SemiGMMPoint: Semi-supervised point cloud segmentation based on Gaussian mixture models

Existing semi-supervised point cloud segmentation methods emphasize on discriminative learning, which overlooks the underlying class-conditional distributions and distribution similarities. In this paper, we propose SemiGMMPoint, the first generative framework for semi-supervised 3D point cloud segm...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition Vol. 158; p. 111045
Main Authors Zhuang, Xianwei, Wang, Hualiang, He, Xiaoxuan, Fu, Siming, Hu, Haoji
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Existing semi-supervised point cloud segmentation methods emphasize on discriminative learning, which overlooks the underlying class-conditional distributions and distribution similarities. In this paper, we propose SemiGMMPoint, the first generative framework for semi-supervised 3D point cloud segmentation in real-world and large-scale settings. Specifically, we propose a point dense generative classifier based on Gaussian mixture models (GMMs) to explicitly estimate class-conditional distributions. On top of it, we incorporate a novel similarity-minimization algorithm into the Expectation–Maximization (EM) based GMM parameter estimation, which minimizes the inter-class distribution similarity in the representation space. Moreover, we utilize the well-calibrated posterior to develop a modified point contrastive loss to mitigate sampling bias in semi-supervised settings. Extensive experiments show that SemiGMMPoint significantly boosts performance for semi-supervised point cloud segmentation on many state-of-the-art backbones without requiring architectural changes. Codes are available at https://github.com/jojodidli/SemiGMMPoint. •Gaussian mixture-based generative classifiers improve point cloud segmentation.•Minimizing distribution similarity can improve the performance of GMM classifiers.•The sampling bias issue under 3D semi-supervised settings can be alleviated through GMM.•Combining Generative and contrastive methods fosters semi-supervised 3D segmentation.
AbstractList Existing semi-supervised point cloud segmentation methods emphasize on discriminative learning, which overlooks the underlying class-conditional distributions and distribution similarities. In this paper, we propose SemiGMMPoint, the first generative framework for semi-supervised 3D point cloud segmentation in real-world and large-scale settings. Specifically, we propose a point dense generative classifier based on Gaussian mixture models (GMMs) to explicitly estimate class-conditional distributions. On top of it, we incorporate a novel similarity-minimization algorithm into the Expectation–Maximization (EM) based GMM parameter estimation, which minimizes the inter-class distribution similarity in the representation space. Moreover, we utilize the well-calibrated posterior to develop a modified point contrastive loss to mitigate sampling bias in semi-supervised settings. Extensive experiments show that SemiGMMPoint significantly boosts performance for semi-supervised point cloud segmentation on many state-of-the-art backbones without requiring architectural changes. Codes are available at https://github.com/jojodidli/SemiGMMPoint. •Gaussian mixture-based generative classifiers improve point cloud segmentation.•Minimizing distribution similarity can improve the performance of GMM classifiers.•The sampling bias issue under 3D semi-supervised settings can be alleviated through GMM.•Combining Generative and contrastive methods fosters semi-supervised 3D segmentation.
