SemiGMMPoint: Semi-supervised point cloud segmentation based on Gaussian mixture models
Existing semi-supervised point cloud segmentation methods emphasize on discriminative learning, which overlooks the underlying class-conditional distributions and distribution similarities. In this paper, we propose SemiGMMPoint, the first generative framework for semi-supervised 3D point cloud segm...
Saved in:
Published in | Pattern recognition Vol. 158; p. 111045 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Existing semi-supervised point cloud segmentation methods emphasize on discriminative learning, which overlooks the underlying class-conditional distributions and distribution similarities. In this paper, we propose SemiGMMPoint, the first generative framework for semi-supervised 3D point cloud segmentation in real-world and large-scale settings. Specifically, we propose a point dense generative classifier based on Gaussian mixture models (GMMs) to explicitly estimate class-conditional distributions. On top of it, we incorporate a novel similarity-minimization algorithm into the Expectation–Maximization (EM) based GMM parameter estimation, which minimizes the inter-class distribution similarity in the representation space. Moreover, we utilize the well-calibrated posterior to develop a modified point contrastive loss to mitigate sampling bias in semi-supervised settings. Extensive experiments show that SemiGMMPoint significantly boosts performance for semi-supervised point cloud segmentation on many state-of-the-art backbones without requiring architectural changes. Codes are available at https://github.com/jojodidli/SemiGMMPoint.
•Gaussian mixture-based generative classifiers improve point cloud segmentation.•Minimizing distribution similarity can improve the performance of GMM classifiers.•The sampling bias issue under 3D semi-supervised settings can be alleviated through GMM.•Combining Generative and contrastive methods fosters semi-supervised 3D segmentation. |
---|---|
AbstractList | Existing semi-supervised point cloud segmentation methods emphasize on discriminative learning, which overlooks the underlying class-conditional distributions and distribution similarities. In this paper, we propose SemiGMMPoint, the first generative framework for semi-supervised 3D point cloud segmentation in real-world and large-scale settings. Specifically, we propose a point dense generative classifier based on Gaussian mixture models (GMMs) to explicitly estimate class-conditional distributions. On top of it, we incorporate a novel similarity-minimization algorithm into the Expectation–Maximization (EM) based GMM parameter estimation, which minimizes the inter-class distribution similarity in the representation space. Moreover, we utilize the well-calibrated posterior to develop a modified point contrastive loss to mitigate sampling bias in semi-supervised settings. Extensive experiments show that SemiGMMPoint significantly boosts performance for semi-supervised point cloud segmentation on many state-of-the-art backbones without requiring architectural changes. Codes are available at https://github.com/jojodidli/SemiGMMPoint.
•Gaussian mixture-based generative classifiers improve point cloud segmentation.•Minimizing distribution similarity can improve the performance of GMM classifiers.•The sampling bias issue under 3D semi-supervised settings can be alleviated through GMM.•Combining Generative and contrastive methods fosters semi-supervised 3D segmentation. |
ArticleNumber | 111045 |
Author | Zhuang, Xianwei Wang, Hualiang He, Xiaoxuan Fu, Siming Hu, Haoji |
Author_xml | – sequence: 1 givenname: Xianwei orcidid: 0009-0004-4392-6126 surname: Zhuang fullname: Zhuang, Xianwei email: xwzhuang@zju.edu.cn organization: Zhejiang University, Hangzhuo, 310058, Zhejiang, China – sequence: 2 givenname: Hualiang surname: Wang fullname: Wang, Hualiang email: hwangfd@connect.ust.hk organization: The Hong Kong University of Science and Technology, 999077, Hong Kong, China – sequence: 3 givenname: Xiaoxuan surname: He fullname: He, Xiaoxuan email: Xiaoxuan_He@zju.edu.cn organization: Zhejiang University, Hangzhuo, 310058, Zhejiang, China – sequence: 4 givenname: Siming surname: Fu fullname: Fu, Siming email: fusiming@zju.edu.cn organization: Alibaba Group, Hangzhuo, 310052, Zhejiang, China – sequence: 5 givenname: Haoji orcidid: 0000-0001-6048-6549 surname: Hu fullname: Hu, Haoji email: haoji_hu@zju.edu.cn organization: Zhejiang University, Hangzhuo, 310058, Zhejiang, China |
BookMark | eNqFkMtKw0AUhmdRwbb6Bi7yAolzcpm0XQhStAoVBRWXw-TMSZmSZMrMpOjb2xBXLnR1bnwH_m_GJp3tiLEr4AlwENf75KAC2l2S8jRPAIDnxYRNOc8gzlKenbOZ93vOoYQ8nbKPV2rN5unpxZourKJhin1_IHc0nnR0GNYRNrbXkaddS11QwdguqtRwPjUb1XtvVBe15jP0jqLWamr8BTurVePp8qfO2fv93dv6Id4-bx7Xt9sYMy5CLHBRKF7kpBCLsiLQKShVosAKM12nxXJZYFkLpUvMl5WoAJRGqMSizsQCKJuzfPyLznrvqJYHZ1rlviRwOQiRezkKkYMQOQo5YatfGJoxWXDKNP_BNyN8yklHQ056NNQhaeMIg9TW_P3gG3eUhOM |
CitedBy_id | crossref_primary_10_1109_TGRS_2024_3522060 |
Cites_doi | 10.1145/2980179.2980238 10.1007/s41095-022-0281-9 10.1109/ICCV.2019.00939 10.1145/3326362 10.1109/TPAMI.2007.70710 10.1111/j.2517-6161.1977.tb01600.x 10.1007/978-94-011-5014-9_12 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.patcog.2024.111045 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
ExternalDocumentID | 10_1016_j_patcog_2024_111045 S0031320324007969 |
GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO AAYFN ABBOA ABDPE ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- AATTM AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-6c85a054eacc57be1d21aa7c6cbc3df25995c7f6ad7c49b6b11adc1b68f3681e3 |
IEDL.DBID | .~1 |
ISSN | 0031-3203 |
IngestDate | Thu Apr 24 23:01:16 EDT 2025 Tue Jul 01 02:36:49 EDT 2025 Sat Nov 16 15:59:03 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Gaussian mixture models 3D point cloud segmentation Generative classifier Semi-supervised learning Distribution similarity minimization Contrastive learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-6c85a054eacc57be1d21aa7c6cbc3df25995c7f6ad7c49b6b11adc1b68f3681e3 |
ORCID | 0009-0004-4392-6126 0000-0001-6048-6549 |
ParticipantIDs | crossref_primary_10_1016_j_patcog_2024_111045 crossref_citationtrail_10_1016_j_patcog_2024_111045 elsevier_sciencedirect_doi_10_1016_j_patcog_2024_111045 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2025 2025-02-00 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: February 2025 |
PublicationDecade | 2020 |
PublicationTitle | Pattern recognition |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Dai, Chang, Savva, Halber, Funkhouser, Nieß ner (b16) 2017 Zhao, Jiang, Jia, Torr, Koltun (b26) 2021 Chen, Lu, Zhu, Zhang (b8) 2023 Armeni, Sener, Zamir, Jiang, Brilakis, Fischer, Savarese (b10) 2016 Bergstra, Bardenet, Bengio, Kégl (b35) 2011 Deng, Dong, Liu, Hu (b4) 2022 Samuli, Timo (b39) 2017; Vol. 4 J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stachniss, J. Gall, Semantickitti: A dataset for semantic scene understanding of lidar sequences, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 9297–9307. Khosla, Teterwak, Wang, Sarna, Tian, Isola, Maschinot, Liu, Krishnan (b32) 2020; 33 Yi, Kim, Ceylan, Shen, Yan, Su, Lu, Huang, Sheffer, Guibas (b36) 2016; 35 Cheng, Hui, Xie, Yang (b2) 2021; Vol. 35 Guo, Pleiss, Sun, Weinberger (b1) 2017 Bernardo, Bayarri, Berger, Dawid, Heckerman, Smith, West (b3) 2007; 8 Xie, Gu, Guo, Qi, Guibas, Litany (b15) 2020 Qian, Hammoud, Li, Thabet, Ghanem (b25) 2021; 34 Pang, Wang, Tay, Liu, Tian, Yuan (b19) 2022 Qi, Su, Mo, Guibas (b22) 2017 Lai, Liu, Jiang, Wang, Zhao, Liu, Qi, Jia (b27) 2022 Dempster, Laird, Rubin (b11) 1977; 39 Thomas, Qi, Deschaud, Marcotegui, Goulette, Guibas (b21) 2019 Chuang, Robinson, Lin, Torralba, Jegelka (b14) 2020; 33 Liang, Wang, Miao, Yang (b13) 2022 Yu, Tang, Rao, Huang, Zhou, Lu (b18) 2022 He, Fan, Wu, Xie, Girshick (b31) 2020 Fujino, Ueda, Saito (b12) 2008; 30 Choy, Gwak, Savarese (b20) 2019 Wang, Fu, He, Fang, Liu, Hu (b34) 2022 Chu, Ye, Liu, Tan, Qi, Fu, Jia (b6) 2022 Jiang, Shi, Tian, Lai, Liu, Fu, Jia (b5) 2021 Sun, Yang, Guo, Wang, Tong, Liu, Shum (b28) 2023; 9 Qi, Yi, Su, Guibas (b23) 2017; 30 Neal, Hinton (b33) 1998 Hu, Yang, Fang, Guo, Leonardis, Trigoni, Markham (b29) 2022 Wang, Sun, Liu, Sarma, Bronstein, Solomon (b38) 2019; 38 Mackowiak, Ardizzone, Kothe, Rother (b30) 2021 Zhao, Jiang, Fu, Jia (b24) 2019 Liu, Zhao, Nie, Gao, Chen (b37) 2022 Tarvainen, Valpola (b40) 2017; 30 Qian, Li, Peng, Mai, Hammoud, Elhoseiny, Ghanem (b7) 2022; 35 Nalisnick, Matsukawa, Teh, Gorur, Lakshminarayanan (b9) 2019 10.1016/j.patcog.2024.111045_b17 Zhao (10.1016/j.patcog.2024.111045_b26) 2021 Qian (10.1016/j.patcog.2024.111045_b7) 2022; 35 Guo (10.1016/j.patcog.2024.111045_b1) 2017 Neal (10.1016/j.patcog.2024.111045_b33) 1998 Bergstra (10.1016/j.patcog.2024.111045_b35) 2011 Qi (10.1016/j.patcog.2024.111045_b23) 2017; 30 Qi (10.1016/j.patcog.2024.111045_b22) 2017 Pang (10.1016/j.patcog.2024.111045_b19) 2022 Choy (10.1016/j.patcog.2024.111045_b20) 2019 Bernardo (10.1016/j.patcog.2024.111045_b3) 2007; 8 Deng (10.1016/j.patcog.2024.111045_b4) 2022 Nalisnick (10.1016/j.patcog.2024.111045_b9) 2019 Yi (10.1016/j.patcog.2024.111045_b36) 2016; 35 Jiang (10.1016/j.patcog.2024.111045_b5) 2021 Yu (10.1016/j.patcog.2024.111045_b18) 2022 Sun (10.1016/j.patcog.2024.111045_b28) 2023; 9 Tarvainen (10.1016/j.patcog.2024.111045_b40) 2017; 30 Chu (10.1016/j.patcog.2024.111045_b6) 2022 Wang (10.1016/j.patcog.2024.111045_b34) 2022 Lai (10.1016/j.patcog.2024.111045_b27) 2022 Xie (10.1016/j.patcog.2024.111045_b15) 2020 Chen (10.1016/j.patcog.2024.111045_b8) 2023 Dai (10.1016/j.patcog.2024.111045_b16) 2017 Armeni (10.1016/j.patcog.2024.111045_b10) 2016 Mackowiak (10.1016/j.patcog.2024.111045_b30) 2021 Thomas (10.1016/j.patcog.2024.111045_b21) 2019 Khosla (10.1016/j.patcog.2024.111045_b32) 2020; 33 Liu (10.1016/j.patcog.2024.111045_b37) 2022 Cheng (10.1016/j.patcog.2024.111045_b2) 2021; Vol. 35 He (10.1016/j.patcog.2024.111045_b31) 2020 Zhao (10.1016/j.patcog.2024.111045_b24) 2019 Qian (10.1016/j.patcog.2024.111045_b25) 2021; 34 Liang (10.1016/j.patcog.2024.111045_b13) 2022 Dempster (10.1016/j.patcog.2024.111045_b11) 1977; 39 Hu (10.1016/j.patcog.2024.111045_b29) 2022 Wang (10.1016/j.patcog.2024.111045_b38) 2019; 38 Fujino (10.1016/j.patcog.2024.111045_b12) 2008; 30 Chuang (10.1016/j.patcog.2024.111045_b14) 2020; 33 Samuli (10.1016/j.patcog.2024.111045_b39) 2017; Vol. 4 |
References_xml | – volume: 39 start-page: 1 year: 1977 end-page: 22 ident: b11 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J. R. Stat. Soc.: Ser. B (Methodological) – start-page: 3075 year: 2019 end-page: 3084 ident: b20 article-title: 4D spatio-temporal convnets: Minkowski convolutional neural networks publication-title: CVPR – start-page: 179 year: 2022 end-page: 196 ident: b34 article-title: Towards calibrated hyper-sphere representation via distribution overlap coefficient for long-tailed learning publication-title: Computer Vision–ECCV 2022: 17th European Conference – start-page: 600 year: 2022 end-page: 619 ident: b29 article-title: Sqn: Weakly-supervised semantic segmentation of large-scale 3d point clouds publication-title: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII – year: 2022 ident: b13 article-title: GMMSeg: Gaussian mixture based generative semantic segmentation models publication-title: NeurIPS – start-page: 574 year: 2020 end-page: 591 ident: b15 article-title: Pointcontrast: Unsupervised pre-training for 3d point cloud understanding publication-title: ECCV – volume: Vol. 35 start-page: 1140 year: 2021 end-page: 1147 ident: b2 article-title: Sspc-net: Semi-supervised semantic 3d point cloud segmentation network publication-title: AAAI – volume: 30 year: 2017 ident: b23 article-title: Pointnet++: Deep hierarchical feature learning on point sets in a metric space publication-title: NeurIPS – start-page: 355 year: 1998 end-page: 368 ident: b33 article-title: A view of the EM algorithm that justifies incremental, sparse, and other variants publication-title: Learn. Graph. Models – volume: Vol. 4 start-page: 6 year: 2017 ident: b39 article-title: Temporal ensembling for semi-supervised learning publication-title: ICLR – volume: 8 start-page: 3 year: 2007 end-page: 24 ident: b3 article-title: Generative or discriminative? getting the best of both worlds publication-title: Bayesian Stat. – volume: 35 start-page: 23192 year: 2022 end-page: 23204 ident: b7 article-title: Pointnext: Revisiting pointnet++ with improved training and scaling strategies publication-title: NeurIPS – volume: 38 start-page: 1 year: 2019 end-page: 12 ident: b38 article-title: Dynamic graph cnn for learning on point clouds publication-title: Acm Trans. Graph. (tog) – start-page: 37 year: 2022 end-page: 55 ident: b37 article-title: Weakly supervised 3d scene segmentation with region-level boundary awareness and instance discrimination publication-title: European Conference on Computer Vision – volume: 33 start-page: 18661 year: 2020 end-page: 18673 ident: b32 article-title: Supervised contrastive learning publication-title: NeurIPS – start-page: 6411 year: 2019 end-page: 6420 ident: b21 article-title: Kpconv: Flexible and deformable convolution for point clouds publication-title: ICCV – start-page: 19313 year: 2022 end-page: 19322 ident: b18 article-title: Point-bert: Pre-training 3d point cloud transformers with masked point modeling publication-title: CVPR – volume: 34 start-page: 28119 year: 2021 end-page: 28130 ident: b25 article-title: Assanet: An anisotropic separable set abstraction for efficient point cloud representation learning publication-title: NeurIPS – start-page: 2971 year: 2021 end-page: 2981 ident: b30 article-title: Generative classifiers as a basis for trustworthy image classification publication-title: CVPR – start-page: 1100 year: 2022 end-page: 1109 ident: b6 article-title: Twist: Two-way inter-label self-training for semi-supervised 3d instance segmentation publication-title: CVPR – volume: 9 start-page: 229 year: 2023 end-page: 247 ident: b28 article-title: Semi-supervised 3D shape segmentation with multilevel consistency and part substitution publication-title: Comput. Vis. Media – volume: 30 year: 2017 ident: b40 article-title: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results publication-title: NeurIPS – start-page: 9214 year: 2022 end-page: 9220 ident: b4 article-title: Superpoint-guided semi-supervised semantic segmentation of 3D point clouds publication-title: 2022 International Conference on Robotics and Automation – start-page: 1321 year: 2017 end-page: 1330 ident: b1 article-title: On calibration of modern neural networks publication-title: ICML – start-page: 652 year: 2017 end-page: 660 ident: b22 article-title: Pointnet: Deep learning on point sets for 3d classification and segmentation publication-title: CVPR – start-page: 5828 year: 2017 end-page: 5839 ident: b16 article-title: Scannet: Richly-annotated 3d reconstructions of indoor scenes publication-title: CVPR – start-page: 604 year: 2022 end-page: 621 ident: b19 article-title: Masked autoencoders for point cloud self-supervised learning publication-title: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part II – volume: 35 start-page: 1 year: 2016 end-page: 12 ident: b36 article-title: A scalable active framework for region annotation in 3d shape collections publication-title: ACM Trans. Graph. (ToG) – start-page: 1 year: 2011 end-page: 9 ident: b35 article-title: Algorithms for hyper-parameter optimization publication-title: NIPS – reference: J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stachniss, J. Gall, Semantickitti: A dataset for semantic scene understanding of lidar sequences, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 9297–9307. – volume: 30 start-page: 424 year: 2008 end-page: 437 ident: b12 article-title: Semisupervised learning for a hybrid generative/discriminative classifier based on the maximum entropy principle publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 33 start-page: 8765 year: 2020 end-page: 8775 ident: b14 article-title: Debiased contrastive learning publication-title: Adv. Neural Inf. Process. Syst. – start-page: 8500 year: 2022 end-page: 8509 ident: b27 article-title: Stratified transformer for 3d point cloud segmentation publication-title: CVPR – start-page: 43 year: 2016 ident: b10 article-title: 3D semantic parsing of large-scale indoor spaces publication-title: CVPR – start-page: 5565 year: 2019 end-page: 5573 ident: b24 article-title: Pointweb: Enhancing local neighborhood features for point cloud processing publication-title: CVPR – start-page: 16259 year: 2021 end-page: 16268 ident: b26 article-title: Point transformer publication-title: ICCV – year: 2023 ident: b8 article-title: Generative semantic segmentation – start-page: 4723 year: 2019 end-page: 4732 ident: b9 article-title: Hybrid models with deep and invertible features publication-title: ICML – start-page: 9729 year: 2020 end-page: 9738 ident: b31 article-title: Momentum contrast for unsupervised visual representation learning publication-title: CVPR – start-page: 6423 year: 2021 end-page: 6432 ident: b5 article-title: Guided point contrastive learning for semi-supervised point cloud semantic segmentation publication-title: ICCV – volume: 33 start-page: 18661 year: 2020 ident: 10.1016/j.patcog.2024.111045_b32 article-title: Supervised contrastive learning publication-title: NeurIPS – volume: 35 start-page: 1 issue: 6 year: 2016 ident: 10.1016/j.patcog.2024.111045_b36 article-title: A scalable active framework for region annotation in 3d shape collections publication-title: ACM Trans. Graph. (ToG) doi: 10.1145/2980179.2980238 – start-page: 37 year: 2022 ident: 10.1016/j.patcog.2024.111045_b37 article-title: Weakly supervised 3d scene segmentation with region-level boundary awareness and instance discrimination – start-page: 604 year: 2022 ident: 10.1016/j.patcog.2024.111045_b19 article-title: Masked autoencoders for point cloud self-supervised learning – start-page: 5828 year: 2017 ident: 10.1016/j.patcog.2024.111045_b16 article-title: Scannet: Richly-annotated 3d reconstructions of indoor scenes – volume: 9 start-page: 229 issue: 2 year: 2023 ident: 10.1016/j.patcog.2024.111045_b28 article-title: Semi-supervised 3D shape segmentation with multilevel consistency and part substitution publication-title: Comput. Vis. Media doi: 10.1007/s41095-022-0281-9 – volume: 8 start-page: 3 issue: 3 year: 2007 ident: 10.1016/j.patcog.2024.111045_b3 article-title: Generative or discriminative? getting the best of both worlds publication-title: Bayesian Stat. – volume: 33 start-page: 8765 year: 2020 ident: 10.1016/j.patcog.2024.111045_b14 article-title: Debiased contrastive learning publication-title: Adv. Neural Inf. Process. Syst. – volume: 30 year: 2017 ident: 10.1016/j.patcog.2024.111045_b23 article-title: Pointnet++: Deep hierarchical feature learning on point sets in a metric space publication-title: NeurIPS – ident: 10.1016/j.patcog.2024.111045_b17 doi: 10.1109/ICCV.2019.00939 – start-page: 6411 year: 2019 ident: 10.1016/j.patcog.2024.111045_b21 article-title: Kpconv: Flexible and deformable convolution for point clouds – start-page: 19313 year: 2022 ident: 10.1016/j.patcog.2024.111045_b18 article-title: Point-bert: Pre-training 3d point cloud transformers with masked point modeling – start-page: 6423 year: 2021 ident: 10.1016/j.patcog.2024.111045_b5 article-title: Guided point contrastive learning for semi-supervised point cloud semantic segmentation – start-page: 2971 year: 2021 ident: 10.1016/j.patcog.2024.111045_b30 article-title: Generative classifiers as a basis for trustworthy image classification – start-page: 43 year: 2016 ident: 10.1016/j.patcog.2024.111045_b10 article-title: 3D semantic parsing of large-scale indoor spaces – volume: 35 start-page: 23192 year: 2022 ident: 10.1016/j.patcog.2024.111045_b7 article-title: Pointnext: Revisiting pointnet++ with improved training and scaling strategies publication-title: NeurIPS – volume: 38 start-page: 1 issue: 5 year: 2019 ident: 10.1016/j.patcog.2024.111045_b38 article-title: Dynamic graph cnn for learning on point clouds publication-title: Acm Trans. Graph. (tog) doi: 10.1145/3326362 – start-page: 4723 year: 2019 ident: 10.1016/j.patcog.2024.111045_b9 article-title: Hybrid models with deep and invertible features – start-page: 16259 year: 2021 ident: 10.1016/j.patcog.2024.111045_b26 article-title: Point transformer – volume: 30 year: 2017 ident: 10.1016/j.patcog.2024.111045_b40 article-title: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results publication-title: NeurIPS – start-page: 179 year: 2022 ident: 10.1016/j.patcog.2024.111045_b34 article-title: Towards calibrated hyper-sphere representation via distribution overlap coefficient for long-tailed learning – start-page: 1321 year: 2017 ident: 10.1016/j.patcog.2024.111045_b1 article-title: On calibration of modern neural networks – volume: 30 start-page: 424 issue: 3 year: 2008 ident: 10.1016/j.patcog.2024.111045_b12 article-title: Semisupervised learning for a hybrid generative/discriminative classifier based on the maximum entropy principle publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2007.70710 – volume: 39 start-page: 1 issue: 1 year: 1977 ident: 10.1016/j.patcog.2024.111045_b11 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J. R. Stat. Soc.: Ser. B (Methodological) doi: 10.1111/j.2517-6161.1977.tb01600.x – start-page: 9729 year: 2020 ident: 10.1016/j.patcog.2024.111045_b31 article-title: Momentum contrast for unsupervised visual representation learning – start-page: 600 year: 2022 ident: 10.1016/j.patcog.2024.111045_b29 article-title: Sqn: Weakly-supervised semantic segmentation of large-scale 3d point clouds – start-page: 652 year: 2017 ident: 10.1016/j.patcog.2024.111045_b22 article-title: Pointnet: Deep learning on point sets for 3d classification and segmentation – volume: 34 start-page: 28119 year: 2021 ident: 10.1016/j.patcog.2024.111045_b25 article-title: Assanet: An anisotropic separable set abstraction for efficient point cloud representation learning publication-title: NeurIPS – start-page: 8500 year: 2022 ident: 10.1016/j.patcog.2024.111045_b27 article-title: Stratified transformer for 3d point cloud segmentation – year: 2023 ident: 10.1016/j.patcog.2024.111045_b8 – volume: Vol. 35 start-page: 1140 year: 2021 ident: 10.1016/j.patcog.2024.111045_b2 article-title: Sspc-net: Semi-supervised semantic 3d point cloud segmentation network – start-page: 9214 year: 2022 ident: 10.1016/j.patcog.2024.111045_b4 article-title: Superpoint-guided semi-supervised semantic segmentation of 3D point clouds – start-page: 574 year: 2020 ident: 10.1016/j.patcog.2024.111045_b15 article-title: Pointcontrast: Unsupervised pre-training for 3d point cloud understanding – start-page: 5565 year: 2019 ident: 10.1016/j.patcog.2024.111045_b24 article-title: Pointweb: Enhancing local neighborhood features for point cloud processing – year: 2022 ident: 10.1016/j.patcog.2024.111045_b13 article-title: GMMSeg: Gaussian mixture based generative semantic segmentation models publication-title: NeurIPS – start-page: 355 year: 1998 ident: 10.1016/j.patcog.2024.111045_b33 article-title: A view of the EM algorithm that justifies incremental, sparse, and other variants publication-title: Learn. Graph. Models doi: 10.1007/978-94-011-5014-9_12 – start-page: 1 year: 2011 ident: 10.1016/j.patcog.2024.111045_b35 article-title: Algorithms for hyper-parameter optimization – volume: Vol. 4 start-page: 6 year: 2017 ident: 10.1016/j.patcog.2024.111045_b39 article-title: Temporal ensembling for semi-supervised learning – start-page: 1100 year: 2022 ident: 10.1016/j.patcog.2024.111045_b6 article-title: Twist: Two-way inter-label self-training for semi-supervised 3d instance segmentation – start-page: 3075 year: 2019 ident: 10.1016/j.patcog.2024.111045_b20 article-title: 4D spatio-temporal convnets: Minkowski convolutional neural networks |
SSID | ssj0017142 |
Score | 2.4664755 |
Snippet | Existing semi-supervised point cloud segmentation methods emphasize on discriminative learning, which overlooks the underlying class-conditional distributions... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 111045 |
SubjectTerms | 3D point cloud segmentation Contrastive learning Distribution similarity minimization Gaussian mixture models Generative classifier Semi-supervised learning |
Title | SemiGMMPoint: Semi-supervised point cloud segmentation based on Gaussian mixture models |
URI | https://dx.doi.org/10.1016/j.patcog.2024.111045 |
Volume | 158 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7LevHiW1wfSw5eo02TJllvIuqqrAgq7q00jy4Vt1vsLnjyt5vpQxREwZ7akECZTL-ZkvnmQ-gwVUJxFwkCakeE89ARFUURYVYyf3FDHRCFR7di-Mivx9G4g85aLgyUVTbYX2N6hdbNyHFjzeMiy4DjC20HA-goF8iBABIf5xK8_Oj9s8wD9L3rjuGMEpjd0ueqGq_Cw91s4v8SQw7YEQCp6afw9CXkXKyhlSZXxKf166yjjss30Gqrw4Cbz3ITPd27aXY5Gt3Nsnx-guGJlIsCUKB0FhcwjM3LbGFx6SbThm2UY4hgFvuby2RRApkST7M3OFHAlT5OuYUeL84fzoakEUwgxmf-cyKMihKfg3kwNZHUjtqQJok0wmjDbBpCczEjU5FYafhAC01pYg3VQqVMKOrYNurms9ztIMwjrWjKjGNm4PcyUTZNrRwonmorg0D3EGvtFJummziIWrzEbdnYc1xbNwbrxrV1e4h8rirqbhp_zJftFsTfvCL2gP_ryt1_r9xDyyFo_FaV2fuoO39duAOfeMx1v_KsPlo6vboZ3n4AixzZFA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoALb9SWlw9wNI1jx3aQOFRAu6XdColW9BbiR6qgbjZqdgVc-qf6B-tJnAokBBJSc0qsOErGo2_GynzzAbystNTCZ5Ki2hEVIvVUZ1lGuVM8HMIyj0Th6YGcHImPx9nxClyMXBgsq4zYP2B6j9ZxZDNac7Ota-T4YtvBBDvKJSqXeays3PM_v4d9W_d2931Y5Fdpuv3h8N2ERmkBakOOvKDS6qwM2UqAHZsp45lLWVkqK62x3FUptuGyqpKlU1bkRhrGSmeZkbriUjPPw3NvwE0R4AJlE16fX9WVoKD40KKcM4qvN_L1-qKyNuDr_CRsS1OBYJUgi-pP8fCXGLd9D-7E5JRsDd9_H1Z88wDujsIPJOLAQ_jy2c_qnen007xuFm8IXtFu2SLsdN6RFoeJPZ0vHen8ySzSmxqCIdORcLJTLjtkb5JZ_QN_YZBekKd7BEfXYsbHsNrMG78GRGRGs4pbz20enKfUrqqcyrWojFNJYtaBj3YqbGxfjioap8VYp_atGKxboHWLwbrrQK9mtUP7jn_cr8YlKH5zwyJEmL_O3PjvmS_g1uRwul_s7x7sPYHbKQoM92XhT2F1cbb0z0LWszDPey8j8PW63foSPLIWuQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SemiGMMPoint%3A+Semi-supervised+point+cloud+segmentation+based+on+Gaussian+mixture+models&rft.jtitle=Pattern+recognition&rft.au=Zhuang%2C+Xianwei&rft.au=Wang%2C+Hualiang&rft.au=He%2C+Xiaoxuan&rft.au=Fu%2C+Siming&rft.date=2025-02-01&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.volume=158&rft_id=info:doi/10.1016%2Fj.patcog.2024.111045&rft.externalDocID=S0031320324007969 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |