Path planning of unmanned vehicles based on adaptive particle swarm optimization algorithm
Path planning technology is the basis of autonomous driving of unmanned vehicles. However, there are some problems in the traditional path planning technology. For example, high-quality global paths can't be generated quickly; Lacking of security verification ability; The performance of dynamic...
Saved in:
Published in | Computer communications Vol. 216; pp. 112 - 129 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.02.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0140-3664 1873-703X |
DOI | 10.1016/j.comcom.2023.12.040 |
Cover
Loading…
Abstract | Path planning technology is the basis of autonomous driving of unmanned vehicles. However, there are some problems in the traditional path planning technology. For example, high-quality global paths can't be generated quickly; Lacking of security verification ability; The performance of dynamic obstacle avoidance is poor. Therefore, this paper proposes a path planning method of unmanned vehicles based on adaptive particle swarm optimization algorithm (APSO). Firstly, a map simplification strategy (MSS) is proposed. The grid map is preprocessed by map simplification strategy to reduce the search space and time of path planning algorithm; Secondly, an APSO algorithm is proposed. The algorithm coordinates the search of particles through three adaptive factors and Levy flight strategy. Then, a security checking strategy is proposed. Security checking strategy can be used to verify the safety of global path; Finally, a dynamic obstacle avoidance strategy based on behavior is proposed. Vehicles can independently analyze the types of collision and adopt corresponding obstacle avoidance strategies. The simulation results show that MSS-APSO algorithm and APSO algorithm surpass original algorithms and comparison algorithms; MSS-APSO algorithm has strong applicability in real map environment; The obstacle avoidance strategy has great obstacle avoidance ability and real-time performance; The map simplification strategy can improve iterations of the algorithm and quality of the global path. |
---|---|
AbstractList | Path planning technology is the basis of autonomous driving of unmanned vehicles. However, there are some problems in the traditional path planning technology. For example, high-quality global paths can't be generated quickly; Lacking of security verification ability; The performance of dynamic obstacle avoidance is poor. Therefore, this paper proposes a path planning method of unmanned vehicles based on adaptive particle swarm optimization algorithm (APSO). Firstly, a map simplification strategy (MSS) is proposed. The grid map is preprocessed by map simplification strategy to reduce the search space and time of path planning algorithm; Secondly, an APSO algorithm is proposed. The algorithm coordinates the search of particles through three adaptive factors and Levy flight strategy. Then, a security checking strategy is proposed. Security checking strategy can be used to verify the safety of global path; Finally, a dynamic obstacle avoidance strategy based on behavior is proposed. Vehicles can independently analyze the types of collision and adopt corresponding obstacle avoidance strategies. The simulation results show that MSS-APSO algorithm and APSO algorithm surpass original algorithms and comparison algorithms; MSS-APSO algorithm has strong applicability in real map environment; The obstacle avoidance strategy has great obstacle avoidance ability and real-time performance; The map simplification strategy can improve iterations of the algorithm and quality of the global path. |
Author | Deng, Chaoshuo Li, Deshun Fei, Hansheng Yu, Huanhuan Zhao, Jiale |
Author_xml | – sequence: 1 givenname: Jiale surname: Zhao fullname: Zhao, Jiale email: 18530185645@163.com organization: School of Information and Communication Engineering, Hainan University, Haikou, 570228, China – sequence: 2 givenname: Chaoshuo surname: Deng fullname: Deng, Chaoshuo email: dengchaoshuo0619@163.com organization: School of Computer and Information Engineering, Tianjin Chengjian University, Tianjin 300384, China – sequence: 3 givenname: Huanhuan surname: Yu fullname: Yu, Huanhuan email: 22210812000009@hainanu.edu.cn organization: School of Computer Science and Technology, Hainan University, Haikou, 570228, China – sequence: 4 givenname: Hansheng surname: Fei fullname: Fei, Hansheng email: 1290785535@qq.com organization: School of Computer Science and Technology, Hainan University, Haikou, 570228, China – sequence: 5 givenname: Deshun surname: Li fullname: Li, Deshun email: lideshun@hainanu.edu.cn organization: School of Computer Science and Technology, Hainan University, Haikou, 570228, China |
BookMark | eNqFUE1LAzEUDKJgW_0HHvIHdk022_3wIEjxCwp6UBAvIU1e2pTdZEliRX-9WevJg8KDx7x5MzAzRYfWWUDojJKcElqdb3Pp-jR5QQqW0yInJTlAE9rULKsJezlEE0JLkrGqKo_RNIQtIaSsazZBr48ibvDQCWuNXWOn8ZvtEwCFd7AxsoOAVyIk6CwWSgzR7AAPwseRw-Fd-B67dO3Np4hmfOrWzpu46U_QkRZdgNOfPUPPN9dPi7ts-XB7v7haZpKRKmbVSihdt_OmbIVuhVBQ16oAqCS0rGxp06xAsqaRUlNGBGUskZRpqVo213TOZqjc-0rvQvCg-eBNL_wHp4SP_fAt3_fDx344LXjqJ8kufsmkid8Rohem-098uRdDCrYz4HmQBqwEZTzIyJUzfxt8AVrTiK0 |
CitedBy_id | crossref_primary_10_1016_j_mtcomm_2024_111230 crossref_primary_10_1109_JIOT_2024_3487129 crossref_primary_10_3390_robotics13120178 crossref_primary_10_3390_app14062418 crossref_primary_10_3390_en17071760 crossref_primary_10_3390_biomimetics10030142 crossref_primary_10_1016_j_jestch_2025_101950 crossref_primary_10_1063_5_0219747 crossref_primary_10_1016_j_asoc_2025_112970 crossref_primary_10_54097_tg21v812 |
Cites_doi | 10.1177/0142331218824393 10.1007/s10846-019-01112-z 10.3390/app12188977 10.1016/j.isatra.2019.08.018 10.1016/j.oceaneng.2016.09.040 10.3934/mbe.2023695 10.1177/0954407020978319 10.1016/j.envdev.2021.100626 10.1109/JIOT.2022.3155697 10.1016/j.oceaneng.2022.112421 10.1142/S0217984920503224 10.1080/00051144.2022.2142924 10.1016/j.dcan.2020.04.007 10.1016/j.sysarc.2022.102802 10.1007/s12239-022-0109-8 10.1155/2021/5536574 10.1016/j.arcontrol.2022.04.010 10.32604/cmc.2022.020873 10.3390/s19112640 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.comcom.2023.12.040 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-703X |
EndPage | 129 |
ExternalDocumentID | 10_1016_j_comcom_2023_12_040 S0140366423004838 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 77K 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ RXW SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K WH7 ZMT ~G- 07C 29F AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD F0J FEDTE FGOYB HLZ HVGLF HZ~ LG9 M41 R2- RIG SBC SSH TAE UHS VH1 VOH WUQ XPP ZY4 |
ID | FETCH-LOGICAL-c306t-6badf795849af9aade77d2ee6ce9349188bec388ccf130a1332ee13fcd935f153 |
IEDL.DBID | .~1 |
ISSN | 0140-3664 |
IngestDate | Tue Jul 01 02:43:10 EDT 2025 Thu Apr 24 23:07:43 EDT 2025 Sat Feb 17 16:07:49 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Map simplification strategy Path planning Adaptive particle swarm optimization algorithm dynamic obstacle avoidance strategy Security checking strategy |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-6badf795849af9aade77d2ee6ce9349188bec388ccf130a1332ee13fcd935f153 |
PageCount | 18 |
ParticipantIDs | crossref_primary_10_1016_j_comcom_2023_12_040 crossref_citationtrail_10_1016_j_comcom_2023_12_040 elsevier_sciencedirect_doi_10_1016_j_comcom_2023_12_040 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-15 |
PublicationDateYYYYMMDD | 2024-02-15 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Computer communications |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Liu, Wang (bib20) 2020; 37 Chu, Yi, Fei (bib33) 2022; 12 Hao, Zhao, Wang (bib27) 2021; 2021 Song, Hao, Su (bib13) 2020; 17 Hao, Zhao, Li (bib28) 2022; 263 Sun, Yuan, Yi (bib32) 2023; 44 Hao, Deng, Zhao (bib30) 2022; 36 Shi, Zhang, Li (bib29) 2023; 9 Zhang, Xu, Zhang (bib6) 2023; 64 Zhong, Tian, Hu (bib12) 2020; 99 Wang, Meng, Ning (bib17) 2012 Fei (bib18) 2020; 115 Feng, He, Wang (bib21) 2022; 2022 Wang, Guo (bib31) 2016; 33 Azzabi, Nouri (bib25) 2019; 41 Dibaei, Zheng, Jiang (bib4) 2021; 6 Zhu, Zhu, Zhang (bib24) 2020; 17 Xu, Zhang, Lai (bib22) 2020; 34 Li, Fan, Liu (bib10) 2022; 23 Xin, Zhong, Yang (bib16) 2019; 19 Jia, Panetto, Macchi (bib1) 2022; 53 Thornbush, Golubchikov (bib2) 2021; 39 Siddiqui, Hameed, Shah (bib3) 2023; 135 Xi, Yang, Wen (bib19) 2022; 9 Zhuang, Sharma, Subudhi (bib15) 2016; 127 Chen, Hu, Qin (bib7) 2021; 235 Huang, Chen, Yang (bib8) 2023; 59 Zhang, Han, Jiang (bib26) 2022; 2022 Lin, Chen, He (bib11) 2020; 41 Kurdi, Almuhalhel, Elgibreen (bib23) 2022; 13 Shao, Luo (bib14) 2018; 17 Shao, Peng, He (bib5) 2020; 97 Muhammad, Ali, Turaev (bib9) 2022; 71 Thornbush (10.1016/j.comcom.2023.12.040_bib2) 2021; 39 Feng (10.1016/j.comcom.2023.12.040_bib21) 2022; 2022 Hao (10.1016/j.comcom.2023.12.040_bib27) 2021; 2021 Dibaei (10.1016/j.comcom.2023.12.040_bib4) 2021; 6 Shao (10.1016/j.comcom.2023.12.040_bib5) 2020; 97 Song (10.1016/j.comcom.2023.12.040_bib13) 2020; 17 Siddiqui (10.1016/j.comcom.2023.12.040_bib3) 2023; 135 Wang (10.1016/j.comcom.2023.12.040_bib17) 2012 Chu (10.1016/j.comcom.2023.12.040_bib33) 2022; 12 Xin (10.1016/j.comcom.2023.12.040_bib16) 2019; 19 Lin (10.1016/j.comcom.2023.12.040_bib11) 2020; 41 Jia (10.1016/j.comcom.2023.12.040_bib1) 2022; 53 Zhang (10.1016/j.comcom.2023.12.040_bib26) 2022; 2022 Shi (10.1016/j.comcom.2023.12.040_bib29) 2023; 9 Wang (10.1016/j.comcom.2023.12.040_bib31) 2016; 33 Hao (10.1016/j.comcom.2023.12.040_bib28) 2022; 263 Xu (10.1016/j.comcom.2023.12.040_bib22) 2020; 34 Huang (10.1016/j.comcom.2023.12.040_bib8) 2023; 59 Chen (10.1016/j.comcom.2023.12.040_bib7) 2021; 235 Fei (10.1016/j.comcom.2023.12.040_bib18) 2020; 115 Muhammad (10.1016/j.comcom.2023.12.040_bib9) 2022; 71 Hao (10.1016/j.comcom.2023.12.040_bib30) 2022; 36 Xi (10.1016/j.comcom.2023.12.040_bib19) 2022; 9 Sun (10.1016/j.comcom.2023.12.040_bib32) 2023; 44 Shao (10.1016/j.comcom.2023.12.040_bib14) 2018; 17 Zhu (10.1016/j.comcom.2023.12.040_bib24) 2020; 17 Zhang (10.1016/j.comcom.2023.12.040_bib6) 2023; 64 Kurdi (10.1016/j.comcom.2023.12.040_bib23) 2022; 13 Li (10.1016/j.comcom.2023.12.040_bib10) 2022; 23 Zhuang (10.1016/j.comcom.2023.12.040_bib15) 2016; 127 Azzabi (10.1016/j.comcom.2023.12.040_bib25) 2019; 41 Zhong (10.1016/j.comcom.2023.12.040_bib12) 2020; 99 Liu (10.1016/j.comcom.2023.12.040_bib20) 2020; 37 |
References_xml | – volume: 36 start-page: 126 year: 2022 end-page: 135 ident: bib30 article-title: Robot path planning based on region search particle swarm optimization publication-title: J. Electron. Meas. Instrum. – volume: 17 start-page: 1 year: 2020 end-page: 14 ident: bib24 article-title: Path planning of lunar robot based on dynamic adaptive ant colony algorithm and obstacle avoidance publication-title: Int. J. Adv. Rob. Syst. – volume: 9 start-page: 15568 year: 2023 end-page: 15602 ident: bib29 article-title: Path planning for mobile robots in complex environments based on improved ant colony algorithm publication-title: Math. Biosci. Eng. – volume: 39 start-page: 1 year: 2021 end-page: 7 ident: bib2 article-title: Smart energy cities: the evolution of the city-energy-sustainability nexus publication-title: Environmental Development – volume: 99 start-page: 65 year: 2020 end-page: 77 ident: bib12 article-title: Hybrid path planning based on safe A* algorithm and adaptive window approach for mobile robot in large-scale dynamic environment publication-title: J. Intell. Rob. Syst. – volume: 17 start-page: 1 year: 2020 end-page: 13 ident: bib13 article-title: Path planning for unmanned surface vehicle based on predictive artificial potential field publication-title: Int. J. Adv. Rob. Syst. – volume: 44 start-page: 1707 year: 2023 end-page: 1720 ident: bib32 article-title: Dynamic path planning by combing the improved particle swarm algorithm and dynamic window approach publication-title: J. Chinese Computer Syst. – volume: 64 start-page: 277 year: 2023 end-page: 290 ident: bib6 article-title: A data-driven fault detection and diagnosis method via just-in-time learning for unmanned ground vehicles publication-title: Automatika – volume: 37 start-page: 1 year: 2020 end-page: 10 ident: bib20 article-title: Overview of obstacle avoidance path planning algorithm for unmanned surface vehicle publication-title: Computer Applications and Software – volume: 13 start-page: 1 year: 2022 end-page: 14 ident: bib23 article-title: Tide-inspired path planning algorithm for autonomous vehicles publication-title: Rem. Sens. – volume: 127 start-page: 190 year: 2016 end-page: 199 ident: bib15 article-title: Efficient collision-free path planning for autonomous underwater vehicles in dynamic environments with a hybrid optimization algorithm publication-title: Ocean Eng. – volume: 135 start-page: 1 year: 2023 end-page: 17 ident: bib3 article-title: Smart contract-based security architecture for collaborative services in municipal smart cities publication-title: J. Syst. Architect. – volume: 2022 start-page: 1 year: 2022 end-page: 18 ident: bib21 article-title: Path optimization of agricultural robot based on immune ant colony: B-spline interpolation algorithm publication-title: Math. Probl Eng. – volume: 263 start-page: 1 year: 2022 end-page: 21 ident: bib28 article-title: Dynamic path planning of a three-dimensional underwater AUV based on an adaptive genetic algorithm publication-title: Ocean Eng. – volume: 33 start-page: 2588 year: 2016 end-page: 2591 ident: bib31 article-title: Particle swarm optimization algorithm based on levy flight publication-title: Appl. Res. Comput. – start-page: 157 year: 2012 end-page: 160 ident: bib17 article-title: Path Planning Based on Hybrid Adaptive Ant Colony Algorithm for AUV[C]//2012 11th International Symposium on Distributed Computing and Applications to Business, Engineering & Science – volume: 115 start-page: 78 year: 2020 end-page: 80 ident: bib18 article-title: Research on port logistics distribution route planning based on artificial fish swarm algorithm publication-title: J. Coast Res. – volume: 12 start-page: 1 year: 2022 end-page: 23 ident: bib33 article-title: Chaos particle swarm optimization enhancement algorithm for UAV safe path planning publication-title: Appl. Sci. – volume: 53 start-page: 358 year: 2022 end-page: 369 ident: bib1 article-title: Control for smart systems: challenges and trends in smart cities publication-title: Annu. Rev. Control – volume: 41 start-page: 3132 year: 2019 end-page: 3144 ident: bib25 article-title: An advanced potential field method proposed for mobile robot path planning publication-title: Trans. Inst. Meas. Control – volume: 97 start-page: 415 year: 2020 end-page: 430 ident: bib5 article-title: Efficient path planning for UAV formation via comprehensively improved particle swarm optimization publication-title: ISA (Instrum. Soc. Am.) Trans. – volume: 235 start-page: 933 year: 2021 end-page: 944 ident: bib7 article-title: Path planning and robust fuzzy output-feedback control for unmanned ground vehicles with obstacle avoidance publication-title: Proc. Inst. Mech. Eng. - Part D J. Automob. Eng. – volume: 59 start-page: 187 year: 2023 end-page: 198 ident: bib8 article-title: Research on driving automation level-adaptive driver condition monitoring models publication-title: J. Inst. Eng. Bangladesh – volume: 71 start-page: 2697 year: 2022 end-page: 2719 ident: bib9 article-title: Novel algorithm for mobile robot path planning in constrained environment publication-title: Comput. Mater. Continua (CMC) – volume: 17 start-page: 38 year: 2018 end-page: 42 ident: bib14 article-title: Improved visibility graph algorithms in path planning publication-title: J. Nanyang Normal Univ. – volume: 6 start-page: 399 year: 2021 end-page: 421 ident: bib4 article-title: Attacks and defences on intelligent connected vehicles: a survey publication-title: Digital Communic. Networks – volume: 2021 start-page: 1 year: 2021 end-page: 20 ident: bib27 article-title: The application of an adaptive genetic algorithm based on collision detection in path planning of mobile robots publication-title: Comput. Intell. Neurosci. – volume: 2022 start-page: 1 year: 2022 end-page: 10 ident: bib26 article-title: Research on path planning method of unmanned boat based on improved DWA algorithm publication-title: J. Sens. – volume: 34 start-page: 1 year: 2020 end-page: 18 ident: bib22 article-title: A new path planning method of mobile robot based on adaptive dynamic firefly algorithm publication-title: Mod. Phys. Lett. B – volume: 41 start-page: 257 year: 2020 end-page: 267 ident: bib11 article-title: Non-collision checking RRT* algorithm for mobile robot motion planning publication-title: Chin. J. Sci. Instrum. – volume: 23 start-page: 1239 year: 2022 end-page: 1253 ident: bib10 article-title: Path planning and path tracking for autonomous vehicle based on MPC with adaptive dual-horizon-parameters publication-title: Int. J. Automot. Technol. – volume: 9 start-page: 17440 year: 2022 end-page: 17451 ident: bib19 article-title: Comprehensive Ocean information-enabled AUV path planning via reinforcement learning publication-title: IEEE Internet Things J. – volume: 19 start-page: 1 year: 2019 end-page: 23 ident: bib16 article-title: An improved genetic algorithm for path-planning of unmanned surface vehicle publication-title: Sensors – volume: 41 start-page: 3132 issue: 11 year: 2019 ident: 10.1016/j.comcom.2023.12.040_bib25 article-title: An advanced potential field method proposed for mobile robot path planning publication-title: Trans. Inst. Meas. Control doi: 10.1177/0142331218824393 – volume: 99 start-page: 65 year: 2020 ident: 10.1016/j.comcom.2023.12.040_bib12 article-title: Hybrid path planning based on safe A* algorithm and adaptive window approach for mobile robot in large-scale dynamic environment publication-title: J. Intell. Rob. Syst. doi: 10.1007/s10846-019-01112-z – volume: 36 start-page: 126 issue: 12 year: 2022 ident: 10.1016/j.comcom.2023.12.040_bib30 article-title: Robot path planning based on region search particle swarm optimization publication-title: J. Electron. Meas. Instrum. – volume: 12 start-page: 1 issue: 18 year: 2022 ident: 10.1016/j.comcom.2023.12.040_bib33 article-title: Chaos particle swarm optimization enhancement algorithm for UAV safe path planning publication-title: Appl. Sci. doi: 10.3390/app12188977 – volume: 97 start-page: 415 year: 2020 ident: 10.1016/j.comcom.2023.12.040_bib5 article-title: Efficient path planning for UAV formation via comprehensively improved particle swarm optimization publication-title: ISA (Instrum. Soc. Am.) Trans. doi: 10.1016/j.isatra.2019.08.018 – volume: 17 start-page: 38 issue: 4 year: 2018 ident: 10.1016/j.comcom.2023.12.040_bib14 article-title: Improved visibility graph algorithms in path planning publication-title: J. Nanyang Normal Univ. – volume: 127 start-page: 190 year: 2016 ident: 10.1016/j.comcom.2023.12.040_bib15 article-title: Efficient collision-free path planning for autonomous underwater vehicles in dynamic environments with a hybrid optimization algorithm publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2016.09.040 – volume: 9 start-page: 15568 issue: 20 year: 2023 ident: 10.1016/j.comcom.2023.12.040_bib29 article-title: Path planning for mobile robots in complex environments based on improved ant colony algorithm publication-title: Math. Biosci. Eng. doi: 10.3934/mbe.2023695 – volume: 33 start-page: 2588 issue: 9 year: 2016 ident: 10.1016/j.comcom.2023.12.040_bib31 article-title: Particle swarm optimization algorithm based on levy flight publication-title: Appl. Res. Comput. – volume: 41 start-page: 257 issue: 10 year: 2020 ident: 10.1016/j.comcom.2023.12.040_bib11 article-title: Non-collision checking RRT* algorithm for mobile robot motion planning publication-title: Chin. J. Sci. Instrum. – start-page: 157 year: 2012 ident: 10.1016/j.comcom.2023.12.040_bib17 – volume: 235 start-page: 933 issue: 4 year: 2021 ident: 10.1016/j.comcom.2023.12.040_bib7 article-title: Path planning and robust fuzzy output-feedback control for unmanned ground vehicles with obstacle avoidance publication-title: Proc. Inst. Mech. Eng. - Part D J. Automob. Eng. doi: 10.1177/0954407020978319 – volume: 2022 start-page: 1 year: 2022 ident: 10.1016/j.comcom.2023.12.040_bib26 article-title: Research on path planning method of unmanned boat based on improved DWA algorithm publication-title: J. Sens. – volume: 39 start-page: 1 year: 2021 ident: 10.1016/j.comcom.2023.12.040_bib2 article-title: Smart energy cities: the evolution of the city-energy-sustainability nexus publication-title: Environmental Development doi: 10.1016/j.envdev.2021.100626 – volume: 13 start-page: 1 issue: 22 year: 2022 ident: 10.1016/j.comcom.2023.12.040_bib23 article-title: Tide-inspired path planning algorithm for autonomous vehicles publication-title: Rem. Sens. – volume: 9 start-page: 17440 issue: 18 year: 2022 ident: 10.1016/j.comcom.2023.12.040_bib19 article-title: Comprehensive Ocean information-enabled AUV path planning via reinforcement learning publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2022.3155697 – volume: 263 start-page: 1 year: 2022 ident: 10.1016/j.comcom.2023.12.040_bib28 article-title: Dynamic path planning of a three-dimensional underwater AUV based on an adaptive genetic algorithm publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.112421 – volume: 34 start-page: 1 issue: 29 year: 2020 ident: 10.1016/j.comcom.2023.12.040_bib22 article-title: A new path planning method of mobile robot based on adaptive dynamic firefly algorithm publication-title: Mod. Phys. Lett. B doi: 10.1142/S0217984920503224 – volume: 64 start-page: 277 issue: 2 year: 2023 ident: 10.1016/j.comcom.2023.12.040_bib6 article-title: A data-driven fault detection and diagnosis method via just-in-time learning for unmanned ground vehicles publication-title: Automatika doi: 10.1080/00051144.2022.2142924 – volume: 37 start-page: 1 issue: 8 year: 2020 ident: 10.1016/j.comcom.2023.12.040_bib20 article-title: Overview of obstacle avoidance path planning algorithm for unmanned surface vehicle publication-title: Computer Applications and Software – volume: 115 start-page: 78 issue: SI year: 2020 ident: 10.1016/j.comcom.2023.12.040_bib18 article-title: Research on port logistics distribution route planning based on artificial fish swarm algorithm publication-title: J. Coast Res. – volume: 44 start-page: 1707 issue: 8 year: 2023 ident: 10.1016/j.comcom.2023.12.040_bib32 article-title: Dynamic path planning by combing the improved particle swarm algorithm and dynamic window approach publication-title: J. Chinese Computer Syst. – volume: 6 start-page: 399 issue: 4 year: 2021 ident: 10.1016/j.comcom.2023.12.040_bib4 article-title: Attacks and defences on intelligent connected vehicles: a survey publication-title: Digital Communic. Networks doi: 10.1016/j.dcan.2020.04.007 – volume: 59 start-page: 187 issue: 2 year: 2023 ident: 10.1016/j.comcom.2023.12.040_bib8 article-title: Research on driving automation level-adaptive driver condition monitoring models publication-title: J. Inst. Eng. Bangladesh – volume: 17 start-page: 1 issue: 2 year: 2020 ident: 10.1016/j.comcom.2023.12.040_bib13 article-title: Path planning for unmanned surface vehicle based on predictive artificial potential field publication-title: Int. J. Adv. Rob. Syst. – volume: 135 start-page: 1 year: 2023 ident: 10.1016/j.comcom.2023.12.040_bib3 article-title: Smart contract-based security architecture for collaborative services in municipal smart cities publication-title: J. Syst. Architect. doi: 10.1016/j.sysarc.2022.102802 – volume: 23 start-page: 1239 issue: 5 year: 2022 ident: 10.1016/j.comcom.2023.12.040_bib10 article-title: Path planning and path tracking for autonomous vehicle based on MPC with adaptive dual-horizon-parameters publication-title: Int. J. Automot. Technol. doi: 10.1007/s12239-022-0109-8 – volume: 2021 start-page: 1 year: 2021 ident: 10.1016/j.comcom.2023.12.040_bib27 article-title: The application of an adaptive genetic algorithm based on collision detection in path planning of mobile robots publication-title: Comput. Intell. Neurosci. doi: 10.1155/2021/5536574 – volume: 53 start-page: 358 year: 2022 ident: 10.1016/j.comcom.2023.12.040_bib1 article-title: Control for smart systems: challenges and trends in smart cities publication-title: Annu. Rev. Control doi: 10.1016/j.arcontrol.2022.04.010 – volume: 71 start-page: 2697 issue: 2 year: 2022 ident: 10.1016/j.comcom.2023.12.040_bib9 article-title: Novel algorithm for mobile robot path planning in constrained environment publication-title: Comput. Mater. Continua (CMC) doi: 10.32604/cmc.2022.020873 – volume: 2022 start-page: 1 year: 2022 ident: 10.1016/j.comcom.2023.12.040_bib21 article-title: Path optimization of agricultural robot based on immune ant colony: B-spline interpolation algorithm publication-title: Math. Probl Eng. – volume: 17 start-page: 1 issue: 3 year: 2020 ident: 10.1016/j.comcom.2023.12.040_bib24 article-title: Path planning of lunar robot based on dynamic adaptive ant colony algorithm and obstacle avoidance publication-title: Int. J. Adv. Rob. Syst. – volume: 19 start-page: 1 issue: 11 year: 2019 ident: 10.1016/j.comcom.2023.12.040_bib16 article-title: An improved genetic algorithm for path-planning of unmanned surface vehicle publication-title: Sensors doi: 10.3390/s19112640 |
SSID | ssj0004773 |
Score | 2.4979181 |
Snippet | Path planning technology is the basis of autonomous driving of unmanned vehicles. However, there are some problems in the traditional path planning technology.... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 112 |
SubjectTerms | Adaptive particle swarm optimization algorithm dynamic obstacle avoidance strategy Map simplification strategy Path planning Security checking strategy |
Title | Path planning of unmanned vehicles based on adaptive particle swarm optimization algorithm |
URI | https://dx.doi.org/10.1016/j.comcom.2023.12.040 |
Volume | 216 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXvQg_sT5Y-Tgtc62adocx3BMxeHBwfBSsiZxk60ts9Obf7vvtalOEAWPTZPSvoTvfUm_9x4h56GMdADz7LhKcoepIHBEIowjIskwFwwXBmOH74Z8MGI342DcIL06FgZllRb7K0wv0dq2dKw1O_ls1illST4H_uyXedEx4Bcej_nzL96_ZB4srP4yo4wRe9fhc6XGC56NmhEsIV4eCuIRyE_uac3l9HfItuWKtFu9zi5p6HSPbK1lENwnj_fA4GhuKw_RzNBVupCInfRVT0vJG0VHpWiWUqlkjuhGc_uF9OVNLhc0g9aFjcekcv6ULWfFdHFARv2rh97AseUSnAR4f-HwiVQmFMAohDRCSqXDUHla80QLnwk3imC-_ChKEgOOS8LmFG66vkmU8AMDyHdImmmW6iNCOexCvEvNAsUVi0yCB7vMZbA9NEAfQq9F_NpKcWJziWNJi3lci8ae48q2Mdo2dr0YbNsizueovMql8Uf_sJ6A-NuaiAHufx15_O-RJ2QTrhjqst3glDSL5UqfAe0oJu1yXbXJRvf6djD8AAB92Jg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVKewAOiFWU1QeuUUnjLD5WFVUKbcWhlSoulhvbtKhZVFL4fcaJA0VCIHGNM1Eytt48O29mELrxeSBdmGfLFtyziHBdi0ZUWTTgRNeC8ajSucPDkRdOyP3UndZQt8qF0bJKg_0lphdoba60jDdb2WLRKmRJjgf82SnqogdbqKGrU8Fib3T6D-HoKz3SL380ayWjNqgy6AqZFzxey0Z0F_HiXFCfgvwUoTaiTm8f7Rm6iDvlGx2gmkwO0e5GEcEj9PQIJA5npvkQThVeJzHX8Inf5LxQvWEdqwROE8wFzzTA4cx8JH5956sYp3A1NimZmC-f09Uin8fHaNK7G3dDy3RMsCKg_rnlzbhQPgVSQbminAvp-6ItpRdJ6hBqBwFMmRMEUaQgdnHYn8Kg7ahIUMdVAH4nqJ6kiTxF2IONSPtWEld4ggQq0me7xCawQ1TAIPx2EzmVl1hkyonrrhZLVunGXljpW6Z9y-w2A982kfVplZXlNP64368mgH1bFgwQ_1fLs39bXqPtcDwcsEF_9HCOdmCEaJm27V6ger5ay0tgIfnsyqyyD3WA20k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Path+planning+of+unmanned+vehicles+based+on+adaptive+particle+swarm+optimization+algorithm&rft.jtitle=Computer+communications&rft.au=Zhao%2C+Jiale&rft.au=Deng%2C+Chaoshuo&rft.au=Yu%2C+Huanhuan&rft.au=Fei%2C+Hansheng&rft.date=2024-02-15&rft.pub=Elsevier+B.V&rft.issn=0140-3664&rft.eissn=1873-703X&rft.volume=216&rft.spage=112&rft.epage=129&rft_id=info:doi/10.1016%2Fj.comcom.2023.12.040&rft.externalDocID=S0140366423004838 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-3664&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-3664&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-3664&client=summon |