Parametric and nonparametric residual vector quantization optimizations for ANN search
For approximate nearest neighbor (ANN) search in many vision-based applications, vector quantization (VQ) is an efficient compact encoding technology. A representative approach of VQ is product quantization (PQ) which quantizes subspaces separately by Cartesian product and achieves high accuracy. Bu...
Saved in:
Published in | Neurocomputing (Amsterdam) Vol. 217; pp. 92 - 102 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
12.12.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0925-2312 1872-8286 |
DOI | 10.1016/j.neucom.2016.04.061 |
Cover
Loading…
Abstract | For approximate nearest neighbor (ANN) search in many vision-based applications, vector quantization (VQ) is an efficient compact encoding technology. A representative approach of VQ is product quantization (PQ) which quantizes subspaces separately by Cartesian product and achieves high accuracy. But its space decomposition still leads to quantization distortion. This paper presents two optimized solutions based on residual vector quantization (RVQ). Different from PQ, RVQ simulates restoring quantization error by multi-stage quantizers instead of decomposing it. To further optimize codebook and space decomposition, we try to get a better discriminated space projection. Then an orthonormal matrix R is generated. The RVQ's nonparametric solution alternately optimizes R and stage-codebooks by Singular Value Decomposition (SVD) in multiple iterations. The RVQ's parametric solution assumes that data are subject to Gaussian distribution and uses Eigenvalue Allocation to get each stage-matrix {Rl}(1≤l≤L) at once, where L is the stage number of RVQ. Compared to various optimized PQ-based methods, our methods have good superiority on restoring quantization error. |
---|---|
AbstractList | For approximate nearest neighbor (ANN) search in many vision-based applications, vector quantization (VQ) is an efficient compact encoding technology. A representative approach of VQ is product quantization (PQ) which quantizes subspaces separately by Cartesian product and achieves high accuracy. But its space decomposition still leads to quantization distortion. This paper presents two optimized solutions based on residual vector quantization (RVQ). Different from PQ, RVQ simulates restoring quantization error by multi-stage quantizers instead of decomposing it. To further optimize codebook and space decomposition, we try to get a better discriminated space projection. Then an orthonormal matrix R is generated. The RVQ's nonparametric solution alternately optimizes R and stage-codebooks by Singular Value Decomposition (SVD) in multiple iterations. The RVQ's parametric solution assumes that data are subject to Gaussian distribution and uses Eigenvalue Allocation to get each stage-matrix {Rl}(1≤l≤L) at once, where L is the stage number of RVQ. Compared to various optimized PQ-based methods, our methods have good superiority on restoring quantization error. |
Author | Li, Chuanqing Wu, Lv Guo, Dan |