ArticleNumber 111045
Author Zhuang, Xianwei
Wang, Hualiang
He, Xiaoxuan
Fu, Siming
Hu, Haoji
Author_xml – sequence: 1
  givenname: Xianwei
  orcidid: 0009-0004-4392-6126
  surname: Zhuang
  fullname: Zhuang, Xianwei
  email: xwzhuang@zju.edu.cn
  organization: Zhejiang University, Hangzhuo, 310058, Zhejiang, China
– sequence: 2
  givenname: Hualiang
  surname: Wang
  fullname: Wang, Hualiang
  email: hwangfd@connect.ust.hk
  organization: The Hong Kong University of Science and Technology, 999077, Hong Kong, China
– sequence: 3
  givenname: Xiaoxuan
  surname: He
  fullname: He, Xiaoxuan
  email: Xiaoxuan_He@zju.edu.cn
  organization: Zhejiang University, Hangzhuo, 310058, Zhejiang, China
– sequence: 4
  givenname: Siming
  surname: Fu
  fullname: Fu, Siming
  email: fusiming@zju.edu.cn
  organization: Alibaba Group, Hangzhuo, 310052, Zhejiang, China
– sequence: 5
  givenname: Haoji
  orcidid: 0000-0001-6048-6549
  surname: Hu
  fullname: Hu, Haoji
  email: haoji_hu@zju.edu.cn
  organization: Zhejiang University, Hangzhuo, 310058, Zhejiang, China
BookMark eNqFkMtKw0AUhmdRwbb6Bi7yAolzcpm0XQhStAoVBRWXw-TMSZmSZMrMpOjb2xBXLnR1bnwH_m_GJp3tiLEr4AlwENf75KAC2l2S8jRPAIDnxYRNOc8gzlKenbOZ93vOoYQ8nbKPV2rN5unpxZourKJhin1_IHc0nnR0GNYRNrbXkaddS11QwdguqtRwPjUb1XtvVBe15jP0jqLWamr8BTurVePp8qfO2fv93dv6Id4-bx7Xt9sYMy5CLHBRKF7kpBCLsiLQKShVosAKM12nxXJZYFkLpUvMl5WoAJRGqMSizsQCKJuzfPyLznrvqJYHZ1rlviRwOQiRezkKkYMQOQo5YatfGJoxWXDKNP_BNyN8yklHQ056NNQhaeMIg9TW_P3gG3eUhOM
CitedBy_id crossref_primary_10_1109_TGRS_2024_3522060
Cites_doi 10.1145/2980179.2980238
10.1007/s41095-022-0281-9
10.1109/ICCV.2019.00939
10.1145/3326362
10.1109/TPAMI.2007.70710
10.1111/j.2517-6161.1977.tb01600.x
10.1007/978-94-011-5014-9_12
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2024.111045
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_patcog_2024_111045
S0031320324007969
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
AAYFN
ABBOA
ABDPE
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
AATTM
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-6c85a054eacc57be1d21aa7c6cbc3df25995c7f6ad7c49b6b11adc1b68f3681e3
IEDL.DBID .~1
ISSN 0031-3203
IngestDate Thu Apr 24 23:01:16 EDT 2025
Tue Jul 01 02:36:49 EDT 2025
Sat Nov 16 15:59:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Gaussian mixture models
3D point cloud segmentation
Generative classifier
Semi-supervised learning
Distribution similarity minimization
Contrastive learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-6c85a054eacc57be1d21aa7c6cbc3df25995c7f6ad7c49b6b11adc1b68f3681e3
ORCID 0009-0004-4392-6126
0000-0001-6048-6549
ParticipantIDs crossref_primary_10_1016_j_patcog_2024_111045
crossref_citationtrail_10_1016_j_patcog_2024_111045
elsevier_sciencedirect_doi_10_1016_j_patcog_2024_111045
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2025
2025-02-00
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: February 2025
PublicationDecade 2020
PublicationTitle Pattern recognition
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Dai, Chang, Savva, Halber, Funkhouser, Nieß ner (b16) 2017
Zhao, Jiang, Jia, Torr, Koltun (b26) 2021
Chen, Lu, Zhu, Zhang (b8) 2023
Armeni, Sener, Zamir, Jiang, Brilakis, Fischer, Savarese (b10) 2016
Bergstra, Bardenet, Bengio, Kégl (b35) 2011
Deng, Dong, Liu, Hu (b4) 2022
Samuli, Timo (b39) 2017; Vol. 4
J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stachniss, J. Gall, Semantickitti: A dataset for semantic scene understanding of lidar sequences, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 9297–9307.
Khosla, Teterwak, Wang, Sarna, Tian, Isola, Maschinot, Liu, Krishnan (b32) 2020; 33
Yi, Kim, Ceylan, Shen, Yan, Su, Lu, Huang, Sheffer, Guibas (b36) 2016; 35
Cheng, Hui, Xie, Yang (b2) 2021; Vol. 35
Guo, Pleiss, Sun, Weinberger (b1) 2017
Bernardo, Bayarri, Berger, Dawid, Heckerman, Smith, West (b3) 2007; 8
Xie, Gu, Guo, Qi, Guibas, Litany (b15) 2020
Qian, Hammoud, Li, Thabet, Ghanem (b25) 2021; 34
Pang, Wang, Tay, Liu, Tian, Yuan (b19) 2022
Qi, Su, Mo, Guibas (b22) 2017
Lai, Liu, Jiang, Wang, Zhao, Liu, Qi, Jia (b27) 2022
Dempster, Laird, Rubin (b11) 1977; 39
Thomas, Qi, Deschaud, Marcotegui, Goulette, Guibas (b21) 2019
Chuang, Robinson, Lin, Torralba, Jegelka (b14) 2020; 33
Liang, Wang, Miao, Yang (b13) 2022
Yu, Tang, Rao, Huang, Zhou, Lu (b18) 2022
He, Fan, Wu, Xie, Girshick (b31) 2020
Fujino, Ueda, Saito (b12) 2008; 30
Choy, Gwak, Savarese (b20) 2019
Wang, Fu, He, Fang, Liu, Hu (b34) 2022
Chu, Ye, Liu, Tan, Qi, Fu, Jia (b6) 2022
Jiang, Shi, Tian, Lai, Liu, Fu, Jia (b5) 2021
Sun, Yang, Guo, Wang, Tong, Liu, Shum (b28) 2023; 9
Qi, Yi, Su, Guibas (b23) 2017; 30
Neal, Hinton (b33) 1998
Hu, Yang, Fang, Guo, Leonardis, Trigoni, Markham (b29) 2022
Wang, Sun, Liu, Sarma, Bronstein, Solomon (b38) 2019; 38
Mackowiak, Ardizzone, Kothe, Rother (b30) 2021
Zhao, Jiang, Fu, Jia (b24) 2019
Liu, Zhao, Nie, Gao, Chen (b37) 2022
Tarvainen, Valpola (b40) 2017; 30
Qian, Li, Peng, Mai, Hammoud, Elhoseiny, Ghanem (b7) 2022; 35
Nalisnick, Matsukawa, Teh, Gorur, Lakshminarayanan (b9) 2019
10.1016/j.patcog.2024.111045_b17
Zhao (10.1016/j.patcog.2024.111045_b26) 2021
Qian (10.1016/j.patcog.2024.111045_b7) 2022; 35
Guo (10.1016/j.patcog.2024.111045_b1) 2017
Neal (10.1016/j.patcog.2024.111045_b33) 1998
Bergstra (10.1016/j.patcog.2024.111045_b35) 2011
Qi (10.1016/j.patcog.2024.111045_b23) 2017; 30
Qi (10.1016/j.patcog.2024.111045_b22) 2017
Pang (10.1016/j.patcog.2024.111045_b19) 2022
Choy (10.1016/j.patcog.2024.111045_b20) 2019
Bernardo (10.1016/j.patcog.2024.111045_b3) 2007; 8
Deng (10.1016/j.patcog.2024.111045_b4) 2022
Nalisnick (10.1016/j.patcog.2024.111045_b9) 2019
Yi (10.1016/j.patcog.2024.111045_b36) 2016; 35
Jiang (10.1016/j.patcog.2024.111045_b5) 2021
Yu (10.1016/j.patcog.2024.111045_b18) 2022
Sun (10.1016/j.patcog.2024.111045_b28) 2023; 9
Tarvainen (10.1016/j.patcog.2024.111045_b40) 2017; 30
Chu (10.1016/j.patcog.2024.111045_b6) 2022
Wang (10.1016/j.patcog.2024.111045_b34) 2022
Lai (10.1016/j.patcog.2024.111045_b27) 2022
Xie (10.1016/j.patcog.2024.111045_b15) 2020
Chen (10.1016/j.patcog.2024.111045_b8) 2023
Dai (10.1016/j.patcog.2024.111045_b16) 2017
Armeni (10.1016/j.patcog.2024.111045_b10) 2016
Mackowiak (10.1016/j.patcog.2024.111045_b30) 2021
Thomas (10.1016/j.patcog.2024.111045_b21) 2019
Khosla (10.1016/j.patcog.2024.111045_b32) 2020; 33
Liu (10.1016/j.patcog.2024.111045_b37) 2022
Cheng (10.1016/j.patcog.2024.111045_b2) 2021; Vol. 35
He (10.1016/j.patcog.2024.111045_b31) 2020
Zhao (10.1016/j.patcog.2024.111045_b24) 2019
Qian (10.1016/j.patcog.2024.111045_b25) 2021; 34
Liang (10.1016/j.patcog.2024.111045_b13) 2022
Dempster (10.1016/j.patcog.2024.111045_b11) 1977; 39
Hu (10.1016/j.patcog.2024.111045_b29) 2022
Wang (10.1016/j.patcog.2024.111045_b38) 2019; 38
Fujino (10.1016/j.patcog.2024.111045_b12) 2008; 30
Chuang (10.1016/j.patcog.2024.111045_b14) 2020; 33
Samuli (10.1016/j.patcog.2024.111045_b39) 2017; Vol. 4
References_xml – volume: 39
  start-page: 1
  year: 1977
  end-page: 22
  ident: b11
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc.: Ser. B (Methodological)
– start-page: 3075
  year: 2019
  end-page: 3084
  ident: b20
  article-title: 4D spatio-temporal convnets: Minkowski convolutional neural networks
  publication-title: CVPR
– start-page: 179
  year: 2022
  end-page: 196
  ident: b34
  article-title: Towards calibrated hyper-sphere representation via distribution overlap coefficient for long-tailed learning
  publication-title: Computer Vision–ECCV 2022: 17th European Conference
– start-page: 600
  year: 2022
  end-page: 619
  ident: b29
  article-title: Sqn: Weakly-supervised semantic segmentation of large-scale 3d point clouds
  publication-title: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII
– year: 2022
  ident: b13
  article-title: GMMSeg: Gaussian mixture based generative semantic segmentation models
  publication-title: NeurIPS
– start-page: 574
  year: 2020
  end-page: 591
  ident: b15
  article-title: Pointcontrast: Unsupervised pre-training for 3d point cloud understanding
  publication-title: ECCV
– volume: Vol. 35
  start-page: 1140
  year: 2021
  end-page: 1147
  ident: b2
  article-title: Sspc-net: Semi-supervised semantic 3d point cloud segmentation network
  publication-title: AAAI
– volume: 30
  year: 2017
  ident: b23
  article-title: Pointnet++: Deep hierarchical feature learning on point sets in a metric space
  publication-title: NeurIPS
– start-page: 355
  year: 1998
  end-page: 368
  ident: b33
  article-title: A view of the EM algorithm that justifies incremental, sparse, and other variants
  publication-title: Learn. Graph. Models
– volume: Vol. 4
  start-page: 6
  year: 2017
  ident: b39
  article-title: Temporal ensembling for semi-supervised learning
  publication-title: ICLR
– volume: 8
  start-page: 3
  year: 2007
  end-page: 24
  ident: b3
  article-title: Generative or discriminative? getting the best of both worlds
  publication-title: Bayesian Stat.
– volume: 35
  start-page: 23192
  year: 2022
  end-page: 23204
  ident: b7
  article-title: Pointnext: Revisiting pointnet++ with improved training and scaling strategies
  publication-title: NeurIPS
– volume: 38
  start-page: 1
  year: 2019
  end-page: 12
  ident: b38
  article-title: Dynamic graph cnn for learning on point clouds
  publication-title: Acm Trans. Graph. (tog)
– start-page: 37
  year: 2022
  end-page: 55
  ident: b37
  article-title: Weakly supervised 3d scene segmentation with region-level boundary awareness and instance discrimination
  publication-title: European Conference on Computer Vision
– volume: 33
  start-page: 18661
  year: 2020
  end-page: 18673
  ident: b32
  article-title: Supervised contrastive learning
  publication-title: NeurIPS
– start-page: 6411
  year: 2019
  end-page: 6420
  ident: b21
  article-title: Kpconv: Flexible and deformable convolution for point clouds
  publication-title: ICCV
– start-page: 19313
  year: 2022
  end-page: 19322
  ident: b18
  article-title: Point-bert: Pre-training 3d point cloud transformers with masked point modeling
  publication-title: CVPR
– volume: 34
  start-page: 28119
  year: 2021
  end-page: 28130
  ident: b25
  article-title: Assanet: An anisotropic separable set abstraction for efficient point cloud representation learning
  publication-title: NeurIPS
– start-page: 2971
  year: 2021
  end-page: 2981
  ident: b30
  article-title: Generative classifiers as a basis for trustworthy image classification
  publication-title: CVPR
– start-page: 1100
  year: 2022
  end-page: 1109
  ident: b6
  article-title: Twist: Two-way inter-label self-training for semi-supervised 3d instance segmentation
  publication-title: CVPR
– volume: 9
  start-page: 229
  year: 2023
  end-page: 247
  ident: b28
  article-title: Semi-supervised 3D shape segmentation with multilevel consistency and part substitution
  publication-title: Comput. Vis. Media
– volume: 30
  year: 2017
  ident: b40
  article-title: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results
  publication-title: NeurIPS
– start-page: 9214
  year: 2022
  end-page: 9220
  ident: b4
  article-title: Superpoint-guided semi-supervised semantic segmentation of 3D point clouds
  publication-title: 2022 International Conference on Robotics and Automation
– start-page: 1321
  year: 2017
  end-page: 1330
  ident: b1
  article-title: On calibration of modern neural networks
  publication-title: ICML
– start-page: 652
  year: 2017
  end-page: 660
  ident: b22
  article-title: Pointnet: Deep learning on point sets for 3d classification and segmentation
  publication-title: CVPR
– start-page: 5828
  year: 2017
  end-page: 5839
  ident: b16
  article-title: Scannet: Richly-annotated 3d reconstructions of indoor scenes
  publication-title: CVPR
– start-page: 604
  year: 2022
  end-page: 621
  ident: b19
  article-title: Masked autoencoders for point cloud self-supervised learning
  publication-title: Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part II
– volume: 35
  start-page: 1
  year: 2016
  end-page: 12
  ident: b36
  article-title: A scalable active framework for region annotation in 3d shape collections
  publication-title: ACM Trans. Graph. (ToG)
– start-page: 1
  year: 2011
  end-page: 9
  ident: b35
  article-title: Algorithms for hyper-parameter optimization
  publication-title: NIPS
– reference: J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stachniss, J. Gall, Semantickitti: A dataset for semantic scene understanding of lidar sequences, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 9297–9307.
– volume: 30
  start-page: 424
  year: 2008
  end-page: 437
  ident: b12
  article-title: Semisupervised learning for a hybrid generative/discriminative classifier based on the maximum entropy principle
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 33
  start-page: 8765
  year: 2020
  end-page: 8775
  ident: b14
  article-title: Debiased contrastive learning
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 8500
  year: 2022
  end-page: 8509
  ident: b27
  article-title: Stratified transformer for 3d point cloud segmentation
  publication-title: CVPR
– start-page: 43
  year: 2016
  ident: b10
  article-title: 3D semantic parsing of large-scale indoor spaces
  publication-title: CVPR
– start-page: 5565
  year: 2019
  end-page: 5573
  ident: b24
  article-title: Pointweb: Enhancing local neighborhood features for point cloud processing
  publication-title: CVPR
– start-page: 16259
  year: 2021
  end-page: 16268
  ident: b26
  article-title: Point transformer
  publication-title: ICCV
– year: 2023
  ident: b8
  article-title: Generative semantic segmentation
– start-page: 4723
  year: 2019
  end-page: 4732
  ident: b9
  article-title: Hybrid models with deep and invertible features
  publication-title: ICML
– start-page: 9729
  year: 2020
  end-page: 9738
  ident: b31
  article-title: Momentum contrast for unsupervised visual representation learning
  publication-title: CVPR
– start-page: 6423
  year: 2021
  end-page: 6432
  ident: b5
  article-title: Guided point contrastive learning for semi-supervised point cloud semantic segmentation
  publication-title: ICCV
– volume: 33
  start-page: 18661
  year: 2020
  ident: 10.1016/j.patcog.2024.111045_b32
  article-title: Supervised contrastive learning
  publication-title: NeurIPS
– volume: 35
  start-page: 1
  issue: 6
  year: 2016
  ident: 10.1016/j.patcog.2024.111045_b36
  article-title: A scalable active framework for region annotation in 3d shape collections
  publication-title: ACM Trans. Graph. (ToG)
  doi: 10.1145/2980179.2980238
– start-page: 37
  year: 2022
  ident: 10.1016/j.patcog.2024.111045_b37
  article-title: Weakly supervised 3d scene segmentation with region-level boundary awareness and instance discrimination
– start-page: 604
  year: 2022
  ident: 10.1016/j.patcog.2024.111045_b19
  article-title: Masked autoencoders for point cloud self-supervised learning
– start-page: 5828
  year: 2017
  ident: 10.1016/j.patcog.2024.111045_b16
  article-title: Scannet: Richly-annotated 3d reconstructions of indoor scenes
– volume: 9
  start-page: 229
  issue: 2
  year: 2023
  ident: 10.1016/j.patcog.2024.111045_b28
  article-title: Semi-supervised 3D shape segmentation with multilevel consistency and part substitution
  publication-title: Comput. Vis. Media
  doi: 10.1007/s41095-022-0281-9
– volume: 8
  start-page: 3
  issue: 3
  year: 2007
  ident: 10.1016/j.patcog.2024.111045_b3
  article-title: Generative or discriminative? getting the best of both worlds
  publication-title: Bayesian Stat.
– volume: 33
  start-page: 8765
  year: 2020
  ident: 10.1016/j.patcog.2024.111045_b14
  article-title: Debiased contrastive learning
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 30
  year: 2017
  ident: 10.1016/j.patcog.2024.111045_b23
  article-title: Pointnet++: Deep hierarchical feature learning on point sets in a metric space
  publication-title: NeurIPS
– ident: 10.1016/j.patcog.2024.111045_b17
  doi: 10.1109/ICCV.2019.00939
– start-page: 6411
  year: 2019
  ident: 10.1016/j.patcog.2024.111045_b21
  article-title: Kpconv: Flexible and deformable convolution for point clouds
– start-page: 19313
  year: 2022
  ident: 10.1016/j.patcog.2024.111045_b18
  article-title: Point-bert: Pre-training 3d point cloud transformers with masked point modeling
– start-page: 6423
  year: 2021
  ident: 10.1016/j.patcog.2024.111045_b5
  article-title: Guided point contrastive learning for semi-supervised point cloud semantic segmentation
– start-page: 2971
  year: 2021
  ident: 10.1016/j.patcog.2024.111045_b30
  article-title: Generative classifiers as a basis for trustworthy image classification
– start-page: 43
  year: 2016
  ident: 10.1016/j.patcog.2024.111045_b10
  article-title: 3D semantic parsing of large-scale indoor spaces
– volume: 35
  start-page: 23192
  year: 2022
  ident: 10.1016/j.patcog.2024.111045_b7
  article-title: Pointnext: Revisiting pointnet++ with improved training and scaling strategies
  publication-title: NeurIPS
– volume: 38
  start-page: 1
  issue: 5
  year: 2019
  ident: 10.1016/j.patcog.2024.111045_b38
  article-title: Dynamic graph cnn for learning on point clouds
  publication-title: Acm Trans. Graph. (tog)
  doi: 10.1145/3326362
– start-page: 4723
  year: 2019
  ident: 10.1016/j.patcog.2024.111045_b9
  article-title: Hybrid models with deep and invertible features
– start-page: 16259
  year: 2021
  ident: 10.1016/j.patcog.2024.111045_b26
  article-title: Point transformer
– volume: 30
  year: 2017
  ident: 10.1016/j.patcog.2024.111045_b40
  article-title: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results
  publication-title: NeurIPS
– start-page: 179
  year: 2022
  ident: 10.1016/j.patcog.2024.111045_b34
  article-title: Towards calibrated hyper-sphere representation via distribution overlap coefficient for long-tailed learning
– start-page: 1321
  year: 2017
  ident: 10.1016/j.patcog.2024.111045_b1
  article-title: On calibration of modern neural networks
– volume: 30
  start-page: 424
  issue: 3
  year: 2008
  ident: 10.1016/j.patcog.2024.111045_b12
  article-title: Semisupervised learning for a hybrid generative/discriminative classifier based on the maximum entropy principle
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2007.70710
– volume: 39
  start-page: 1
  issue: 1
  year: 1977
  ident: 10.1016/j.patcog.2024.111045_b11
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc.: Ser. B (Methodological)
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– start-page: 9729
  year: 2020
  ident: 10.1016/j.patcog.2024.111045_b31
  article-title: Momentum contrast for unsupervised visual representation learning
– start-page: 600
  year: 2022
  ident: 10.1016/j.patcog.2024.111045_b29
  article-title: Sqn: Weakly-supervised semantic segmentation of large-scale 3d point clouds
– start-page: 652
  year: 2017
  ident: 10.1016/j.patcog.2024.111045_b22
  article-title: Pointnet: Deep learning on point sets for 3d classification and segmentation
– volume: 34
  start-page: 28119
  year: 2021
  ident: 10.1016/j.patcog.2024.111045_b25
  article-title: Assanet: An anisotropic separable set abstraction for efficient point cloud representation learning
  publication-title: NeurIPS
– start-page: 8500
  year: 2022
  ident: 10.1016/j.patcog.2024.111045_b27
  article-title: Stratified transformer for 3d point cloud segmentation
– year: 2023
  ident: 10.1016/j.patcog.2024.111045_b8
– volume: Vol. 35
  start-page: 1140
  year: 2021
  ident: 10.1016/j.patcog.2024.111045_b2
  article-title: Sspc-net: Semi-supervised semantic 3d point cloud segmentation network
– start-page: 9214
  year: 2022
  ident: 10.1016/j.patcog.2024.111045_b4
  article-title: Superpoint-guided semi-supervised semantic segmentation of 3D point clouds
– start-page: 574
  year: 2020
  ident: 10.1016/j.patcog.2024.111045_b15
  article-title: Pointcontrast: Unsupervised pre-training for 3d point cloud understanding
– start-page: 5565
  year: 2019
  ident: 10.1016/j.patcog.2024.111045_b24
  article-title: Pointweb: Enhancing local neighborhood features for point cloud processing
– year: 2022
  ident: 10.1016/j.patcog.2024.111045_b13
  article-title: GMMSeg: Gaussian mixture based generative semantic segmentation models
  publication-title: NeurIPS
– start-page: 355
  year: 1998
  ident: 10.1016/j.patcog.2024.111045_b33
  article-title: A view of the EM algorithm that justifies incremental, sparse, and other variants
  publication-title: Learn. Graph. Models
  doi: 10.1007/978-94-011-5014-9_12
– start-page: 1
  year: 2011
  ident: 10.1016/j.patcog.2024.111045_b35
  article-title: Algorithms for hyper-parameter optimization
– volume: Vol. 4
  start-page: 6
  year: 2017
  ident: 10.1016/j.patcog.2024.111045_b39
  article-title: Temporal ensembling for semi-supervised learning
– start-page: 1100
  year: 2022
  ident: 10.1016/j.patcog.2024.111045_b6
  article-title: Twist: Two-way inter-label self-training for semi-supervised 3d instance segmentation
– start-page: 3075
  year: 2019
  ident: 10.1016/j.patcog.2024.111045_b20
  article-title: 4D spatio-temporal convnets: Minkowski convolutional neural networks
SSID ssj0017142
Score 2.4664755
Snippet Existing semi-supervised point cloud segmentation methods emphasize on discriminative learning, which overlooks the underlying class-conditional distributions...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 111045
SubjectTerms 3D point cloud segmentation
Contrastive learning
Distribution similarity minimization
Gaussian mixture models
Generative classifier
Semi-supervised learning
Title SemiGMMPoint: Semi-supervised point cloud segmentation based on Gaussian mixture models
URI https://dx.doi.org/10.1016/j.patcog.2024.111045
Volume 158
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7LevHiW1wfSw5eo02TJllvIuqqrAgq7q00jy4Vt1vsLnjyt5vpQxREwZ7akECZTL-ZkvnmQ-gwVUJxFwkCakeE89ARFUURYVYyf3FDHRCFR7di-Mivx9G4g85aLgyUVTbYX2N6hdbNyHFjzeMiy4DjC20HA-goF8iBABIf5xK8_Oj9s8wD9L3rjuGMEpjd0ueqGq_Cw91s4v8SQw7YEQCp6afw9CXkXKyhlSZXxKf166yjjss30Gqrw4Cbz3ITPd27aXY5Gt3Nsnx-guGJlIsCUKB0FhcwjM3LbGFx6SbThm2UY4hgFvuby2RRApkST7M3OFHAlT5OuYUeL84fzoakEUwgxmf-cyKMihKfg3kwNZHUjtqQJok0wmjDbBpCczEjU5FYafhAC01pYg3VQqVMKOrYNurms9ztIMwjrWjKjGNm4PcyUTZNrRwonmorg0D3EGvtFJummziIWrzEbdnYc1xbNwbrxrV1e4h8rirqbhp_zJftFsTfvCL2gP_ryt1_r9xDyyFo_FaV2fuoO39duAOfeMx1v_KsPlo6vboZ3n4AixzZFA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoALb9SWlw9wNI1jx3aQOFRAu6XdColW9BbiR6qgbjZqdgVc-qf6B-tJnAokBBJSc0qsOErGo2_GynzzAbystNTCZ5Ki2hEVIvVUZ1lGuVM8HMIyj0Th6YGcHImPx9nxClyMXBgsq4zYP2B6j9ZxZDNac7Ota-T4YtvBBDvKJSqXeays3PM_v4d9W_d2931Y5Fdpuv3h8N2ERmkBakOOvKDS6qwM2UqAHZsp45lLWVkqK62x3FUptuGyqpKlU1bkRhrGSmeZkbriUjPPw3NvwE0R4AJlE16fX9WVoKD40KKcM4qvN_L1-qKyNuDr_CRsS1OBYJUgi-pP8fCXGLd9D-7E5JRsDd9_H1Z88wDujsIPJOLAQ_jy2c_qnen007xuFm8IXtFu2SLsdN6RFoeJPZ0vHen8ySzSmxqCIdORcLJTLjtkb5JZ_QN_YZBekKd7BEfXYsbHsNrMG78GRGRGs4pbz20enKfUrqqcyrWojFNJYtaBj3YqbGxfjioap8VYp_atGKxboHWLwbrrQK9mtUP7jn_cr8YlKH5zwyJEmL_O3PjvmS_g1uRwul_s7x7sPYHbKQoM92XhT2F1cbb0z0LWszDPey8j8PW63foSPLIWuQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SemiGMMPoint%3A+Semi-supervised+point+cloud+segmentation+based+on+Gaussian+mixture+models&rft.jtitle=Pattern+recognition&rft.au=Zhuang%2C+Xianwei&rft.au=Wang%2C+Hualiang&rft.au=He%2C+Xiaoxuan&rft.au=Fu%2C+Siming&rft.date=2025-02-01&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.volume=158&rft_id=info:doi/10.1016%2Fj.patcog.2024.111045&rft.externalDocID=S0031320324007969
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon