Zhang (10.1016/j.jechem.2022.05.005_b0285) 2021; 1 Chen (10.1016/j.jechem.2022.05.005_b0115) 2021; 13 Li (10.1016/j.jechem.2022.05.005_b0195) 2019; 11 Fear (10.1016/j.jechem.2022.05.005_b0220) 2021; 35 Liu (10.1016/j.jechem.2022.05.005_b0155) 2022; 65 Yuan (10.1016/j.jechem.2022.05.005_b0255) 2019; 16 Liu (10.1016/j.jechem.2022.05.005_b0030) 2020; 2 Raghavachari (10.1016/j.jechem.2022.05.005_b0275) 2000; 103 Cai (10.1016/j.jechem.2022.05.005_b0225) 2021; 60 Puthusseri (10.1016/j.jechem.2022.05.005_b0130) 2020; 167 Chen (10.1016/j.jechem.2022.05.005_b0110) 2020; 4 Zhang (10.1016/j.jechem.2022.05.005_b0040) 2021; 168 Fernandes (10.1016/j.jechem.2022.05.005_b0290) 2018; 389 Yun (10.1016/j.jechem.2022.05.005_b0015) 2022; 66 Xie (10.1016/j.jechem.2022.05.005_b0190) 2021; 33 Shen (10.1016/j.jechem.2022.05.005_b0020) 2021; 2021 Liu (10.1016/j.jechem.2022.05.005_b0180) 2021; 61 Yang (10.1016/j.jechem.2022.05.005_b0315) 2021; 9 Ren (10.1016/j.jechem.2022.05.005_b0235) 2021; 34 Liu (10.1016/j.jechem.2022.05.005_b0025) 2021; 57 Sheng (10.1016/j.jechem.2022.05.005_b0090) 2021; 32 Tan (10.1016/j.jechem.2022.05.005_b0140) 2021; 31 Ouyang (10.1016/j.jechem.2022.05.005_b0095) 2021; 42 Fang (10.1016/j.jechem.2022.05.005_b0270) 2019; 572 Mohr (10.1016/j.jechem.2022.05.005_b0175) 2010; 26 Yang (10.1016/j.jechem.2022.05.005_b0100) 2022; 69 Wu (10.1016/j.jechem.2022.05.005_b0240) 2017; 40 Perea (10.1016/j.jechem.2022.05.005_b0125) 2017; 359 Wu (10.1016/j.jechem.2022.05.005_b0035) 2021; 501 Lu (10.1016/j.jechem.2022.05.005_b0085) 2021; 31 Wang (10.1016/j.jechem.2022.05.005_b0170) 2021; 55 Ding (10.1016/j.jechem.2022.05.005_b0050) 2020; 31 He (10.1016/j.jechem.2022.05.005_b0055) 2021; 5 Yuan (10.1016/j.jechem.2022.05.005_b0160) 2021; 62 Chen (10.1016/j.jechem.2022.05.005_b0065) 2021; 13 Cheng (10.1016/j.jechem.2022.05.005_b0005) 2021; 1 Zhou (10.1016/j.jechem.2022.05.005_b0205) 2019; 10 Liu (10.1016/j.jechem.2022.05.005_b0260) 2020; 26 Chen (10.1016/j.jechem.2022.05.005_b0165) 2021; 59 Zhang (10.1016/j.jechem.2022.05.005_b0215) 2021; 13 Yang (10.1016/j.jechem.2022.05.005_b0300) 2021; 37 Geng (10.1016/j.jechem.2022.05.005_b0045) 2019; 23 |
References_xml | – volume: 168 start-page: 60540 year: 2021 ident: b0040 publication-title: J. Electrochem. Soc. – volume: 41 start-page: 73 year: 2020 end-page: 78 ident: b0010 publication-title: J. Energy Chem. – volume: 17 start-page: 1132 year: 2017 end-page: 1139 ident: b0305 publication-title: Nano Lett. – volume: 26 start-page: 939 year: 2010 end-page: 956 ident: b0175 publication-title: Int. J. Plasticity – volume: 13 start-page: 35054 year: 2021 ident: b0215 publication-title: ACS Appl. Mater. Interfaces – volume: 14 start-page: 8766 year: 2020 end-page: 8775 ident: b0310 publication-title: ACS Nano – volume: 31 start-page: 2009925 year: 2021 ident: b0085 publication-title: Adv. Funct. Mater. – volume: 65 start-page: 532 year: 2022 end-page: 540 ident: b0155 publication-title: J. Energy Chem. – volume: 119–121 start-page: 789 year: 2003 end-page: 793 ident: b0210 publication-title: J. Power Sources – volume: 49 start-page: 403 year: 2018 end-page: 410 ident: b0250 publication-title: Nano Energy – volume: 40 start-page: 34 year: 2017 end-page: 41 ident: b0240 publication-title: Nano Energy – volume: 2021 start-page: 1205324 year: 2021 ident: b0020 publication-title: Energy Mater. Adv. – volume: 37 start-page: 2007058 year: 2021 ident: b0300 publication-title: Acta Phys. Chim. Sin. – volume: 5 start-page: 2100441 year: 2021 ident: b0055 publication-title: Small Methods – volume: 43 start-page: 58 year: 2020 end-page: 70 ident: b0200 publication-title: J. Energy Chem. – volume: 167 year: 2020 ident: b0130 publication-title: J. Electrochem. Soc. – volume: 13 start-page: 34064 year: 2021 end-page: 34073 ident: b0065 publication-title: ACS Appl. Mater. Interfaces – volume: 1 start-page: 2100058 year: 2021 ident: b0285 publication-title: Small Science – volume: 2 year: 2020 ident: b0030 publication-title: EcoMat. – volume: 6 start-page: 378 year: 2021 end-page: 387 ident: b0070 publication-title: Nat. Energy – volume: 16 start-page: 411 year: 2019 end-page: 418 ident: b0255 publication-title: Energy Storage Mater. – volume: 30 start-page: 87 year: 2020 end-page: 97 ident: b0120 publication-title: Energy Storage Mater. – volume: 23 start-page: 646 year: 2019 end-page: 652 ident: b0045 publication-title: Energy Storage Mater. – volume: 59 start-page: 83 year: 2021 end-page: 99 ident: b0165 publication-title: J. Energy Chem. – volume: 501 year: 2021 ident: b0035 publication-title: J. Power Sources – volume: 11 start-page: 46839 year: 2019 end-page: 46850 ident: b0195 publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 812 year: 2020 end-page: 821 ident: b0110 publication-title: Joule – volume: 12 start-page: 194 year: 2017 end-page: 206 ident: b0135 publication-title: Nat. Nanotechnol. – volume: 59 start-page: 2589 year: 2011 end-page: 2600 ident: b0145 publication-title: Acta Mater. – volume: 113 start-page: 6378 year: 2009 end-page: 6396 ident: b0280 publication-title: J. Phys. Chem. B – volume: 389 start-page: 106 year: 2018 end-page: 119 ident: b0290 publication-title: J. Power Sources – volume: 8 start-page: 1701398 year: 2018 ident: b0320 publication-title: Adv. Energy Mater. – volume: 1 start-page: 38 year: 2021 end-page: 50 ident: b0005 publication-title: SusMat. – volume: 29 year: 2020 ident: b0230 publication-title: J. Energy Storage – volume: 35 start-page: 500 year: 2021 end-page: 511 ident: b0220 publication-title: Energy Storage Mater. – volume: 27 start-page: 1704391 year: 2017 ident: b0245 publication-title: Adv. Funct. Mater. – volume: 103 start-page: 361 year: 2000 end-page: 363 ident: b0275 publication-title: Theor. Chem. Acc. – volume: 66 start-page: 339 year: 2022 end-page: 347 ident: b0015 publication-title: J. Energy Chem. – volume: 33 start-page: 2100804 year: 2021 ident: b0190 publication-title: Adv. Mater. – volume: 60 start-page: 13007 year: 2021 end-page: 13012 ident: b0225 publication-title: Angew. Chem., Int. Ed. – volume: 62 start-page: 262 year: 2021 end-page: 280 ident: b0160 publication-title: J. Energy Chem. – volume: 57 start-page: 56 year: 2021 end-page: 71 ident: b0025 publication-title: Particuology – volume: 3 start-page: 827 year: 2021 end-page: 853 ident: b0185 publication-title: InfoMat – volume: 69 start-page: 70 year: 2022 end-page: 75 ident: b0100 publication-title: J. Energy Chem. – volume: 9 start-page: 19664 year: 2021 end-page: 19668 ident: b0315 publication-title: J. Mater. Chem. A – volume: 37 start-page: 152 year: 2021 end-page: 158 ident: b0060 publication-title: Chin. J. Chem. Eng. – volume: 39 start-page: 186 year: 2021 end-page: 193 ident: b0080 publication-title: Energy Storage Mater. – volume: 21 year: 2021 ident: b0105 article-title: Mater. Today publication-title: Energy – volume: 31 start-page: 2105253 year: 2021 ident: b0140 publication-title: Adv. Funct. Mater. – volume: 19 year: 2021 ident: b0265 article-title: Mater. Today publication-title: Energy – volume: 26 start-page: 127 year: 2020 end-page: 134 ident: b0260 publication-title: Trans. Tianjin Univ. – volume: 572 start-page: 511 year: 2019 end-page: 515 ident: b0270 publication-title: Nature – volume: 31 start-page: 2339 year: 2020 end-page: 2342 ident: b0050 publication-title: Chin. Chem. Lett. – volume: 69 start-page: 205 year: 2022 end-page: 210 ident: b0075 publication-title: J. Energy Chem. – volume: 359 start-page: 182 year: 2017 end-page: 185 ident: b0125 publication-title: J. Power Sources – volume: 32 start-page: 2111026 year: 2021 ident: b0090 publication-title: Adv. Funct. Mater. – volume: 42 start-page: 68 year: 2021 end-page: 77 ident: b0095 publication-title: Energy Storage Mater. – volume: 61 start-page: 269 year: 2021 end-page: 280 ident: b0180 publication-title: J. Energy Chem. – volume: 55 start-page: 484 year: 2021 end-page: 498 ident: b0170 publication-title: J. Energy Chem. – volume: 166 start-page: A897 year: 2019 end-page: A908 ident: b0295 publication-title: J. Electrochem. Soc. – volume: 10 start-page: 1903441 year: 2019 ident: b0205 publication-title: Adv. Energy Mater. – reference: D. Ren, H. Hsu, R. Li, X. Feng, D. Guo, X. Han, L. Lu, X. He, S. Gao, J. Hou, Y. Li, Y. Wang, M. Ouyang, eTransportation 2 (2019) 100034. – volume: 34 start-page: 515 year: 2021 end-page: 535 ident: b0235 publication-title: Energy Storage Mater. – volume: 13 start-page: 18743 year: 2021 end-page: 18749 ident: b0115 publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 812 year: 2020 ident: 10.1016/j.jechem.2022.05.005_b0110 publication-title: Joule doi: 10.1016/j.joule.2020.03.012 – volume: 55 start-page: 484 year: 2021 ident: 10.1016/j.jechem.2022.05.005_b0170 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.07.028 – ident: 10.1016/j.jechem.2022.05.005_b0150 doi: 10.1016/j.etran.2019.100034 – volume: 389 start-page: 106 year: 2018 ident: 10.1016/j.jechem.2022.05.005_b0290 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.03.034 – volume: 37 start-page: 2007058 year: 2021 ident: 10.1016/j.jechem.2022.05.005_b0300 publication-title: Acta Phys. Chim. Sin. – volume: 13 start-page: 34064 year: 2021 ident: 10.1016/j.jechem.2022.05.005_b0065 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c05966 – volume: 69 start-page: 205 year: 2022 ident: 10.1016/j.jechem.2022.05.005_b0075 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2022.01.019 – volume: 16 start-page: 411 year: 2019 ident: 10.1016/j.jechem.2022.05.005_b0255 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.06.022 – volume: 6 start-page: 378 year: 2021 ident: 10.1016/j.jechem.2022.05.005_b0070 publication-title: Nat. Energy doi: 10.1038/s41560-021-00789-7 – volume: 65 start-page: 532 year: 2022 ident: 10.1016/j.jechem.2022.05.005_b0155 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2021.05.043 – volume: 5 start-page: 2100441 year: 2021 ident: 10.1016/j.jechem.2022.05.005_b0055 publication-title: Small Methods doi: 10.1002/smtd.202100441 – volume: 359 start-page: 182 year: 2017 ident: 10.1016/j.jechem.2022.05.005_b0125 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.05.061 – volume: 501 year: 2021 ident: 10.1016/j.jechem.2022.05.005_b0035 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2021.229946 – volume: 167 year: 2020 ident: 10.1016/j.jechem.2022.05.005_b0130 publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/ababd2 – volume: 9 start-page: 19664 year: 2021 ident: 10.1016/j.jechem.2022.05.005_b0315 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA02615A – volume: 60 start-page: 13007 year: 2021 ident: 10.1016/j.jechem.2022.05.005_b0225 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202102593 – volume: 40 start-page: 34 year: 2017 ident: 10.1016/j.jechem.2022.05.005_b0240 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.08.005 – volume: 27 start-page: 1704391 year: 2017 ident: 10.1016/j.jechem.2022.05.005_b0245 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201704391 – volume: 31 start-page: 2105253 year: 2021 ident: 10.1016/j.jechem.2022.05.005_b0140 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202105253 – volume: 34 start-page: 515 year: 2021 ident: 10.1016/j.jechem.2022.05.005_b0235 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.10.018 – volume: 19 year: 2021 ident: 10.1016/j.jechem.2022.05.005_b0265 article-title: Mater. Today publication-title: Energy – volume: 103 start-page: 361 year: 2000 ident: 10.1016/j.jechem.2022.05.005_b0275 publication-title: Theor. Chem. Acc. doi: 10.1007/s002149900065 – volume: 23 start-page: 646 year: 2019 ident: 10.1016/j.jechem.2022.05.005_b0045 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.03.005 – volume: 2 year: 2020 ident: 10.1016/j.jechem.2022.05.005_b0030 publication-title: EcoMat. – volume: 37 start-page: 152 year: 2021 ident: 10.1016/j.jechem.2022.05.005_b0060 publication-title: Chin. J. Chem. Eng. doi: 10.1016/j.cjche.2021.03.021 – volume: 29 year: 2020 ident: 10.1016/j.jechem.2022.05.005_b0230 publication-title: J. Energy Storage – volume: 42 start-page: 68 year: 2021 ident: 10.1016/j.jechem.2022.05.005_b0095 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2021.07.009 – volume: 59 start-page: 83 year: 2021 ident: 10.1016/j.jechem.2022.05.005_b0165 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.10.017 – volume: 66 start-page: 339 year: 2022 ident: 10.1016/j.jechem.2022.05.005_b0015 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2021.05.045 – volume: 2021 start-page: 1205324 year: 2021 ident: 10.1016/j.jechem.2022.05.005_b0020 publication-title: Energy Mater. Adv. doi: 10.34133/2021/1205324 – volume: 8 start-page: 1701398 year: 2018 ident: 10.1016/j.jechem.2022.05.005_b0320 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701398 – volume: 14 start-page: 8766 year: 2020 ident: 10.1016/j.jechem.2022.05.005_b0310 publication-title: ACS Nano doi: 10.1021/acsnano.0c03344 – volume: 35 start-page: 500 year: 2021 ident: 10.1016/j.jechem.2022.05.005_b0220 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.11.029 – volume: 168 start-page: 60540 year: 2021 ident: 10.1016/j.jechem.2022.05.005_b0040 publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/ac0b25 – volume: 31 start-page: 2009925 year: 2021 ident: 10.1016/j.jechem.2022.05.005_b0085 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202009925 – volume: 59 start-page: 2589 year: 2011 ident: 10.1016/j.jechem.2022.05.005_b0145 publication-title: Acta Mater. doi: 10.1016/j.actamat.2010.12.040 – volume: 3 start-page: 827 year: 2021 ident: 10.1016/j.jechem.2022.05.005_b0185 publication-title: InfoMat doi: 10.1002/inf2.12224 – volume: 33 start-page: 2100804 year: 2021 ident: 10.1016/j.jechem.2022.05.005_b0190 publication-title: Adv. Mater. doi: 10.1002/adma.202100804 – volume: 57 start-page: 56 year: 2021 ident: 10.1016/j.jechem.2022.05.005_b0025 publication-title: Particuology doi: 10.1016/j.partic.2020.12.003 – volume: 62 start-page: 262 year: 2021 ident: 10.1016/j.jechem.2022.05.005_b0160 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2021.03.031 – volume: 69 start-page: 70 year: 2022 ident: 10.1016/j.jechem.2022.05.005_b0100 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2021.12.049 – volume: 31 start-page: 2339 year: 2020 ident: 10.1016/j.jechem.2022.05.005_b0050 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2020.03.015 – volume: 10 start-page: 1903441 year: 2019 ident: 10.1016/j.jechem.2022.05.005_b0205 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903441 – volume: 41 start-page: 73 year: 2020 ident: 10.1016/j.jechem.2022.05.005_b0010 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2019.05.003 – volume: 17 start-page: 1132 year: 2017 ident: 10.1016/j.jechem.2022.05.005_b0305 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04755 – volume: 12 start-page: 194 year: 2017 ident: 10.1016/j.jechem.2022.05.005_b0135 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.16 – volume: 49 start-page: 403 year: 2018 ident: 10.1016/j.jechem.2022.05.005_b0250 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.04.078 – volume: 21 year: 2021 ident: 10.1016/j.jechem.2022.05.005_b0105 article-title: Mater. Today publication-title: Energy – volume: 43 start-page: 58 year: 2020 ident: 10.1016/j.jechem.2022.05.005_b0200 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2019.08.008 – volume: 1 start-page: 2100058 year: 2021 ident: 10.1016/j.jechem.2022.05.005_b0285 publication-title: Small Science doi: 10.1002/smsc.202100058 – volume: 13 start-page: 35054 year: 2021 ident: 10.1016/j.jechem.2022.05.005_b0215 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c06029 – volume: 61 start-page: 269 year: 2021 ident: 10.1016/j.jechem.2022.05.005_b0180 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2021.03.025 – volume: 39 start-page: 186 year: 2021 ident: 10.1016/j.jechem.2022.05.005_b0080 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2021.04.020 – volume: 26 start-page: 939 year: 2010 ident: 10.1016/j.jechem.2022.05.005_b0175 publication-title: Int. J. Plasticity doi: 10.1016/j.ijplas.2009.11.006 – volume: 113 start-page: 6378 year: 2009 ident: 10.1016/j.jechem.2022.05.005_b0280 publication-title: J. Phys. Chem. B doi: 10.1021/jp810292n – volume: 32 start-page: 2111026 year: 2021 ident: 10.1016/j.jechem.2022.05.005_b0090 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202111026 – volume: 26 start-page: 127 year: 2020 ident: 10.1016/j.jechem.2022.05.005_b0260 publication-title: Trans. Tianjin Univ. doi: 10.1007/s12209-020-00241-z – volume: 13 start-page: 18743 year: 2021 ident: 10.1016/j.jechem.2022.05.005_b0115 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c01246 – volume: 166 start-page: A897 year: 2019 ident: 10.1016/j.jechem.2022.05.005_b0295 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0041906jes – volume: 30 start-page: 87 year: 2020 ident: 10.1016/j.jechem.2022.05.005_b0120 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.04.035 – volume: 1 start-page: 38 year: 2021 ident: 10.1016/j.jechem.2022.05.005_b0005 publication-title: SusMat. doi: 10.1002/sus2.4 – volume: 11 start-page: 46839 year: 2019 ident: 10.1016/j.jechem.2022.05.005_b0195 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b16589 – volume: 119–121 start-page: 789 year: 2003 ident: 10.1016/j.jechem.2022.05.005_b0210 publication-title: J. Power Sources doi: 10.1016/S0378-7753(03)00254-4 – volume: 572 start-page: 511 year: 2019 ident: 10.1016/j.jechem.2022.05.005_b0270 publication-title: Nature doi: 10.1038/s41586-019-1481-z |
SSID | ssj0000941295 |
Score | 2.567036 |
Snippet | With the rise of the specific surface areas of Li deposits, the initial exothermic temperature between Li metal and electrolyte reduces gradually. The heat... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 158 |
SubjectTerms | Battery safety Lithium dendrite growth Lithium metal anode Pouch-type cell Thermal runaway |
Title | Thermal safety of dendritic lithium against non-aqueous electrolyte in pouch-type lithium metal batteries |
URI | https://dx.doi.org/10.1016/j.jechem.2022.05.005 |
Volume | 72 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqDywmjpx7LRjVVEVEF2gUrfITmyaqi9BOnTht3OXR1UkBBJjIl9knZ27--y77wi5NQAqvBj-NMG1YEjYxTqBsEyFLnTY6pa3sXb4eagGo-BxLMc10qtqYTCtsrT9hU3PrXX5plVqs7VK09aLz_GKCvw35hnIvI48CELc5Xef3vacBeALuDTMZMTxDAWqCro8zWtqQTlYku77OYUn9rH7yUPteJ3-ETksw0XaLWZ0TGp2cUIOdkgET0kKKw3WdUY_tLPZhi4dBVuS5C0MKATZk3Q9p_pNpxAIUgD7TIMrALxPyw44s01mabqgq-U6njA8kt1KzS2E5tTkFJyAqM_IqH__2huwsoECiwEJZEzFJjRCORcK2_HaGqIHHvMkkdzGnpIiEb5VvhYuTKSwLuFSQ7wBcJmbjlWBEeekDvOyF4T6PqBZlcDXkI4HMJPzrfaksUYpk0jTIKJSWhSX7OLY5GIWVWlk06hQdYSqjriMQNUNwrZSq4Jd44_xYbUe0bddEoED-FXy8t-SV2Qfn4q8smtSz97X9gYCkcw0853WJHvdh6fB8AsJ9t2o |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQOwAD4inK0wOrVTeuHTpWFSgF2oVW6mbZiQ1BfQnSgX_PXR5VkRBIrEkusi7J3fc5d98RcmOBVLRi-NIEN4KhYBfrtIVjKvShx1G3_BZ7hwdDFY3bDxM52SK9qhcGyyrL2F_E9Dxal0eapTebyzRtPgccf1FB_sY6A4l95HVUp5I1Uu_2H6PheqsFGAxkNSxmRBOGNlUTXV7p9ebAP9iVHgS5iieOsvspSW0knvt9slciRtotFnVAttz8kOxu6AgekRQeNgTYKf0w3mWfdOEphJMkn2JAAWe_pqsZNS8mBSxIge8zA9kAKD8th-BMPzNH0zldLlbxK8Nd2bXVzAE6pzZX4QRSfUzG93ejXsTKGQosBjKQMRXb0ArlfShcp3VrAEDwmCeJ5C5uKSkSETgVGOHDRArnEy4NQA5gzNx2nGpbcUJqsC53SmgQAKFVCdwNFXmANvnAmZa0ziplE2kbRFRO03EpMI5zLqa6qiR704WrNbpac6nB1Q3C1lbLQmDjj-vD6nnoby-Khhzwq-XZvy2vyXY0Gjzpp_7w8Zzs4JmizOyC1LL3lbsEXJLZq_K9-wKo-uBZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+safety+of+dendritic+lithium+against+non-aqueous+electrolyte+in+pouch-type+lithium+metal+batteries&rft.jtitle=Journal+of+energy+chemistry&rft.au=Jiang%2C+Feng-Ni&rft.au=Yang%2C+Shi-Jie&rft.au=Cheng%2C+Xin-Bing&rft.au=Shi%2C+Peng&rft.date=2022-09-01&rft.pub=Elsevier+B.V&rft.issn=2095-4956&rft.volume=72&rft.spage=158&rft.epage=165&rft_id=info:doi/10.1016%2Fj.jechem.2022.05.005&rft.externalDocID=S2095495622002571 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-4956&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-4956&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-4956&client=summon |