Author_xml | – sequence: 1 givenname: Dan surname: Guo fullname: Guo, Dan email: guodan@hfut.edu.cn organization: School of Computer and Information, Hefei University of Technology, Hefei, China – sequence: 2 givenname: Chuanqing surname: Li fullname: Li, Chuanqing email: lichuanqing@mail.hfut.edu.cn organization: School of Computer and Information, Hefei University of Technology, Hefei, China – sequence: 3 givenname: Lv surname: Wu fullname: Wu, Lv email: wulv@whut.edu.cn organization: School of Information Engineering, Wuhan University of Technology, Wuhan, China |
BookMark | eNqFkE1Lw0AQhhepYFv9Bx7yBxJnt9tN4kEoxS8o6kG9LpPNLG5pkrq7LeivN7UFwYOehneG54V5RmzQdi0xds4h48DVxTJraWO6JhN9ykBmoPgRG_IiF2khCjVgQyjFNBUTLk7YKIQlAM-5KIfs9Qk9NhS9Mwm2ddI3r382noKrN7hKtmRi55P3DbbRfWJ0XZt06-iaQwiJ7c-zh4ckEHrzdsqOLa4CnR3mmL3cXD_P79LF4-39fLZIzQRUTBVWWJi8Mghoixw4F6pCIFkDVrYSytYCSQBCOTXWqjIXBUhbWiNLkrmcjJnc9xrfheDJ6rV3DfoPzUHv3Oil3rvROzcapO7d9NjlL8y4-P1I9OhW_8FXe5j6x7aOvA7GUWuodr7XpOvO_V3wBV6wh40 |
CitedBy_id | crossref_primary_10_1631_FITEE_1700833 crossref_primary_10_1109_TMM_2017_2697824 crossref_primary_10_3724_SP_J_1089_2022_18931 crossref_primary_10_1016_j_ins_2022_06_086 crossref_primary_10_1007_s11042_020_10262_4 crossref_primary_10_1007_s11042_020_08772_2 |
Cites_doi | 10.1109/MMUL.2013.65 10.1016/j.neucom.2014.12.079 10.1109/DCC.2015.85 10.1109/CVPR.2010.5540039 10.1016/j.neucom.2014.12.123 10.1016/j.neucom.2015.10.104 10.1109/CVPR.2010.5539994 10.1145/2597181 10.1109/CVPR.2008.4587598 10.1109/MASSP.1984.1162229 10.1109/TPAMI.2013.240 10.1109/CVPR.2013.378 10.1109/CVPR.2014.298 10.1016/j.sigpro.2014.08.029 10.3390/s101211259 10.1007/s00530-014-0364-2 10.1109/CVPR.2008.4587633 10.1109/ICME.2006.262509 10.1093/bib/bbs088 10.1109/TPAMI.2010.57 10.1109/CBMI.2014.6849842 10.1109/MMUL.2013.31 10.1109/ICCV.2003.1238663 10.1145/2795234 10.1109/CVPR.2010.5539852 10.1145/997817.997857 10.1145/502807.502809 10.1109/CVPR.2011.5995432 10.1109/CVPR.2008.4587638 10.1016/j.neucom.2013.08.004 10.1609/aaai.v30i1.10167 10.1109/CVPR.2006.264 |
ContentType | Journal Article |
Copyright | 2016 Elsevier B.V. |
Copyright_xml | – notice: 2016 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.neucom.2016.04.061 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-8286 |
EndPage | 102 |
ExternalDocumentID | 10_1016_j_neucom_2016_04_061 S0925231216306282 |
GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW SSH WUQ XPP |
ID | FETCH-LOGICAL-c306t-6aba8c7bca0af8701126ba0e4d0abfb26fd2ae20a095cff6972804f9fc49e4743 |
IEDL.DBID | .~1 |
ISSN | 0925-2312 |
IngestDate | Thu Jul 03 08:29:29 EDT 2025 Thu Apr 24 23:03:31 EDT 2025 Fri Feb 23 02:30:26 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Residual vector quantization Parametric optimization Vector quantization optimization Stage codebook Nonparametric optimization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-6aba8c7bca0af8701126ba0e4d0abfb26fd2ae20a095cff6972804f9fc49e4743 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1016_j_neucom_2016_04_061 crossref_citationtrail_10_1016_j_neucom_2016_04_061 elsevier_sciencedirect_doi_10_1016_j_neucom_2016_04_061 |
PublicationCentury | 2000 |
PublicationDate | 2016-12-12 |
PublicationDateYYYYMMDD | 2016-12-12 |
PublicationDate_xml | – month: 12 year: 2016 text: 2016-12-12 day: 12 |
PublicationDecade | 2010 |
PublicationTitle | Neurocomputing (Amsterdam) |
PublicationYear | 2016 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | C. Silpa-Anan, R. Hartley, S. Machines, A. Canberra, Optimised KD-trees for fast image descriptor matching, in: Proceedings of the CVPR, IEEE, 2008, pp. 1–8. H. Jegou, M. Douze, C. Schmid, P. Perez, Aggregating local descriptors into a compact image representation, in: Proceedings of the CVPR, IEEE, 2010, pp. 3304–3311. Zou, Li, Jiang, Lin, Li, Chen (bib37) 2014; 15 M. Muja, D.G. Lowe, Fast approximate nearest neighbors with automatic algorithm configuration, in: Proceedings of the VISAPP, 2009, pp .331–340. Pan, Guan, Luo, Duan, Tian, Yi, Zhao, Yu (bib25) 2016; 175 A. Torralba, R. Fergus, Y. Weiss, Small codes and large image databases for recognition, in: Proceedings of the CVPR, IEEE, 2008, pp. 1–8. Guan, Wang, Duan, Ji (bib14) 2015; 7 Zhang, Guan, Duan, Wei, Gao, Mao (bib36) 2015; 112 Wei, Guan, Duan, Yu, Mao (bib33) 2015; 21 J. Wang, S. Kumar, S.F. Chang, Semi-supervised hashing for scalable image retrieval, in: Proceedings of the CVPR, IEEE, 2010, pp. 3424–3431. Zou, Zeng, Cao, Ji (bib38) 2016; 173 Shakhnarovich, Indyk, Darrell (bib26) 2006 Gray (bib12) 1984; 1 J. Sivic, A. Zisserman, Video google: a text retrieval approach to object matching in videos, in: Proceedings of the ICCV, IEEE, 2003, pp. 1470–1477. J. Brandt, Transform coding for fast approximate nearest neighbor search in high dimensions, in: Proceedings of the CVPR, IEEE, 2010, pp. 1815–1822. D. Nister, H. Stewenius, Scalable recognition with a vocabulary tree, in: Proceedings of the CVPR, IEEE, 2006, pp. 2161–2168. O. Boiman, E. Shechtman, M. Irani, In defense of nearest-neighbor based image classification, in: Proceedings of the CVPR, IEEE, 2008, pp. 1–8. Lin, Chen, Qiu, Wu, Krishnan, Zou (bib20) 2014; 123 B. Wang, Z. Li, M. Li, W.Y. Ma, Large-scale duplicate detection for web image search, in: Proceedings of the ICME, IEEE, 2006, pp. 353–356. K. He, F. Wen, J. Sun, K-Means Hashing: an affinity-preserving quantization method for learning binary compact codes, in: Proceedings of the CVPR, IEEE, 2013, pp. 2938–2945. Ji, Gao, Liu, Xie, Tian, Li (bib18) 2015; 6 L. Ai, J. Yu, T. Guan, Y. He, Efficient approximate nearest neighbor search by optimized residual vector quantization, in: Proceedings of the CBMI, IEEE, 2014, pp. 1–4. D. Song, W. Liu, D. A. Meyer, D. Tao, R. Ji, Rank preserving hashing for rapid image search, in: Proceedings of the DCC, IEEE, 2015, pp. 353–362. Y. Kalantidis, Y. Avrithis, Locally optimized product quantization for approximate nearest neighbor search, in: Proceedings of the CVPR, IEEE, 2014, pp. 2321–2328 Wei, Guan, Yu (bib34) 2014; 21 Y. Gong, S. Lazebnik, Iterative quantization: a procrustean approach to learning binary codes, in: Proceedings of the CVPR, IEEE, 2011, pp. 817–824. Ge, He, Ke, Sun (bib10) 2014; 36 Beyer, Goldstein, Ramakrishnan, Shaft (bib3) 1999; 16 Andoni, Indyk (bib1) 2006; 51 Chen, Guan, Wang (bib7) 2010; 10 M. Datar, N. Immorlica, P. Indyk, V.S. Mirrokni, Locality-sensitive hashing scheme based on p-stable distributions, in: Proceedings of the 20th Annual ACM SoCG, 2004, pp. 253–262. Guan, He, Duan, Yu (bib13) 2014; 21 Luo, Guan, Wei, Pan, Yu (bib22) 2015; 156 Y. Weiss, A. Torralba, R. Fergus, Spectral hashing, in: Proceedings of the NIPS, vol. 282 (3), 2008, pp. 1753–1760. Jegou, Douze, Schmid (bib16) 2010; 33 Böhm, Berchtold, Keim (bib4) 2001; 33 T. Ge, K. He, Q. Ke, J. Sun, Optimized product quantization for approximate nearest neighbor search, in: Proceedings of the CVPR, IEEE, pp. 2946–2953. H. Liu, R. Ji, Y. Wu, W. Liu, Towards optimal binary code learning via ordinal embedding, in: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, 2016. 10.1016/j.neucom.2016.04.061_bib9 10.1016/j.neucom.2016.04.061_bib5 Gray (10.1016/j.neucom.2016.04.061_bib12) 1984; 1 10.1016/j.neucom.2016.04.061_bib6 Andoni (10.1016/j.neucom.2016.04.061_bib1) 2006; 51 10.1016/j.neucom.2016.04.061_bib8 10.1016/j.neucom.2016.04.061_bib2 10.1016/j.neucom.2016.04.061_bib15 Wei (10.1016/j.neucom.2016.04.061_bib34) 2014; 21 10.1016/j.neucom.2016.04.061_bib17 Luo (10.1016/j.neucom.2016.04.061_bib22) 2015; 156 10.1016/j.neucom.2016.04.061_bib19 Zou (10.1016/j.neucom.2016.04.061_bib37) 2014; 15 Lin (10.1016/j.neucom.2016.04.061_bib20) 2014; 123 Guan (10.1016/j.neucom.2016.04.061_bib14) 2015; 7 10.1016/j.neucom.2016.04.061_bib21 10.1016/j.neucom.2016.04.061_bib23 10.1016/j.neucom.2016.04.061_bib24 Wei (10.1016/j.neucom.2016.04.061_bib33) 2015; 21 Shakhnarovich (10.1016/j.neucom.2016.04.061_bib26) 2006 Pan (10.1016/j.neucom.2016.04.061_bib25) 2016; 175 Chen (10.1016/j.neucom.2016.04.061_bib7) 2010; 10 Böhm (10.1016/j.neucom.2016.04.061_bib4) 2001; 33 10.1016/j.neucom.2016.04.061_bib27 Guan (10.1016/j.neucom.2016.04.061_bib13) 2014; 21 10.1016/j.neucom.2016.04.061_bib28 Zhang (10.1016/j.neucom.2016.04.061_bib36) 2015; 112 10.1016/j.neucom.2016.04.061_bib29 Beyer (10.1016/j.neucom.2016.04.061_bib3) 1999; 16 Zou (10.1016/j.neucom.2016.04.061_bib38) 2016; 173 10.1016/j.neucom.2016.04.061_bib30 10.1016/j.neucom.2016.04.061_bib31 10.1016/j.neucom.2016.04.061_bib32 Ge (10.1016/j.neucom.2016.04.061_bib10) 2014; 36 10.1016/j.neucom.2016.04.061_bib11 10.1016/j.neucom.2016.04.061_bib35 Ji (10.1016/j.neucom.2016.04.061_bib18) 2015; 6 Jegou (10.1016/j.neucom.2016.04.061_bib16) 2010; 33 |
References_xml | – reference: L. Ai, J. Yu, T. Guan, Y. He, Efficient approximate nearest neighbor search by optimized residual vector quantization, in: Proceedings of the CBMI, IEEE, 2014, pp. 1–4. – volume: 10 start-page: 11259 year: 2010 end-page: 11273 ident: bib7 article-title: Approximate nearest neighbor search by residual vector quantization publication-title: Sensors – volume: 156 start-page: 105 year: 2015 end-page: 116 ident: bib22 article-title: Fast terrain mapping from low altitude digital imagery publication-title: Neurocomputing – reference: B. Wang, Z. Li, M. Li, W.Y. Ma, Large-scale duplicate detection for web image search, in: Proceedings of the ICME, IEEE, 2006, pp. 353–356. – reference: J. Brandt, Transform coding for fast approximate nearest neighbor search in high dimensions, in: Proceedings of the CVPR, IEEE, 2010, pp. 1815–1822. – volume: 1 start-page: 4 year: 1984 end-page: 29 ident: bib12 article-title: Vector quantization publication-title: ASSP Mag. IEEE – year: 2006 ident: bib26 article-title: Nearest-neighbor methods in learning and vision: theory and practice publication-title: , Pattern Anal. Appl. – reference: C. Silpa-Anan, R. Hartley, S. Machines, A. Canberra, Optimised KD-trees for fast image descriptor matching, in: Proceedings of the CVPR, IEEE, 2008, pp. 1–8. – volume: 21 start-page: 381 year: 2015 end-page: 399 ident: bib33 article-title: Wide area localization and tracking on camera phones for mobile augmented reality systems publication-title: Multimed. Syst. – reference: J. Sivic, A. Zisserman, Video google: a text retrieval approach to object matching in videos, in: Proceedings of the ICCV, IEEE, 2003, pp. 1470–1477. – volume: 173 start-page: 346 year: 2016 end-page: 354 ident: bib38 article-title: A novel features ranking metric with application to scalable visual and bioinformatics data classification publication-title: Neurocomputing – volume: 175 start-page: 644 year: 2016 end-page: 651 ident: bib25 article-title: Dense 3D reconstruction combining depth and RGB information publication-title: Neurocomputing – reference: Y. Weiss, A. Torralba, R. Fergus, Spectral hashing, in: Proceedings of the NIPS, vol. 282 (3), 2008, pp. 1753–1760. – volume: 7 start-page: 1 year: 2015 end-page: 29 ident: bib14 article-title: On-device mobile landmark recognition using binarized descriptor with multifeature fusion publication-title: ACM Trans. Intell. Syst. Technol. – volume: 21 start-page: 41 year: 2014 end-page: 51 ident: bib34 article-title: Projected residual vector quantization for ANN search publication-title: IEEE Multimed. – volume: 33 start-page: 322 year: 2001 end-page: 373 ident: bib4 article-title: Searching in high-dimensional spaces: index structures for improving the performance of multimedia databases publication-title: ACM CSUR – reference: M. Muja, D.G. Lowe, Fast approximate nearest neighbors with automatic algorithm configuration, in: Proceedings of the VISAPP, 2009, pp .331–340. – reference: T. Ge, K. He, Q. Ke, J. Sun, Optimized product quantization for approximate nearest neighbor search, in: Proceedings of the CVPR, IEEE, pp. 2946–2953. – reference: M. Datar, N. Immorlica, P. Indyk, V.S. Mirrokni, Locality-sensitive hashing scheme based on p-stable distributions, in: Proceedings of the 20th Annual ACM SoCG, 2004, pp. 253–262. – volume: 33 start-page: 117 year: 2010 end-page: 128 ident: bib16 article-title: Product quantization for nearest neighbor search publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: D. Song, W. Liu, D. A. Meyer, D. Tao, R. Ji, Rank preserving hashing for rapid image search, in: Proceedings of the DCC, IEEE, 2015, pp. 353–362. – reference: J. Wang, S. Kumar, S.F. Chang, Semi-supervised hashing for scalable image retrieval, in: Proceedings of the CVPR, IEEE, 2010, pp. 3424–3431. – reference: Y. Gong, S. Lazebnik, Iterative quantization: a procrustean approach to learning binary codes, in: Proceedings of the CVPR, IEEE, 2011, pp. 817–824. – reference: H. Liu, R. Ji, Y. Wu, W. Liu, Towards optimal binary code learning via ordinal embedding, in: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, 2016. – reference: K. He, F. Wen, J. Sun, K-Means Hashing: an affinity-preserving quantization method for learning binary compact codes, in: Proceedings of the CVPR, IEEE, 2013, pp. 2938–2945. – volume: 6 start-page: 1 year: 2015 end-page: 18 ident: bib18 article-title: When location meets social multimedia: a comprehensive survey on location-aware social multimedia publication-title: ACM Trans. Intell. Syst. Technol. – volume: 15 start-page: 637 year: 2014 end-page: 647 ident: bib37 article-title: Survey of MapReduce frame operation in bioinformatics publication-title: Brief. Bioinform. – volume: 21 start-page: 32 year: 2014 end-page: 41 ident: bib13 article-title: Efficient BOF generation and compression for on-device mobile visual location recognition publication-title: IEEE Multimed. – reference: Y. Kalantidis, Y. Avrithis, Locally optimized product quantization for approximate nearest neighbor search, in: Proceedings of the CVPR, IEEE, 2014, pp. 2321–2328 – volume: 16 start-page: 217 year: 1999 end-page: 235 ident: bib3 article-title: When is “Nearest Neighbor” Meaningful? Database Theory—ICDT’99, – reference: H. Jegou, M. Douze, C. Schmid, P. Perez, Aggregating local descriptors into a compact image representation, in: Proceedings of the CVPR, IEEE, 2010, pp. 3304–3311. – volume: 36 start-page: 744 year: 2014 end-page: 755 ident: bib10 article-title: Optimized product quantization publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: A. Torralba, R. Fergus, Y. Weiss, Small codes and large image databases for recognition, in: Proceedings of the CVPR, IEEE, 2008, pp. 1–8. – volume: 112 start-page: 17 year: 2015 end-page: 26 ident: bib36 article-title: Inertial sensors supported visual descriptors encoding and geometric verification for mobile visual location recognition applications publication-title: Signal Process. – reference: O. Boiman, E. Shechtman, M. Irani, In defense of nearest-neighbor based image classification, in: Proceedings of the CVPR, IEEE, 2008, pp. 1–8. – volume: 123 start-page: 424 year: 2014 end-page: 435 ident: bib20 article-title: LibD3C: ensemble classifiers with a clustering and dynamic selection strategy publication-title: Neurocomputing – reference: D. Nister, H. Stewenius, Scalable recognition with a vocabulary tree, in: Proceedings of the CVPR, IEEE, 2006, pp. 2161–2168. – volume: 51 start-page: 459 year: 2006 end-page: 468 ident: bib1 article-title: Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions publication-title: FOCS IEEE – volume: 21 start-page: 41 issue: 3 year: 2014 ident: 10.1016/j.neucom.2016.04.061_bib34 article-title: Projected residual vector quantization for ANN search publication-title: IEEE Multimed. doi: 10.1109/MMUL.2013.65 – volume: 156 start-page: 105 year: 2015 ident: 10.1016/j.neucom.2016.04.061_bib22 article-title: Fast terrain mapping from low altitude digital imagery publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.12.079 – ident: 10.1016/j.neucom.2016.04.061_bib29 doi: 10.1109/DCC.2015.85 – ident: 10.1016/j.neucom.2016.04.061_bib35 – ident: 10.1016/j.neucom.2016.04.061_bib17 doi: 10.1109/CVPR.2010.5540039 – volume: 173 start-page: 346 year: 2016 ident: 10.1016/j.neucom.2016.04.061_bib38 article-title: A novel features ranking metric with application to scalable visual and bioinformatics data classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.12.123 – volume: 175 start-page: 644 year: 2016 ident: 10.1016/j.neucom.2016.04.061_bib25 article-title: Dense 3D reconstruction combining depth and RGB information publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.10.104 – year: 2006 ident: 10.1016/j.neucom.2016.04.061_bib26 article-title: Nearest-neighbor methods in learning and vision: theory and practice publication-title: , Pattern Anal. Appl. – ident: 10.1016/j.neucom.2016.04.061_bib32 doi: 10.1109/CVPR.2010.5539994 – volume: 6 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.neucom.2016.04.061_bib18 article-title: When location meets social multimedia: a comprehensive survey on location-aware social multimedia publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/2597181 – ident: 10.1016/j.neucom.2016.04.061_bib5 doi: 10.1109/CVPR.2008.4587598 – volume: 1 start-page: 4 issue: 2 year: 1984 ident: 10.1016/j.neucom.2016.04.061_bib12 article-title: Vector quantization publication-title: ASSP Mag. IEEE doi: 10.1109/MASSP.1984.1162229 – volume: 36 start-page: 744 issue: 4 year: 2014 ident: 10.1016/j.neucom.2016.04.061_bib10 article-title: Optimized product quantization publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.240 – ident: 10.1016/j.neucom.2016.04.061_bib15 doi: 10.1109/CVPR.2013.378 – ident: 10.1016/j.neucom.2016.04.061_bib19 doi: 10.1109/CVPR.2014.298 – volume: 112 start-page: 17 year: 2015 ident: 10.1016/j.neucom.2016.04.061_bib36 article-title: Inertial sensors supported visual descriptors encoding and geometric verification for mobile visual location recognition applications publication-title: Signal Process. doi: 10.1016/j.sigpro.2014.08.029 – volume: 10 start-page: 11259 issue: 12 year: 2010 ident: 10.1016/j.neucom.2016.04.061_bib7 article-title: Approximate nearest neighbor search by residual vector quantization publication-title: Sensors doi: 10.3390/s101211259 – ident: 10.1016/j.neucom.2016.04.061_bib9 – volume: 21 start-page: 381 year: 2015 ident: 10.1016/j.neucom.2016.04.061_bib33 article-title: Wide area localization and tracking on camera phones for mobile augmented reality systems publication-title: Multimed. Syst. doi: 10.1007/s00530-014-0364-2 – volume: 16 start-page: 217 year: 1999 ident: 10.1016/j.neucom.2016.04.061_bib3 – ident: 10.1016/j.neucom.2016.04.061_bib30 doi: 10.1109/CVPR.2008.4587633 – ident: 10.1016/j.neucom.2016.04.061_bib31 doi: 10.1109/ICME.2006.262509 – volume: 15 start-page: 637 issue: 4 year: 2014 ident: 10.1016/j.neucom.2016.04.061_bib37 article-title: Survey of MapReduce frame operation in bioinformatics publication-title: Brief. Bioinform. doi: 10.1093/bib/bbs088 – volume: 33 start-page: 117 issue: 1 year: 2010 ident: 10.1016/j.neucom.2016.04.061_bib16 article-title: Product quantization for nearest neighbor search publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2010.57 – ident: 10.1016/j.neucom.2016.04.061_bib2 doi: 10.1109/CBMI.2014.6849842 – volume: 21 start-page: 32 issue: 2 year: 2014 ident: 10.1016/j.neucom.2016.04.061_bib13 article-title: Efficient BOF generation and compression for on-device mobile visual location recognition publication-title: IEEE Multimed. doi: 10.1109/MMUL.2013.31 – ident: 10.1016/j.neucom.2016.04.061_bib28 doi: 10.1109/ICCV.2003.1238663 – volume: 51 start-page: 459 issue: 1 year: 2006 ident: 10.1016/j.neucom.2016.04.061_bib1 article-title: Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions publication-title: FOCS IEEE – volume: 7 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.neucom.2016.04.061_bib14 article-title: On-device mobile landmark recognition using binarized descriptor with multifeature fusion publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/2795234 – ident: 10.1016/j.neucom.2016.04.061_bib6 doi: 10.1109/CVPR.2010.5539852 – ident: 10.1016/j.neucom.2016.04.061_bib8 doi: 10.1145/997817.997857 – volume: 33 start-page: 322 year: 2001 ident: 10.1016/j.neucom.2016.04.061_bib4 article-title: Searching in high-dimensional spaces: index structures for improving the performance of multimedia databases publication-title: ACM CSUR doi: 10.1145/502807.502809 – ident: 10.1016/j.neucom.2016.04.061_bib11 doi: 10.1109/CVPR.2011.5995432 – ident: 10.1016/j.neucom.2016.04.061_bib27 doi: 10.1109/CVPR.2008.4587638 – ident: 10.1016/j.neucom.2016.04.061_bib23 – volume: 123 start-page: 424 year: 2014 ident: 10.1016/j.neucom.2016.04.061_bib20 article-title: LibD3C: ensemble classifiers with a clustering and dynamic selection strategy publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.08.004 – ident: 10.1016/j.neucom.2016.04.061_bib21 doi: 10.1609/aaai.v30i1.10167 – ident: 10.1016/j.neucom.2016.04.061_bib24 doi: 10.1109/CVPR.2006.264 |
SSID | ssj0017129 |
Score | 2.190502 |
Snippet | For approximate nearest neighbor (ANN) search in many vision-based applications, vector quantization (VQ) is an efficient compact encoding technology. A... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 92 |
SubjectTerms | Nonparametric optimization Parametric optimization Residual vector quantization Stage codebook Vector quantization optimization |
Title | Parametric and nonparametric residual vector quantization optimizations for ANN search |
URI | https://dx.doi.org/10.1016/j.neucom.2016.04.061 |
Volume | 217 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5KvXjxLdZHycFr7G6abppjKZaqWASt9BayeUBFa5XWo7_dyW62KoiCt90lgfBlMvNlmW8G4FQYLrxINc2tl5QbJ_DJSsoMT71kzHWK1gnXo2w45peTzqQG_UoLE9Iqo-8vfXrhreOXVkSzNZ9OW7eJZHiLShkyiiAEDH6YcxGs_Ox9leaRipSV9fZYh4bRlXyuyPGauWXIGcEgmBUFT7P05_D0JeQMtmAjckXSK5ezDTU324HNqg8DicdyF-5vdEixCrX2iZ5Zgjf6-ecXvE8XgivyVvygJy9LBDOqL8kzeoynSopJkMCS3mhESvPfg_Hg_K4_pLFfAjWIwIJmOtddI3KjE-3xHAZ1UK4Tx22ic5-zzFumHUs00irjfSZDayrupTdcOo5UYh_quEJ3AARZorXI5nAju9wJppFGWemswHDfbjPTgHYFkzKxmHjoafGoqqyxB1WCqwK4KuEKwW0AXc2al8U0_hgvqh1Q34xCob__debhv2cewXp4CxkrKTuG-uJ16U6QdyzyZmFYTVjrXVwNRx-S19o0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5je9AX7-K85sHXsjZLm-VxDEfntiK4yd5CmgtMdE7Z_P2etOlUEAXfStoD5Utyzpf2fOcgdM0UZZZFMsi15QFVhsGV5gFRNLKcEBMXrRPGWZJO6e0sntVQr9LCuLRK7_tLn154az_S8mi2lvN56z7kBE5REQFG4YSA4IcbrjpVXEeN7mCYZpufCSwiZck9EgfOoFLQFWleC7N2aSMQB5Oi5mkS_RyhvkSd_h7a8XQRd8s32kc1szhAu1UrBux35iF6uJMuy8qV28dyoTEc6pefI3CkLjRX-L34Ro9f14CnF2DiF3Aaz5UaEwOHxd0sw-UOOELT_s2klwa-ZUKgAIRVkMhcdhTLlQylha3oBEK5DA3VocxtThKriTQklMCslLUJd92pqOVWUW4osIljVIc3NCcIA1HUGggdzGWHGkYkMCnNjWYQ8dttopqoXcEklK8n7tpaPIkqcexRlOAKB64IqQBwmyjYWC3Lehp_PM-qGRDf1oUAl_-r5em_La_QVjoZj8RokA3P0La74xJYInKO6qu3tbkAGrLKL_0y-wAUQ9zl |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parametric+and+nonparametric+residual+vector+quantization+optimizations+for+ANN+search&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Guo%2C+Dan&rft.au=Li%2C+Chuanqing&rft.au=Wu%2C+Lv&rft.date=2016-12-12&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=217&rft.spage=92&rft.epage=102&rft_id=info:doi/10.1016%2Fj.neucom.2016.04.061&rft.externalDocID=S0925231216306282 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |