Dual-branch adaptive attention transformer for occluded person re-identification

•An end-to-end dual-branch vision transformer for occluded person re-identification is proposed.•Adaptive extraction of human local features using self-Attention mechanism is achieved.•Goal Consistency Loss with more consistent convergence goals is designed.•The State-of-the-Art performance were ach...

Full description

Saved in:
Bibliographic Details
Published inImage and vision computing Vol. 131; p. 104633
Main Authors Lu, Yunhua, Jiang, Mingzi, Liu, Zhi, Mu, Xinyu
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2023
Subjects
Online AccessGet full text
ISSN0262-8856
1872-8138
DOI10.1016/j.imavis.2023.104633

Cover

Abstract •An end-to-end dual-branch vision transformer for occluded person re-identification is proposed.•Adaptive extraction of human local features using self-Attention mechanism is achieved.•Goal Consistency Loss with more consistent convergence goals is designed.•The State-of-the-Art performance were achieved on Occluded-REID dataset. Occluded person re-identification is still a common and challenging task because people are often occluded by some obstacles (e.g. cars and trees) in the real world. In order to locate the unoccluded parts and extract local fine-grained features of the occluded human body, State-of-the-Art (SOTA) methods usually use a pose estimation model, which usually causes additional bias and this two-stage architecture also complicates the model. To solve this problem, an end-to-end dual-branch Transformer network for occluded person re-identification is designed. Specifically, one of the branches is the transformer-based global branch, which is responsible for extracting global features, while in the other local branch, we design the Selective Token Attention (STA) module. STA can utilize the multi-headed self-attention mechanism to select discriminating tokens for effectively extracting the local features. Further, in order to alleviate the inconsistency between Softmax Loss and Triplet Loss convergence goals, Circle Loss is introduced to design the Goal Consistency Loss (GC Loss) to supervise the network. Experiments on four challenging datasets for Re-ID tasks (including occluded person Re-ID and holistic person Re-ID) illustrate that our method can achieve SOTA performance.
AbstractList •An end-to-end dual-branch vision transformer for occluded person re-identification is proposed.•Adaptive extraction of human local features using self-Attention mechanism is achieved.•Goal Consistency Loss with more consistent convergence goals is designed.•The State-of-the-Art performance were achieved on Occluded-REID dataset. Occluded person re-identification is still a common and challenging task because people are often occluded by some obstacles (e.g. cars and trees) in the real world. In order to locate the unoccluded parts and extract local fine-grained features of the occluded human body, State-of-the-Art (SOTA) methods usually use a pose estimation model, which usually causes additional bias and this two-stage architecture also complicates the model. To solve this problem, an end-to-end dual-branch Transformer network for occluded person re-identification is designed. Specifically, one of the branches is the transformer-based global branch, which is responsible for extracting global features, while in the other local branch, we design the Selective Token Attention (STA) module. STA can utilize the multi-headed self-attention mechanism to select discriminating tokens for effectively extracting the local features. Further, in order to alleviate the inconsistency between Softmax Loss and Triplet Loss convergence goals, Circle Loss is introduced to design the Goal Consistency Loss (GC Loss) to supervise the network. Experiments on four challenging datasets for Re-ID tasks (including occluded person Re-ID and holistic person Re-ID) illustrate that our method can achieve SOTA performance.
ArticleNumber 104633
Author Mu, Xinyu
Jiang, Mingzi
Lu, Yunhua
Liu, Zhi
Author_xml – sequence: 1
  givenname: Yunhua
  surname: Lu
  fullname: Lu, Yunhua
  email: yhlu@cqut.edu.cn
– sequence: 2
  givenname: Mingzi
  surname: Jiang
  fullname: Jiang, Mingzi
  email: mingziJ@stu.cqut.edu.cn
– sequence: 3
  givenname: Zhi
  surname: Liu
  fullname: Liu, Zhi
  email: liuzhi@cqut.edu.cn
– sequence: 4
  givenname: Xinyu
  surname: Mu
  fullname: Mu, Xinyu
  email: muxy@2020.cqut.edu.cn
BookMark eNqFkE1OwzAQhS1UJNrCDVjkAil2nDgOCyRUfqVKsIC15YzHwlWaVLZbidvjEFYsYDWjmfme3rwFmfVDj4RcMrpilImr7crt9NGFVUELnkal4PyEzJmsi1wyLmdkTguRelmJM7IIYUsprWndzMnr3UF3eet1Dx-ZNnof3REzHSP20Q19FtMm2MHv0GepZANAdzBosj36kPYec2fGW-tAj8Q5ObW6C3jxU5fk_eH-bf2Ub14en9e3mxw4FTEXLWtK0VZQGl1arXlpKa8tiAI0YGOBckNBSF1LY2RdNbVsObXcNIYxVhZ8Sa4nXfBDCB6tAhe_HSTLrlOMqjEbtVVTNmrMRk3ZJLj8Be99OvOf_2E3E4bpsaNDrwI47AGN8whRmcH9LfAFQAKEUw
CitedBy_id crossref_primary_10_1007_s11227_025_07041_z
crossref_primary_10_3390_math12223508
crossref_primary_10_1016_j_engappai_2023_107521
crossref_primary_10_1016_j_jvcir_2023_103972
crossref_primary_10_1007_s11042_023_16286_w
crossref_primary_10_1016_j_jvcir_2024_104128
crossref_primary_10_1016_j_imavis_2024_104929
crossref_primary_10_1016_j_neunet_2023_09_047
crossref_primary_10_1109_ACCESS_2025_3551672
crossref_primary_10_1109_ACCESS_2023_3317950
crossref_primary_10_1109_TIV_2024_3350669
crossref_primary_10_1016_j_imavis_2023_104740
crossref_primary_10_1016_j_knosys_2023_111155
Cites_doi 10.1109/CVPR46437.2021.00542
10.1109/CVPR42600.2020.01176
10.1109/TPAMI.2021.3079910
10.1016/j.neucom.2022.03.055
10.1145/3240508.3240552
10.1109/ICCV.2019.00380
10.1109/ICCV48922.2021.01474
10.1609/aaai.v34i07.7000
10.1007/978-3-030-01225-0_30
10.1109/ICCV.2017.349
10.1145/3486678
10.1609/aaai.v35i2.16260
10.1109/CVPR.2019.00048
10.1109/CVPR46437.2021.00292
10.1609/aaai.v36i1.19967
10.1109/CVPR42600.2020.00648
10.1109/CVPR42600.2020.00643
10.1109/ICCV.2015.133
10.1109/ICCV.2019.00063
10.1109/CVPRW.2019.00190
10.1109/CVPR.2018.00129
10.1007/s11042-020-09018-x
10.1109/LSP.2018.2822810
10.1109/TMM.2021.3074239
10.1109/CVPR42600.2020.01058
10.1109/CVPR.2019.00033
10.1109/ICCV.2017.405
10.1109/TPAMI.2021.3054775
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.imavis.2023.104633
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1872-8138
ExternalDocumentID 10_1016_j_imavis_2023_104633
S0262885623000070
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABOCM
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
UNMZH
VOH
WUQ
XFK
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-6b1946b5c4da4faa34f037fc62cace9fc03d0c68a78dd875978b30f3d9d111423
IEDL.DBID AIKHN
ISSN 0262-8856
IngestDate Thu Apr 24 22:53:43 EDT 2025
Tue Jul 01 00:48:17 EDT 2025
Fri Feb 23 02:39:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Transformer
Person re-identification
Metric learning
Multi-headed self-attention
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-6b1946b5c4da4faa34f037fc62cace9fc03d0c68a78dd875978b30f3d9d111423
ParticipantIDs crossref_citationtrail_10_1016_j_imavis_2023_104633
crossref_primary_10_1016_j_imavis_2023_104633
elsevier_sciencedirect_doi_10_1016_j_imavis_2023_104633
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2023
2023-03-00
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: March 2023
PublicationDecade 2020
PublicationTitle Image and vision computing
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References L. Zheng, Y. Yang, A.G. Hauptmann, Person re-identification: Past, present and future, arXiv preprint arXiv:1610.02984 (2016).
C. Song, Y. Huang, W. Ouyang, L. Wang, Mask-guided contrastive attention model for person re-identification, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 1179–1188.
Zheng, Zheng, Yang (b0105) 2017; 14
Z. Zhong, L. Zheng, G. Kang, S. Li, Y. Yang, Random erasing data augmentation, in: Proceedings of the AAAI conference on artificial intelligence, vol. 34, 2020, pp. 13001–13008.
Y. Sun, L. Zheng, Y. Yang, Q. Tian, S. Wang, Beyond part models: Person retrieval with refined part pooling (and a strong convolutional baseline), in: Proceedings of the European conference on computer vision (ECCV), 2018, pp. 480–496.
A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al., An image is worth 16x16 words: Transformers for image recognition at scale, arXiv preprint arXiv:2010.11929 (2020).
Z. Zheng, L. Zheng, Y. Yang, Unlabeled samples generated by gan improve the person re-identification baseline in vitro, in: Proceedings of the IEEE international conference on computer vision, 2017, pp. 3754–3762.
J. He, J.-N. Chen, S. Liu, A. Kortylewski, C. Yang, Y. Bai, C. Wang, Transfg: A transformer architecture for fine-grained recognition, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, 2022, pp. 852–860.
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b0150) 2017; 30
R. Girdhar, J. Carreira, C. Doersch, A. Zisserman, Video action transformer network, in: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp. 244–253.
Yang, He, Pei, Zhou, Li, Yuan, Zhang (b0020) 2021; 24
Khorramshahi, Peri, Chen, Chellappa (b0040) 2020
Shu, Yuan, Liu, Liu (b0135) 2020; 79
K. Zhou, Y. Yang, A. Cavallaro, T. Xiang, Omni-scale feature learning for person re-identification, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 3702–3712.
Jia, Cheng, Lu, Zhang (b0035) 2022
Y. Sun, C. Cheng, Y. Zhang, C. Zhang, L. Zheng, Z. Wang, Y. Wei, Circle loss: A unified perspective of pair similarity optimization, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 6398–6407.
Zhu, Guo, Liu, Tang, Wang (b0200) 2020
Raghu, Unterthiner, Kornblith, Zhang, Dosovitskiy (b0075) 2021; 34
S. Gao, J. Wang, H. Lu, Z. Liu, Pose-guided visible part matching for occluded person reid, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 11744–11752.
Yuan, Shu, Liu, He (b0015) 2022; 491
Carion, Massa, Synnaeve, Usunier, Kirillov, Zagoruyko (b0060) 2020
Wang, Cheng, Liu, Liu (b0165) 2018; 25
Yuan, Chang, Li, He (b0010) 2022; 18
G. Wang, J.-H. Lai, W. Liang, G. Wang, Smoothing adversarial domain attack and p-memory reconsolidation for cross-domain person re-identification, in: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 10568–10577.
H. Luo, Y. Gu, X. Liao, S. Lai, W. Jiang, Bag of tricks and a strong baseline for deep person re-identification, in: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops, 2019, pp. 0–0.
Ye, Shen, Lin, Xiang, Shao, Hoi (b0180) 2021; 44
H. Wang, Y. Zhu, H. Adam, A. Yuille, L.-C. Chen, Max-deeplab: End-to-end panoptic segmentation with mask transformers, in: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021, pp. 5463–5474.
Y. Sun, Q. Xu, Y. Li, C. Zhang, Y. Li, S. Wang, J. Sun, Perceive where to focus: Learning visibility-aware part-level features for partial person re-identification, in: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp. 393–402.
G. Wang, S. Yang, H. Liu, Z. Wang, Y. Yang, S. Wang, G. Yu, E. Zhou, J. Sun, High-order information matters: Learning relation and topology for occluded person re-identification, in: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 6449–6458.
Y. Li, J. He, T. Zhang, X. Liu, Y. Zhang, F. Wu, Diverse part discovery: Occluded person re-identification with part-aware transformer, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 2898–2907.
Wang, Doretto, Sebastian, Rittscher, Tu (b0185) 2007
G. Wang, Y. Yuan, X. Chen, J. Li, X. Zhou, Learning discriminative features with multiple granularities for person re-identification, in: Proceedings of the 26th ACM international conference on Multimedia, 2018, pp. 274–282.
L. Zhao, X. Li, Y. Zhuang, J. Wang, Deeply-learned part-aligned representations for person re-identification, in: Proceedings of the IEEE international conference on computer vision, 2017, pp. 3219–3228.
Hou, Ma, Chang, Gu, Shan, Chen (b0130) 2021
S. He, H. Luo, P. Wang, F. Wang, H. Li, W. Jiang, Transreid: Transformer-based object re-identification, in: Proceedings of the IEEE/CVF international conference on computer vision, 2021, pp. 15013–15022.
M. Jia, X. Cheng, Y. Zhai, S. Lu, S. Ma, Y. Tian, J. Zhang, Matching on sets: Conquer occluded person re-identification without alignment, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, 2021, pp. 1673–1681.
P. Sun, J. Cao, Y. Jiang, R. Zhang, E. Xie, Z. Yuan, C. Wang, P. Luo, Transtrack: Multiple object tracking with transformer, arXiv preprint arXiv:2012.15460 (2020).
J. Miao, Y. Wu, P. Liu, Y. Ding, Y. Yang, Pose-guided feature alignment for occluded person re-identification, in: Proceedings of the IEEE/CVF international conference on computer vision, 2019, pp. 542–551.
A. Hermans, L. Beyer, B. Leibe, In defense of the triplet loss for person re-identification, arXiv preprint arXiv:1703.07737 (2017).
L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, Q. Tian, Scalable person re-identification: A benchmark, in: Proceedings of the IEEE international conference on computer vision, 2015, pp. 1116–1124.
10.1016/j.imavis.2023.104633_b0055
10.1016/j.imavis.2023.104633_b0110
10.1016/j.imavis.2023.104633_b0155
Yuan (10.1016/j.imavis.2023.104633_b0010) 2022; 18
Raghu (10.1016/j.imavis.2023.104633_b0075) 2021; 34
10.1016/j.imavis.2023.104633_b0115
10.1016/j.imavis.2023.104633_b0170
10.1016/j.imavis.2023.104633_b0050
10.1016/j.imavis.2023.104633_b0190
10.1016/j.imavis.2023.104633_b0070
10.1016/j.imavis.2023.104633_b0175
10.1016/j.imavis.2023.104633_b0095
10.1016/j.imavis.2023.104633_b0030
10.1016/j.imavis.2023.104633_b0195
Vaswani (10.1016/j.imavis.2023.104633_b0150) 2017; 30
Hou (10.1016/j.imavis.2023.104633_b0130) 2021
10.1016/j.imavis.2023.104633_b0145
10.1016/j.imavis.2023.104633_b0025
Ye (10.1016/j.imavis.2023.104633_b0180) 2021; 44
10.1016/j.imavis.2023.104633_b0045
10.1016/j.imavis.2023.104633_b0100
Zheng (10.1016/j.imavis.2023.104633_b0105) 2017; 14
10.1016/j.imavis.2023.104633_b0125
10.1016/j.imavis.2023.104633_b0005
10.1016/j.imavis.2023.104633_b0160
10.1016/j.imavis.2023.104633_b0080
Wang (10.1016/j.imavis.2023.104633_b0185) 2007
Zhu (10.1016/j.imavis.2023.104633_b0200) 2020
Khorramshahi (10.1016/j.imavis.2023.104633_b0040) 2020
Jia (10.1016/j.imavis.2023.104633_b0035) 2022
10.1016/j.imavis.2023.104633_b0065
10.1016/j.imavis.2023.104633_b0120
10.1016/j.imavis.2023.104633_b0085
10.1016/j.imavis.2023.104633_b0140
Shu (10.1016/j.imavis.2023.104633_b0135) 2020; 79
10.1016/j.imavis.2023.104633_b0090
Yuan (10.1016/j.imavis.2023.104633_b0015) 2022; 491
Wang (10.1016/j.imavis.2023.104633_b0165) 2018; 25
Carion (10.1016/j.imavis.2023.104633_b0060) 2020
Yang (10.1016/j.imavis.2023.104633_b0020) 2021; 24
References_xml – reference: H. Wang, Y. Zhu, H. Adam, A. Yuille, L.-C. Chen, Max-deeplab: End-to-end panoptic segmentation with mask transformers, in: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021, pp. 5463–5474.
– reference: G. Wang, J.-H. Lai, W. Liang, G. Wang, Smoothing adversarial domain attack and p-memory reconsolidation for cross-domain person re-identification, in: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 10568–10577.
– reference: M. Jia, X. Cheng, Y. Zhai, S. Lu, S. Ma, Y. Tian, J. Zhang, Matching on sets: Conquer occluded person re-identification without alignment, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, 2021, pp. 1673–1681.
– reference: A. Hermans, L. Beyer, B. Leibe, In defense of the triplet loss for person re-identification, arXiv preprint arXiv:1703.07737 (2017).
– reference: C. Song, Y. Huang, W. Ouyang, L. Wang, Mask-guided contrastive attention model for person re-identification, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 1179–1188.
– start-page: 346
  year: 2020
  end-page: 363
  ident: b0200
  article-title: Identity-guided human semantic parsing for person re-identification
  publication-title: European Conference on Computer Vision
– reference: L. Zheng, Y. Yang, A.G. Hauptmann, Person re-identification: Past, present and future, arXiv preprint arXiv:1610.02984 (2016).
– reference: J. Miao, Y. Wu, P. Liu, Y. Ding, Y. Yang, Pose-guided feature alignment for occluded person re-identification, in: Proceedings of the IEEE/CVF international conference on computer vision, 2019, pp. 542–551.
– start-page: 213
  year: 2020
  end-page: 229
  ident: b0060
  article-title: End-to-end object detection with transformers
  publication-title: European conference on computer vision
– volume: 30
  year: 2017
  ident: b0150
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al., An image is worth 16x16 words: Transformers for image recognition at scale, arXiv preprint arXiv:2010.11929 (2020).
– reference: Y. Sun, Q. Xu, Y. Li, C. Zhang, Y. Li, S. Wang, J. Sun, Perceive where to focus: Learning visibility-aware part-level features for partial person re-identification, in: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp. 393–402.
– reference: Y. Li, J. He, T. Zhang, X. Liu, Y. Zhang, F. Wu, Diverse part discovery: Occluded person re-identification with part-aware transformer, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 2898–2907.
– volume: 491
  start-page: 44
  year: 2022
  end-page: 56
  ident: b0015
  article-title: Structural target-aware model for thermal infrared tracking
  publication-title: Neurocomputing
– year: 2021
  ident: b0130
  article-title: Feature completion for occluded person re-identification
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: H. Luo, Y. Gu, X. Liao, S. Lai, W. Jiang, Bag of tricks and a strong baseline for deep person re-identification, in: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops, 2019, pp. 0–0.
– reference: G. Wang, S. Yang, H. Liu, Z. Wang, Y. Yang, S. Wang, G. Yu, E. Zhou, J. Sun, High-order information matters: Learning relation and topology for occluded person re-identification, in: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 6449–6458.
– reference: L. Zhao, X. Li, Y. Zhuang, J. Wang, Deeply-learned part-aligned representations for person re-identification, in: Proceedings of the IEEE international conference on computer vision, 2017, pp. 3219–3228.
– reference: S. He, H. Luo, P. Wang, F. Wang, H. Li, W. Jiang, Transreid: Transformer-based object re-identification, in: Proceedings of the IEEE/CVF international conference on computer vision, 2021, pp. 15013–15022.
– reference: K. Zhou, Y. Yang, A. Cavallaro, T. Xiang, Omni-scale feature learning for person re-identification, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 3702–3712.
– volume: 24
  start-page: 1956
  year: 2021
  end-page: 1967
  ident: b0020
  article-title: Siamcorners: Siamese corner networks for visual tracking
  publication-title: IEEE Trans. Multimedia
– reference: Y. Sun, L. Zheng, Y. Yang, Q. Tian, S. Wang, Beyond part models: Person retrieval with refined part pooling (and a strong convolutional baseline), in: Proceedings of the European conference on computer vision (ECCV), 2018, pp. 480–496.
– reference: Y. Sun, C. Cheng, Y. Zhang, C. Zhang, L. Zheng, Z. Wang, Y. Wei, Circle loss: A unified perspective of pair similarity optimization, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 6398–6407.
– start-page: 369
  year: 2020
  end-page: 386
  ident: b0040
  article-title: The devil is in the details: Self-supervised attention for vehicle re-identification
  publication-title: European Conference on Computer Vision
– reference: L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, Q. Tian, Scalable person re-identification: A benchmark, in: Proceedings of the IEEE international conference on computer vision, 2015, pp. 1116–1124.
– year: 2022
  ident: b0035
  article-title: Learning disentangled representation implicitly via transformer for occluded person re-identification
  publication-title: IEEE Trans. Multimedia
– volume: 18
  start-page: 1
  year: 2022
  end-page: 18
  ident: b0010
  article-title: Learning adaptive spatial-temporal context-aware correlation filters for uav tracking
  publication-title: ACM Trans. Multimed. Comput. Commun. Appl. (TOMM)
– volume: 79
  start-page: 23617
  year: 2020
  end-page: 23632
  ident: b0135
  article-title: Adaptive weight part-based convolutional network for person re-identification
  publication-title: Multimed. Tools Appl.
– reference: S. Gao, J. Wang, H. Lu, Z. Liu, Pose-guided visible part matching for occluded person reid, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 11744–11752.
– volume: 25
  start-page: 926
  year: 2018
  end-page: 930
  ident: b0165
  article-title: Additive margin softmax for face verification
  publication-title: IEEE Signal Process. Lett.
– volume: 14
  start-page: 1
  year: 2017
  end-page: 20
  ident: b0105
  article-title: A discriminatively learned cnn embedding for person reidentification
  publication-title: ACM Trans. Multimed. Comput. Commun. Appl. (TOMM)
– reference: P. Sun, J. Cao, Y. Jiang, R. Zhang, E. Xie, Z. Yuan, C. Wang, P. Luo, Transtrack: Multiple object tracking with transformer, arXiv preprint arXiv:2012.15460 (2020).
– reference: G. Wang, Y. Yuan, X. Chen, J. Li, X. Zhou, Learning discriminative features with multiple granularities for person re-identification, in: Proceedings of the 26th ACM international conference on Multimedia, 2018, pp. 274–282.
– reference: Z. Zheng, L. Zheng, Y. Yang, Unlabeled samples generated by gan improve the person re-identification baseline in vitro, in: Proceedings of the IEEE international conference on computer vision, 2017, pp. 3754–3762.
– start-page: 1
  year: 2007
  end-page: 8
  ident: b0185
  article-title: Shape and appearance context modeling
  publication-title: 2007 ieee 11th international conference on computer vision
– reference: Z. Zhong, L. Zheng, G. Kang, S. Li, Y. Yang, Random erasing data augmentation, in: Proceedings of the AAAI conference on artificial intelligence, vol. 34, 2020, pp. 13001–13008.
– volume: 34
  start-page: 12116
  year: 2021
  end-page: 12128
  ident: b0075
  article-title: Do vision transformers see like convolutional neural networks?
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: R. Girdhar, J. Carreira, C. Doersch, A. Zisserman, Video action transformer network, in: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp. 244–253.
– reference: J. He, J.-N. Chen, S. Liu, A. Kortylewski, C. Yang, Y. Bai, C. Wang, Transfg: A transformer architecture for fine-grained recognition, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, 2022, pp. 852–860.
– volume: 44
  start-page: 2872
  year: 2021
  end-page: 2893
  ident: b0180
  article-title: Deep learning for person re-identification: A survey and outlook
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– ident: 10.1016/j.imavis.2023.104633_b0065
  doi: 10.1109/CVPR46437.2021.00542
– ident: 10.1016/j.imavis.2023.104633_b0090
  doi: 10.1109/CVPR42600.2020.01176
– year: 2021
  ident: 10.1016/j.imavis.2023.104633_b0130
  article-title: Feature completion for occluded person re-identification
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2021.3079910
– volume: 491
  start-page: 44
  year: 2022
  ident: 10.1016/j.imavis.2023.104633_b0015
  article-title: Structural target-aware model for thermal infrared tracking
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.03.055
– ident: 10.1016/j.imavis.2023.104633_b0045
  doi: 10.1145/3240508.3240552
– ident: 10.1016/j.imavis.2023.104633_b0025
  doi: 10.1109/ICCV.2019.00380
– ident: 10.1016/j.imavis.2023.104633_b0070
  doi: 10.1109/ICCV48922.2021.01474
– ident: 10.1016/j.imavis.2023.104633_b0190
  doi: 10.1609/aaai.v34i07.7000
– ident: 10.1016/j.imavis.2023.104633_b0080
  doi: 10.1007/978-3-030-01225-0_30
– ident: 10.1016/j.imavis.2023.104633_b0195
  doi: 10.1109/ICCV.2017.349
– volume: 18
  start-page: 1
  issue: 3
  year: 2022
  ident: 10.1016/j.imavis.2023.104633_b0010
  article-title: Learning adaptive spatial-temporal context-aware correlation filters for uav tracking
  publication-title: ACM Trans. Multimed. Comput. Commun. Appl. (TOMM)
  doi: 10.1145/3486678
– ident: 10.1016/j.imavis.2023.104633_b0140
  doi: 10.1609/aaai.v35i2.16260
– volume: 34
  start-page: 12116
  year: 2021
  ident: 10.1016/j.imavis.2023.104633_b0075
  article-title: Do vision transformers see like convolutional neural networks?
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 10.1016/j.imavis.2023.104633_b0085
  doi: 10.1109/CVPR.2019.00048
– ident: 10.1016/j.imavis.2023.104633_b0145
  doi: 10.1109/CVPR46437.2021.00292
– ident: 10.1016/j.imavis.2023.104633_b0160
– start-page: 346
  year: 2020
  ident: 10.1016/j.imavis.2023.104633_b0200
  article-title: Identity-guided human semantic parsing for person re-identification
– volume: 14
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.imavis.2023.104633_b0105
  article-title: A discriminatively learned cnn embedding for person reidentification
  publication-title: ACM Trans. Multimed. Comput. Commun. Appl. (TOMM)
– ident: 10.1016/j.imavis.2023.104633_b0005
– ident: 10.1016/j.imavis.2023.104633_b0100
  doi: 10.1609/aaai.v36i1.19967
– ident: 10.1016/j.imavis.2023.104633_b0095
  doi: 10.1109/CVPR42600.2020.00648
– ident: 10.1016/j.imavis.2023.104633_b0120
  doi: 10.1109/CVPR42600.2020.00643
– ident: 10.1016/j.imavis.2023.104633_b0110
– ident: 10.1016/j.imavis.2023.104633_b0170
  doi: 10.1109/ICCV.2015.133
– ident: 10.1016/j.imavis.2023.104633_b0030
  doi: 10.1109/ICCV.2019.00063
– ident: 10.1016/j.imavis.2023.104633_b0115
  doi: 10.1109/CVPRW.2019.00190
– ident: 10.1016/j.imavis.2023.104633_b0055
– ident: 10.1016/j.imavis.2023.104633_b0125
  doi: 10.1109/CVPR.2018.00129
– volume: 79
  start-page: 23617
  issue: 31
  year: 2020
  ident: 10.1016/j.imavis.2023.104633_b0135
  article-title: Adaptive weight part-based convolutional network for person re-identification
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-020-09018-x
– volume: 25
  start-page: 926
  issue: 7
  year: 2018
  ident: 10.1016/j.imavis.2023.104633_b0165
  article-title: Additive margin softmax for face verification
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2018.2822810
– start-page: 369
  year: 2020
  ident: 10.1016/j.imavis.2023.104633_b0040
  article-title: The devil is in the details: Self-supervised attention for vehicle re-identification
– start-page: 1
  year: 2007
  ident: 10.1016/j.imavis.2023.104633_b0185
  article-title: Shape and appearance context modeling
– volume: 24
  start-page: 1956
  year: 2021
  ident: 10.1016/j.imavis.2023.104633_b0020
  article-title: Siamcorners: Siamese corner networks for visual tracking
  publication-title: IEEE Trans. Multimedia
  doi: 10.1109/TMM.2021.3074239
– volume: 30
  year: 2017
  ident: 10.1016/j.imavis.2023.104633_b0150
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 10.1016/j.imavis.2023.104633_b0050
  doi: 10.1109/CVPR42600.2020.01058
– start-page: 213
  year: 2020
  ident: 10.1016/j.imavis.2023.104633_b0060
  article-title: End-to-end object detection with transformers
– ident: 10.1016/j.imavis.2023.104633_b0155
  doi: 10.1109/CVPR.2019.00033
– year: 2022
  ident: 10.1016/j.imavis.2023.104633_b0035
  article-title: Learning disentangled representation implicitly via transformer for occluded person re-identification
  publication-title: IEEE Trans. Multimedia
– ident: 10.1016/j.imavis.2023.104633_b0175
  doi: 10.1109/ICCV.2017.405
– volume: 44
  start-page: 2872
  issue: 6
  year: 2021
  ident: 10.1016/j.imavis.2023.104633_b0180
  article-title: Deep learning for person re-identification: A survey and outlook
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2021.3054775
SSID ssj0007079
Score 2.465342
Snippet •An end-to-end dual-branch vision transformer for occluded person re-identification is proposed.•Adaptive extraction of human local features using...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104633
SubjectTerms Metric learning
Multi-headed self-attention
Person re-identification
Transformer
Title Dual-branch adaptive attention transformer for occluded person re-identification
URI https://dx.doi.org/10.1016/j.imavis.2023.104633
Volume 131
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_M7aIHP6bi_Bg5eM2WNWnXHsd0TMUh6GC3kq9iZW5ldlf_dpM2HRNEwVNp6SvlJXnv90veB8A1jUQSKC_CtnQ6ZpJEWPiUYSlDi2iFZtwmJz9OgvGU3c_8WQ2GVS6MDat0tr-06YW1dk-6TpvdLE27z4Y9eGFo_XdxHmd4e8OjUeDXoTG4exhPNgbZFoErt1rM4jcCVQZdEeaVvtts_o7tIl6cd1L6s4fa8jqjQ9h3cBENyj86gppeNOHAQUfkFuZHE_a26goew9PNms-xsD0zXhFXPLM2DdlKmkVsI8ortKpXyFzQUsr5WpkPZgX-RiuNU-XCiIqRO4Hp6PZlOMaudQKWhgPkOBC9iAXCl0xxlnBOWUJoP5GBJ7nUUSIJVUQGIe-HShnKYrikoCShKlI9m11LT6G-WC70GaDEcCKitEE6nDCmDR8JieG1kSCKqoTyFtBKXbF0dcVte4t5XAWQvcWlkmOr5LhUcgvwRior62r88X6_Gon42_yIjen_VfL835IXsGvvyoizS6jnq7W-MhAkF23Y6Xz22m6ifQFgCNuF
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4IHtSDD9SIzx68Fgrtvo4GJahATISE26bPuAaB4HL1t9t2u4qJ0cTTJrvtZjNtp9-3_WYGgCuScB3KdoJs6nREBU4QDwhFQsQW0XJFmQ1OHgzD3pjeT4JJBXTKWBgrq_S-v_Dpzlv7O01vzeYiy5pPhj2049ju3-48zvD2DRqQyOr6Gu9fOg-bAq740WKWvmlexs85kVf2amP5G7aGuDvtJOTn_Wltz-nugR0PFuF18T37oKJmNbDrgSP0y_KtBrbXsgoegMebFZsibitmPEMm2cJ6NGjzaDplI8xLrKqW0FzgXIjpSpoXLhz6hkuFMulFRG7cDsG4ezvq9JAvnICEYQA5CnkroSEPBJWMasYI1ZhEWoRtwYRKtMBEYhHGLIqlNITFMElOsCYykS0bW0uOQHU2n6ljALVhRFgqg3MYplQZNhJjw2oTjiWRmrA6IKW5UuGzitviFtO0lI-9pIWRU2vktDByHaDPXosiq8Yf7aNyJNJvsyM1jv_Xnif_7nkJNnujQT_t3w0fTsGWfVJoz85ANV-u1LkBIzm_cJPtAzme3FA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual-branch+adaptive+attention+transformer+for+occluded+person+re-identification&rft.jtitle=Image+and+vision+computing&rft.au=Lu%2C+Yunhua&rft.au=Jiang%2C+Mingzi&rft.au=Liu%2C+Zhi&rft.au=Mu%2C+Xinyu&rft.date=2023-03-01&rft.issn=0262-8856&rft.volume=131&rft.spage=104633&rft_id=info:doi/10.1016%2Fj.imavis.2023.104633&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_imavis_2023_104633
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0262-8856&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0262-8856&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0262-8856&client=summon