Parametric and nonparametric residual vector quantization optimizations for ANN search

For approximate nearest neighbor (ANN) search in many vision-based applications, vector quantization (VQ) is an efficient compact encoding technology. A representative approach of VQ is product quantization (PQ) which quantizes subspaces separately by Cartesian product and achieves high accuracy. Bu...

Full description

Saved in:
Bibliographic Details
Published inNeurocomputing (Amsterdam) Vol. 217; pp. 92 - 102
Main Authors Guo, Dan, Li, Chuanqing, Wu, Lv
Format Journal Article
LanguageEnglish
Published Elsevier B.V 12.12.2016
Subjects
Online AccessGet full text
ISSN0925-2312
1872-8286
DOI10.1016/j.neucom.2016.04.061

Cover

Loading…
Abstract For approximate nearest neighbor (ANN) search in many vision-based applications, vector quantization (VQ) is an efficient compact encoding technology. A representative approach of VQ is product quantization (PQ) which quantizes subspaces separately by Cartesian product and achieves high accuracy. But its space decomposition still leads to quantization distortion. This paper presents two optimized solutions based on residual vector quantization (RVQ). Different from PQ, RVQ simulates restoring quantization error by multi-stage quantizers instead of decomposing it. To further optimize codebook and space decomposition, we try to get a better discriminated space projection. Then an orthonormal matrix R is generated. The RVQ's nonparametric solution alternately optimizes R and stage-codebooks by Singular Value Decomposition (SVD) in multiple iterations. The RVQ's parametric solution assumes that data are subject to Gaussian distribution and uses Eigenvalue Allocation to get each stage-matrix {Rl}(1≤l≤L) at once, where L is the stage number of RVQ. Compared to various optimized PQ-based methods, our methods have good superiority on restoring quantization error.
AbstractList For approximate nearest neighbor (ANN) search in many vision-based applications, vector quantization (VQ) is an efficient compact encoding technology. A representative approach of VQ is product quantization (PQ) which quantizes subspaces separately by Cartesian product and achieves high accuracy. But its space decomposition still leads to quantization distortion. This paper presents two optimized solutions based on residual vector quantization (RVQ). Different from PQ, RVQ simulates restoring quantization error by multi-stage quantizers instead of decomposing it. To further optimize codebook and space decomposition, we try to get a better discriminated space projection. Then an orthonormal matrix R is generated. The RVQ's nonparametric solution alternately optimizes R and stage-codebooks by Singular Value Decomposition (SVD) in multiple iterations. The RVQ's parametric solution assumes that data are subject to Gaussian distribution and uses Eigenvalue Allocation to get each stage-matrix {Rl}(1≤l≤L) at once, where L is the stage number of RVQ. Compared to various optimized PQ-based methods, our methods have good superiority on restoring quantization error.
Author Li, Chuanqing
Wu, Lv
Guo, Dan
Author_xml – sequence: 1
  givenname: Dan
  surname: Guo
  fullname: Guo, Dan
  email: guodan@hfut.edu.cn
  organization: School of Computer and Information, Hefei University of Technology, Hefei, China
– sequence: 2
  givenname: Chuanqing
  surname: Li
  fullname: Li, Chuanqing
  email: lichuanqing@mail.hfut.edu.cn
