Wettability of striped patterned mono-and multilayer graphene supported on platinum
•Physically striped patterned substrates can be designed for Cassie-Baxter and Wenzel states.•Properties of substrates are affected by underlying substrate.•Platinum underlying alters the behavior of water molecules at interface.•Liquids on artificial surfaces with anisotropic wetting properties can...
Saved in:
Published in | Applied surface science Vol. 500; p. 144002 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.01.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0169-4332 1873-5584 |
DOI | 10.1016/j.apsusc.2019.144002 |
Cover
Abstract | •Physically striped patterned substrates can be designed for Cassie-Baxter and Wenzel states.•Properties of substrates are affected by underlying substrate.•Platinum underlying alters the behavior of water molecules at interface.•Liquids on artificial surfaces with anisotropic wetting properties can be forced to move in a specific direction.
Wettability of water nanodroplet on graphene and graphene-coated metals in recent years have been the subject of interest. In the present work, the wettability of mono and three-layer graphene supported on underlying platinum was investigated using molecular dynamics simulation. Furthermore, the striped patterns were generated on the substrates by parallel grooves with different widths and depths. Wetting results showed that the Cassie-Baxter state converts into the Wenzel state by increasing the width of the grooves, which was confirmed by free energy results that obtained from free energy perturbation and potential of mean force methods. A chain of water molecules forms at interface by increasing the width of the grooves, which leads to higher hydrogen bond lifetime. Water-platinum interaction in the grooves and nanodroplet pinning cause anisotropy in the wetting and nanodroplet shape. This suggests that such artificial surfaces with anisotropic wetting properties can mimic water anisotropic behavior on some natural structures, which lead water to move in a specific direction. |
---|---|
AbstractList | •Physically striped patterned substrates can be designed for Cassie-Baxter and Wenzel states.•Properties of substrates are affected by underlying substrate.•Platinum underlying alters the behavior of water molecules at interface.•Liquids on artificial surfaces with anisotropic wetting properties can be forced to move in a specific direction.
Wettability of water nanodroplet on graphene and graphene-coated metals in recent years have been the subject of interest. In the present work, the wettability of mono and three-layer graphene supported on underlying platinum was investigated using molecular dynamics simulation. Furthermore, the striped patterns were generated on the substrates by parallel grooves with different widths and depths. Wetting results showed that the Cassie-Baxter state converts into the Wenzel state by increasing the width of the grooves, which was confirmed by free energy results that obtained from free energy perturbation and potential of mean force methods. A chain of water molecules forms at interface by increasing the width of the grooves, which leads to higher hydrogen bond lifetime. Water-platinum interaction in the grooves and nanodroplet pinning cause anisotropy in the wetting and nanodroplet shape. This suggests that such artificial surfaces with anisotropic wetting properties can mimic water anisotropic behavior on some natural structures, which lead water to move in a specific direction. |
ArticleNumber | 144002 |
Author | Foroutan, Masumeh Yaghoubi, Hamzeh |
Author_xml | – sequence: 1 givenname: Hamzeh orcidid: 0000-0002-9160-9457 surname: Yaghoubi fullname: Yaghoubi, Hamzeh – sequence: 2 givenname: Masumeh orcidid: 0000-0002-1654-7997 surname: Foroutan fullname: Foroutan, Masumeh email: foroutan@khayam.ut.ac.ir |
BookMark | eNqFkM1KAzEUhYNUsK2-gYt5gRmTSSaduhCk-AcFFyouQ5rc0ZRpEpKMMG9vyrhyoat74J5zuPdboJl1FhC6JLgimPCrfSV9HKKqakzWFWEM4_oEzUm7omXTtGyG5tm2Lhml9RlaxLjHmNR5O0cv75CS3JnepLFwXRFTMB504WVKEGxWB2ddKW0WQ59ML0cIxUeQ_hMsFHHw3oWUbc4WvpfJ2OFwjk472Ue4-JlL9HZ_97p5LLfPD0-b222pKOap5DvQuOFdw3nbtjxf1LAVIx3Vkmtdt5J3a6oJlY1c1VnUiuxaRjlVTCpoKF0iNvWq4GIM0AkfzEGGURAsjmDEXkxgxBGMmMDk2PWvmDIpX-5sCtL0_4VvpjDkx74MBBGVAatAmwAqCe3M3wXfYROExw |
CitedBy_id | crossref_primary_10_1016_j_surfin_2024_104646 crossref_primary_10_1177_18479804211062316 crossref_primary_10_1021_acs_langmuir_4c00061 crossref_primary_10_14775_ksmpe_2020_19_11_109 crossref_primary_10_1016_j_cocis_2021_101425 crossref_primary_10_1016_j_ibiod_2024_105856 crossref_primary_10_1557_s43577_022_00380_9 crossref_primary_10_1016_j_molliq_2021_118017 crossref_primary_10_1016_j_rinp_2022_105213 crossref_primary_10_1016_j_ces_2022_117776 crossref_primary_10_1039_D0CP01453B crossref_primary_10_1021_acs_langmuir_2c00972 crossref_primary_10_1016_j_ijheatmasstransfer_2023_123868 |
Cites_doi | 10.1016/0039-6028(92)90183-7 10.1021/jp011344u 10.1063/1.4938499 10.1088/2051-672X/2/4/044003 10.1021/la302669g 10.1063/1.1651473 10.1016/j.cis.2016.07.004 10.1103/PhysRevB.85.155445 10.1038/nmat3228 10.1016/S1359-0294(00)00087-X 10.1103/PhysRevLett.105.216102 10.1021/acs.langmuir.8b03808 10.1021/nl304647t 10.1016/j.expthermflusci.2017.05.001 10.7567/JJAP.57.035102 10.1038/nmat3760 10.1073/pnas.0902027106 10.1063/1.1740409 10.1021/la702239w 10.1016/j.colsurfa.2010.06.019 10.1021/j100308a038 10.1098/rstl.1805.0005 10.1038/nphoton.2010.186 10.1016/j.jcis.2004.07.038 10.1021/jp511036e 10.1103/PhysRevLett.109.176101 10.1021/acsomega.7b00365 10.1038/srep24237 10.1002/aic.690470602 10.1039/b917112f 10.1063/1.4980091 10.1002/sia.1945 10.1021/la0702077 10.1016/j.compfluid.2015.02.010 10.1103/PhysRevB.61.15653 10.1103/PhysRevB.80.245411 10.1007/s12206-015-0338-0 10.1039/c1sm05849e 10.1021/acs.accounts.6b00447 10.1038/nmat3709 10.1063/1.4895541 10.1103/PhysRevB.78.073401 10.1063/1.5021547 10.1088/1742-6596/89/1/012012 10.1021/acs.langmuir.5b00328 10.1063/1.447334 10.1016/j.molliq.2004.08.004 10.1103/PhysRevE.96.033312 10.1021/am501371b 10.1021/nn901819n 10.1039/C6CP01936F 10.1080/08927022.2013.819578 10.1021/la020088p 10.1209/0295-5075/89/26006 10.1103/PhysRevA.31.1695 10.1016/S0009-2614(00)01032-0 10.1146/annurev.fluid.36.050802.122124 10.1039/C7CS00256D 10.1088/0960-1317/16/8/018 10.1039/C8CP03762K 10.1126/science.291.5506.1023 10.1021/acsami.5b07006 10.1039/C5RA00174A 10.1006/jcph.1995.1039 10.1002/adma.201104618 10.1103/PhysRevB.60.16913 10.1021/jp507196q 10.1002/adma.200290020 10.1007/s12206-013-1178-4 10.1063/1.3543624 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.apsusc.2019.144002 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-5584 |
ExternalDocumentID | 10_1016_j_apsusc_2019_144002 S0169433219328181 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M38 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCB SDF SDG SDP SES SMS SPC SPCBC SPD SPG SSK SSM SSQ SSZ T5K TN5 WH7 XPP ZMT ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB G-2 HMV HVGLF HZ~ NDZJH R2- RIG SEW SSH WUQ |
ID | FETCH-LOGICAL-c306t-6bed056f566888601254741f3da6dd28a6f93d13a5a723d12c1b84363c4ace533 |
IEDL.DBID | AIKHN |
ISSN | 0169-4332 |
IngestDate | Thu Apr 24 23:06:05 EDT 2025 Tue Jul 01 01:39:44 EDT 2025 Fri Feb 23 02:49:55 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Wenzel state Contact angle Anisotropic wetting Cassie-Baxter state Striped patterned surface Free energy |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-6bed056f566888601254741f3da6dd28a6f93d13a5a723d12c1b84363c4ace533 |
ORCID | 0000-0002-1654-7997 0000-0002-9160-9457 |
ParticipantIDs | crossref_primary_10_1016_j_apsusc_2019_144002 crossref_citationtrail_10_1016_j_apsusc_2019_144002 elsevier_sciencedirect_doi_10_1016_j_apsusc_2019_144002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-15 |
PublicationDateYYYYMMDD | 2020-01-15 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Applied surface science |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zhao, Moore, Beebe (b0245) 2001; 291 Wang, Wang, Ge, Xue, Ye, Chen (b0045) 2015; 31 Drelich, Chibowski, Meng, Terpilowski (b0020) 2011; 7 Hockney, Eastwood (b0265) 1989 Koishi, Yasuoka, Fujikawa, Ebisuzaki, Zeng (b0335) 2009; 106 Foroutan, Darvishi, Fatemi (b0080) 2017; 96 Zhao, Lu, Li, Li (b0200) 2007; 23 Ambrosia, Ha, Balachandar (b0315) 2014; 28 Sommers, Jacobi (b0195) 2006; 16 Plimpton (b0270) 1995; 117 Shih, Wang, Lin, Park, Jin, Strano (b0170) 2012; 109 Akaishi, Yonemaru, Nakamura (b0070) 2017; 2 Shih, Strano, Blankschtein (b0150) 2013; 12 Feng, Li, Li, Li, Zhang, Zhai (b0255) 2002; 14 Foroutan, Fatemi, Esmaeilian, Fadaei Naeini, Baniassadi (b0090) 2018; 30 Yaghoubi, Foroutan (b0285) 2018; 20 Andrews, Sinha, Chung, Das (b0085) 2016; 18 Preobrajenski, Ng, Vinogradov, Mårtensson (b0105) 2008; 78 Hung, Hsiao, Chen, Chieng (b0180) 2015; 119 Huang, Zhao, Wang, Qiao, Gao, Wang (b0055) 2015; 5 Ramos-Alvarado, Kumar, Peterson (b0185) 2016; 144 Land, Michely, Behm, Hemminger, Comsa (b0125) 1992; 264 Chen, He, Lee, Patankar (b0190) 2005; 281 De Coninck, de Ruijter, Voué (b0220) 2001; 6 Raj, Maroo, Wang (b0155) 2013; 13 Fischer, Bigerelle, Kubiak, Mathia, Khatir, Anselme (b0305) 2014; 2 Rafiee, Mi, Gullapalli, Thomas, Yavari, Shi (b0145) 2012; 11 Li, Wang, Kozbial, Shenoy, Zhou, McGinley (b0160) 2013; 12 Vaikuntanathan, Kannan, Sivakumar (b0215) 2017; 87 Fujita, Kobayashi, Oshima (b0130) 2005; 37 Zhao, Li, Huang, Zhen, Zhong, Chen (b0100) 2017; 46 Wang, Kou, Choi, Yang, Nie, Li (b0060) 2010; 4 Ambrosia, Jang, Ha (b0325) 2015; 114 Ondarçuhu, Thomas, Nuñez, Dujardin, Rahman, Black (b0165) 2016; 6 Stone, Kim (b0225) 2001; 47 Park, Schulten (b0295) 2004; 120 Bonaccorso, Sun, Hasan, Ferrari (b0050) 2010; 4 Hiratsuka, Bohno, Endo (b0025) 2007 Enachescu, Schleef, Ogletree, Salmeron (b0120) 1999; 60 Määttänen, Ihalainen, Bollström, Toivakka, Peltonen (b0035) 2010; 367 Sasaki, Yamada, Ogiwara, Yagyu, Yamamoto (b0115) 2000; 61 Guardia, Martí, García-Tarrés, Laria (b0355) 2005; 117 Kozbial, Zhou, Li, Liu, Li (b0095) 2016; 49 Sutter, Sadowski, Sutter (b0135) 2009; 80 Gao, Pan, Huang, Hu, Zhang, Guo (b0110) 2011; 98 Topsakal, Şahin, Ciraci (b0065) 2012; 85 Stone, Stroock, Ajdari (b0230) 2004; 36 Damle, Rykaczewski (b0210) 2017; 110 Khan, Singh (b0310) 2014; 40 Walther, Jaffe, Halicioglu, Koumoutsakos (b0350) 2001; 105 Driskill, Vanzo, Bratko, Luzar (b0175) 2014; 141 Xia, Johnson, López (b0205) 2012; 24 Berendsen, Grigera, Straatsma (b0260) 1987; 91 Nosé (b0275) 1984; 81 Maekawa, Sasaoka, Yamamoto (b0075) 2018; 57 Kwon, Ambrosia, Jang, Ha (b0320) 2015; 29 Otero, Gonzalez, Pinardi, Merino, Gardonio, Lizzit (b0140) 2010; 105 Hoover (b0280) 1985; 31 Zwanzig (b0290) 1954; 22 Gordillo, Martı (b0340) 2000; 329 Nosonovsky, Bhushan (b0330) 2008; 24 Xue, Li, Zhang, Ma, Jia (b0040) 2014; 6 Guardia, Skarmoutsos, Masia (b0345) 2014; 119 Lu, Wang, Duan (b0010) 2016; 236 Zhang, Wang, Wang (b0015) 2019; 35 Sun, Bao, He, Zhou, Song (b0030) 2015; 7 Young (b0005) 1805; 95 Yoshimitsu, Nakajima, Watanabe, Hashimoto (b0240) 2002; 18 Moradi, Varnik, Steinbach (b0235) 2010; 89 Liu, Yao, Jiang (b0250) 2010; 39 Rahman, Jacobi (b0300) 2012; 28 Ramos-Alvarado (10.1016/j.apsusc.2019.144002_b0185) 2016; 144 Moradi (10.1016/j.apsusc.2019.144002_b0235) 2010; 89 Wang (10.1016/j.apsusc.2019.144002_b0060) 2010; 4 Walther (10.1016/j.apsusc.2019.144002_b0350) 2001; 105 Hiratsuka (10.1016/j.apsusc.2019.144002_b0025) 2007 Li (10.1016/j.apsusc.2019.144002_b0160) 2013; 12 Kozbial (10.1016/j.apsusc.2019.144002_b0095) 2016; 49 Xia (10.1016/j.apsusc.2019.144002_b0205) 2012; 24 Akaishi (10.1016/j.apsusc.2019.144002_b0070) 2017; 2 Fischer (10.1016/j.apsusc.2019.144002_b0305) 2014; 2 Young (10.1016/j.apsusc.2019.144002_b0005) 1805; 95 Yaghoubi (10.1016/j.apsusc.2019.144002_b0285) 2018; 20 Yoshimitsu (10.1016/j.apsusc.2019.144002_b0240) 2002; 18 Maekawa (10.1016/j.apsusc.2019.144002_b0075) 2018; 57 Land (10.1016/j.apsusc.2019.144002_b0125) 1992; 264 Foroutan (10.1016/j.apsusc.2019.144002_b0090) 2018; 30 Xue (10.1016/j.apsusc.2019.144002_b0040) 2014; 6 Sutter (10.1016/j.apsusc.2019.144002_b0135) 2009; 80 De Coninck (10.1016/j.apsusc.2019.144002_b0220) 2001; 6 Driskill (10.1016/j.apsusc.2019.144002_b0175) 2014; 141 Rafiee (10.1016/j.apsusc.2019.144002_b0145) 2012; 11 Hoover (10.1016/j.apsusc.2019.144002_b0280) 1985; 31 Kwon (10.1016/j.apsusc.2019.144002_b0320) 2015; 29 Rahman (10.1016/j.apsusc.2019.144002_b0300) 2012; 28 Määttänen (10.1016/j.apsusc.2019.144002_b0035) 2010; 367 Sasaki (10.1016/j.apsusc.2019.144002_b0115) 2000; 61 Guardia (10.1016/j.apsusc.2019.144002_b0355) 2005; 117 Preobrajenski (10.1016/j.apsusc.2019.144002_b0105) 2008; 78 Zwanzig (10.1016/j.apsusc.2019.144002_b0290) 1954; 22 Vaikuntanathan (10.1016/j.apsusc.2019.144002_b0215) 2017; 87 Bonaccorso (10.1016/j.apsusc.2019.144002_b0050) 2010; 4 Koishi (10.1016/j.apsusc.2019.144002_b0335) 2009; 106 Foroutan (10.1016/j.apsusc.2019.144002_b0080) 2017; 96 Topsakal (10.1016/j.apsusc.2019.144002_b0065) 2012; 85 Nosonovsky (10.1016/j.apsusc.2019.144002_b0330) 2008; 24 Park (10.1016/j.apsusc.2019.144002_b0295) 2004; 120 Lu (10.1016/j.apsusc.2019.144002_b0010) 2016; 236 Hockney (10.1016/j.apsusc.2019.144002_b0265) 1989 Zhao (10.1016/j.apsusc.2019.144002_b0100) 2017; 46 Stone (10.1016/j.apsusc.2019.144002_b0230) 2004; 36 Ondarçuhu (10.1016/j.apsusc.2019.144002_b0165) 2016; 6 Stone (10.1016/j.apsusc.2019.144002_b0225) 2001; 47 Otero (10.1016/j.apsusc.2019.144002_b0140) 2010; 105 Huang (10.1016/j.apsusc.2019.144002_b0055) 2015; 5 Andrews (10.1016/j.apsusc.2019.144002_b0085) 2016; 18 Fujita (10.1016/j.apsusc.2019.144002_b0130) 2005; 37 Liu (10.1016/j.apsusc.2019.144002_b0250) 2010; 39 Feng (10.1016/j.apsusc.2019.144002_b0255) 2002; 14 Gordillo (10.1016/j.apsusc.2019.144002_b0340) 2000; 329 Sun (10.1016/j.apsusc.2019.144002_b0030) 2015; 7 Khan (10.1016/j.apsusc.2019.144002_b0310) 2014; 40 Wang (10.1016/j.apsusc.2019.144002_b0045) 2015; 31 Guardia (10.1016/j.apsusc.2019.144002_b0345) 2014; 119 Zhao (10.1016/j.apsusc.2019.144002_b0245) 2001; 291 Plimpton (10.1016/j.apsusc.2019.144002_b0270) 1995; 117 Ambrosia (10.1016/j.apsusc.2019.144002_b0325) 2015; 114 Zhang (10.1016/j.apsusc.2019.144002_b0015) 2019; 35 Raj (10.1016/j.apsusc.2019.144002_b0155) 2013; 13 Chen (10.1016/j.apsusc.2019.144002_b0190) 2005; 281 Damle (10.1016/j.apsusc.2019.144002_b0210) 2017; 110 Ambrosia (10.1016/j.apsusc.2019.144002_b0315) 2014; 28 Hung (10.1016/j.apsusc.2019.144002_b0180) 2015; 119 Gao (10.1016/j.apsusc.2019.144002_b0110) 2011; 98 Shih (10.1016/j.apsusc.2019.144002_b0150) 2013; 12 Nosé (10.1016/j.apsusc.2019.144002_b0275) 1984; 81 Sommers (10.1016/j.apsusc.2019.144002_b0195) 2006; 16 Shih (10.1016/j.apsusc.2019.144002_b0170) 2012; 109 Zhao (10.1016/j.apsusc.2019.144002_b0200) 2007; 23 Enachescu (10.1016/j.apsusc.2019.144002_b0120) 1999; 60 Drelich (10.1016/j.apsusc.2019.144002_b0020) 2011; 7 Berendsen (10.1016/j.apsusc.2019.144002_b0260) 1987; 91 |
References_xml | – volume: 329 start-page: 341 year: 2000 end-page: 345 ident: b0340 article-title: Hydrogen bond structure of liquid water confined in nanotubes publication-title: Chem. Phys. Lett. – volume: 236 start-page: 43 year: 2016 end-page: 62 ident: b0010 article-title: A critical review of dynamic wetting by complex fluids: from Newtonian fluids to non-Newtonian fluids and nanofluids publication-title: Adv. Colloid Interface Sci. – volume: 14 start-page: 1857 year: 2002 end-page: 1860 ident: b0255 article-title: Super-hydrophobic surfaces: from natural to artificial publication-title: Adv. Mater. – volume: 24 start-page: 1525 year: 2008 end-page: 1533 ident: b0330 article-title: Patterned nonadhesive surfaces: superhydrophobicity and wetting regime transitions publication-title: Langmuir – start-page: 12012 year: 2007 ident: b0025 article-title: Water droplet lubrication between hydrophilic and hydrophobic surfaces publication-title: J. Phys. Conf. Ser. – volume: 2 start-page: 2184 year: 2017 end-page: 2190 ident: b0070 article-title: Formation of Water Layers on Graphene Surfaces publication-title: ACS Omega – volume: 89 start-page: 26006 year: 2010 ident: b0235 article-title: Roughness-gradient–induced spontaneous motion of droplets on hydrophobic surfaces: a lattice Boltzmann study publication-title: EPL – volume: 110 start-page: 171603 year: 2017 ident: b0210 article-title: Nano-striped chemically anisotropic surfaces have near isotropic wettability publication-title: Appl. Phys. Lett. – volume: 29 start-page: 1663 year: 2015 end-page: 1671 ident: b0320 article-title: Dynamic hydrophobicity of heterogeneous pillared surfaces at the nano-scale publication-title: J. Mech. Sci. Technol. – volume: 264 start-page: 261 year: 1992 end-page: 270 ident: b0125 article-title: STM investigation of single layer graphite structures produced on Pt (111) by hydrocarbon decomposition publication-title: Surf. Sci. – volume: 291 start-page: 1023 year: 2001 end-page: 1026 ident: b0245 article-title: Surface-directed liquid flow inside microchannels publication-title: Science – volume: 87 start-page: 129 year: 2017 end-page: 140 ident: b0215 article-title: An experimental study on the equilibrium shape of water drops impacted on groove-textured surfaces publication-title: Exp. Therm Fluid Sci. – volume: 30 start-page: 52101 year: 2018 ident: b0090 article-title: Contact angle hysteresis and motion behaviors of a water nano-droplet on suspended graphene under temperature gradient publication-title: Phys. Fluids – volume: 96 start-page: 33312 year: 2017 ident: b0080 article-title: Structural and dynamical characterization of water on the Au (100) and graphene surfaces: a molecular dynamics simulation approach publication-title: Phys. Rev. E – volume: 49 start-page: 2765 year: 2016 end-page: 2773 ident: b0095 article-title: Are graphitic surfaces hydrophobic? publication-title: Acc. Chem. Res. – volume: 4 start-page: 611 year: 2010 ident: b0050 article-title: Graphene photonics and optoelectronics publication-title: Nat. Photon. – volume: 281 start-page: 458 year: 2005 end-page: 464 ident: b0190 article-title: Anisotropy in the wetting of rough surfaces publication-title: J. Colloid Interface Sci. – volume: 36 start-page: 381 year: 2004 end-page: 411 ident: b0230 article-title: Engineering flows in small devices: microfluidics toward a lab-on-a-chip publication-title: Annu. Rev. Fluid Mech. – volume: 367 start-page: 76 year: 2010 end-page: 84 ident: b0035 article-title: Wetting and print quality study of an inkjet-printed poly (3-hexylthiophene) on pigment coated papers publication-title: Colloids Surfaces A Physicochem. Eng. Asp. – volume: 60 start-page: 16913 year: 1999 ident: b0120 article-title: Integration of point-contact microscopy and atomic-force microscopy: application to characterization of graphite/Pt (111) publication-title: Phys Rev B. – volume: 114 start-page: 75 year: 2015 end-page: 83 ident: b0325 article-title: Static and dynamic hydrophobicity on a nano-sized groove/ridge surface publication-title: Comput. Fluids – volume: 37 start-page: 120 year: 2005 end-page: 123 ident: b0130 article-title: Novel structures of carbon layers on a Pt (111) surface publication-title: Surf. Interface Anal. – volume: 106 start-page: 8435 year: 2009 end-page: 8440 ident: b0335 article-title: Coexistence and transition between Cassie and Wenzel state on pillared hydrophobic surface publication-title: Proc. Natl. Acad. Sci. – volume: 12 start-page: 925 year: 2013 ident: b0160 article-title: Effect of airborne contaminants on the wettability of supported graphene and graphite publication-title: Nat. Mater. – volume: 47 start-page: 1250 year: 2001 end-page: 1254 ident: b0225 article-title: Microfluidics: basic issues, applications, and challenges publication-title: AIChE J. – volume: 61 start-page: 15653 year: 2000 ident: b0115 article-title: Moiré contrast in the local tunneling barrier height images of monolayer graphite on Pt (111) publication-title: Phys Rev B. – volume: 6 start-page: 24237 year: 2016 ident: b0165 article-title: Wettability of partially suspended graphene publication-title: Sci. Rep. – volume: 117 start-page: 1 year: 1995 end-page: 19 ident: b0270 article-title: Fast parallel algorithms for short-range molecular dynamics publication-title: J. Comput. Phys. – volume: 141 start-page: 18C517 year: 2014 ident: b0175 article-title: Wetting transparency of graphene in water publication-title: J. Chem. Phys. – volume: 2 start-page: 44003 year: 2014 ident: b0305 article-title: Wetting of anisotropic sinusoidal surfaces—experimental and numerical study of directional spreading publication-title: Surf. Topogr. Metrol. Prop. – volume: 35 start-page: 662 year: 2019 end-page: 670 ident: b0015 article-title: Wetting transition from the Cassie-Baxter state to the Wenzel state on regularly nanostructured surfaces induced by an electric field publication-title: Langmuir – year: 1989 ident: b0265 article-title: Computer Simulation Using Particles – volume: 11 start-page: 3 year: 2012 ident: b0145 article-title: Wetting transparency of graphene publication-title: Nat. Mater. – volume: 105 start-page: 216102 year: 2010 ident: b0140 article-title: Ordered vacancy network induced by the growth of epitaxial graphene on Pt (111) publication-title: Phys. Rev. Lett. – volume: 7 start-page: 9804 year: 2011 end-page: 9828 ident: b0020 article-title: Hydrophilic and superhydrophilic surfaces and materials publication-title: Soft Matter – volume: 46 start-page: 4417 year: 2017 end-page: 4449 ident: b0100 article-title: The physics and chemistry of graphene-on-surfaces publication-title: Chem. Soc. Rev. – volume: 81 start-page: 511 year: 1984 end-page: 519 ident: b0275 article-title: A unified formulation of the constant temperature molecular dynamics methods publication-title: J. Chem. Phys. – volume: 13 start-page: 1509 year: 2013 end-page: 1515 ident: b0155 article-title: Wettability of graphene publication-title: Nano Lett. – volume: 28 start-page: 669 year: 2014 ident: b0315 article-title: Dynamic hydrophobicity on flat and pillared graphite surfaces with different pillar surface fractions publication-title: J. Mech. Sci. Technol. – volume: 119 start-page: 8926 year: 2014 end-page: 8938 ident: b0345 article-title: Hydrogen bonding and related properties in liquid water: a Car-Parrinello molecular dynamics simulation study publication-title: J. Phys. Chem. B – volume: 7 start-page: 28086 year: 2015 end-page: 28099 ident: b0030 article-title: Recent advances in controlling the depositing morphologies of inkjet droplets publication-title: ACS Appl. Mater. Interfaces – volume: 117 start-page: 63 year: 2005 end-page: 67 ident: b0355 article-title: A molecular dynamics simulation study of hydrogen bonding in aqueous ionic solutions publication-title: J. Mol. Liq. – volume: 20 start-page: 22308 year: 2018 end-page: 22319 ident: b0285 article-title: Molecular investigation of the wettability of rough surfaces using molecular dynamics simulation publication-title: PCCP – volume: 28 start-page: 13441 year: 2012 end-page: 13451 ident: b0300 article-title: Wetting behavior and drainage of water droplets on microgrooved brass surfaces publication-title: Langmuir – volume: 57 start-page: 35102 year: 2018 ident: b0075 article-title: Structure of water clusters on graphene: a classical molecular dynamics approach publication-title: Jpn. J. Appl. Phys. – volume: 16 start-page: 1571 year: 2006 ident: b0195 article-title: Creating micro-scale surface topology to achieve anisotropic wettability on an aluminum surface publication-title: J. Micromech. Microeng. – volume: 91 year: 1987 ident: b0260 article-title: The missing term in effective pair potentials publication-title: J. Phys. Chem. – volume: 23 start-page: 6212 year: 2007 end-page: 6217 ident: b0200 article-title: Anisotropic wetting characteristics on submicrometer-scale periodic grooved surface publication-title: Langmuir – volume: 98 start-page: 33101 year: 2011 ident: b0110 article-title: Epitaxial growth and structural property of graphene on Pt (111) publication-title: Appl. Phys. Lett. – volume: 105 start-page: 9980 year: 2001 end-page: 9987 ident: b0350 article-title: Carbon nanotubes in water: structural characteristics and energetics publication-title: J. Phys. Chem. B – volume: 39 start-page: 3240 year: 2010 end-page: 3255 ident: b0250 article-title: Recent developments in bio-inspired special wettability publication-title: Chem. Soc. Rev. – volume: 24 start-page: 1287 year: 2012 end-page: 1302 ident: b0205 article-title: Anisotropic wetting surfaces with one-dimesional and directional structures: fabrication approaches, wetting properties and potential applications publication-title: Adv. Mater. – volume: 6 start-page: 10153 year: 2014 end-page: 10161 ident: b0040 article-title: Washable and wear-resistant superhydrophobic surfaces with self-cleaning property by chemical etching of fibers and hydrophobization publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 49 year: 2001 end-page: 53 ident: b0220 article-title: Dynamics of wetting publication-title: Curr. Opin. Colloid Interface Sci. – volume: 31 start-page: 1695 year: 1985 ident: b0280 article-title: Canonical dynamics: equilibrium phase-space distributions publication-title: Phys. Rev. A – volume: 109 start-page: 176101 year: 2012 ident: b0170 article-title: Breakdown in the wetting transparency of graphene publication-title: Phys. Rev. Lett. – volume: 78 start-page: 73401 year: 2008 ident: b0105 article-title: Controlling graphene corrugation on lattice-mismatched substrates publication-title: Phys Rev B. – volume: 120 start-page: 5946 year: 2004 end-page: 5961 ident: b0295 article-title: Calculating potentials of mean force from steered molecular dynamics simulations publication-title: J. Chem. Phys. – volume: 31 start-page: 4032 year: 2015 end-page: 4039 ident: b0045 article-title: Controlling flow behavior of water in microfluidics with a chemically patterned anisotropic wetting surface publication-title: Langmuir – volume: 95 start-page: 65 year: 1805 end-page: 87 ident: b0005 article-title: An essay on the cohesion of fluids publication-title: Philos. Trans. R. Soc. London The Royal – volume: 85 start-page: 155445 year: 2012 ident: b0065 article-title: Graphene coatings: an efficient protection from oxidation publication-title: Phys. Rev. B. – volume: 80 start-page: 245411 year: 2009 ident: b0135 article-title: Graphene on Pt (111): growth and substrate interaction publication-title: Phys Rev B. – volume: 12 start-page: 866 year: 2013 ident: b0150 article-title: Wetting translucency of graphene publication-title: Nat. Mater. – volume: 144 start-page: 14701 year: 2016 ident: b0185 article-title: On the wettability transparency of graphene-coated silicon surfaces publication-title: J. Chem. Phys. – volume: 4 start-page: 1587 year: 2010 end-page: 1595 ident: b0060 article-title: Ternary self-assembly of ordered metal oxide− graphene nanocomposites for electrochemical energy storage publication-title: ACS Nano – volume: 119 start-page: 8103 year: 2015 end-page: 8111 ident: b0180 article-title: Wettability of graphene-coated surface: free energy investigations using molecular dynamics simulation publication-title: J. Phys. Chem. C – volume: 40 start-page: 458 year: 2014 end-page: 468 ident: b0310 article-title: Wetting transition of nanodroplets of water on textured surfaces: a molecular dynamics study publication-title: Mol. Simul. – volume: 5 start-page: 34065 year: 2015 end-page: 34069 ident: b0055 article-title: Generating electricity using graphene nanodrums publication-title: RSC Adv. – volume: 18 start-page: 5818 year: 2002 end-page: 5822 ident: b0240 article-title: Effects of surface structure on the hydrophobicity and sliding behavior of water droplets publication-title: Langmuir – volume: 22 start-page: 1420 year: 1954 end-page: 1426 ident: b0290 article-title: High-temperature equation of state by a perturbation method. I. nonpolar gases publication-title: J. Chem. Phys. – volume: 18 start-page: 23482 year: 2016 end-page: 23493 ident: b0085 article-title: Wetting dynamics of a water nanodrop on graphene publication-title: PCCP – volume: 264 start-page: 261 issue: 3 year: 1992 ident: 10.1016/j.apsusc.2019.144002_b0125 article-title: STM investigation of single layer graphite structures produced on Pt (111) by hydrocarbon decomposition publication-title: Surf. Sci. doi: 10.1016/0039-6028(92)90183-7 – volume: 105 start-page: 9980 issue: 41 year: 2001 ident: 10.1016/j.apsusc.2019.144002_b0350 article-title: Carbon nanotubes in water: structural characteristics and energetics publication-title: J. Phys. Chem. B doi: 10.1021/jp011344u – volume: 144 start-page: 14701 issue: 1 year: 2016 ident: 10.1016/j.apsusc.2019.144002_b0185 article-title: On the wettability transparency of graphene-coated silicon surfaces publication-title: J. Chem. Phys. doi: 10.1063/1.4938499 – volume: 2 start-page: 44003 issue: 4 year: 2014 ident: 10.1016/j.apsusc.2019.144002_b0305 article-title: Wetting of anisotropic sinusoidal surfaces—experimental and numerical study of directional spreading publication-title: Surf. Topogr. Metrol. Prop. doi: 10.1088/2051-672X/2/4/044003 – volume: 28 start-page: 13441 issue: 37 year: 2012 ident: 10.1016/j.apsusc.2019.144002_b0300 article-title: Wetting behavior and drainage of water droplets on microgrooved brass surfaces publication-title: Langmuir doi: 10.1021/la302669g – volume: 120 start-page: 5946 issue: 13 year: 2004 ident: 10.1016/j.apsusc.2019.144002_b0295 article-title: Calculating potentials of mean force from steered molecular dynamics simulations publication-title: J. Chem. Phys. doi: 10.1063/1.1651473 – volume: 236 start-page: 43 year: 2016 ident: 10.1016/j.apsusc.2019.144002_b0010 article-title: A critical review of dynamic wetting by complex fluids: from Newtonian fluids to non-Newtonian fluids and nanofluids publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2016.07.004 – volume: 85 start-page: 155445 issue: 15 year: 2012 ident: 10.1016/j.apsusc.2019.144002_b0065 article-title: Graphene coatings: an efficient protection from oxidation publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.85.155445 – volume: 11 start-page: 3 year: 2012 ident: 10.1016/j.apsusc.2019.144002_b0145 article-title: Wetting transparency of graphene publication-title: Nat. Mater. doi: 10.1038/nmat3228 – volume: 6 start-page: 49 issue: 1 year: 2001 ident: 10.1016/j.apsusc.2019.144002_b0220 article-title: Dynamics of wetting publication-title: Curr. Opin. Colloid Interface Sci. doi: 10.1016/S1359-0294(00)00087-X – volume: 105 start-page: 216102 issue: 21 year: 2010 ident: 10.1016/j.apsusc.2019.144002_b0140 article-title: Ordered vacancy network induced by the growth of epitaxial graphene on Pt (111) publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.216102 – year: 1989 ident: 10.1016/j.apsusc.2019.144002_b0265 – volume: 35 start-page: 662 issue: 3 year: 2019 ident: 10.1016/j.apsusc.2019.144002_b0015 article-title: Wetting transition from the Cassie-Baxter state to the Wenzel state on regularly nanostructured surfaces induced by an electric field publication-title: Langmuir doi: 10.1021/acs.langmuir.8b03808 – volume: 13 start-page: 1509 issue: 4 year: 2013 ident: 10.1016/j.apsusc.2019.144002_b0155 article-title: Wettability of graphene publication-title: Nano Lett. doi: 10.1021/nl304647t – volume: 87 start-page: 129 year: 2017 ident: 10.1016/j.apsusc.2019.144002_b0215 article-title: An experimental study on the equilibrium shape of water drops impacted on groove-textured surfaces publication-title: Exp. Therm Fluid Sci. doi: 10.1016/j.expthermflusci.2017.05.001 – volume: 57 start-page: 35102 issue: 3 year: 2018 ident: 10.1016/j.apsusc.2019.144002_b0075 article-title: Structure of water clusters on graphene: a classical molecular dynamics approach publication-title: Jpn. J. Appl. Phys. doi: 10.7567/JJAP.57.035102 – volume: 12 start-page: 866 issue: 10 year: 2013 ident: 10.1016/j.apsusc.2019.144002_b0150 article-title: Wetting translucency of graphene publication-title: Nat. Mater. doi: 10.1038/nmat3760 – volume: 106 start-page: 8435 issue: 21 year: 2009 ident: 10.1016/j.apsusc.2019.144002_b0335 article-title: Coexistence and transition between Cassie and Wenzel state on pillared hydrophobic surface publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0902027106 – volume: 22 start-page: 1420 issue: 8 year: 1954 ident: 10.1016/j.apsusc.2019.144002_b0290 article-title: High-temperature equation of state by a perturbation method. I. nonpolar gases publication-title: J. Chem. Phys. doi: 10.1063/1.1740409 – volume: 24 start-page: 1525 issue: 4 year: 2008 ident: 10.1016/j.apsusc.2019.144002_b0330 article-title: Patterned nonadhesive surfaces: superhydrophobicity and wetting regime transitions publication-title: Langmuir doi: 10.1021/la702239w – volume: 367 start-page: 76 issue: 1 year: 2010 ident: 10.1016/j.apsusc.2019.144002_b0035 article-title: Wetting and print quality study of an inkjet-printed poly (3-hexylthiophene) on pigment coated papers publication-title: Colloids Surfaces A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2010.06.019 – volume: 91 issue: 24 year: 1987 ident: 10.1016/j.apsusc.2019.144002_b0260 article-title: The missing term in effective pair potentials publication-title: J. Phys. Chem. doi: 10.1021/j100308a038 – volume: 95 start-page: 65 year: 1805 ident: 10.1016/j.apsusc.2019.144002_b0005 article-title: An essay on the cohesion of fluids publication-title: Philos. Trans. R. Soc. London The Royal doi: 10.1098/rstl.1805.0005 – volume: 4 start-page: 611 issue: 9 year: 2010 ident: 10.1016/j.apsusc.2019.144002_b0050 article-title: Graphene photonics and optoelectronics publication-title: Nat. Photon. doi: 10.1038/nphoton.2010.186 – volume: 281 start-page: 458 issue: 2 year: 2005 ident: 10.1016/j.apsusc.2019.144002_b0190 article-title: Anisotropy in the wetting of rough surfaces publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2004.07.038 – volume: 119 start-page: 8103 issue: 15 year: 2015 ident: 10.1016/j.apsusc.2019.144002_b0180 article-title: Wettability of graphene-coated surface: free energy investigations using molecular dynamics simulation publication-title: J. Phys. Chem. C doi: 10.1021/jp511036e – volume: 109 start-page: 176101 issue: 17 year: 2012 ident: 10.1016/j.apsusc.2019.144002_b0170 article-title: Breakdown in the wetting transparency of graphene publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.176101 – volume: 2 start-page: 2184 issue: 5 year: 2017 ident: 10.1016/j.apsusc.2019.144002_b0070 article-title: Formation of Water Layers on Graphene Surfaces publication-title: ACS Omega doi: 10.1021/acsomega.7b00365 – volume: 6 start-page: 24237 year: 2016 ident: 10.1016/j.apsusc.2019.144002_b0165 article-title: Wettability of partially suspended graphene publication-title: Sci. Rep. doi: 10.1038/srep24237 – volume: 47 start-page: 1250 issue: 6 year: 2001 ident: 10.1016/j.apsusc.2019.144002_b0225 article-title: Microfluidics: basic issues, applications, and challenges publication-title: AIChE J. doi: 10.1002/aic.690470602 – volume: 39 start-page: 3240 issue: 8 year: 2010 ident: 10.1016/j.apsusc.2019.144002_b0250 article-title: Recent developments in bio-inspired special wettability publication-title: Chem. Soc. Rev. doi: 10.1039/b917112f – volume: 110 start-page: 171603 issue: 17 year: 2017 ident: 10.1016/j.apsusc.2019.144002_b0210 article-title: Nano-striped chemically anisotropic surfaces have near isotropic wettability publication-title: Appl. Phys. Lett. doi: 10.1063/1.4980091 – volume: 37 start-page: 120 issue: 2 year: 2005 ident: 10.1016/j.apsusc.2019.144002_b0130 article-title: Novel structures of carbon layers on a Pt (111) surface publication-title: Surf. Interface Anal. doi: 10.1002/sia.1945 – volume: 23 start-page: 6212 issue: 11 year: 2007 ident: 10.1016/j.apsusc.2019.144002_b0200 article-title: Anisotropic wetting characteristics on submicrometer-scale periodic grooved surface publication-title: Langmuir doi: 10.1021/la0702077 – volume: 114 start-page: 75 year: 2015 ident: 10.1016/j.apsusc.2019.144002_b0325 article-title: Static and dynamic hydrophobicity on a nano-sized groove/ridge surface publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2015.02.010 – volume: 61 start-page: 15653 issue: 23 year: 2000 ident: 10.1016/j.apsusc.2019.144002_b0115 article-title: Moiré contrast in the local tunneling barrier height images of monolayer graphite on Pt (111) publication-title: Phys Rev B. doi: 10.1103/PhysRevB.61.15653 – volume: 80 start-page: 245411 issue: 24 year: 2009 ident: 10.1016/j.apsusc.2019.144002_b0135 article-title: Graphene on Pt (111): growth and substrate interaction publication-title: Phys Rev B. doi: 10.1103/PhysRevB.80.245411 – volume: 29 start-page: 1663 issue: 4 year: 2015 ident: 10.1016/j.apsusc.2019.144002_b0320 article-title: Dynamic hydrophobicity of heterogeneous pillared surfaces at the nano-scale publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-015-0338-0 – volume: 7 start-page: 9804 issue: 21 year: 2011 ident: 10.1016/j.apsusc.2019.144002_b0020 article-title: Hydrophilic and superhydrophilic surfaces and materials publication-title: Soft Matter doi: 10.1039/c1sm05849e – volume: 49 start-page: 2765 issue: 12 year: 2016 ident: 10.1016/j.apsusc.2019.144002_b0095 article-title: Are graphitic surfaces hydrophobic? publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00447 – volume: 12 start-page: 925 issue: 10 year: 2013 ident: 10.1016/j.apsusc.2019.144002_b0160 article-title: Effect of airborne contaminants on the wettability of supported graphene and graphite publication-title: Nat. Mater. doi: 10.1038/nmat3709 – volume: 141 start-page: 18C517 issue: 18 year: 2014 ident: 10.1016/j.apsusc.2019.144002_b0175 article-title: Wetting transparency of graphene in water publication-title: J. Chem. Phys. doi: 10.1063/1.4895541 – volume: 78 start-page: 73401 issue: 7 year: 2008 ident: 10.1016/j.apsusc.2019.144002_b0105 article-title: Controlling graphene corrugation on lattice-mismatched substrates publication-title: Phys Rev B. doi: 10.1103/PhysRevB.78.073401 – volume: 30 start-page: 52101 issue: 5 year: 2018 ident: 10.1016/j.apsusc.2019.144002_b0090 article-title: Contact angle hysteresis and motion behaviors of a water nano-droplet on suspended graphene under temperature gradient publication-title: Phys. Fluids doi: 10.1063/1.5021547 – start-page: 12012 year: 2007 ident: 10.1016/j.apsusc.2019.144002_b0025 article-title: Water droplet lubrication between hydrophilic and hydrophobic surfaces publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/89/1/012012 – volume: 31 start-page: 4032 issue: 13 year: 2015 ident: 10.1016/j.apsusc.2019.144002_b0045 article-title: Controlling flow behavior of water in microfluidics with a chemically patterned anisotropic wetting surface publication-title: Langmuir doi: 10.1021/acs.langmuir.5b00328 – volume: 81 start-page: 511 issue: 1 year: 1984 ident: 10.1016/j.apsusc.2019.144002_b0275 article-title: A unified formulation of the constant temperature molecular dynamics methods publication-title: J. Chem. Phys. doi: 10.1063/1.447334 – volume: 117 start-page: 63 issue: 1 year: 2005 ident: 10.1016/j.apsusc.2019.144002_b0355 article-title: A molecular dynamics simulation study of hydrogen bonding in aqueous ionic solutions publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2004.08.004 – volume: 96 start-page: 33312 issue: 3 year: 2017 ident: 10.1016/j.apsusc.2019.144002_b0080 article-title: Structural and dynamical characterization of water on the Au (100) and graphene surfaces: a molecular dynamics simulation approach publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.96.033312 – volume: 6 start-page: 10153 issue: 13 year: 2014 ident: 10.1016/j.apsusc.2019.144002_b0040 article-title: Washable and wear-resistant superhydrophobic surfaces with self-cleaning property by chemical etching of fibers and hydrophobization publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am501371b – volume: 4 start-page: 1587 issue: 3 year: 2010 ident: 10.1016/j.apsusc.2019.144002_b0060 article-title: Ternary self-assembly of ordered metal oxide− graphene nanocomposites for electrochemical energy storage publication-title: ACS Nano doi: 10.1021/nn901819n – volume: 18 start-page: 23482 issue: 34 year: 2016 ident: 10.1016/j.apsusc.2019.144002_b0085 article-title: Wetting dynamics of a water nanodrop on graphene publication-title: PCCP doi: 10.1039/C6CP01936F – volume: 40 start-page: 458 issue: 6 year: 2014 ident: 10.1016/j.apsusc.2019.144002_b0310 article-title: Wetting transition of nanodroplets of water on textured surfaces: a molecular dynamics study publication-title: Mol. Simul. doi: 10.1080/08927022.2013.819578 – volume: 18 start-page: 5818 issue: 15 year: 2002 ident: 10.1016/j.apsusc.2019.144002_b0240 article-title: Effects of surface structure on the hydrophobicity and sliding behavior of water droplets publication-title: Langmuir doi: 10.1021/la020088p – volume: 89 start-page: 26006 issue: 2 year: 2010 ident: 10.1016/j.apsusc.2019.144002_b0235 article-title: Roughness-gradient–induced spontaneous motion of droplets on hydrophobic surfaces: a lattice Boltzmann study publication-title: EPL doi: 10.1209/0295-5075/89/26006 – volume: 31 start-page: 1695 issue: 3 year: 1985 ident: 10.1016/j.apsusc.2019.144002_b0280 article-title: Canonical dynamics: equilibrium phase-space distributions publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.31.1695 – volume: 329 start-page: 341 issue: 5 year: 2000 ident: 10.1016/j.apsusc.2019.144002_b0340 article-title: Hydrogen bond structure of liquid water confined in nanotubes publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(00)01032-0 – volume: 36 start-page: 381 year: 2004 ident: 10.1016/j.apsusc.2019.144002_b0230 article-title: Engineering flows in small devices: microfluidics toward a lab-on-a-chip publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.36.050802.122124 – volume: 46 start-page: 4417 issue: 15 year: 2017 ident: 10.1016/j.apsusc.2019.144002_b0100 article-title: The physics and chemistry of graphene-on-surfaces publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00256D – volume: 16 start-page: 1571 issue: 8 year: 2006 ident: 10.1016/j.apsusc.2019.144002_b0195 article-title: Creating micro-scale surface topology to achieve anisotropic wettability on an aluminum surface publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/16/8/018 – volume: 20 start-page: 22308 issue: 34 year: 2018 ident: 10.1016/j.apsusc.2019.144002_b0285 article-title: Molecular investigation of the wettability of rough surfaces using molecular dynamics simulation publication-title: PCCP doi: 10.1039/C8CP03762K – volume: 291 start-page: 1023 issue: 5506 year: 2001 ident: 10.1016/j.apsusc.2019.144002_b0245 article-title: Surface-directed liquid flow inside microchannels publication-title: Science doi: 10.1126/science.291.5506.1023 – volume: 7 start-page: 28086 issue: 51 year: 2015 ident: 10.1016/j.apsusc.2019.144002_b0030 article-title: Recent advances in controlling the depositing morphologies of inkjet droplets publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b07006 – volume: 5 start-page: 34065 issue: 43 year: 2015 ident: 10.1016/j.apsusc.2019.144002_b0055 article-title: Generating electricity using graphene nanodrums publication-title: RSC Adv. doi: 10.1039/C5RA00174A – volume: 117 start-page: 1 issue: 1 year: 1995 ident: 10.1016/j.apsusc.2019.144002_b0270 article-title: Fast parallel algorithms for short-range molecular dynamics publication-title: J. Comput. Phys. doi: 10.1006/jcph.1995.1039 – volume: 24 start-page: 1287 issue: 10 year: 2012 ident: 10.1016/j.apsusc.2019.144002_b0205 article-title: Anisotropic wetting surfaces with one-dimesional and directional structures: fabrication approaches, wetting properties and potential applications publication-title: Adv. Mater. doi: 10.1002/adma.201104618 – volume: 60 start-page: 16913 issue: 24 year: 1999 ident: 10.1016/j.apsusc.2019.144002_b0120 article-title: Integration of point-contact microscopy and atomic-force microscopy: application to characterization of graphite/Pt (111) publication-title: Phys Rev B. doi: 10.1103/PhysRevB.60.16913 – volume: 119 start-page: 8926 issue: 29 year: 2014 ident: 10.1016/j.apsusc.2019.144002_b0345 article-title: Hydrogen bonding and related properties in liquid water: a Car-Parrinello molecular dynamics simulation study publication-title: J. Phys. Chem. B doi: 10.1021/jp507196q – volume: 14 start-page: 1857 issue: 24 year: 2002 ident: 10.1016/j.apsusc.2019.144002_b0255 article-title: Super-hydrophobic surfaces: from natural to artificial publication-title: Adv. Mater. doi: 10.1002/adma.200290020 – volume: 28 start-page: 669 issue: 2 year: 2014 ident: 10.1016/j.apsusc.2019.144002_b0315 article-title: Dynamic hydrophobicity on flat and pillared graphite surfaces with different pillar surface fractions publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-013-1178-4 – volume: 98 start-page: 33101 issue: 3 year: 2011 ident: 10.1016/j.apsusc.2019.144002_b0110 article-title: Epitaxial growth and structural property of graphene on Pt (111) publication-title: Appl. Phys. Lett. doi: 10.1063/1.3543624 |
SSID | ssj0012873 |
Score | 2.36158 |
Snippet | •Physically striped patterned substrates can be designed for Cassie-Baxter and Wenzel states.•Properties of substrates are affected by underlying... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 144002 |
SubjectTerms | Anisotropic wetting Cassie-Baxter state Contact angle Free energy Striped patterned surface Wenzel state |
Title | Wettability of striped patterned mono-and multilayer graphene supported on platinum |
URI | https://dx.doi.org/10.1016/j.apsusc.2019.144002 |
Volume | 500 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5zu-hB_Inzx8jBa5xp0rQ9juGYirvM4W4lTVKYzLa47uDFv92XNh0TQcFbKA2Uj_De9zXvfQ-h68BXKWUmJNyAXLWOciQJVUAUN5DNDfWksM3JTxMxnvGHuT9voWHTC2PLKl3sr2N6Fa3dk75Ds18sFv2p9RGx7luWgkDaAQnU8Vgk_DbqDO4fx5PNZQKIAlZbfEe2QchrOuiqMi8JYnRlvQxpVF10uv8rPzLUVtYZHaB9RxfxoP6iQ9Qy2RHa2zIRPEbTF1OWtdv2B85TbAdxFEbjonLOhCiK4aTlRGawsNWDSwksG1dG1RDn8GpdVN7mGucZLmxlXLZ-O0Gz0d3zcEzcqASigPOXRCRGA5VJgZyBpAWRBboPuELKtBRae6EUacQ0ZdKXgQcLT9Ek5EwwxaUyQPlOUTvLM3OGMA91oiMtpdSgTRhgLDRnHoPMzwGfpItYA0-snI-4HWexjJuCsde4BjW2oMY1qF1ENruK2kfjj_eDBvn423mIIdT_uvP83zsv0K5n1fQtJdS_RO3yfW2ugHKUSQ_t3HzSnjtYX_HM1do |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5KPagH8Yn1mYPXWHeTffQoxVK17aUt9haySRYqdXex24MXf7uTfZSKoOAtLAmEjzDzfZuZLwA3gadih5mQcoNy1TrK0ShUAVXcYDY3jit925w8HPn9KX-aebMGdOteGFtWWcX-MqYX0br60q7QbGfzeXtsfUSs-5alIJh2UAJtcY8Ftq7v9nNd54Hxt7xmxtm2Pcit--eKIi-JUnRpnQydTnHNWf1d-ZGfNnJObx_2KrJI7sv9HEDDJIewu2EheATjF5Pnpdf2B0ljYp_hyIwmWeGbiTGU4DlLqUxwYGsHFxI5NilsqjHKkeUqK5zNNUkTktm6uGT1dgzT3sOk26fVQwlUIePPqR8ZjUQmRmqGghYlFqo-ZAox09LX2g2lH3eYdpj0ZODiwFVOFHLmM8WlMkj4TqCZpIk5BcJDHemOllJqVCYMEfY1Zy7DvM8Rn6gFrIZHqMpF3D5msRB1udirKEEVFlRRgtoCul6VlS4af8wPauTFt9MgMND_uvLs3yuvYbs_GQ7E4HH0fA47rtXVdw51vAto5u8rc4nkI4-uisP1Bb2a1qU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wettability+of+striped+patterned+mono-and+multilayer+graphene+supported+on+platinum&rft.jtitle=Applied+surface+science&rft.au=Yaghoubi%2C+Hamzeh&rft.au=Foroutan%2C+Masumeh&rft.date=2020-01-15&rft.pub=Elsevier+B.V&rft.issn=0169-4332&rft.eissn=1873-5584&rft.volume=500&rft_id=info:doi/10.1016%2Fj.apsusc.2019.144002&rft.externalDocID=S0169433219328181 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-4332&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-4332&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-4332&client=summon |