Wettability of striped patterned mono-and multilayer graphene supported on platinum

•Physically striped patterned substrates can be designed for Cassie-Baxter and Wenzel states.•Properties of substrates are affected by underlying substrate.•Platinum underlying alters the behavior of water molecules at interface.•Liquids on artificial surfaces with anisotropic wetting properties can...

Full description

Saved in:
Bibliographic Details
Published inApplied surface science Vol. 500; p. 144002
Main Authors Yaghoubi, Hamzeh, Foroutan, Masumeh
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.01.2020
Subjects
Online AccessGet full text
ISSN0169-4332
1873-5584
DOI10.1016/j.apsusc.2019.144002

Cover

Abstract •Physically striped patterned substrates can be designed for Cassie-Baxter and Wenzel states.•Properties of substrates are affected by underlying substrate.•Platinum underlying alters the behavior of water molecules at interface.•Liquids on artificial surfaces with anisotropic wetting properties can be forced to move in a specific direction. Wettability of water nanodroplet on graphene and graphene-coated metals in recent years have been the subject of interest. In the present work, the wettability of mono and three-layer graphene supported on underlying platinum was investigated using molecular dynamics simulation. Furthermore, the striped patterns were generated on the substrates by parallel grooves with different widths and depths. Wetting results showed that the Cassie-Baxter state converts into the Wenzel state by increasing the width of the grooves, which was confirmed by free energy results that obtained from free energy perturbation and potential of mean force methods. A chain of water molecules forms at interface by increasing the width of the grooves, which leads to higher hydrogen bond lifetime. Water-platinum interaction in the grooves and nanodroplet pinning cause anisotropy in the wetting and nanodroplet shape. This suggests that such artificial surfaces with anisotropic wetting properties can mimic water anisotropic behavior on some natural structures, which lead water to move in a specific direction.
AbstractList •Physically striped patterned substrates can be designed for Cassie-Baxter and Wenzel states.•Properties of substrates are affected by underlying substrate.•Platinum underlying alters the behavior of water molecules at interface.•Liquids on artificial surfaces with anisotropic wetting properties can be forced to move in a specific direction. Wettability of water nanodroplet on graphene and graphene-coated metals in recent years have been the subject of interest. In the present work, the wettability of mono and three-layer graphene supported on underlying platinum was investigated using molecular dynamics simulation. Furthermore, the striped patterns were generated on the substrates by parallel grooves with different widths and depths. Wetting results showed that the Cassie-Baxter state converts into the Wenzel state by increasing the width of the grooves, which was confirmed by free energy results that obtained from free energy perturbation and potential of mean force methods. A chain of water molecules forms at interface by increasing the width of the grooves, which leads to higher hydrogen bond lifetime. Water-platinum interaction in the grooves and nanodroplet pinning cause anisotropy in the wetting and nanodroplet shape. This suggests that such artificial surfaces with anisotropic wetting properties can mimic water anisotropic behavior on some natural structures, which lead water to move in a specific direction.
ArticleNumber 144002
Author Foroutan, Masumeh
Yaghoubi, Hamzeh
Author_xml – sequence: 1
  givenname: Hamzeh
  orcidid: 0000-0002-9160-9457
  surname: Yaghoubi
  fullname: Yaghoubi, Hamzeh
– sequence: 2
  givenname: Masumeh
  orcidid: 0000-0002-1654-7997
  surname: Foroutan
  fullname: Foroutan, Masumeh
  email: foroutan@khayam.ut.ac.ir
BookMark eNqFkM1KAzEUhYNUsK2-gYt5gRmTSSaduhCk-AcFFyouQ5rc0ZRpEpKMMG9vyrhyoat74J5zuPdboJl1FhC6JLgimPCrfSV9HKKqakzWFWEM4_oEzUm7omXTtGyG5tm2Lhml9RlaxLjHmNR5O0cv75CS3JnepLFwXRFTMB504WVKEGxWB2ddKW0WQ59ML0cIxUeQ_hMsFHHw3oWUbc4WvpfJ2OFwjk472Ue4-JlL9HZ_97p5LLfPD0-b222pKOap5DvQuOFdw3nbtjxf1LAVIx3Vkmtdt5J3a6oJlY1c1VnUiuxaRjlVTCpoKF0iNvWq4GIM0AkfzEGGURAsjmDEXkxgxBGMmMDk2PWvmDIpX-5sCtL0_4VvpjDkx74MBBGVAatAmwAqCe3M3wXfYROExw
CitedBy_id crossref_primary_10_1016_j_surfin_2024_104646
crossref_primary_10_1177_18479804211062316
crossref_primary_10_1021_acs_langmuir_4c00061
crossref_primary_10_14775_ksmpe_2020_19_11_109
crossref_primary_10_1016_j_cocis_2021_101425
crossref_primary_10_1016_j_ibiod_2024_105856
crossref_primary_10_1557_s43577_022_00380_9
crossref_primary_10_1016_j_molliq_2021_118017
crossref_primary_10_1016_j_rinp_2022_105213
crossref_primary_10_1016_j_ces_2022_117776
crossref_primary_10_1039_D0CP01453B
crossref_primary_10_1021_acs_langmuir_2c00972
crossref_primary_10_1016_j_ijheatmasstransfer_2023_123868
Cites_doi 10.1016/0039-6028(92)90183-7
10.1021/jp011344u
10.1063/1.4938499
10.1088/2051-672X/2/4/044003
10.1021/la302669g
10.1063/1.1651473
10.1016/j.cis.2016.07.004
10.1103/PhysRevB.85.155445
10.1038/nmat3228
10.1016/S1359-0294(00)00087-X
10.1103/PhysRevLett.105.216102
10.1021/acs.langmuir.8b03808
10.1021/nl304647t
10.1016/j.expthermflusci.2017.05.001
10.7567/JJAP.57.035102
10.1038/nmat3760
10.1073/pnas.0902027106
10.1063/1.1740409
10.1021/la702239w
10.1016/j.colsurfa.2010.06.019
10.1021/j100308a038
10.1098/rstl.1805.0005
10.1038/nphoton.2010.186
10.1016/j.jcis.2004.07.038
10.1021/jp511036e
10.1103/PhysRevLett.109.176101
10.1021/acsomega.7b00365
10.1038/srep24237
10.1002/aic.690470602
10.1039/b917112f
10.1063/1.4980091
10.1002/sia.1945
10.1021/la0702077
10.1016/j.compfluid.2015.02.010
10.1103/PhysRevB.61.15653
10.1103/PhysRevB.80.245411
10.1007/s12206-015-0338-0
10.1039/c1sm05849e
10.1021/acs.accounts.6b00447
10.1038/nmat3709
10.1063/1.4895541
10.1103/PhysRevB.78.073401
10.1063/1.5021547
10.1088/1742-6596/89/1/012012
10.1021/acs.langmuir.5b00328
10.1063/1.447334
10.1016/j.molliq.2004.08.004
10.1103/PhysRevE.96.033312
10.1021/am501371b
10.1021/nn901819n
10.1039/C6CP01936F
10.1080/08927022.2013.819578
10.1021/la020088p
10.1209/0295-5075/89/26006
10.1103/PhysRevA.31.1695
10.1016/S0009-2614(00)01032-0
10.1146/annurev.fluid.36.050802.122124
10.1039/C7CS00256D
10.1088/0960-1317/16/8/018
10.1039/C8CP03762K
10.1126/science.291.5506.1023
10.1021/acsami.5b07006
10.1039/C5RA00174A
10.1006/jcph.1995.1039
10.1002/adma.201104618
10.1103/PhysRevB.60.16913
10.1021/jp507196q
10.1002/adma.200290020
10.1007/s12206-013-1178-4
10.1063/1.3543624
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.apsusc.2019.144002
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-5584
ExternalDocumentID 10_1016_j_apsusc_2019_144002
S0169433219328181
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M38
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCB
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SPD
SPG
SSK
SSM
SSQ
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMV
HVGLF
HZ~
NDZJH
R2-
RIG
SEW
SSH
WUQ
ID FETCH-LOGICAL-c306t-6bed056f566888601254741f3da6dd28a6f93d13a5a723d12c1b84363c4ace533
IEDL.DBID AIKHN
ISSN 0169-4332
IngestDate Thu Apr 24 23:06:05 EDT 2025
Tue Jul 01 01:39:44 EDT 2025
Fri Feb 23 02:49:55 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Wenzel state
Contact angle
Anisotropic wetting
Cassie-Baxter state
Striped patterned surface
Free energy
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-6bed056f566888601254741f3da6dd28a6f93d13a5a723d12c1b84363c4ace533
ORCID 0000-0002-1654-7997
0000-0002-9160-9457
ParticipantIDs crossref_primary_10_1016_j_apsusc_2019_144002
crossref_citationtrail_10_1016_j_apsusc_2019_144002
elsevier_sciencedirect_doi_10_1016_j_apsusc_2019_144002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-15
PublicationDateYYYYMMDD 2020-01-15
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-15
  day: 15
PublicationDecade 2020
PublicationTitle Applied surface science
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhao, Moore, Beebe (b0245) 2001; 291
Wang, Wang, Ge, Xue, Ye, Chen (b0045) 2015; 31
Drelich, Chibowski, Meng, Terpilowski (b0020) 2011; 7
Hockney, Eastwood (b0265) 1989
Koishi, Yasuoka, Fujikawa, Ebisuzaki, Zeng (b0335) 2009; 106
Foroutan, Darvishi, Fatemi (b0080) 2017; 96
Zhao, Lu, Li, Li (b0200) 2007; 23
Ambrosia, Ha, Balachandar (b0315) 2014; 28
Sommers, Jacobi (b0195) 2006; 16
Plimpton (b0270) 1995; 117
Shih, Wang, Lin, Park, Jin, Strano (b0170) 2012; 109
Akaishi, Yonemaru, Nakamura (b0070) 2017; 2
Shih, Strano, Blankschtein (b0150) 2013; 12
Feng, Li, Li, Li, Zhang, Zhai (b0255) 2002; 14
Foroutan, Fatemi, Esmaeilian, Fadaei Naeini, Baniassadi (b0090) 2018; 30
Yaghoubi, Foroutan (b0285) 2018; 20
Andrews, Sinha, Chung, Das (b0085) 2016; 18
Preobrajenski, Ng, Vinogradov, Mårtensson (b0105) 2008; 78
Hung, Hsiao, Chen, Chieng (b0180) 2015; 119
Huang, Zhao, Wang, Qiao, Gao, Wang (b0055) 2015; 5
Ramos-Alvarado, Kumar, Peterson (b0185) 2016; 144
Land, Michely, Behm, Hemminger, Comsa (b0125) 1992; 264
Chen, He, Lee, Patankar (b0190) 2005; 281
De Coninck, de Ruijter, Voué (b0220) 2001; 6
Raj, Maroo, Wang (b0155) 2013; 13
Fischer, Bigerelle, Kubiak, Mathia, Khatir, Anselme (b0305) 2014; 2
Rafiee, Mi, Gullapalli, Thomas, Yavari, Shi (b0145) 2012; 11
Li, Wang, Kozbial, Shenoy, Zhou, McGinley (b0160) 2013; 12
Vaikuntanathan, Kannan, Sivakumar (b0215) 2017; 87
Fujita, Kobayashi, Oshima (b0130) 2005; 37
Zhao, Li, Huang, Zhen, Zhong, Chen (b0100) 2017; 46
Wang, Kou, Choi, Yang, Nie, Li (b0060) 2010; 4
Ambrosia, Jang, Ha (b0325) 2015; 114
Ondarçuhu, Thomas, Nuñez, Dujardin, Rahman, Black (b0165) 2016; 6
Stone, Kim (b0225) 2001; 47
Park, Schulten (b0295) 2004; 120
Bonaccorso, Sun, Hasan, Ferrari (b0050) 2010; 4
Hiratsuka, Bohno, Endo (b0025) 2007
Enachescu, Schleef, Ogletree, Salmeron (b0120) 1999; 60
Määttänen, Ihalainen, Bollström, Toivakka, Peltonen (b0035) 2010; 367
Sasaki, Yamada, Ogiwara, Yagyu, Yamamoto (b0115) 2000; 61
Guardia, Martí, García-Tarrés, Laria (b0355) 2005; 117
Kozbial, Zhou, Li, Liu, Li (b0095) 2016; 49
Sutter, Sadowski, Sutter (b0135) 2009; 80
Gao, Pan, Huang, Hu, Zhang, Guo (b0110) 2011; 98
Topsakal, Şahin, Ciraci (b0065) 2012; 85
Stone, Stroock, Ajdari (b0230) 2004; 36
Damle, Rykaczewski (b0210) 2017; 110
Khan, Singh (b0310) 2014; 40
Walther, Jaffe, Halicioglu, Koumoutsakos (b0350) 2001; 105
Driskill, Vanzo, Bratko, Luzar (b0175) 2014; 141
Xia, Johnson, López (b0205) 2012; 24
Berendsen, Grigera, Straatsma (b0260) 1987; 91
Nosé (b0275) 1984; 81
Maekawa, Sasaoka, Yamamoto (b0075) 2018; 57
Kwon, Ambrosia, Jang, Ha (b0320) 2015; 29
Otero, Gonzalez, Pinardi, Merino, Gardonio, Lizzit (b0140) 2010; 105
Hoover (b0280) 1985; 31
Zwanzig (b0290) 1954; 22
Gordillo, Martı (b0340) 2000; 329
Nosonovsky, Bhushan (b0330) 2008; 24
Xue, Li, Zhang, Ma, Jia (b0040) 2014; 6
Guardia, Skarmoutsos, Masia (b0345) 2014; 119
Lu, Wang, Duan (b0010) 2016; 236
Zhang, Wang, Wang (b0015) 2019; 35
Sun, Bao, He, Zhou, Song (b0030) 2015; 7
Young (b0005) 1805; 95
Yoshimitsu, Nakajima, Watanabe, Hashimoto (b0240) 2002; 18
Moradi, Varnik, Steinbach (b0235) 2010; 89
Liu, Yao, Jiang (b0250) 2010; 39
Rahman, Jacobi (b0300) 2012; 28
Ramos-Alvarado (10.1016/j.apsusc.2019.144002_b0185) 2016; 144
Moradi (10.1016/j.apsusc.2019.144002_b0235) 2010; 89
Wang (10.1016/j.apsusc.2019.144002_b0060) 2010; 4
Walther (10.1016/j.apsusc.2019.144002_b0350) 2001; 105
Hiratsuka (10.1016/j.apsusc.2019.144002_b0025) 2007
Li (10.1016/j.apsusc.2019.144002_b0160) 2013; 12
Kozbial (10.1016/j.apsusc.2019.144002_b0095) 2016; 49
Xia (10.1016/j.apsusc.2019.144002_b0205) 2012; 24
Akaishi (10.1016/j.apsusc.2019.144002_b0070) 2017; 2
Fischer (10.1016/j.apsusc.2019.144002_b0305) 2014; 2
Young (10.1016/j.apsusc.2019.144002_b0005) 1805; 95
Yaghoubi (10.1016/j.apsusc.2019.144002_b0285) 2018; 20
Yoshimitsu (10.1016/j.apsusc.2019.144002_b0240) 2002; 18
Maekawa (10.1016/j.apsusc.2019.144002_b0075) 2018; 57
Land (10.1016/j.apsusc.2019.144002_b0125) 1992; 264
Foroutan (10.1016/j.apsusc.2019.144002_b0090) 2018; 30
Xue (10.1016/j.apsusc.2019.144002_b0040) 2014; 6
Sutter (10.1016/j.apsusc.2019.144002_b0135) 2009; 80
De Coninck (10.1016/j.apsusc.2019.144002_b0220) 2001; 6
Driskill (10.1016/j.apsusc.2019.144002_b0175) 2014; 141
Rafiee (10.1016/j.apsusc.2019.144002_b0145) 2012; 11
Hoover (10.1016/j.apsusc.2019.144002_b0280) 1985; 31
Kwon (10.1016/j.apsusc.2019.144002_b0320) 2015; 29
Rahman (10.1016/j.apsusc.2019.144002_b0300) 2012; 28
Määttänen (10.1016/j.apsusc.2019.144002_b0035) 2010; 367
Sasaki (10.1016/j.apsusc.2019.144002_b0115) 2000; 61
Guardia (10.1016/j.apsusc.2019.144002_b0355) 2005; 117
Preobrajenski (10.1016/j.apsusc.2019.144002_b0105) 2008; 78
Zwanzig (10.1016/j.apsusc.2019.144002_b0290) 1954; 22
Vaikuntanathan (10.1016/j.apsusc.2019.144002_b0215) 2017; 87
Bonaccorso (10.1016/j.apsusc.2019.144002_b0050) 2010; 4
Koishi (10.1016/j.apsusc.2019.144002_b0335) 2009; 106
Foroutan (10.1016/j.apsusc.2019.144002_b0080) 2017; 96
Topsakal (10.1016/j.apsusc.2019.144002_b0065) 2012; 85
Nosonovsky (10.1016/j.apsusc.2019.144002_b0330) 2008; 24
Park (10.1016/j.apsusc.2019.144002_b0295) 2004; 120
Lu (10.1016/j.apsusc.2019.144002_b0010) 2016; 236
Hockney (10.1016/j.apsusc.2019.144002_b0265) 1989
Zhao (10.1016/j.apsusc.2019.144002_b0100) 2017; 46
Stone (10.1016/j.apsusc.2019.144002_b0230) 2004; 36
Ondarçuhu (10.1016/j.apsusc.2019.144002_b0165) 2016; 6
Stone (10.1016/j.apsusc.2019.144002_b0225) 2001; 47
Otero (10.1016/j.apsusc.2019.144002_b0140) 2010; 105
Huang (10.1016/j.apsusc.2019.144002_b0055) 2015; 5
Andrews (10.1016/j.apsusc.2019.144002_b0085) 2016; 18
Fujita (10.1016/j.apsusc.2019.144002_b0130) 2005; 37
Liu (10.1016/j.apsusc.2019.144002_b0250) 2010; 39
Feng (10.1016/j.apsusc.2019.144002_b0255) 2002; 14
Gordillo (10.1016/j.apsusc.2019.144002_b0340) 2000; 329
Sun (10.1016/j.apsusc.2019.144002_b0030) 2015; 7
Khan (10.1016/j.apsusc.2019.144002_b0310) 2014; 40
Wang (10.1016/j.apsusc.2019.144002_b0045) 2015; 31
Guardia (10.1016/j.apsusc.2019.144002_b0345) 2014; 119
Zhao (10.1016/j.apsusc.2019.144002_b0245) 2001; 291
Plimpton (10.1016/j.apsusc.2019.144002_b0270) 1995; 117
Ambrosia (10.1016/j.apsusc.2019.144002_b0325) 2015; 114
Zhang (10.1016/j.apsusc.2019.144002_b0015) 2019; 35
Raj (10.1016/j.apsusc.2019.144002_b0155) 2013; 13
Chen (10.1016/j.apsusc.2019.144002_b0190) 2005; 281
Damle (10.1016/j.apsusc.2019.144002_b0210) 2017; 110
Ambrosia (10.1016/j.apsusc.2019.144002_b0315) 2014; 28
Hung (10.1016/j.apsusc.2019.144002_b0180) 2015; 119
Gao (10.1016/j.apsusc.2019.144002_b0110) 2011; 98
Shih (10.1016/j.apsusc.2019.144002_b0150) 2013; 12
Nosé (10.1016/j.apsusc.2019.144002_b0275) 1984; 81
Sommers (10.1016/j.apsusc.2019.144002_b0195) 2006; 16
Shih (10.1016/j.apsusc.2019.144002_b0170) 2012; 109
Zhao (10.1016/j.apsusc.2019.144002_b0200) 2007; 23
Enachescu (10.1016/j.apsusc.2019.144002_b0120) 1999; 60
Drelich (10.1016/j.apsusc.2019.144002_b0020) 2011; 7
Berendsen (10.1016/j.apsusc.2019.144002_b0260) 1987; 91
References_xml – volume: 329
  start-page: 341
  year: 2000
  end-page: 345
  ident: b0340
  article-title: Hydrogen bond structure of liquid water confined in nanotubes
  publication-title: Chem. Phys. Lett.
– volume: 236
  start-page: 43
  year: 2016
  end-page: 62
  ident: b0010
  article-title: A critical review of dynamic wetting by complex fluids: from Newtonian fluids to non-Newtonian fluids and nanofluids
  publication-title: Adv. Colloid Interface Sci.
– volume: 14
  start-page: 1857
  year: 2002
  end-page: 1860
  ident: b0255
  article-title: Super-hydrophobic surfaces: from natural to artificial
  publication-title: Adv. Mater.
– volume: 24
  start-page: 1525
  year: 2008
  end-page: 1533
  ident: b0330
  article-title: Patterned nonadhesive surfaces: superhydrophobicity and wetting regime transitions
  publication-title: Langmuir
– start-page: 12012
  year: 2007
  ident: b0025
  article-title: Water droplet lubrication between hydrophilic and hydrophobic surfaces
  publication-title: J. Phys. Conf. Ser.
– volume: 2
  start-page: 2184
  year: 2017
  end-page: 2190
  ident: b0070
  article-title: Formation of Water Layers on Graphene Surfaces
  publication-title: ACS Omega
– volume: 89
  start-page: 26006
  year: 2010
  ident: b0235
  article-title: Roughness-gradient–induced spontaneous motion of droplets on hydrophobic surfaces: a lattice Boltzmann study
  publication-title: EPL
– volume: 110
  start-page: 171603
  year: 2017
  ident: b0210
  article-title: Nano-striped chemically anisotropic surfaces have near isotropic wettability
  publication-title: Appl. Phys. Lett.
– volume: 29
  start-page: 1663
  year: 2015
  end-page: 1671
  ident: b0320
  article-title: Dynamic hydrophobicity of heterogeneous pillared surfaces at the nano-scale
  publication-title: J. Mech. Sci. Technol.
– volume: 264
  start-page: 261
  year: 1992
  end-page: 270
  ident: b0125
  article-title: STM investigation of single layer graphite structures produced on Pt (111) by hydrocarbon decomposition
  publication-title: Surf. Sci.
– volume: 291
  start-page: 1023
  year: 2001
  end-page: 1026
  ident: b0245
  article-title: Surface-directed liquid flow inside microchannels
  publication-title: Science
– volume: 87
  start-page: 129
  year: 2017
  end-page: 140
  ident: b0215
  article-title: An experimental study on the equilibrium shape of water drops impacted on groove-textured surfaces
  publication-title: Exp. Therm Fluid Sci.
– volume: 30
  start-page: 52101
  year: 2018
  ident: b0090
  article-title: Contact angle hysteresis and motion behaviors of a water nano-droplet on suspended graphene under temperature gradient
  publication-title: Phys. Fluids
– volume: 96
  start-page: 33312
  year: 2017
  ident: b0080
  article-title: Structural and dynamical characterization of water on the Au (100) and graphene surfaces: a molecular dynamics simulation approach
  publication-title: Phys. Rev. E
– volume: 49
  start-page: 2765
  year: 2016
  end-page: 2773
  ident: b0095
  article-title: Are graphitic surfaces hydrophobic?
  publication-title: Acc. Chem. Res.
– volume: 4
  start-page: 611
  year: 2010
  ident: b0050
  article-title: Graphene photonics and optoelectronics
  publication-title: Nat. Photon.
– volume: 281
  start-page: 458
  year: 2005
  end-page: 464
  ident: b0190
  article-title: Anisotropy in the wetting of rough surfaces
  publication-title: J. Colloid Interface Sci.
– volume: 36
  start-page: 381
  year: 2004
  end-page: 411
  ident: b0230
  article-title: Engineering flows in small devices: microfluidics toward a lab-on-a-chip
  publication-title: Annu. Rev. Fluid Mech.
– volume: 367
  start-page: 76
  year: 2010
  end-page: 84
  ident: b0035
  article-title: Wetting and print quality study of an inkjet-printed poly (3-hexylthiophene) on pigment coated papers
  publication-title: Colloids Surfaces A Physicochem. Eng. Asp.
– volume: 60
  start-page: 16913
  year: 1999
  ident: b0120
  article-title: Integration of point-contact microscopy and atomic-force microscopy: application to characterization of graphite/Pt (111)
  publication-title: Phys Rev B.
– volume: 114
  start-page: 75
  year: 2015
  end-page: 83
  ident: b0325
  article-title: Static and dynamic hydrophobicity on a nano-sized groove/ridge surface
  publication-title: Comput. Fluids
– volume: 37
  start-page: 120
  year: 2005
  end-page: 123
  ident: b0130
  article-title: Novel structures of carbon layers on a Pt (111) surface
  publication-title: Surf. Interface Anal.
– volume: 106
  start-page: 8435
  year: 2009
  end-page: 8440
  ident: b0335
  article-title: Coexistence and transition between Cassie and Wenzel state on pillared hydrophobic surface
  publication-title: Proc. Natl. Acad. Sci.
– volume: 12
  start-page: 925
  year: 2013
  ident: b0160
  article-title: Effect of airborne contaminants on the wettability of supported graphene and graphite
  publication-title: Nat. Mater.
– volume: 47
  start-page: 1250
  year: 2001
  end-page: 1254
  ident: b0225
  article-title: Microfluidics: basic issues, applications, and challenges
  publication-title: AIChE J.
– volume: 61
  start-page: 15653
  year: 2000
  ident: b0115
  article-title: Moiré contrast in the local tunneling barrier height images of monolayer graphite on Pt (111)
  publication-title: Phys Rev B.
– volume: 6
  start-page: 24237
  year: 2016
  ident: b0165
  article-title: Wettability of partially suspended graphene
  publication-title: Sci. Rep.
– volume: 117
  start-page: 1
  year: 1995
  end-page: 19
  ident: b0270
  article-title: Fast parallel algorithms for short-range molecular dynamics
  publication-title: J. Comput. Phys.
– volume: 141
  start-page: 18C517
  year: 2014
  ident: b0175
  article-title: Wetting transparency of graphene in water
  publication-title: J. Chem. Phys.
– volume: 2
  start-page: 44003
  year: 2014
  ident: b0305
  article-title: Wetting of anisotropic sinusoidal surfaces—experimental and numerical study of directional spreading
  publication-title: Surf. Topogr. Metrol. Prop.
– volume: 35
  start-page: 662
  year: 2019
  end-page: 670
  ident: b0015
  article-title: Wetting transition from the Cassie-Baxter state to the Wenzel state on regularly nanostructured surfaces induced by an electric field
  publication-title: Langmuir
– year: 1989
  ident: b0265
  article-title: Computer Simulation Using Particles
– volume: 11
  start-page: 3
  year: 2012
  ident: b0145
  article-title: Wetting transparency of graphene
  publication-title: Nat. Mater.
– volume: 105
  start-page: 216102
  year: 2010
  ident: b0140
  article-title: Ordered vacancy network induced by the growth of epitaxial graphene on Pt (111)
  publication-title: Phys. Rev. Lett.
– volume: 7
  start-page: 9804
  year: 2011
  end-page: 9828
  ident: b0020
  article-title: Hydrophilic and superhydrophilic surfaces and materials
  publication-title: Soft Matter
– volume: 46
  start-page: 4417
  year: 2017
  end-page: 4449
  ident: b0100
  article-title: The physics and chemistry of graphene-on-surfaces
  publication-title: Chem. Soc. Rev.
– volume: 81
  start-page: 511
  year: 1984
  end-page: 519
  ident: b0275
  article-title: A unified formulation of the constant temperature molecular dynamics methods
  publication-title: J. Chem. Phys.
– volume: 13
  start-page: 1509
  year: 2013
  end-page: 1515
  ident: b0155
  article-title: Wettability of graphene
  publication-title: Nano Lett.
– volume: 28
  start-page: 669
  year: 2014
  ident: b0315
  article-title: Dynamic hydrophobicity on flat and pillared graphite surfaces with different pillar surface fractions
  publication-title: J. Mech. Sci. Technol.
– volume: 119
  start-page: 8926
  year: 2014
  end-page: 8938
  ident: b0345
  article-title: Hydrogen bonding and related properties in liquid water: a Car-Parrinello molecular dynamics simulation study
  publication-title: J. Phys. Chem. B
– volume: 7
  start-page: 28086
  year: 2015
  end-page: 28099
  ident: b0030
  article-title: Recent advances in controlling the depositing morphologies of inkjet droplets
  publication-title: ACS Appl. Mater. Interfaces
– volume: 117
  start-page: 63
  year: 2005
  end-page: 67
  ident: b0355
  article-title: A molecular dynamics simulation study of hydrogen bonding in aqueous ionic solutions
  publication-title: J. Mol. Liq.
– volume: 20
  start-page: 22308
  year: 2018
  end-page: 22319
  ident: b0285
  article-title: Molecular investigation of the wettability of rough surfaces using molecular dynamics simulation
  publication-title: PCCP
– volume: 28
  start-page: 13441
  year: 2012
  end-page: 13451
  ident: b0300
  article-title: Wetting behavior and drainage of water droplets on microgrooved brass surfaces
  publication-title: Langmuir
– volume: 57
  start-page: 35102
  year: 2018
  ident: b0075
  article-title: Structure of water clusters on graphene: a classical molecular dynamics approach
  publication-title: Jpn. J. Appl. Phys.
– volume: 16
  start-page: 1571
  year: 2006
  ident: b0195
  article-title: Creating micro-scale surface topology to achieve anisotropic wettability on an aluminum surface
  publication-title: J. Micromech. Microeng.
– volume: 91
  year: 1987
  ident: b0260
  article-title: The missing term in effective pair potentials
  publication-title: J. Phys. Chem.
– volume: 23
  start-page: 6212
  year: 2007
  end-page: 6217
  ident: b0200
  article-title: Anisotropic wetting characteristics on submicrometer-scale periodic grooved surface
  publication-title: Langmuir
– volume: 98
  start-page: 33101
  year: 2011
  ident: b0110
  article-title: Epitaxial growth and structural property of graphene on Pt (111)
  publication-title: Appl. Phys. Lett.
– volume: 105
  start-page: 9980
  year: 2001
  end-page: 9987
  ident: b0350
  article-title: Carbon nanotubes in water: structural characteristics and energetics
  publication-title: J. Phys. Chem. B
– volume: 39
  start-page: 3240
  year: 2010
  end-page: 3255
  ident: b0250
  article-title: Recent developments in bio-inspired special wettability
  publication-title: Chem. Soc. Rev.
– volume: 24
  start-page: 1287
  year: 2012
  end-page: 1302
  ident: b0205
  article-title: Anisotropic wetting surfaces with one-dimesional and directional structures: fabrication approaches, wetting properties and potential applications
  publication-title: Adv. Mater.
– volume: 6
  start-page: 10153
  year: 2014
  end-page: 10161
  ident: b0040
  article-title: Washable and wear-resistant superhydrophobic surfaces with self-cleaning property by chemical etching of fibers and hydrophobization
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 49
  year: 2001
  end-page: 53
  ident: b0220
  article-title: Dynamics of wetting
  publication-title: Curr. Opin. Colloid Interface Sci.
– volume: 31
  start-page: 1695
  year: 1985
  ident: b0280
  article-title: Canonical dynamics: equilibrium phase-space distributions
  publication-title: Phys. Rev. A
– volume: 109
  start-page: 176101
  year: 2012
  ident: b0170
  article-title: Breakdown in the wetting transparency of graphene
  publication-title: Phys. Rev. Lett.
– volume: 78
  start-page: 73401
  year: 2008
  ident: b0105
  article-title: Controlling graphene corrugation on lattice-mismatched substrates
  publication-title: Phys Rev B.
– volume: 120
  start-page: 5946
  year: 2004
  end-page: 5961
  ident: b0295
  article-title: Calculating potentials of mean force from steered molecular dynamics simulations
  publication-title: J. Chem. Phys.
– volume: 31
  start-page: 4032
  year: 2015
  end-page: 4039
  ident: b0045
  article-title: Controlling flow behavior of water in microfluidics with a chemically patterned anisotropic wetting surface
  publication-title: Langmuir
– volume: 95
  start-page: 65
  year: 1805
  end-page: 87
  ident: b0005
  article-title: An essay on the cohesion of fluids
  publication-title: Philos. Trans. R. Soc. London The Royal
– volume: 85
  start-page: 155445
  year: 2012
  ident: b0065
  article-title: Graphene coatings: an efficient protection from oxidation
  publication-title: Phys. Rev. B.
– volume: 80
  start-page: 245411
  year: 2009
  ident: b0135
  article-title: Graphene on Pt (111): growth and substrate interaction
  publication-title: Phys Rev B.
– volume: 12
  start-page: 866
  year: 2013
  ident: b0150
  article-title: Wetting translucency of graphene
  publication-title: Nat. Mater.
– volume: 144
  start-page: 14701
  year: 2016
  ident: b0185
  article-title: On the wettability transparency of graphene-coated silicon surfaces
  publication-title: J. Chem. Phys.
– volume: 4
  start-page: 1587
  year: 2010
  end-page: 1595
  ident: b0060
  article-title: Ternary self-assembly of ordered metal oxide− graphene nanocomposites for electrochemical energy storage
  publication-title: ACS Nano
– volume: 119
  start-page: 8103
  year: 2015
  end-page: 8111
  ident: b0180
  article-title: Wettability of graphene-coated surface: free energy investigations using molecular dynamics simulation
  publication-title: J. Phys. Chem. C
– volume: 40
  start-page: 458
  year: 2014
  end-page: 468
  ident: b0310
  article-title: Wetting transition of nanodroplets of water on textured surfaces: a molecular dynamics study
  publication-title: Mol. Simul.
– volume: 5
  start-page: 34065
  year: 2015
  end-page: 34069
  ident: b0055
  article-title: Generating electricity using graphene nanodrums
  publication-title: RSC Adv.
– volume: 18
  start-page: 5818
  year: 2002
  end-page: 5822
  ident: b0240
  article-title: Effects of surface structure on the hydrophobicity and sliding behavior of water droplets
  publication-title: Langmuir
– volume: 22
  start-page: 1420
  year: 1954
  end-page: 1426
  ident: b0290
  article-title: High-temperature equation of state by a perturbation method. I. nonpolar gases
  publication-title: J. Chem. Phys.
– volume: 18
  start-page: 23482
  year: 2016
  end-page: 23493
  ident: b0085
  article-title: Wetting dynamics of a water nanodrop on graphene
  publication-title: PCCP
– volume: 264
  start-page: 261
  issue: 3
  year: 1992
  ident: 10.1016/j.apsusc.2019.144002_b0125
  article-title: STM investigation of single layer graphite structures produced on Pt (111) by hydrocarbon decomposition
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(92)90183-7
– volume: 105
  start-page: 9980
  issue: 41
  year: 2001
  ident: 10.1016/j.apsusc.2019.144002_b0350
  article-title: Carbon nanotubes in water: structural characteristics and energetics
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp011344u
– volume: 144
  start-page: 14701
  issue: 1
  year: 2016
  ident: 10.1016/j.apsusc.2019.144002_b0185
  article-title: On the wettability transparency of graphene-coated silicon surfaces
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4938499
– volume: 2
  start-page: 44003
  issue: 4
  year: 2014
  ident: 10.1016/j.apsusc.2019.144002_b0305
  article-title: Wetting of anisotropic sinusoidal surfaces—experimental and numerical study of directional spreading
  publication-title: Surf. Topogr. Metrol. Prop.
  doi: 10.1088/2051-672X/2/4/044003
– volume: 28
  start-page: 13441
  issue: 37
  year: 2012
  ident: 10.1016/j.apsusc.2019.144002_b0300
  article-title: Wetting behavior and drainage of water droplets on microgrooved brass surfaces
  publication-title: Langmuir
  doi: 10.1021/la302669g
– volume: 120
  start-page: 5946
  issue: 13
  year: 2004
  ident: 10.1016/j.apsusc.2019.144002_b0295
  article-title: Calculating potentials of mean force from steered molecular dynamics simulations
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1651473
– volume: 236
  start-page: 43
  year: 2016
  ident: 10.1016/j.apsusc.2019.144002_b0010
  article-title: A critical review of dynamic wetting by complex fluids: from Newtonian fluids to non-Newtonian fluids and nanofluids
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2016.07.004
– volume: 85
  start-page: 155445
  issue: 15
  year: 2012
  ident: 10.1016/j.apsusc.2019.144002_b0065
  article-title: Graphene coatings: an efficient protection from oxidation
  publication-title: Phys. Rev. B.
  doi: 10.1103/PhysRevB.85.155445
– volume: 11
  start-page: 3
  year: 2012
  ident: 10.1016/j.apsusc.2019.144002_b0145
  article-title: Wetting transparency of graphene
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3228
– volume: 6
  start-page: 49
  issue: 1
  year: 2001
  ident: 10.1016/j.apsusc.2019.144002_b0220
  article-title: Dynamics of wetting
  publication-title: Curr. Opin. Colloid Interface Sci.
  doi: 10.1016/S1359-0294(00)00087-X
– volume: 105
  start-page: 216102
  issue: 21
  year: 2010
  ident: 10.1016/j.apsusc.2019.144002_b0140
  article-title: Ordered vacancy network induced by the growth of epitaxial graphene on Pt (111)
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.216102
– year: 1989
  ident: 10.1016/j.apsusc.2019.144002_b0265
– volume: 35
  start-page: 662
  issue: 3
  year: 2019
  ident: 10.1016/j.apsusc.2019.144002_b0015
  article-title: Wetting transition from the Cassie-Baxter state to the Wenzel state on regularly nanostructured surfaces induced by an electric field
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.8b03808
– volume: 13
  start-page: 1509
  issue: 4
  year: 2013
  ident: 10.1016/j.apsusc.2019.144002_b0155
  article-title: Wettability of graphene
  publication-title: Nano Lett.
  doi: 10.1021/nl304647t
– volume: 87
  start-page: 129
  year: 2017
  ident: 10.1016/j.apsusc.2019.144002_b0215
  article-title: An experimental study on the equilibrium shape of water drops impacted on groove-textured surfaces
  publication-title: Exp. Therm Fluid Sci.
  doi: 10.1016/j.expthermflusci.2017.05.001
– volume: 57
  start-page: 35102
  issue: 3
  year: 2018
  ident: 10.1016/j.apsusc.2019.144002_b0075
  article-title: Structure of water clusters on graphene: a classical molecular dynamics approach
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/JJAP.57.035102
– volume: 12
  start-page: 866
  issue: 10
  year: 2013
  ident: 10.1016/j.apsusc.2019.144002_b0150
  article-title: Wetting translucency of graphene
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3760
– volume: 106
  start-page: 8435
  issue: 21
  year: 2009
  ident: 10.1016/j.apsusc.2019.144002_b0335
  article-title: Coexistence and transition between Cassie and Wenzel state on pillared hydrophobic surface
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0902027106
– volume: 22
  start-page: 1420
  issue: 8
  year: 1954
  ident: 10.1016/j.apsusc.2019.144002_b0290
  article-title: High-temperature equation of state by a perturbation method. I. nonpolar gases
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1740409
– volume: 24
  start-page: 1525
  issue: 4
  year: 2008
  ident: 10.1016/j.apsusc.2019.144002_b0330
  article-title: Patterned nonadhesive surfaces: superhydrophobicity and wetting regime transitions
  publication-title: Langmuir
  doi: 10.1021/la702239w
– volume: 367
  start-page: 76
  issue: 1
  year: 2010
  ident: 10.1016/j.apsusc.2019.144002_b0035
  article-title: Wetting and print quality study of an inkjet-printed poly (3-hexylthiophene) on pigment coated papers
  publication-title: Colloids Surfaces A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2010.06.019
– volume: 91
  issue: 24
  year: 1987
  ident: 10.1016/j.apsusc.2019.144002_b0260
  article-title: The missing term in effective pair potentials
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100308a038
– volume: 95
  start-page: 65
  year: 1805
  ident: 10.1016/j.apsusc.2019.144002_b0005
  article-title: An essay on the cohesion of fluids
  publication-title: Philos. Trans. R. Soc. London The Royal
  doi: 10.1098/rstl.1805.0005
– volume: 4
  start-page: 611
  issue: 9
  year: 2010
  ident: 10.1016/j.apsusc.2019.144002_b0050
  article-title: Graphene photonics and optoelectronics
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2010.186
– volume: 281
  start-page: 458
  issue: 2
  year: 2005
  ident: 10.1016/j.apsusc.2019.144002_b0190
  article-title: Anisotropy in the wetting of rough surfaces
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2004.07.038
– volume: 119
  start-page: 8103
  issue: 15
  year: 2015
  ident: 10.1016/j.apsusc.2019.144002_b0180
  article-title: Wettability of graphene-coated surface: free energy investigations using molecular dynamics simulation
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp511036e
– volume: 109
  start-page: 176101
  issue: 17
  year: 2012
  ident: 10.1016/j.apsusc.2019.144002_b0170
  article-title: Breakdown in the wetting transparency of graphene
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.176101
– volume: 2
  start-page: 2184
  issue: 5
  year: 2017
  ident: 10.1016/j.apsusc.2019.144002_b0070
  article-title: Formation of Water Layers on Graphene Surfaces
  publication-title: ACS Omega
  doi: 10.1021/acsomega.7b00365
– volume: 6
  start-page: 24237
  year: 2016
  ident: 10.1016/j.apsusc.2019.144002_b0165
  article-title: Wettability of partially suspended graphene
  publication-title: Sci. Rep.
  doi: 10.1038/srep24237
– volume: 47
  start-page: 1250
  issue: 6
  year: 2001
  ident: 10.1016/j.apsusc.2019.144002_b0225
  article-title: Microfluidics: basic issues, applications, and challenges
  publication-title: AIChE J.
  doi: 10.1002/aic.690470602
– volume: 39
  start-page: 3240
  issue: 8
  year: 2010
  ident: 10.1016/j.apsusc.2019.144002_b0250
  article-title: Recent developments in bio-inspired special wettability
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b917112f
– volume: 110
  start-page: 171603
  issue: 17
  year: 2017
  ident: 10.1016/j.apsusc.2019.144002_b0210
  article-title: Nano-striped chemically anisotropic surfaces have near isotropic wettability
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4980091
– volume: 37
  start-page: 120
  issue: 2
  year: 2005
  ident: 10.1016/j.apsusc.2019.144002_b0130
  article-title: Novel structures of carbon layers on a Pt (111) surface
  publication-title: Surf. Interface Anal.
  doi: 10.1002/sia.1945
– volume: 23
  start-page: 6212
  issue: 11
  year: 2007
  ident: 10.1016/j.apsusc.2019.144002_b0200
  article-title: Anisotropic wetting characteristics on submicrometer-scale periodic grooved surface
  publication-title: Langmuir
  doi: 10.1021/la0702077
– volume: 114
  start-page: 75
  year: 2015
  ident: 10.1016/j.apsusc.2019.144002_b0325
  article-title: Static and dynamic hydrophobicity on a nano-sized groove/ridge surface
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2015.02.010
– volume: 61
  start-page: 15653
  issue: 23
  year: 2000
  ident: 10.1016/j.apsusc.2019.144002_b0115
  article-title: Moiré contrast in the local tunneling barrier height images of monolayer graphite on Pt (111)
  publication-title: Phys Rev B.
  doi: 10.1103/PhysRevB.61.15653
– volume: 80
  start-page: 245411
  issue: 24
  year: 2009
  ident: 10.1016/j.apsusc.2019.144002_b0135
  article-title: Graphene on Pt (111): growth and substrate interaction
  publication-title: Phys Rev B.
  doi: 10.1103/PhysRevB.80.245411
– volume: 29
  start-page: 1663
  issue: 4
  year: 2015
  ident: 10.1016/j.apsusc.2019.144002_b0320
  article-title: Dynamic hydrophobicity of heterogeneous pillared surfaces at the nano-scale
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-015-0338-0
– volume: 7
  start-page: 9804
  issue: 21
  year: 2011
  ident: 10.1016/j.apsusc.2019.144002_b0020
  article-title: Hydrophilic and superhydrophilic surfaces and materials
  publication-title: Soft Matter
  doi: 10.1039/c1sm05849e
– volume: 49
  start-page: 2765
  issue: 12
  year: 2016
  ident: 10.1016/j.apsusc.2019.144002_b0095
  article-title: Are graphitic surfaces hydrophobic?
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00447
– volume: 12
  start-page: 925
  issue: 10
  year: 2013
  ident: 10.1016/j.apsusc.2019.144002_b0160
  article-title: Effect of airborne contaminants on the wettability of supported graphene and graphite
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3709
– volume: 141
  start-page: 18C517
  issue: 18
  year: 2014
  ident: 10.1016/j.apsusc.2019.144002_b0175
  article-title: Wetting transparency of graphene in water
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4895541
– volume: 78
  start-page: 73401
  issue: 7
  year: 2008
  ident: 10.1016/j.apsusc.2019.144002_b0105
  article-title: Controlling graphene corrugation on lattice-mismatched substrates
  publication-title: Phys Rev B.
  doi: 10.1103/PhysRevB.78.073401
– volume: 30
  start-page: 52101
  issue: 5
  year: 2018
  ident: 10.1016/j.apsusc.2019.144002_b0090
  article-title: Contact angle hysteresis and motion behaviors of a water nano-droplet on suspended graphene under temperature gradient
  publication-title: Phys. Fluids
  doi: 10.1063/1.5021547
– start-page: 12012
  year: 2007
  ident: 10.1016/j.apsusc.2019.144002_b0025
  article-title: Water droplet lubrication between hydrophilic and hydrophobic surfaces
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/89/1/012012
– volume: 31
  start-page: 4032
  issue: 13
  year: 2015
  ident: 10.1016/j.apsusc.2019.144002_b0045
  article-title: Controlling flow behavior of water in microfluidics with a chemically patterned anisotropic wetting surface
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.5b00328
– volume: 81
  start-page: 511
  issue: 1
  year: 1984
  ident: 10.1016/j.apsusc.2019.144002_b0275
  article-title: A unified formulation of the constant temperature molecular dynamics methods
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.447334
– volume: 117
  start-page: 63
  issue: 1
  year: 2005
  ident: 10.1016/j.apsusc.2019.144002_b0355
  article-title: A molecular dynamics simulation study of hydrogen bonding in aqueous ionic solutions
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2004.08.004
– volume: 96
  start-page: 33312
  issue: 3
  year: 2017
  ident: 10.1016/j.apsusc.2019.144002_b0080
  article-title: Structural and dynamical characterization of water on the Au (100) and graphene surfaces: a molecular dynamics simulation approach
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.96.033312
– volume: 6
  start-page: 10153
  issue: 13
  year: 2014
  ident: 10.1016/j.apsusc.2019.144002_b0040
  article-title: Washable and wear-resistant superhydrophobic surfaces with self-cleaning property by chemical etching of fibers and hydrophobization
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am501371b
– volume: 4
  start-page: 1587
  issue: 3
  year: 2010
  ident: 10.1016/j.apsusc.2019.144002_b0060
  article-title: Ternary self-assembly of ordered metal oxide− graphene nanocomposites for electrochemical energy storage
  publication-title: ACS Nano
  doi: 10.1021/nn901819n
– volume: 18
  start-page: 23482
  issue: 34
  year: 2016
  ident: 10.1016/j.apsusc.2019.144002_b0085
  article-title: Wetting dynamics of a water nanodrop on graphene
  publication-title: PCCP
  doi: 10.1039/C6CP01936F
– volume: 40
  start-page: 458
  issue: 6
  year: 2014
  ident: 10.1016/j.apsusc.2019.144002_b0310
  article-title: Wetting transition of nanodroplets of water on textured surfaces: a molecular dynamics study
  publication-title: Mol. Simul.
  doi: 10.1080/08927022.2013.819578
– volume: 18
  start-page: 5818
  issue: 15
  year: 2002
  ident: 10.1016/j.apsusc.2019.144002_b0240
  article-title: Effects of surface structure on the hydrophobicity and sliding behavior of water droplets
  publication-title: Langmuir
  doi: 10.1021/la020088p
– volume: 89
  start-page: 26006
  issue: 2
  year: 2010
  ident: 10.1016/j.apsusc.2019.144002_b0235
  article-title: Roughness-gradient–induced spontaneous motion of droplets on hydrophobic surfaces: a lattice Boltzmann study
  publication-title: EPL
  doi: 10.1209/0295-5075/89/26006
– volume: 31
  start-page: 1695
  issue: 3
  year: 1985
  ident: 10.1016/j.apsusc.2019.144002_b0280
  article-title: Canonical dynamics: equilibrium phase-space distributions
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.31.1695
– volume: 329
  start-page: 341
  issue: 5
  year: 2000
  ident: 10.1016/j.apsusc.2019.144002_b0340
  article-title: Hydrogen bond structure of liquid water confined in nanotubes
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(00)01032-0
– volume: 36
  start-page: 381
  year: 2004
  ident: 10.1016/j.apsusc.2019.144002_b0230
  article-title: Engineering flows in small devices: microfluidics toward a lab-on-a-chip
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.36.050802.122124
– volume: 46
  start-page: 4417
  issue: 15
  year: 2017
  ident: 10.1016/j.apsusc.2019.144002_b0100
  article-title: The physics and chemistry of graphene-on-surfaces
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00256D
– volume: 16
  start-page: 1571
  issue: 8
  year: 2006
  ident: 10.1016/j.apsusc.2019.144002_b0195
  article-title: Creating micro-scale surface topology to achieve anisotropic wettability on an aluminum surface
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/16/8/018
– volume: 20
  start-page: 22308
  issue: 34
  year: 2018
  ident: 10.1016/j.apsusc.2019.144002_b0285
  article-title: Molecular investigation of the wettability of rough surfaces using molecular dynamics simulation
  publication-title: PCCP
  doi: 10.1039/C8CP03762K
– volume: 291
  start-page: 1023
  issue: 5506
  year: 2001
  ident: 10.1016/j.apsusc.2019.144002_b0245
  article-title: Surface-directed liquid flow inside microchannels
  publication-title: Science
  doi: 10.1126/science.291.5506.1023
– volume: 7
  start-page: 28086
  issue: 51
  year: 2015
  ident: 10.1016/j.apsusc.2019.144002_b0030
  article-title: Recent advances in controlling the depositing morphologies of inkjet droplets
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b07006
– volume: 5
  start-page: 34065
  issue: 43
  year: 2015
  ident: 10.1016/j.apsusc.2019.144002_b0055
  article-title: Generating electricity using graphene nanodrums
  publication-title: RSC Adv.
  doi: 10.1039/C5RA00174A
– volume: 117
  start-page: 1
  issue: 1
  year: 1995
  ident: 10.1016/j.apsusc.2019.144002_b0270
  article-title: Fast parallel algorithms for short-range molecular dynamics
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1995.1039
– volume: 24
  start-page: 1287
  issue: 10
  year: 2012
  ident: 10.1016/j.apsusc.2019.144002_b0205
  article-title: Anisotropic wetting surfaces with one-dimesional and directional structures: fabrication approaches, wetting properties and potential applications
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201104618
– volume: 60
  start-page: 16913
  issue: 24
  year: 1999
  ident: 10.1016/j.apsusc.2019.144002_b0120
  article-title: Integration of point-contact microscopy and atomic-force microscopy: application to characterization of graphite/Pt (111)
  publication-title: Phys Rev B.
  doi: 10.1103/PhysRevB.60.16913
– volume: 119
  start-page: 8926
  issue: 29
  year: 2014
  ident: 10.1016/j.apsusc.2019.144002_b0345
  article-title: Hydrogen bonding and related properties in liquid water: a Car-Parrinello molecular dynamics simulation study
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp507196q
– volume: 14
  start-page: 1857
  issue: 24
  year: 2002
  ident: 10.1016/j.apsusc.2019.144002_b0255
  article-title: Super-hydrophobic surfaces: from natural to artificial
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200290020
– volume: 28
  start-page: 669
  issue: 2
  year: 2014
  ident: 10.1016/j.apsusc.2019.144002_b0315
  article-title: Dynamic hydrophobicity on flat and pillared graphite surfaces with different pillar surface fractions
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-013-1178-4
– volume: 98
  start-page: 33101
  issue: 3
  year: 2011
  ident: 10.1016/j.apsusc.2019.144002_b0110
  article-title: Epitaxial growth and structural property of graphene on Pt (111)
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3543624
SSID ssj0012873
Score 2.36158
Snippet •Physically striped patterned substrates can be designed for Cassie-Baxter and Wenzel states.•Properties of substrates are affected by underlying...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 144002
SubjectTerms Anisotropic wetting
Cassie-Baxter state
Contact angle
Free energy
Striped patterned surface
Wenzel state
Title Wettability of striped patterned mono-and multilayer graphene supported on platinum
URI https://dx.doi.org/10.1016/j.apsusc.2019.144002
Volume 500
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5zu-hB_Inzx8jBa5xp0rQ9juGYirvM4W4lTVKYzLa47uDFv92XNh0TQcFbKA2Uj_De9zXvfQ-h68BXKWUmJNyAXLWOciQJVUAUN5DNDfWksM3JTxMxnvGHuT9voWHTC2PLKl3sr2N6Fa3dk75Ds18sFv2p9RGx7luWgkDaAQnU8Vgk_DbqDO4fx5PNZQKIAlZbfEe2QchrOuiqMi8JYnRlvQxpVF10uv8rPzLUVtYZHaB9RxfxoP6iQ9Qy2RHa2zIRPEbTF1OWtdv2B85TbAdxFEbjonLOhCiK4aTlRGawsNWDSwksG1dG1RDn8GpdVN7mGucZLmxlXLZ-O0Gz0d3zcEzcqASigPOXRCRGA5VJgZyBpAWRBboPuELKtBRae6EUacQ0ZdKXgQcLT9Ek5EwwxaUyQPlOUTvLM3OGMA91oiMtpdSgTRhgLDRnHoPMzwGfpItYA0-snI-4HWexjJuCsde4BjW2oMY1qF1ENruK2kfjj_eDBvn423mIIdT_uvP83zsv0K5n1fQtJdS_RO3yfW2ugHKUSQ_t3HzSnjtYX_HM1do
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5KPagH8Yn1mYPXWHeTffQoxVK17aUt9haySRYqdXex24MXf7uTfZSKoOAtLAmEjzDzfZuZLwA3gadih5mQcoNy1TrK0ShUAVXcYDY3jit925w8HPn9KX-aebMGdOteGFtWWcX-MqYX0br60q7QbGfzeXtsfUSs-5alIJh2UAJtcY8Ftq7v9nNd54Hxt7xmxtm2Pcit--eKIi-JUnRpnQydTnHNWf1d-ZGfNnJObx_2KrJI7sv9HEDDJIewu2EheATjF5Pnpdf2B0ljYp_hyIwmWeGbiTGU4DlLqUxwYGsHFxI5NilsqjHKkeUqK5zNNUkTktm6uGT1dgzT3sOk26fVQwlUIePPqR8ZjUQmRmqGghYlFqo-ZAox09LX2g2lH3eYdpj0ZODiwFVOFHLmM8WlMkj4TqCZpIk5BcJDHemOllJqVCYMEfY1Zy7DvM8Rn6gFrIZHqMpF3D5msRB1udirKEEVFlRRgtoCul6VlS4af8wPauTFt9MgMND_uvLs3yuvYbs_GQ7E4HH0fA47rtXVdw51vAto5u8rc4nkI4-uisP1Bb2a1qU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wettability+of+striped+patterned+mono-and+multilayer+graphene+supported+on+platinum&rft.jtitle=Applied+surface+science&rft.au=Yaghoubi%2C+Hamzeh&rft.au=Foroutan%2C+Masumeh&rft.date=2020-01-15&rft.pub=Elsevier+B.V&rft.issn=0169-4332&rft.eissn=1873-5584&rft.volume=500&rft_id=info:doi/10.1016%2Fj.apsusc.2019.144002&rft.externalDocID=S0169433219328181
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-4332&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-4332&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-4332&client=summon