  organization: School of Computer and Information, Hefei University of Technology, Hefei, China
– sequence: 3
  givenname: Lv
  surname: Wu
  fullname: Wu, Lv
  email: wulv@whut.edu.cn
  organization: School of Information Engineering, Wuhan University of Technology, Wuhan, China
BookMark eNqFkE1Lw0AQhhepYFv9Bx7yBxJnt9tN4kEoxS8o6kG9LpPNLG5pkrq7LeivN7UFwYOehneG54V5RmzQdi0xds4h48DVxTJraWO6JhN9ykBmoPgRG_IiF2khCjVgQyjFNBUTLk7YKIQlAM-5KIfs9Qk9NhS9Mwm2ddI3r382noKrN7hKtmRi55P3DbbRfWJ0XZt06-iaQwiJ7c-zh4ckEHrzdsqOLa4CnR3mmL3cXD_P79LF4-39fLZIzQRUTBVWWJi8Mghoixw4F6pCIFkDVrYSytYCSQBCOTXWqjIXBUhbWiNLkrmcjJnc9xrfheDJ6rV3DfoPzUHv3Oil3rvROzcapO7d9NjlL8y4-P1I9OhW_8FXe5j6x7aOvA7GUWuodr7XpOvO_V3wBV6wh40
CitedBy_id crossref_primary_10_1631_FITEE_1700833
crossref_primary_10_1109_TMM_2017_2697824
crossref_primary_10_3724_SP_J_1089_2022_18931
crossref_primary_10_1016_j_ins_2022_06_086
crossref_primary_10_1007_s11042_020_10262_4
crossref_primary_10_1007_s11042_020_08772_2
Cites_doi 10.1109/MMUL.2013.65
10.1016/j.neucom.2014.12.079
10.1109/DCC.2015.85
10.1109/CVPR.2010.5540039
10.1016/j.neucom.2014.12.123
10.1016/j.neucom.2015.10.104
10.1109/CVPR.2010.5539994
10.1145/2597181
10.1109/CVPR.2008.4587598
10.1109/MASSP.1984.1162229
10.1109/TPAMI.2013.240
10.1109/CVPR.2013.378
10.1109/CVPR.2014.298
10.1016/j.sigpro.2014.08.029
10.3390/s101211259
10.1007/s00530-014-0364-2
10.1109/CVPR.2008.4587633
10.1109/ICME.2006.262509
10.1093/bib/bbs088
10.1109/TPAMI.2010.57
10.1109/CBMI.2014.6849842
10.1109/MMUL.2013.31
10.1109/ICCV.2003.1238663
10.1145/2795234
10.1109/CVPR.2010.5539852
10.1145/997817.997857
10.1145/502807.502809
10.1109/CVPR.2011.5995432
10.1109/CVPR.2008.4587638
10.1016/j.neucom.2013.08.004
10.1609/aaai.v30i1.10167
10.1109/CVPR.2006.264
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2016.04.061
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 102
ExternalDocumentID 10_1016_j_neucom_2016_04_061
S0925231216306282
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
SSH
WUQ
XPP
ID FETCH-LOGICAL-c306t-6aba8c7bca0af8701126ba0e4d0abfb26fd2ae20a095cff6972804f9fc49e4743
IEDL.DBID .~1
ISSN 0925-2312
IngestDate Thu Jul 03 08:29:29 EDT 2025
Thu Apr 24 23:03:31 EDT 2025
Fri Feb 23 02:30:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Residual vector quantization
Parametric optimization
Vector quantization optimization
Stage codebook
Nonparametric optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-6aba8c7bca0af8701126ba0e4d0abfb26fd2ae20a095cff6972804f9fc49e4743
PageCount 11
ParticipantIDs crossref_primary_10_1016_j_neucom_2016_04_061
crossref_citationtrail_10_1016_j_neucom_2016_04_061
elsevier_sciencedirect_doi_10_1016_j_neucom_2016_04_061
PublicationCentury 2000
PublicationDate 2016-12-12
PublicationDateYYYYMMDD 2016-12-12
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-12
  day: 12
PublicationDecade 2010
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References C. Silpa-Anan, R. Hartley, S. Machines, A. Canberra, Optimised KD-trees for fast image descriptor matching, in: Proceedings of the CVPR, IEEE, 2008, pp. 1–8.
H. Jegou, M. Douze, C. Schmid, P. Perez, Aggregating local descriptors into a compact image representation, in: Proceedings of the CVPR, IEEE, 2010, pp. 3304–3311.
Zou, Li, Jiang, Lin, Li, Chen (bib37) 2014; 15
M. Muja, D.G. Lowe, Fast approximate nearest neighbors with automatic algorithm configuration, in: Proceedings of the VISAPP, 2009, pp .331–340.
