Thermal safety of dendritic lithium against non-aqueous electrolyte in pouch-type lithium metal batteries

With the rise of the specific surface areas of Li deposits, the initial exothermic temperature between Li metal and electrolyte reduces gradually. The heat release of per gram Li increases firstly and then reduces in a working battery. [Display omitted] A quantitative relationship between safety iss...

Full description

Saved in:
Bibliographic Details
Published inJournal of energy chemistry Vol. 72; pp. 158 - 165
Main Authors Jiang, Feng-Ni, Yang, Shi-Jie, Cheng, Xin-Bing, Shi, Peng, Ding, Jun-Fan, Chen, Xiang, Yuan, Hong, Liu, Lei, Huang, Jia-Qi, Zhang, Qiang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the rise of the specific surface areas of Li deposits, the initial exothermic temperature between Li metal and electrolyte reduces gradually. The heat release of per gram Li increases firstly and then reduces in a working battery. [Display omitted] A quantitative relationship between safety issues and dendritic lithium (Li) has been rarely investigated yet. Herein the thermal stability of Li deposits with distinct surface area against non-aqueous electrolyte in pouch-type Li metal batteries is probed. The thermal runaway temperatures of Li metal batteries obtained by accelerating rate calorimeter are reduced from 211 °C for Li foil to 111 °C for cycled Li. The initial exothermic temperature is reduced from 194 °C for routine Li foil to 142 °C for 49.5 m2 g−1 dendrite. Li with different specific surface areas can regulate the reaction routes during the temperature range from 50 to 300 °C. The mass percent of Li foil and highly dendritic Li reacting with ethylene carbonate is higher than that of moderately dendritic Li. This contribution can strengthen the understanding of the thermal runaway mechanism and shed fresh light on the rational design of safe Li metal batteries.
AbstractList With the rise of the specific surface areas of Li deposits, the initial exothermic temperature between Li metal and electrolyte reduces gradually. The heat release of per gram Li increases firstly and then reduces in a working battery. [Display omitted] A quantitative relationship between safety issues and dendritic lithium (Li) has been rarely investigated yet. Herein the thermal stability of Li deposits with distinct surface area against non-aqueous electrolyte in pouch-type Li metal batteries is probed. The thermal runaway temperatures of Li metal batteries obtained by accelerating rate calorimeter are reduced from 211 °C for Li foil to 111 °C for cycled Li. The initial exothermic temperature is reduced from 194 °C for routine Li foil to 142 °C for 49.5 m2 g−1 dendrite. Li with different specific surface areas can regulate the reaction routes during the temperature range from 50 to 300 °C. The mass percent of Li foil and highly dendritic Li reacting with ethylene carbonate is higher than that of moderately dendritic Li. This contribution can strengthen the understanding of the thermal runaway mechanism and shed fresh light on the rational design of safe Li metal batteries.
Author Shi, Peng
Yuan, Hong
Zhang, Qiang
Yang, Shi-Jie
Ding, Jun-Fan
Huang, Jia-Qi
Cheng, Xin-Bing
Liu, Lei
Jiang, Feng-Ni
Chen, Xiang
Author_xml – sequence: 1
  givenname: Feng-Ni
  surname: Jiang
  fullname: Jiang, Feng-Ni
  organization: College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
– sequence: 2
  givenname: Shi-Jie
  surname: Yang
  fullname: Yang, Shi-Jie
  organization: Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
– sequence: 3
  givenname: Xin-Bing
  surname: Cheng
  fullname: Cheng, Xin-Bing
  email: chengxb@seu.edu.cn
  organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
– sequence: 4
  givenname: Peng
  surname: Shi
  fullname: Shi, Peng
  organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
– sequence: 5
  givenname: Jun-Fan
  surname: Ding
  fullname: Ding, Jun-Fan
  organization: Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
– sequence: 6
  givenname: Xiang
  surname: Chen
  fullname: Chen, Xiang
  organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
– sequence: 7
  givenname: Hong
  surname: Yuan
  fullname: Yuan, Hong
  organization: Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
– sequence: 8
  givenname: Lei
  surname: Liu
  fullname: Liu, Lei
  email: liulei@tyut.edu.cn
  organization: College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
– sequence: 9
  givenname: Jia-Qi
  surname: Huang
  fullname: Huang, Jia-Qi
  organization: Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
– sequence: 10
  givenname: Qiang
  orcidid: 0000-0002-3929-1541
  surname: Zhang
  fullname: Zhang, Qiang
  email: zhang-qiang@mails.tsinghua.edu.cn
  organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
BookMark eNqFkD1PwzAQQD0UiVL6Dxj8BxLOSewQBiRU8SVVYimz5dhn4iofxXaQ8u9JVcTAALfc9N7p3gVZ9EOPhFwxSBkwcb1P96gb7NIMsiwFngLwBVlmUPGkqLg4J-sQ9jBPVbCs4kvidg36TrU0KItxooOlBnvjXXSati42buyoeleuD5HO1xL1MeIwBoot6uiHdopIXU8Pw6ibJE4H_KE6jLO3VjGidxguyZlVbcD1916Rt8eH3eY52b4-vWzut4nOQcRE6Lqsc2FtmWPFblRZMNBgDAfUTPDc5BmKTOW2NDxHa4ArBlkFJdQViqLOV-T25NV-CMGjldpFFd3QR69cKxnIYyu5l6dW8thKApdzqxkufsEH7zrlp_-wuxOG82OfDr0M2mGv0Tg_Z5JmcH8LvgDEPowQ
CitedBy_id crossref_primary_10_1016_j_jechem_2023_01_030
crossref_primary_10_1016_j_jechem_2024_12_004
crossref_primary_10_1007_s11665_023_08901_6
crossref_primary_10_1016_j_jechem_2024_01_036
crossref_primary_10_1016_j_partic_2023_02_010
crossref_primary_10_1016_j_xcrp_2024_102354
crossref_primary_10_1002_celc_202200957
crossref_primary_10_1016_j_jechem_2023_04_044
crossref_primary_10_1016_j_jechem_2024_12_006
crossref_primary_10_1016_j_jechem_2023_02_030
crossref_primary_10_1016_S1872_5805_23_60773_5
crossref_primary_10_1039_D3QM00029J
crossref_primary_10_1063_5_0177345
crossref_primary_10_1039_D2QI02416K
crossref_primary_10_1016_j_jpowsour_2023_233249
crossref_primary_10_1016_j_partic_2022_11_009
crossref_primary_10_1016_j_jechem_2024_02_046
crossref_primary_10_1016_j_jechem_2025_02_004
crossref_primary_10_1021_acsenergylett_4c00621
crossref_primary_10_1021_acsami_2c09287
crossref_primary_10_1016_j_jechem_2024_01_073
crossref_primary_10_1016_j_jechem_2022_09_034
crossref_primary_10_1002_aenm_202301742
crossref_primary_10_1039_D3YA00035D
crossref_primary_10_1002_elt2_8
crossref_primary_10_3390_batteries9060296
crossref_primary_10_1016_j_jechem_2023_08_054
crossref_primary_10_1021_acsanm_2c04500
crossref_primary_10_1016_j_partic_2023_04_005
crossref_primary_10_1016_j_jechem_2023_02_040
crossref_primary_10_1016_j_cclet_2024_110009
crossref_primary_10_1016_j_etran_2023_100279
crossref_primary_10_1039_D2NR04158H
crossref_primary_10_1016_j_jechem_2024_08_029
crossref_primary_10_1016_j_etran_2024_100333
crossref_primary_10_1021_acsami_2c14575
crossref_primary_10_1021_acsaem_4c01618
crossref_primary_10_1016_j_jechem_2024_03_015
crossref_primary_10_1002_cssc_202401401
crossref_primary_10_1002_adma_202405086
crossref_primary_10_1016_j_jechem_2023_08_040
crossref_primary_10_1016_j_cclet_2022_107767
crossref_primary_10_1039_D3EE00441D
crossref_primary_10_1002_aenm_202202518
crossref_primary_10_1021_acsami_2c20616
crossref_primary_10_1039_D3TA02916F
crossref_primary_10_1002_adma_202209114
crossref_primary_10_1002_cnl2_182
crossref_primary_10_1016_j_jechem_2023_08_045
crossref_primary_10_1016_j_jechem_2023_10_016
crossref_primary_10_1002_adma_202307370
crossref_primary_10_1021_acs_energyfuels_4c02174
crossref_primary_10_1016_j_jechem_2023_09_050
crossref_primary_10_1007_s11705_022_2286_4
crossref_primary_10_3390_molecules28104106
crossref_primary_10_1039_D2TA07035A
crossref_primary_10_1016_j_apsusc_2022_154468
crossref_primary_10_1002_sus2_70004
crossref_primary_10_1016_j_jechem_2024_07_004
crossref_primary_10_1021_acs_jpcc_2c07797
crossref_primary_10_1039_D4EE03468F
crossref_primary_10_20517_energymater_2023_109
crossref_primary_10_1002_metm_6
crossref_primary_10_1016_j_partic_2023_03_001
crossref_primary_10_1007_s12598_022_02256_y
crossref_primary_10_1016_j_jechem_2023_07_029
crossref_primary_10_1149_1945_7111_ad01e7
crossref_primary_10_1016_j_susmat_2024_e01170
crossref_primary_10_1016_j_jechem_2024_01_005
crossref_primary_10_1016_j_jechem_2022_08_013
crossref_primary_10_1016_j_jechem_2023_06_002
crossref_primary_10_1016_j_jechem_2024_08_054
crossref_primary_10_1016_j_jechem_2024_08_053
crossref_primary_10_1016_j_seppur_2025_131654
crossref_primary_10_1016_j_jechem_2024_01_009
crossref_primary_10_1016_j_jechem_2024_04_030
crossref_primary_10_1016_j_jechem_2024_12_018
crossref_primary_10_1021_acsaem_3c00728
crossref_primary_10_1016_j_jechem_2024_05_025
crossref_primary_10_1021_acsenergylett_4c01583
crossref_primary_10_1016_j_jechem_2024_11_059
crossref_primary_10_1016_j_ensm_2023_03_012
crossref_primary_10_1016_j_jechem_2024_11_014
crossref_primary_10_1021_acsami_2c18752
crossref_primary_10_1002_adma_202414047
crossref_primary_10_1016_j_ensm_2022_08_018
crossref_primary_10_1002_adfm_202503266
crossref_primary_10_1021_acs_langmuir_3c01121
crossref_primary_10_1016_j_partic_2023_01_005
crossref_primary_10_1016_j_jechem_2024_09_047
crossref_primary_10_1016_j_est_2023_109759
crossref_primary_10_1007_s12598_023_02417_7
crossref_primary_10_1016_j_jechem_2023_03_051
Cites_doi 10.1016/j.joule.2020.03.012
10.1016/j.jechem.2020.07.028
10.1016/j.etran.2019.100034
10.1016/j.jpowsour.2018.03.034
10.1021/acsami.1c05966
10.1016/j.jechem.2022.01.019
10.1016/j.ensm.2018.06.022
10.1038/s41560-021-00789-7
10.1016/j.jechem.2021.05.043
10.1002/smtd.202100441
10.1016/j.jpowsour.2017.05.061
10.1016/j.jpowsour.2021.229946
10.1149/1945-7111/ababd2
10.1039/D1TA02615A
10.1002/anie.202102593
10.1016/j.nanoen.2017.08.005
10.1002/adfm.201704391
10.1002/adfm.202105253
10.1016/j.ensm.2020.10.018
10.1007/s002149900065
10.1016/j.ensm.2019.03.005
10.1016/j.cjche.2021.03.021
10.1016/j.ensm.2021.07.009
10.1016/j.jechem.2020.10.017
10.1016/j.jechem.2021.05.045
10.34133/2021/1205324
10.1002/aenm.201701398
10.1021/acsnano.0c03344
10.1016/j.ensm.2020.11.029
10.1149/1945-7111/ac0b25
10.1002/adfm.202009925
10.1016/j.actamat.2010.12.040
10.1002/inf2.12224
10.1002/adma.202100804
10.1016/j.partic.2020.12.003
10.1016/j.jechem.2021.03.031
10.1016/j.jechem.2021.12.049
10.1016/j.cclet.2020.03.015
10.1002/aenm.201903441
10.1016/j.jechem.2019.05.003
10.1021/acs.nanolett.6b04755
10.1038/nnano.2017.16
10.1016/j.nanoen.2018.04.078
10.1016/j.jechem.2019.08.008
10.1002/smsc.202100058
10.1021/acsami.1c06029
10.1016/j.jechem.2021.03.025
10.1016/j.ensm.2021.04.020
10.1016/j.ijplas.2009.11.006
10.1021/jp810292n
10.1002/adfm.202111026
10.1007/s12209-020-00241-z
10.1021/acsami.1c01246
10.1149/2.0041906jes
10.1016/j.ensm.2020.04.035
10.1002/sus2.4
10.1021/acsami.9b16589
10.1016/S0378-7753(03)00254-4
10.1038/s41586-019-1481-z
ContentType Journal Article
Copyright 2022 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences
Copyright_xml – notice: 2022 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences
DBID AAYXX
CITATION
DOI 10.1016/j.jechem.2022.05.005
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 165
ExternalDocumentID 10_1016_j_jechem_2022_05_005
S2095495622002571
GroupedDBID --M
.~1
0R~
1~.
2B.
2C0
4.4
457
4G.
5VR
5VS
7-5
8P~
92H
92I
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFUIB
AGHFR
AGUBO
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CCEZO
CDRFL
CHBEP
EBS
EFJIC
EFLBG
EJD
ENUVR
FA0
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
KOM
M41
MO0
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SPC
SPCBC
SSG
SSR
SSZ
T5K
TCJ
TGT
~G-
-SB
-S~
5XA
5XC
AATTM
AAXKI
AAYWO
AAYXX
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CAJEB
CITATION
Q--
SSH
U1G
U5L
ID FETCH-LOGICAL-c306t-6cb7b36ff73e918a7410c0dd50ec1653d32e62a3f7d53efd05a1029070b9e64b3
IEDL.DBID .~1
ISSN 2095-4956
IngestDate Thu Apr 24 23:12:49 EDT 2025
Tue Jul 01 03:48:58 EDT 2025
Fri Feb 23 02:40:42 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Pouch-type cell
Lithium dendrite growth
Battery safety
Lithium metal anode
Thermal runaway
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-6cb7b36ff73e918a7410c0dd50ec1653d32e62a3f7d53efd05a1029070b9e64b3
ORCID 0000-0002-3929-1541
PageCount 8
ParticipantIDs crossref_citationtrail_10_1016_j_jechem_2022_05_005
crossref_primary_10_1016_j_jechem_2022_05_005
elsevier_sciencedirect_doi_10_1016_j_jechem_2022_05_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2022
2022-09-00
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationTitle Journal of energy chemistry
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Fang, Li, Zhang, Zhang, Yang, Lee, Lee, Alvarado, Schroeder, Yang, Lu, Williams, Ceja, Yang, Cai, Gu, Xu, Wang, Meng (b0270) 2019; 572
Zhang, Zhang, Yuan, Huang (b0285) 2021; 1
Yun, Xi, Gu, Tian, Chen, Feng, Qian, Xiong (b0015) 2022; 66
Fear, Parmananda, Kabra, Carter, Love, Mukherjee (b0220) 2021; 35
Marenich, Cramer, Truhlar (b0280) 2009; 113
Xu, Wu, Jia, Zhang, Xu, Wang (b0310) 2020; 14
Chen, Nolan, Lu, Wang, Yu, Mo, Chen, Huang, Li (b0110) 2020; 4
Zhang, Deng, Zhou, He, Liang, Zhao, Guo, Liu (b0105) 2021; 21
Lu, Zhao, Yuan, Cheng, Huang, Zhang (b0085) 2021; 31
Yuan, Wu, Bai, Li, Chen, Wang, Wu (b0255) 2019; 16
Liu, Yuan, Tao, Liang, Yang, Huang, Yuan, Titirici, Zhang (b0030) 2020; 2
Raghavachari (b0275) 2000; 103
Geng, Lu, Li, Qiu, Wang, Peng, Huang, Li, Yu, Li (b0045) 2019; 23
Hu, Han, Mei, Liu, Sun, Yang, Zhao (b0265) 2021; 19
Perea, Dontigny, Zaghib (b0125) 2017; 359
Galushkin, Yazvinskaya, Galushkin (b0295) 2019; 166
Ye, Xiao, Cheng, Cui, Jiang, Qu (b0250) 2018; 49
Ding, Xu, Yan, Xiao, Liang, Yuan, Huang (b0050) 2020; 31
Tan, Yue, Tian, Ma, Wan, Xiao, Zhang, Yin, Wen, Xin, Guo (b0080) 2021; 39
Wu, Wang, Li, Chen, Wu (b0185) 2021; 3
Xie, Cui, Manthiram (b0190) 2021; 33
Yuan, Liu (b0200) 2020; 43
He, Wang, Zhou, Qi, Wu, Li, Hu, Ma (b0055) 2021; 5
Chen, Shang, Niu (b0065) 2021; 13
Cheng, Liu, Yuan, Peng, Tang, Huang, Zhang (b0005) 2021; 1
Yang, Xu, Cheng, Wang, Chen, Xiao, Yuan, Liu, Chen, Zhu, Huang, Zhang (b0300) 2021; 37
Xu, Li, Cheng, Hou, Nie, Ai, Dai, Feng, Ci (b0010) 2020; 41
Yang, Yao, Xu, Jiang, Chen, Liu, Yuan, Huang, Cheng (b0315) 2021; 9
Beese, Mohr (b0145) 2011; 59
Chen, Kang, Zhao, Wang, Liu, Li, Liang, He, Li, Tavajohi, Li (b0165) 2021; 59
Zhang, Wei, Chen, Zhu, Han, Tang, Hua, Dai, Ye (b0215) 2021; 13
Liu, Duan, Feng, Ma, Sun, Wang (b0230) 2020; 29
D. Ren, H. Hsu, R. Li, X. Feng, D. Guo, X. Han, L. Lu, X. He, S. Gao, J. Hou, Y. Li, Y. Wang, M. Ouyang, eTransportation 2 (2019) 100034.
Zhang, Wu, Tang, Liu, Tian, Zhou, Zhang, Zhang, Zhang, Cui (b0040) 2021; 168
Huang, Xue, Xiao, Wang, Li, Zhang, Meng (b0120) 2020; 30
Cai, Yan, Yao, Xu, Chen, Huang, Zhang (b0225) 2021; 60
Wang, Yuan, Zhu, Wang, Huang, Wang, Xu (b0170) 2021; 55
Liu, Li, Xu, Shi, Zhang, Xu, Cheng, Huang (b0060) 2021; 37
Liu, Cheng, Zhang, Shi, Shen, Chen, Li, Huang, Zhang (b0260) 2020; 26
Shen, Zhang, Ding, Huang, Xu, Chen, Yan, Su, Chen, Liu, Zhang (b0020) 2021; 2021
Ouyang, Zong, Wang, Xu, Mo, Lai, Xu, Miao, Liu (b0095) 2021; 42
Chen, Yao, Yang, Pan, Yu, Zhang, Li (b0115) 2021; 13
Yuan, Chang, Yan, Zhou, Qian, Yuan, Liu (b0160) 2021; 62
Yamaki, Baba, Katayama, Takatsuji, Egashira, Okada (b0210) 2003; 119–121
Puthusseri, Parmananda, Mukherjee, Pol (b0130) 2020; 167
Li, Feng, Ren, Ouyang, Lu, Han (b0195) 2019; 11
Ren, Ding, Fu, Huang (b0235) 2021; 34
Xu, Pang, Chen, Ma, Wang, Chai, Wang, An, Zhou, Cui, Chen (b0320) 2018; 8
Lee, Ren, Niu, Yu, Engelhard, Cho, Ryou, Jin, Kim, Liu, Xu, Zhang (b0245) 2017; 27
Zhou, Dong, Lv, Xu, Huang, Wang, Cui, Cui (b0205) 2019; 10
Mohr, Dunand, Kim (b0175) 2010; 26
Lin, Liu, Cui (b0135) 2017; 12
Liu, Yang, Zhang, Li, Gao, Duan, Sun, Wang (b0155) 2022; 65
Xu, Jiang, Yang, Xiao, Liu, Liu, Liu, Cheng (b0075) 2022; 69
Tan, Wang, Tian, Xin, Guo (b0140) 2021; 31
Wu, Lochala, Taverne, Xiao (b0240) 2017; 40
Fernandes, Bry, de Persis (b0290) 2018; 389
Wu, Chen, Yao, Hu, Huang, Meng, Ma, Wu, Cui, Li (b0035) 2021; 501
Yang, Shen, Cheng, Jiang, Zhang, Liu, Liu, Yuan (b0100) 2022; 69
Liu, Cheng, Chong, Yuan, Huang, Zhang (b0025) 2021; 57
Jin, Liu, Sheng, Li, Liu, Yuan, Nai, Ju, Zhang, Liu, Wang, Lin, Lu, Tao (b0070) 2021; 6
Sheng, Hu, Liu, Ju, Lu, Liu, Nai, Wang, Zhang, Tao (b0090) 2021; 32
Liu, Feng, Rahe, Li, Lu, He, Sauer, Ouyang (b0180) 2021; 61
Pei, Zheng, Shi, Li, Cui (b0305) 2017; 17
Beese (10.1016/j.jechem.2022.05.005_b0145) 2011; 59
Xu (10.1016/j.jechem.2022.05.005_b0320) 2018; 8
Hu (10.1016/j.jechem.2022.05.005_b0265) 2021; 19
Pei (10.1016/j.jechem.2022.05.005_b0305) 2017; 17
Xu (10.1016/j.jechem.2022.05.005_b0010) 2020; 41
Wu (10.1016/j.jechem.2022.05.005_b0185) 2021; 3
Tan (10.1016/j.jechem.2022.05.005_b0080) 2021; 39
Galushkin (10.1016/j.jechem.2022.05.005_b0295) 2019; 166
Xu (10.1016/j.jechem.2022.05.005_b0075) 2022; 69
Zhang (10.1016/j.jechem.2022.05.005_b0105) 2021; 21
10.1016/j.jechem.2022.05.005_b0150
Huang (10.1016/j.jechem.2022.05.005_b0120) 2020; 30
Yuan (10.1016/j.jechem.2022.05.005_b0200) 2020; 43
Xu (10.1016/j.jechem.2022.05.005_b0310) 2020; 14
Yamaki (10.1016/j.jechem.2022.05.005_b0210) 2003; 119–121
Ye (10.1016/j.jechem.2022.05.005_b0250) 2018; 49
Liu (10.1016/j.jechem.2022.05.005_b0060) 2021; 37
Liu (10.1016/j.jechem.2022.05.005_b0230) 2020; 29
Marenich (10.1016/j.jechem.2022.05.005_b0280) 2009; 113
Jin (10.1016/j.jechem.2022.05.005_b0070) 2021; 6
Lee (10.1016/j.jechem.2022.05.005_b0245) 2017; 27
Lin (10.1016/j.jechem.2022.05.005_b0135) 2017; 12
Zhang (10.1016/j.jechem.2022.05.005_b0285) 2021; 1
Chen (10.1016/j.jechem.2022.05.005_b0115) 2021; 13
Li (10.1016/j.jechem.2022.05.005_b0195) 2019; 11
Fear (10.1016/j.jechem.2022.05.005_b0220) 2021; 35
Liu (10.1016/j.jechem.2022.05.005_b0155) 2022; 65
Yuan (10.1016/j.jechem.2022.05.005_b0255) 2019; 16
Liu (10.1016/j.jechem.2022.05.005_b0030) 2020; 2
Raghavachari (10.1016/j.jechem.2022.05.005_b0275) 2000; 103
Cai (10.1016/j.jechem.2022.05.005_b0225) 2021; 60
Puthusseri (10.1016/j.jechem.2022.05.005_b0130) 2020; 167
Chen (10.1016/j.jechem.2022.05.005_b0110) 2020; 4
Zhang (10.1016/j.jechem.2022.05.005_b0040) 2021; 168
Fernandes (10.1016/j.jechem.2022.05.005_b0290) 2018; 389
Yun (10.1016/j.jechem.2022.05.005_b0015) 2022; 66
Xie (10.1016/j.jechem.2022.05.005_b0190) 2021; 33
Shen (10.1016/j.jechem.2022.05.005_b0020) 2021; 2021
Liu (10.1016/j.jechem.2022.05.005_b0180) 2021; 61
Yang (10.1016/j.jechem.2022.05.005_b0315) 2021; 9
Ren (10.1016/j.jechem.2022.05.005_b0235) 2021; 34
Liu (10.1016/j.jechem.2022.05.005_b0025) 2021; 57
Sheng (10.1016/j.jechem.2022.05.005_b0090) 2021; 32
Tan (10.1016/j.jechem.2022.05.005_b0140) 2021; 31
Ouyang (10.1016/j.jechem.2022.05.005_b0095) 2021; 42
Fang (10.1016/j.jechem.2022.05.005_b0270) 2019; 572
Mohr (10.1016/j.jechem.2022.05.005_b0175) 2010; 26
Yang (10.1016/j.jechem.2022.05.005_b0100) 2022; 69
Wu (10.1016/j.jechem.2022.05.005_b0240) 2017; 40
Perea (10.1016/j.jechem.2022.05.005_b0125) 2017; 359
Wu (10.1016/j.jechem.2022.05.005_b0035) 2021; 501
Lu (10.1016/j.jechem.2022.05.005_b0085) 2021; 31
Wang (10.1016/j.jechem.2022.05.005_b0170) 2021; 55
Ding (10.1016/j.jechem.2022.05.005_b0050) 2020; 31
He (10.1016/j.jechem.2022.05.005_b0055) 2021; 5
Yuan (10.1016/j.jechem.2022.05.005_b0160) 2021; 62
Chen (10.1016/j.jechem.2022.05.005_b0065) 2021; 13
Cheng (10.1016/j.jechem.2022.05.005_b0005) 2021; 1
Zhou (10.1016/j.jechem.2022.05.005_b0205) 2019; 10
Liu (10.1016/j.jechem.2022.05.005_b0260) 2020; 26
Chen (10.1016/j.jechem.2022.05.005_b0165) 2021; 59
Zhang (10.1016/j.jechem.2022.05.005_b0215) 2021; 13
Yang (10.1016/j.jechem.2022.05.005_b0300) 2021; 37
Geng (10.1016/j.jechem.2022.05.005_b0045) 2019; 23
References_xml – volume: 168
  start-page: 60540
  year: 2021
  ident: b0040
  publication-title: J. Electrochem. Soc.
– volume: 41
  start-page: 73
  year: 2020
  end-page: 78
  ident: b0010
  publication-title: J. Energy Chem.
– volume: 17
  start-page: 1132
  year: 2017
  end-page: 1139
  ident: b0305
  publication-title: Nano Lett.
– volume: 26
  start-page: 939
  year: 2010
  end-page: 956
  ident: b0175
  publication-title: Int. J. Plasticity
– volume: 13
  start-page: 35054
  year: 2021
  ident: b0215
  publication-title: ACS Appl. Mater. Interfaces
– volume: 14
  start-page: 8766
  year: 2020
  end-page: 8775
  ident: b0310
  publication-title: ACS Nano
– volume: 31
  start-page: 2009925
  year: 2021
  ident: b0085
  publication-title: Adv. Funct. Mater.
– volume: 65
  start-page: 532
  year: 2022
  end-page: 540
  ident: b0155
  publication-title: J. Energy Chem.
– volume: 119–121
  start-page: 789
  year: 2003
  end-page: 793
  ident: b0210
  publication-title: J. Power Sources
– volume: 49
  start-page: 403
  year: 2018
  end-page: 410
  ident: b0250
  publication-title: Nano Energy
– volume: 40
  start-page: 34
  year: 2017
  end-page: 41
  ident: b0240
  publication-title: Nano Energy
– volume: 2021
  start-page: 1205324
  year: 2021
  ident: b0020
  publication-title: Energy Mater. Adv.
– volume: 37
  start-page: 2007058
  year: 2021
  ident: b0300
  publication-title: Acta Phys. Chim. Sin.
– volume: 5
  start-page: 2100441
  year: 2021
  ident: b0055
  publication-title: Small Methods
– volume: 43
  start-page: 58
  year: 2020
  end-page: 70
  ident: b0200
  publication-title: J. Energy Chem.
– volume: 167
  year: 2020
  ident: b0130
  publication-title: J. Electrochem. Soc.
– volume: 13
  start-page: 34064
  year: 2021
  end-page: 34073
  ident: b0065
  publication-title: ACS Appl. Mater. Interfaces
– volume: 1
  start-page: 2100058
  year: 2021
  ident: b0285
  publication-title: Small Science
– volume: 2
  year: 2020
  ident: b0030
  publication-title: EcoMat.
– volume: 6
  start-page: 378
  year: 2021
  end-page: 387
  ident: b0070
  publication-title: Nat. Energy
– volume: 16
  start-page: 411
  year: 2019
  end-page: 418
  ident: b0255
  publication-title: Energy Storage Mater.
– volume: 30
  start-page: 87
  year: 2020
  end-page: 97
  ident: b0120
  publication-title: Energy Storage Mater.
– volume: 23
  start-page: 646
  year: 2019
  end-page: 652
  ident: b0045
  publication-title: Energy Storage Mater.
– volume: 59
  start-page: 83
  year: 2021
  end-page: 99
  ident: b0165
  publication-title: J. Energy Chem.
– volume: 501
  year: 2021
  ident: b0035
  publication-title: J. Power Sources
– volume: 11
  start-page: 46839
  year: 2019
  end-page: 46850
  ident: b0195
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 812
  year: 2020
  end-page: 821
  ident: b0110
  publication-title: Joule
– volume: 12
  start-page: 194
  year: 2017
  end-page: 206
  ident: b0135
  publication-title: Nat. Nanotechnol.
– volume: 59
  start-page: 2589
  year: 2011
  end-page: 2600
  ident: b0145
  publication-title: Acta Mater.
– volume: 113
  start-page: 6378
  year: 2009
  end-page: 6396
  ident: b0280
  publication-title: J. Phys. Chem. B
– volume: 389
  start-page: 106
  year: 2018
  end-page: 119
  ident: b0290
  publication-title: J. Power Sources
– volume: 8
  start-page: 1701398
  year: 2018
  ident: b0320
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: 38
  year: 2021
  end-page: 50
  ident: b0005
  publication-title: SusMat.
– volume: 29
  year: 2020
  ident: b0230
  publication-title: J. Energy Storage
– volume: 35
  start-page: 500
  year: 2021
  end-page: 511
  ident: b0220
  publication-title: Energy Storage Mater.
– volume: 27
  start-page: 1704391
  year: 2017
  ident: b0245
  publication-title: Adv. Funct. Mater.
– volume: 103
  start-page: 361
  year: 2000
  end-page: 363
  ident: b0275
  publication-title: Theor. Chem. Acc.
– volume: 66
  start-page: 339
  year: 2022
  end-page: 347
  ident: b0015
  publication-title: J. Energy Chem.
– volume: 33
  start-page: 2100804
  year: 2021
  ident: b0190
  publication-title: Adv. Mater.
– volume: 60
  start-page: 13007
  year: 2021
  end-page: 13012
  ident: b0225
  publication-title: Angew. Chem., Int. Ed.
– volume: 62
  start-page: 262
  year: 2021
  end-page: 280
  ident: b0160
  publication-title: J. Energy Chem.
– volume: 57
  start-page: 56
  year: 2021
  end-page: 71
  ident: b0025
  publication-title: Particuology
– volume: 3
  start-page: 827
  year: 2021
  end-page: 853
  ident: b0185
  publication-title: InfoMat
– volume: 69
  start-page: 70
  year: 2022
  end-page: 75
  ident: b0100
  publication-title: J. Energy Chem.
– volume: 9
  start-page: 19664
  year: 2021
  end-page: 19668
  ident: b0315
  publication-title: J. Mater. Chem. A
– volume: 37
  start-page: 152
  year: 2021
  end-page: 158
  ident: b0060
  publication-title: Chin. J. Chem. Eng.
– volume: 39
  start-page: 186
  year: 2021
  end-page: 193
  ident: b0080
  publication-title: Energy Storage Mater.
– volume: 21
  year: 2021
  ident: b0105
  article-title: Mater. Today
  publication-title: Energy
– volume: 31
  start-page: 2105253
  year: 2021
  ident: b0140
  publication-title: Adv. Funct. Mater.
– volume: 19
  year: 2021
  ident: b0265
  article-title: Mater. Today
  publication-title: Energy
– volume: 26
  start-page: 127
  year: 2020
  end-page: 134
  ident: b0260
  publication-title: Trans. Tianjin Univ.
– volume: 572
  start-page: 511
  year: 2019
  end-page: 515
  ident: b0270
  publication-title: Nature
– volume: 31
  start-page: 2339
  year: 2020
  end-page: 2342
  ident: b0050
  publication-title: Chin. Chem. Lett.
– volume: 69
  start-page: 205
  year: 2022
  end-page: 210
  ident: b0075
  publication-title: J. Energy Chem.
– volume: 359
  start-page: 182
  year: 2017
  end-page: 185
  ident: b0125
  publication-title: J. Power Sources
– volume: 32
  start-page: 2111026
  year: 2021
  ident: b0090
  publication-title: Adv. Funct. Mater.
– volume: 42
  start-page: 68
  year: 2021
  end-page: 77
  ident: b0095
  publication-title: Energy Storage Mater.
– volume: 61
  start-page: 269
  year: 2021
  end-page: 280
  ident: b0180
  publication-title: J. Energy Chem.
– volume: 55
  start-page: 484
  year: 2021
  end-page: 498
  ident: b0170
  publication-title: J. Energy Chem.
– volume: 166
  start-page: A897
  year: 2019
  end-page: A908
  ident: b0295
  publication-title: J. Electrochem. Soc.
– volume: 10
  start-page: 1903441
  year: 2019
  ident: b0205
  publication-title: Adv. Energy Mater.
– reference: D. Ren, H. Hsu, R. Li, X. Feng, D. Guo, X. Han, L. Lu, X. He, S. Gao, J. Hou, Y. Li, Y. Wang, M. Ouyang, eTransportation 2 (2019) 100034.
– volume: 34
  start-page: 515
  year: 2021
  end-page: 535
  ident: b0235
  publication-title: Energy Storage Mater.
– volume: 13
  start-page: 18743
  year: 2021
  end-page: 18749
  ident: b0115
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 812
  year: 2020
  ident: 10.1016/j.jechem.2022.05.005_b0110
  publication-title: Joule
  doi: 10.1016/j.joule.2020.03.012
– volume: 55
  start-page: 484
  year: 2021
  ident: 10.1016/j.jechem.2022.05.005_b0170
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.07.028
– ident: 10.1016/j.jechem.2022.05.005_b0150
  doi: 10.1016/j.etran.2019.100034
– volume: 389
  start-page: 106
  year: 2018
  ident: 10.1016/j.jechem.2022.05.005_b0290
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.03.034
– volume: 37
  start-page: 2007058
  year: 2021
  ident: 10.1016/j.jechem.2022.05.005_b0300
  publication-title: Acta Phys. Chim. Sin.
– volume: 13
  start-page: 34064
  year: 2021
  ident: 10.1016/j.jechem.2022.05.005_b0065
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c05966
– volume: 69
  start-page: 205
  year: 2022
  ident: 10.1016/j.jechem.2022.05.005_b0075
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2022.01.019
– volume: 16
  start-page: 411
  year: 2019
  ident: 10.1016/j.jechem.2022.05.005_b0255
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.06.022
– volume: 6
  start-page: 378
  year: 2021
  ident: 10.1016/j.jechem.2022.05.005_b0070
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00789-7
– volume: 65
  start-page: 532
  year: 2022
  ident: 10.1016/j.jechem.2022.05.005_b0155
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2021.05.043
– volume: 5
  start-page: 2100441
  year: 2021
  ident: 10.1016/j.jechem.2022.05.005_b0055
  publication-title: Small Methods
  doi: 10.1002/smtd.202100441
– volume: 359
  start-page: 182
  year: 2017
  ident: 10.1016/j.jechem.2022.05.005_b0125
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.05.061
– volume: 501
  year: 2021
  ident: 10.1016/j.jechem.2022.05.005_b0035
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2021.229946
– volume: 167
  year: 2020
  ident: 10.1016/j.jechem.2022.05.005_b0130
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/ababd2
– volume: 9
  start-page: 19664
  year: 2021
  ident: 10.1016/j.jechem.2022.05.005_b0315
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA02615A
– volume: 60
  start-page: 13007
  year: 2021
  ident: 10.1016/j.jechem.2022.05.005_b0225
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202102593
– volume: 40
  start-page: 34
  year: 2017
  ident: 10.1016/j.jechem.2022.05.005_b0240
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.08.005
– volume: 27
  start-page: 1704391
  year: 2017
  ident: 10.1016/j.jechem.2022.05.005_b0245
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201704391
– volume: 31
  start-page: 2105253
  year: 2021
  ident: 10.1016/j.jechem.2022.05.005_b0140
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202105253
– volume: 34
  start-page: 515
  year: 2021
  ident: 10.1016/j.jechem.2022.05.005_b0235
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.10.018
– volume: 19
  year: 2021
  ident: 10.1016/j.jechem.2022.05.005_b0265
  article-title: Mater. Today
  publication-title: Energy
– volume: 103
  start-page: 361
  year: 2000
  ident: 10.1016/j.jechem.2022.05.005_b0275
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s002149900065
– volume: 23
  start-page: 646
  year: 2019
  ident: 10.1016/j.jechem.2022.05.005_b0045
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.03.005
– volume: 2
  year: 2020
  ident: 10.1016/j.jechem.2022.05.005_b0030
  publication-title: EcoMat.
– volume: 37
  start-page: 152
  year: 2021
  ident: 10.1016/j.jechem.2022.05.005_b0060
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/j.cjche.2021.03.021
– volume: 29
  year: 2020
  ident: 10.1016/j.jechem.2022.05.005_b0230
  publication-title: J. Energy Storage
– volume: 42
  start-page: 68
  year: 2021
  ident: 10.1016/j.jechem.2022.05.005_b0095
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2021.07.009
– volume: 59
  start-page: 83
  year: 2021
  ident: 10.1016/j.jechem.2022.05.005_b0165
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.10.017
– volume: 66
  start-page: 339
  year: 2022
  ident: 10.1016/j.jechem.2022.05.005_b0015
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2021.05.045
– volume: 2021
  start-page: 1205324
  year: 2021
  ident: 10.1016/j.jechem.2022.05.005_b0020
  publication-title: Energy Mater. Adv.
  doi: 10.34133/2021/1205324
– volume: 8
  start-page: 1701398
  year: 2018
  ident: 10.1016/j.jechem.2022.05.005_b0320
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701398
– volume: 14
  start-page: 8766
  year: 2020
  ident: 10.1016/j.jechem.2022.05.005_b0310
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c03344
– volume: 35
  start-page: 500
  year: 2021
  ident: 10.1016/j.jechem.2022.05.005_b0220
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.11.029
– volume: 168
  start-page: 60540
  year: 2021
  ident: 10.1016/j.jechem.2022.05.005_b0040
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/ac0b25
– volume: 31
  start-page: 2009925
  year: 2021
  ident: 10.1016/j.jechem.2022.05.005_b0085
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202009925
– volume: 59
  start-page: 2589
  year: 2011
  ident: 10.1016/j.jechem.2022.05.005_b0145
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2010.12.040
– volume: 3
  start-page: 827
  year: 2021
  ident: 10.1016/j.jechem.2022.05.005_b0185
  publication-title: InfoMat
  doi: 10.1002/inf2.12224
– volume: 33
  start-page: 2100804
  year: 2021
  ident: 10.1016/j.jechem.2022.05.005_b0190
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202100804
– volume: 57
  start-page: 56
  year: 2021
  ident: 10.1016/j.jechem.2022.05.005_b0025
  publication-title: Particuology
  doi: 10.1016/j.partic.2020.12.003
– volume: 62
  start-page: 262
  year: 2021
  ident: 10.1016/j.jechem.2022.05.005_b0160
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2021.03.031
– volume: 69
  start-page: 70
  year: 2022
  ident: 10.1016/j.jechem.2022.05.005_b0100
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2021.12.049
– volume: 31
  start-page: 2339
  year: 2020
  ident: 10.1016/j.jechem.2022.05.005_b0050
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2020.03.015
– volume: 10
  start-page: 1903441
  year: 2019
  ident: 10.1016/j.jechem.2022.05.005_b0205
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903441
– volume: 41
  start-page: 73
  year: 2020
  ident: 10.1016/j.jechem.2022.05.005_b0010
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2019.05.003
– volume: 17
  start-page: 1132
  year: 2017
  ident: 10.1016/j.jechem.2022.05.005_b0305
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b04755
– volume: 12
  start-page: 194
  year: 2017
  ident: 10.1016/j.jechem.2022.05.005_b0135
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.16
– volume: 49
  start-page: 403
  year: 2018
  ident: 10.1016/j.jechem.2022.05.005_b0250
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.04.078
– volume: 21
  year: 2021
  ident: 10.1016/j.jechem.2022.05.005_b0105
  article-title: Mater. Today
  publication-title: Energy
– volume: 43
  start-page: 58
  year: 2020
  ident: 10.1016/j.jechem.2022.05.005_b0200
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2019.08.008
– volume: 1
  start-page: 2100058
  year: 2021
  ident: 10.1016/j.jechem.2022.05.005_b0285
  publication-title: Small Science
  doi: 10.1002/smsc.202100058
– volume: 13
  start-page: 35054
  year: 2021
  ident: 10.1016/j.jechem.2022.05.005_b0215
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c06029
– volume: 61
  start-page: 269
  year: 2021
  ident: 10.1016/j.jechem.2022.05.005_b0180
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2021.03.025
– volume: 39
  start-page: 186
  year: 2021
  ident: 10.1016/j.jechem.2022.05.005_b0080
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2021.04.020
– volume: 26
  start-page: 939
  year: 2010
  ident: 10.1016/j.jechem.2022.05.005_b0175
  publication-title: Int. J. Plasticity
  doi: 10.1016/j.ijplas.2009.11.006
– volume: 113
  start-page: 6378
  year: 2009
  ident: 10.1016/j.jechem.2022.05.005_b0280
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp810292n
– volume: 32
  start-page: 2111026
  year: 2021
  ident: 10.1016/j.jechem.2022.05.005_b0090
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202111026
– volume: 26
  start-page: 127
  year: 2020
  ident: 10.1016/j.jechem.2022.05.005_b0260
  publication-title: Trans. Tianjin Univ.
  doi: 10.1007/s12209-020-00241-z
– volume: 13
  start-page: 18743
  year: 2021
  ident: 10.1016/j.jechem.2022.05.005_b0115
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c01246
– volume: 166
  start-page: A897
  year: 2019
  ident: 10.1016/j.jechem.2022.05.005_b0295
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0041906jes
– volume: 30
  start-page: 87
  year: 2020
  ident: 10.1016/j.jechem.2022.05.005_b0120
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.04.035
– volume: 1
  start-page: 38
  year: 2021
  ident: 10.1016/j.jechem.2022.05.005_b0005
  publication-title: SusMat.
  doi: 10.1002/sus2.4
– volume: 11
  start-page: 46839
  year: 2019
  ident: 10.1016/j.jechem.2022.05.005_b0195
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b16589
– volume: 119–121
  start-page: 789
  year: 2003
  ident: 10.1016/j.jechem.2022.05.005_b0210
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(03)00254-4
– volume: 572
  start-page: 511
  year: 2019
  ident: 10.1016/j.jechem.2022.05.005_b0270
  publication-title: Nature
  doi: 10.1038/s41586-019-1481-z
SSID ssj0000941295
Score 2.567036
Snippet With the rise of the specific surface areas of Li deposits, the initial exothermic temperature between Li metal and electrolyte reduces gradually. The heat...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 158
SubjectTerms Battery safety
Lithium dendrite growth
Lithium metal anode
Pouch-type cell
Thermal runaway
Title Thermal safety of dendritic lithium against non-aqueous electrolyte in pouch-type lithium metal batteries
URI https://dx.doi.org/10.1016/j.jechem.2022.05.005
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqDywmjpx7LRjVVEVEF2gUrfITmyaqi9BOnTht3OXR1UkBBJjIl9knZ27--y77wi5NQAqvBj-NMG1YEjYxTqBsEyFLnTY6pa3sXb4eagGo-BxLMc10qtqYTCtsrT9hU3PrXX5plVqs7VK09aLz_GKCvw35hnIvI48CELc5Xef3vacBeALuDTMZMTxDAWqCro8zWtqQTlYku77OYUn9rH7yUPteJ3-ETksw0XaLWZ0TGp2cUIOdkgET0kKKw3WdUY_tLPZhi4dBVuS5C0MKATZk3Q9p_pNpxAIUgD7TIMrALxPyw44s01mabqgq-U6njA8kt1KzS2E5tTkFJyAqM_IqH__2huwsoECiwEJZEzFJjRCORcK2_HaGqIHHvMkkdzGnpIiEb5VvhYuTKSwLuFSQ7wBcJmbjlWBEeekDvOyF4T6PqBZlcDXkI4HMJPzrfaksUYpk0jTIKJSWhSX7OLY5GIWVWlk06hQdYSqjriMQNUNwrZSq4Jd44_xYbUe0bddEoED-FXy8t-SV2Qfn4q8smtSz97X9gYCkcw0853WJHvdh6fB8AsJ9t2o
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQOwAD4inK0wOrVTeuHTpWFSgF2oVW6mbZiQ1BfQnSgX_PXR5VkRBIrEkusi7J3fc5d98RcmOBVLRi-NIEN4KhYBfrtIVjKvShx1G3_BZ7hwdDFY3bDxM52SK9qhcGyyrL2F_E9Dxal0eapTebyzRtPgccf1FB_sY6A4l95HVUp5I1Uu_2H6PheqsFGAxkNSxmRBOGNlUTXV7p9ebAP9iVHgS5iieOsvspSW0knvt9slciRtotFnVAttz8kOxu6AgekRQeNgTYKf0w3mWfdOEphJMkn2JAAWe_pqsZNS8mBSxIge8zA9kAKD8th-BMPzNH0zldLlbxK8Nd2bXVzAE6pzZX4QRSfUzG93ejXsTKGQosBjKQMRXb0ArlfShcp3VrAEDwmCeJ5C5uKSkSETgVGOHDRArnEy4NQA5gzNx2nGpbcUJqsC53SmgQAKFVCdwNFXmANvnAmZa0ziplE2kbRFRO03EpMI5zLqa6qiR704WrNbpac6nB1Q3C1lbLQmDjj-vD6nnoby-Khhzwq-XZvy2vyXY0Gjzpp_7w8Zzs4JmizOyC1LL3lbsEXJLZq_K9-wKo-uBZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+safety+of+dendritic+lithium+against+non-aqueous+electrolyte+in+pouch-type+lithium+metal+batteries&rft.jtitle=Journal+of+energy+chemistry&rft.au=Jiang%2C+Feng-Ni&rft.au=Yang%2C+Shi-Jie&rft.au=Cheng%2C+Xin-Bing&rft.au=Shi%2C+Peng&rft.date=2022-09-01&rft.pub=Elsevier+B.V&rft.issn=2095-4956&rft.volume=72&rft.spage=158&rft.epage=165&rft_id=info:doi/10.1016%2Fj.jechem.2022.05.005&rft.externalDocID=S2095495622002571
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-4956&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-4956&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-4956&client=summon