Pan, Guan, Luo, Duan, Tian, Yi, Zhao, Yu (bib25) 2016; 175
A. Torralba, R. Fergus, Y. Weiss, Small codes and large image databases for recognition, in: Proceedings of the CVPR, IEEE, 2008, pp. 1–8.
Guan, Wang, Duan, Ji (bib14) 2015; 7
Zhang, Guan, Duan, Wei, Gao, Mao (bib36) 2015; 112
Wei, Guan, Duan, Yu, Mao (bib33) 2015; 21
J. Wang, S. Kumar, S.F. Chang, Semi-supervised hashing for scalable image retrieval, in: Proceedings of the CVPR, IEEE, 2010, pp. 3424–3431.
Zou, Zeng, Cao, Ji (bib38) 2016; 173
Shakhnarovich, Indyk, Darrell (bib26) 2006
Gray (bib12) 1984; 1
J. Sivic, A. Zisserman, Video google: a text retrieval approach to object matching in videos, in: Proceedings of the ICCV, IEEE, 2003, pp. 1470–1477.
J. Brandt, Transform coding for fast approximate nearest neighbor search in high dimensions, in: Proceedings of the CVPR, IEEE, 2010, pp. 1815–1822.
D. Nister, H. Stewenius, Scalable recognition with a vocabulary tree, in: Proceedings of the CVPR, IEEE, 2006, pp. 2161–2168.
O. Boiman, E. Shechtman, M. Irani, In defense of nearest-neighbor based image classification, in: Proceedings of the CVPR, IEEE, 2008, pp. 1–8.
Lin, Chen, Qiu, Wu, Krishnan, Zou (bib20) 2014; 123
B. Wang, Z. Li, M. Li, W.Y. Ma, Large-scale duplicate detection for web image search, in: Proceedings of the ICME, IEEE, 2006, pp. 353–356.
K. He, F. Wen, J. Sun, K-Means Hashing: an affinity-preserving quantization method for learning binary compact codes, in: Proceedings of the CVPR, IEEE, 2013, pp. 2938–2945.
Ji, Gao, Liu, Xie, Tian, Li (bib18) 2015; 6
L. Ai, J. Yu, T. Guan, Y. He, Efficient approximate nearest neighbor search by optimized residual vector quantization, in: Proceedings of the CBMI, IEEE, 2014, pp. 1–4.
D. Song, W. Liu, D. A. Meyer, D. Tao, R. Ji, Rank preserving hashing for rapid image search, in: Proceedings of the DCC, IEEE, 2015, pp. 353–362.
Y. Kalantidis, Y. Avrithis, Locally optimized product quantization for approximate nearest neighbor search, in: Proceedings of the CVPR, IEEE, 2014, pp. 2321–2328
Wei, Guan, Yu (bib34) 2014; 21
Y. Gong, S. Lazebnik, Iterative quantization: a procrustean approach to learning binary codes, in: Proceedings of the CVPR, IEEE, 2011, pp. 817–824.
Ge, He, Ke, Sun (bib10) 2014; 36
Beyer, Goldstein, Ramakrishnan, Shaft (bib3) 1999; 16
Andoni, Indyk (bib1) 2006; 51
Chen, Guan, Wang (bib7) 2010; 10
M. Datar, N. Immorlica, P. Indyk, V.S. Mirrokni, Locality-sensitive hashing scheme based on p-stable distributions, in: Proceedings of the 20th Annual ACM SoCG, 2004, pp. 253–262.
Guan, He, Duan, Yu (bib13) 2014; 21
Luo, Guan, Wei, Pan, Yu (bib22) 2015; 156
Y. Weiss, A. Torralba, R. Fergus, Spectral hashing, in: Proceedings of the NIPS, vol. 282 (3), 2008, pp. 1753–1760.
Jegou, Douze, Schmid (bib16) 2010; 33
Böhm, Berchtold, Keim (bib4) 2001; 33
T. Ge, K. He, Q. Ke, J. Sun, Optimized product quantization for approximate nearest neighbor search, in: Proceedings of the CVPR, IEEE, pp. 2946–2953.
H. Liu, R. Ji, Y. Wu, W. Liu, Towards optimal binary code learning via ordinal embedding, in: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, 2016.
10.1016/j.neucom.2016.04.061_bib9
10.1016/j.neucom.2016.04.061_bib5
Gray (10.1016/j.neucom.2016.04.061_bib12) 1984; 1
10.1016/j.neucom.2016.04.061_bib6
Andoni (10.1016/j.neucom.2016.04.061_bib1) 2006; 51
10.1016/j.neucom.2016.04.061_bib8
10.1016/j.neucom.2016.04.061_bib2
10.1016/j.neucom.2016.04.061_bib15
Wei (10.1016/j.neucom.2016.04.061_bib34) 2014; 21
10.1016/j.neucom.2016.04.061_bib17
Luo (10.1016/j.neucom.2016.04.061_bib22) 2015; 156
10.1016/j.neucom.2016.04.061_bib19
Zou (10.1016/j.neucom.2016.04.061_bib37) 2014; 15
Lin (10.1016/j.neucom.2016.04.061_bib20) 2014; 123
Guan (10.1016/j.neucom.2016.04.061_bib14) 2015; 7
10.1016/j.neucom.2016.04.061_bib21
10.1016/j.neucom.2016.04.061_bib23
10.1016/j.neucom.2016.04.061_bib24
Wei (10.1016/j.neucom.2016.04.061_bib33) 2015; 21
Shakhnarovich (10.1016/j.neucom.2016.04.061_bib26) 2006
Pan (10.1016/j.neucom.2016.04.061_bib25) 2016; 175
Chen (10.1016/j.neucom.2016.04.061_bib7) 2010; 10
Böhm (10.1016/j.neucom.2016.04.061_bib4) 2001; 33
10.1016/j.neucom.2016.04.061_bib27
Guan (10.1016/j.neucom.2016.04.061_bib13) 2014; 21
10.1016/j.neucom.2016.04.061_bib28
Zhang (10.1016/j.neucom.2016.04.061_bib36) 2015; 112
10.1016/j.neucom.2016.04.061_bib29
Beyer (10.1016/j.neucom.2016.04.061_bib3) 1999; 16
Zou (10.1016/j.neucom.2016.04.061_bib38) 2016; 173
10.1016/j.neucom.2016.04.061_bib30
10.1016/j.neucom.2016.04.061_bib31
10.1016/j.neucom.2016.04.061_bib32
Ge (10.1016/j.neucom.2016.04.061_bib10) 2014; 36
10.1016/j.neucom.2016.04.061_bib11
10.1016/j.neucom.2016.04.061_bib35
Ji (10.1016/j.neucom.2016.04.061_bib18) 2015; 6
Jegou (10.1016/j.neucom.2016.04.061_bib16) 2010; 33
References_xml – reference: L. Ai, J. Yu, T. Guan, Y. He, Efficient approximate nearest neighbor search by optimized residual vector quantization, in: Proceedings of the CBMI, IEEE, 2014, pp. 1–4.
– volume: 10
  start-page: 11259
  year: 2010
  end-page: 11273
  ident: bib7
  article-title: Approximate nearest neighbor search by residual vector quantization
  publication-title: Sensors
– volume: 156
  start-page: 105
  year: 2015
  end-page: 116
  ident: bib22
  article-title: Fast terrain mapping from low altitude digital imagery
  publication-title: Neurocomputing
– reference: B. Wang, Z. Li, M. Li, W.Y. Ma, Large-scale duplicate detection for web image search, in: Proceedings of the ICME, IEEE, 2006, pp. 353–356.
– reference: J. Brandt, Transform coding for fast approximate nearest neighbor search in high dimensions, in: Proceedings of the CVPR, IEEE, 2010, pp. 1815–1822.
– volume: 1
  start-page: 4
  year: 1984
  end-page: 29
  ident: bib12
  article-title: Vector quantization
  publication-title: ASSP Mag. IEEE
– year: 2006
  ident: bib26
  article-title: Nearest-neighbor methods in learning and vision: theory and practice
  publication-title: , Pattern Anal. Appl.
– reference: C. Silpa-Anan, R. Hartley, S. Machines, A. Canberra, Optimised KD-trees for fast image descriptor matching, in: Proceedings of the CVPR, IEEE, 2008, pp. 1–8.
– volume: 21
  start-page: 381
  year: 2015
  end-page: 399
  ident: bib33
  article-title: Wide area localization and tracking on camera phones for mobile augmented reality systems
  publication-title: Multimed. Syst.
– reference: J. Sivic, A. Zisserman, Video google: a text retrieval approach to object matching in videos, in: Proceedings of the ICCV, IEEE, 2003, pp. 1470–1477.
– volume: 173
  start-page: 346
  year: 2016
  end-page: 354
  ident: bib38
  article-title: A novel features ranking metric with application to scalable visual and bioinformatics data classification
  publication-title: Neurocomputing
– volume: 175
  start-page: 644
  year: 2016
  end-page: 651
  ident: bib25
  article-title: Dense 3D reconstruction combining depth and RGB information
  publication-title: Neurocomputing
– reference: Y. Weiss, A. Torralba, R. Fergus, Spectral hashing, in: Proceedings of the NIPS, vol. 282 (3), 2008, pp. 1753–1760.
– volume: 7
  start-page: 1
  year: 2015
  end-page: 29
  ident: bib14
  article-title: On-device mobile landmark recognition using binarized descriptor with multifeature fusion
  publication-title: ACM Trans. Intell. Syst. Technol.
– volume: 21
  start-page: 41
  year: 2014
  end-page: 51
  ident: bib34
  article-title: Projected residual vector quantization for ANN search
  publication-title: IEEE Multimed.
– volume: 33
  start-page: 322
  year: 2001
  end-page: 373
  ident: bib4
  article-title: Searching in high-dimensional spaces: index structures for improving the performance of multimedia databases
  publication-title: ACM CSUR
– reference: M. Muja, D.G. Lowe, Fast approximate nearest neighbors with automatic algorithm configuration, in: Proceedings of the VISAPP, 2009, pp .331–340.
– reference: T. Ge, K. He, Q. Ke, J. Sun, Optimized product quantization for approximate nearest neighbor search, in: Proceedings of the CVPR, IEEE, pp. 2946–2953.
– reference: M. Datar, N. Immorlica, P. Indyk, V.S. Mirrokni, Locality-sensitive hashing scheme based on p-stable distributions, in: Proceedings of the 20th Annual ACM SoCG, 2004, pp. 253–262.
– volume: 33
  start-page: 117
  year: 2010
  end-page: 128
  ident: bib16
  article-title: Product quantization for nearest neighbor search
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: D. Song, W. Liu, D. A. Meyer, D. Tao, R. Ji, Rank preserving hashing for rapid image search, in: Proceedings of the DCC, IEEE, 2015, pp. 353–362.
– reference: J. Wang, S. Kumar, S.F. Chang, Semi-supervised hashing for scalable image retrieval, in: Proceedings of the CVPR, IEEE, 2010, pp. 3424–3431.
– reference: Y. Gong, S. Lazebnik, Iterative quantization: a procrustean approach to learning binary codes, in: Proceedings of the CVPR, IEEE, 2011, pp. 817–824.
– reference: H. Liu, R. Ji, Y. Wu, W. Liu, Towards optimal binary code learning via ordinal embedding, in: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, 2016.
– reference: K. He, F. Wen, J. Sun, K-Means Hashing: an affinity-preserving quantization method for learning binary compact codes, in: Proceedings of the CVPR, IEEE, 2013, pp. 2938–2945.
– volume: 6
  start-page: 1
  year: 2015
  end-page: 18
  ident: bib18
  article-title: When location meets social multimedia: a comprehensive survey on location-aware social multimedia
  publication-title: ACM Trans. Intell. Syst. Technol.
– volume: 15
  start-page: 637
  year: 2014
  end-page: 647
  ident: bib37
  article-title: Survey of MapReduce frame operation in bioinformatics
  publication-title: Brief. Bioinform.
– volume: 21
  start-page: 32
  year: 2014
  end-page: 41
  ident: bib13
  article-title: Efficient BOF generation and compression for on-device mobile visual location recognition
  publication-title: IEEE Multimed.
– reference: Y. Kalantidis, Y. Avrithis, Locally optimized product quantization for approximate nearest neighbor search, in: Proceedings of the CVPR, IEEE, 2014, pp. 2321–2328
– volume: 16
  start-page: 217
  year: 1999
  end-page: 235
  ident: bib3
  article-title: When is “Nearest Neighbor” Meaningful? Database Theory—ICDT’99,
– reference: H. Jegou, M. Douze, C. Schmid, P. Perez, Aggregating local descriptors into a compact image representation, in: Proceedings of the CVPR, IEEE, 2010, pp. 3304–3311.
– volume: 36
  start-page: 744
  year: 2014
  end-page: 755
  ident: bib10
  article-title: Optimized product quantization
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: A. Torralba, R. Fergus, Y. Weiss, Small codes and large image databases for recognition, in: Proceedings of the CVPR, IEEE, 2008, pp. 1–8.
– volume: 112
  start-page: 17
  year: 2015
  end-page: 26
  ident: bib36
  article-title: Inertial sensors supported visual descriptors encoding and geometric verification for mobile visual location recognition applications
  publication-title: Signal Process.
– reference: O. Boiman, E. Shechtman, M. Irani, In defense of nearest-neighbor based image classification, in: Proceedings of the CVPR, IEEE, 2008, pp. 1–8.
– volume: 123
  start-page: 424
  year: 2014
  end-page: 435
  ident: bib20
  article-title: LibD3C: ensemble classifiers with a clustering and dynamic selection strategy
  publication-title: Neurocomputing
– reference: D. Nister, H. Stewenius, Scalable recognition with a vocabulary tree, in: Proceedings of the CVPR, IEEE, 2006, pp. 2161–2168.
– volume: 51
  start-page: 459
  year: 2006
  end-page: 468
  ident: bib1
  article-title: Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions
  publication-title: FOCS IEEE
– volume: 21
  start-page: 41
  issue: 3
  year: 2014
  ident: 10.1016/j.neucom.2016.04.061_bib34
  article-title: Projected residual vector quantization for ANN search
  publication-title: IEEE Multimed.
  doi: 10.1109/MMUL.2013.65
– volume: 156
  start-page: 105
  year: 2015
  ident: 10.1016/j.neucom.2016.04.061_bib22
  article-title: Fast terrain mapping from low altitude digital imagery
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.12.079
– ident: 10.1016/j.neucom.2016.04.061_bib29
  doi: 10.1109/DCC.2015.85
– ident: 10.1016/j.neucom.2016.04.061_bib35
– ident: 10.1016/j.neucom.2016.04.061_bib17
  doi: 10.1109/CVPR.2010.5540039
– volume: 173
  start-page: 346
  year: 2016
  ident: 10.1016/j.neucom.2016.04.061_bib38
  article-title: A novel features ranking metric with application to scalable visual and bioinformatics data classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.12.123
– volume: 175
  start-page: 644
  year: 2016
  ident: 10.1016/j.neucom.2016.04.061_bib25
  article-title: Dense 3D reconstruction combining depth and RGB information
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.10.104
– year: 2006
  ident: 10.1016/j.neucom.2016.04.061_bib26
  article-title: Nearest-neighbor methods in learning and vision: theory and practice
  publication-title: , Pattern Anal. Appl.
– ident: 10.1016/j.neucom.2016.04.061_bib32
  doi: 10.1109/CVPR.2010.5539994
– volume: 6
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.neucom.2016.04.061_bib18
  article-title: When location meets social multimedia: a comprehensive survey on location-aware social multimedia
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/2597181
– ident: 10.1016/j.neucom.2016.04.061_bib5
  doi: 10.1109/CVPR.2008.4587598
– volume: 1
  start-page: 4
  issue: 2
  year: 1984
  ident: 10.1016/j.neucom.2016.04.061_bib12
  article-title: Vector quantization
  publication-title: ASSP Mag. IEEE
  doi: 10.1109/MASSP.1984.1162229
– volume: 36
  start-page: 744
  issue: 4
  year: 2014
  ident: 10.1016/j.neucom.2016.04.061_bib10
  article-title: Optimized product quantization
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.240
– ident: 10.1016/j.neucom.2016.04.061_bib15
  doi: 10.1109/CVPR.2013.378
– ident: 10.1016/j.neucom.2016.04.061_bib19
  doi: 10.1109/CVPR.2014.298
– volume: 112
  start-page: 17
  year: 2015
  ident: 10.1016/j.neucom.2016.04.061_bib36
  article-title: Inertial sensors supported visual descriptors encoding and geometric verification for mobile visual location recognition applications
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2014.08.029
– volume: 10
  start-page: 11259
  issue: 12
  year: 2010
  ident: 10.1016/j.neucom.2016.04.061_bib7
  article-title: Approximate nearest neighbor search by residual vector quantization
  publication-title: Sensors
  doi: 10.3390/s101211259
– ident: 10.1016/j.neucom.2016.04.061_bib9
– volume: 21
  start-page: 381
  year: 2015
  ident: 10.1016/j.neucom.2016.04.061_bib33
  article-title: Wide area localization and tracking on camera phones for mobile augmented reality systems
  publication-title: Multimed. Syst.
  doi: 10.1007/s00530-014-0364-2
– volume: 16
  start-page: 217
  year: 1999
  ident: 10.1016/j.neucom.2016.04.061_bib3
– ident: 10.1016/j.neucom.2016.04.061_bib30
  doi: 10.1109/CVPR.2008.4587633
– ident: 10.1016/j.neucom.2016.04.061_bib31
  doi: 10.1109/ICME.2006.262509
– volume: 15
  start-page: 637
  issue: 4
  year: 2014
  ident: 10.1016/j.neucom.2016.04.061_bib37
  article-title: Survey of MapReduce frame operation in bioinformatics
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbs088
– volume: 33
  start-page: 117
  issue: 1
  year: 2010
  ident: 10.1016/j.neucom.2016.04.061_bib16
  article-title: Product quantization for nearest neighbor search
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2010.57
– ident: 10.1016/j.neucom.2016.04.061_bib2
  doi: 10.1109/CBMI.2014.6849842
– volume: 21
  start-page: 32
  issue: 2
  year: 2014
  ident: 10.1016/j.neucom.2016.04.061_bib13
  article-title: Efficient BOF generation and compression for on-device mobile visual location recognition
  publication-title: IEEE Multimed.
  doi: 10.1109/MMUL.2013.31
– ident: 10.1016/j.neucom.2016.04.061_bib28
  doi: 10.1109/ICCV.2003.1238663
– volume: 51
  start-page: 459
  issue: 1
  year: 2006
  ident: 10.1016/j.neucom.2016.04.061_bib1
  article-title: Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions
  publication-title: FOCS IEEE
– volume: 7
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.neucom.2016.04.061_bib14
  article-title: On-device mobile landmark recognition using binarized descriptor with multifeature fusion
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/2795234
– ident: 10.1016/j.neucom.2016.04.061_bib6
  doi: 10.1109/CVPR.2010.5539852
– ident: 10.1016/j.neucom.2016.04.061_bib8
  doi: 10.1145/997817.997857
– volume: 33
  start-page: 322
  year: 2001
  ident: 10.1016/j.neucom.2016.04.061_bib4
  article-title: Searching in high-dimensional spaces: index structures for improving the performance of multimedia databases
  publication-title: ACM CSUR
  doi: 10.1145/502807.502809
– ident: 10.1016/j.neucom.2016.04.061_bib11
  doi: 10.1109/CVPR.2011.5995432
– ident: 10.1016/j.neucom.2016.04.061_bib27
  doi: 10.1109/CVPR.2008.4587638
– ident: 10.1016/j.neucom.2016.04.061_bib23
– volume: 123
  start-page: 424
  year: 2014
  ident: 10.1016/j.neucom.2016.04.061_bib20
  article-title: LibD3C: ensemble classifiers with a clustering and dynamic selection strategy
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.08.004
– ident: 10.1016/j.neucom.2016.04.061_bib21
  doi: 10.1609/aaai.v30i1.10167
– ident: 10.1016/j.neucom.2016.04.061_bib24
  doi: 10.1109/CVPR.2006.264
SSID ssj0017129
Score 2.190502
Snippet For approximate nearest neighbor (ANN) search in many vision-based applications, vector quantization (VQ) is an efficient compact encoding technology. A...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 92
SubjectTerms Nonparametric optimization
Parametric optimization
Residual vector quantization
Stage codebook
Vector quantization optimization
Title Parametric and nonparametric residual vector quantization optimizations for ANN search
URI https://dx.doi.org/10.1016/j.neucom.2016.04.061
Volume 217
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5KvXjxLdZHycFr7G6abppjKZaqWASt9BayeUBFa5XWo7_dyW62KoiCt90lgfBlMvNlmW8G4FQYLrxINc2tl5QbJ_DJSsoMT71kzHWK1gnXo2w45peTzqQG_UoLE9Iqo-8vfXrhreOXVkSzNZ9OW7eJZHiLShkyiiAEDH6YcxGs_Ox9leaRipSV9fZYh4bRlXyuyPGauWXIGcEgmBUFT7P05_D0JeQMtmAjckXSK5ezDTU324HNqg8DicdyF-5vdEixCrX2iZ5Zgjf6-ecXvE8XgivyVvygJy9LBDOqL8kzeoynSopJkMCS3mhESvPfg_Hg_K4_pLFfAjWIwIJmOtddI3KjE-3xHAZ1UK4Tx22ic5-zzFumHUs00irjfSZDayrupTdcOo5UYh_quEJ3AARZorXI5nAju9wJppFGWemswHDfbjPTgHYFkzKxmHjoafGoqqyxB1WCqwK4KuEKwW0AXc2al8U0_hgvqh1Q34xCob__debhv2cewXp4CxkrKTuG-uJ16U6QdyzyZmFYTVjrXVwNRx-S19o0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5je9AX7-K85sHXsjZLm-VxDEfntiK4yd5CmgtMdE7Z_P2etOlUEAXfStoD5Utyzpf2fOcgdM0UZZZFMsi15QFVhsGV5gFRNLKcEBMXrRPGWZJO6e0sntVQr9LCuLRK7_tLn154az_S8mi2lvN56z7kBE5REQFG4YSA4IcbrjpVXEeN7mCYZpufCSwiZck9EgfOoFLQFWleC7N2aSMQB5Oi5mkS_RyhvkSd_h7a8XQRd8s32kc1szhAu1UrBux35iF6uJMuy8qV28dyoTEc6pefI3CkLjRX-L34Ro9f14CnF2DiF3Aaz5UaEwOHxd0sw-UOOELT_s2klwa-ZUKgAIRVkMhcdhTLlQylha3oBEK5DA3VocxtThKriTQklMCslLUJd92pqOVWUW4osIljVIc3NCcIA1HUGggdzGWHGkYkMCnNjWYQ8dttopqoXcEklK8n7tpaPIkqcexRlOAKB64IqQBwmyjYWC3Lehp_PM-qGRDf1oUAl_-r5em_La_QVjoZj8RokA3P0La74xJYInKO6qu3tbkAGrLKL_0y-wAUQ9zl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parametric+and+nonparametric+residual+vector+quantization+optimizations+for+ANN+search&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Guo%2C+Dan&rft.au=Li%2C+Chuanqing&rft.au=Wu%2C+Lv&rft.date=2016-12-12&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=217&rft.spage=92&rft.epage=102&rft_id=info:doi/10.1016%2Fj.neucom.2016.04.061&rft.externalDocID=S0925231216306282
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon