Color image compression and encryption scheme based on compressive sensing and double random encryption strategy

•Based on compressive sensing and double random encryption strategy, a novel color image compression and encryption scheme is proposed.•DRPP is presented to shuffle sparse coefficient matrices of three components of plain images.•ADMMCP is produced to measure the sparse coefficients for CS.•SDRDIC i...

Full description

Saved in:
Bibliographic Details
Published inSignal processing Vol. 176; p. 107684
Main Authors Chai, Xiuli, Bi, Jianqiang, Gan, Zhihua, Liu, Xianxing, Zhang, Yushu, Chen, Yiran
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2020
Subjects
Online AccessGet full text
ISSN0165-1684
DOI10.1016/j.sigpro.2020.107684

Cover

Loading…
Abstract •Based on compressive sensing and double random encryption strategy, a novel color image compression and encryption scheme is proposed.•DRPP is presented to shuffle sparse coefficient matrices of three components of plain images.•ADMMCP is produced to measure the sparse coefficients for CS.•SDRDIC is utilized to attain the diffusion of inter-intra components of color images.•The proposed encryption algorithm is highly sensitive to the plain image. Based on compressive sensing and double random encryption strategy, a novel color image compression and encryption scheme is proposed in this paper. The architecture of compression, confusion and diffusion is adopted. Firstly, the red, green and blue components of color plain image are converted to three sparse coefficient matrices by discrete wavelet transform (DWT), and then a double random position permutation (DRPP) is introduced to confuse the coefficient matrices. Subsequently, Logistic-Tent system is utilized to generate the asymptotic deterministic random measurement matrix based on chaotic system and plain image (ADMMCP), which is used to measure the coefficient matrices to obtain measurement value matrices. Moreover, simultaneous double random pixel diffusion between inter-intra components (SDRDIC) is presented to modify the elements of measurement value matrices to obtain the final cipher image. A 4-D hyperchaotic system is applied to produce chaotic sequences for confusion and diffusion, the initial conditions of the used chaotic systems are controlled by the SHA 512 hash value of plain image and external keys, such that the proposed image cryptosystem may withstand known-plaintext and chosen-plaintext attacks. Experimental results and security analyses verify the effectiveness of the proposed cipher.
AbstractList •Based on compressive sensing and double random encryption strategy, a novel color image compression and encryption scheme is proposed.•DRPP is presented to shuffle sparse coefficient matrices of three components of plain images.•ADMMCP is produced to measure the sparse coefficients for CS.•SDRDIC is utilized to attain the diffusion of inter-intra components of color images.•The proposed encryption algorithm is highly sensitive to the plain image. Based on compressive sensing and double random encryption strategy, a novel color image compression and encryption scheme is proposed in this paper. The architecture of compression, confusion and diffusion is adopted. Firstly, the red, green and blue components of color plain image are converted to three sparse coefficient matrices by discrete wavelet transform (DWT), and then a double random position permutation (DRPP) is introduced to confuse the coefficient matrices. Subsequently, Logistic-Tent system is utilized to generate the asymptotic deterministic random measurement matrix based on chaotic system and plain image (ADMMCP), which is used to measure the coefficient matrices to obtain measurement value matrices. Moreover, simultaneous double random pixel diffusion between inter-intra components (SDRDIC) is presented to modify the elements of measurement value matrices to obtain the final cipher image. A 4-D hyperchaotic system is applied to produce chaotic sequences for confusion and diffusion, the initial conditions of the used chaotic systems are controlled by the SHA 512 hash value of plain image and external keys, such that the proposed image cryptosystem may withstand known-plaintext and chosen-plaintext attacks. Experimental results and security analyses verify the effectiveness of the proposed cipher.
ArticleNumber 107684
Author Chai, Xiuli
Gan, Zhihua
Liu, Xianxing
Chen, Yiran
Bi, Jianqiang
Zhang, Yushu
Author_xml – sequence: 1
  givenname: Xiuli
  surname: Chai
  fullname: Chai, Xiuli
  organization: School of Computer and Information Engineering, Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng 475004, China
– sequence: 2
  givenname: Jianqiang
  surname: Bi
  fullname: Bi, Jianqiang
  organization: School of Computer and Information Engineering, Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng 475004, China
– sequence: 3
  givenname: Zhihua
  orcidid: 0000-0002-1138-1887
  surname: Gan
  fullname: Gan, Zhihua
  email: gzh@henu.edu.cn
  organization: School of Software, Intelligent Data Processing Engineering Research Center of Henan Province, International Institute of Intelligent Information Processing, Henan University, Kaifeng 475004, China
– sequence: 4
  givenname: Xianxing
  surname: Liu
  fullname: Liu, Xianxing
  email: liuxianxing@henu.edu.cn
  organization: School of Computer and Information Engineering, Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng 475004, China
– sequence: 5
  givenname: Yushu
  surname: Zhang
  fullname: Zhang, Yushu
  organization: College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
– sequence: 6
  givenname: Yiran
  surname: Chen
  fullname: Chen, Yiran
  organization: Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, United States
BookMark eNqFkMFOwzAQRH0oEm3hDzj4B1LWie2mHJBQBRSpEhc4W46zCa6SOLJDpf49DkFIcICTd7yekectyKxzHRJyxWDFgMnrwyrYuvdulUI6Xq1lzmdkHlciYXE-J4sQDgDAMglz0m9d4zy1ra6RGtf2HkOwrqO6Kyl2xp_6YZTBvGGLtNABSxr199Mj0oBdsF39aSnde9Eg9XF27Y-AwesB69MFOat0E_Dy61yS14f7l-0u2T8_Pm3v9onJQA6JXKdSczAFT3UuhTSaC1GJDWKRlmmRMxBxV0ngGxZVJUQWuwJbl4C54ZAtCZ9yjXcheKxU72NLf1IM1EhKHdRESo2k1EQq2m5-2Ywd9Ngg_t82_5lvJzPGYkeLXgVjIwMsrUczqNLZvwM-ALk-jaM
CitedBy_id crossref_primary_10_1109_TCYB_2023_3267785
crossref_primary_10_1007_s11042_020_10117_y
crossref_primary_10_1007_s11042_024_18343_4
crossref_primary_10_1007_s11071_021_07192_7
crossref_primary_10_1140_epjs_s11734_022_00472_2
crossref_primary_10_1088_1402_4896_ad8d47
crossref_primary_10_1007_s11042_023_14794_3
crossref_primary_10_1007_s11071_023_08622_4
crossref_primary_10_1007_s40435_024_01464_x
crossref_primary_10_1007_s11760_023_02971_8
crossref_primary_10_1142_S0218127423501900
crossref_primary_10_1088_1402_4896_ac0bcf
crossref_primary_10_1016_j_sigpro_2022_108745
crossref_primary_10_1016_j_vlsi_2022_10_002
crossref_primary_10_1007_s11431_023_2584_y
crossref_primary_10_1088_1674_1056_ad1030
crossref_primary_10_1007_s11042_023_17940_z
crossref_primary_10_1007_s11042_022_12604_w
crossref_primary_10_1007_s11042_022_12607_7
crossref_primary_10_1007_s11071_024_10331_5
crossref_primary_10_1109_ACCESS_2020_3045101
crossref_primary_10_1007_s13369_024_09099_y
crossref_primary_10_1371_journal_pone_0300228
crossref_primary_10_1007_s11042_022_12268_6
crossref_primary_10_1016_j_jksuci_2023_101660
crossref_primary_10_1007_s12596_024_02062_y
crossref_primary_10_1142_S0218127422501498
crossref_primary_10_1007_s11071_021_06663_1
crossref_primary_10_1080_19393555_2021_1982082
crossref_primary_10_1016_j_asr_2021_01_018
crossref_primary_10_1088_1402_4896_ad1794
crossref_primary_10_1109_JIOT_2022_3228781
crossref_primary_10_1007_s11071_021_06675_x
crossref_primary_10_1109_TII_2023_3312405
crossref_primary_10_1088_1402_4896_ad7898
crossref_primary_10_1007_s11042_022_12621_9
crossref_primary_10_3389_fphy_2022_844966
crossref_primary_10_1007_s11220_021_00357_z
crossref_primary_10_1002_cpe_8261
crossref_primary_10_1016_j_fraope_2023_100055
crossref_primary_10_1007_s11071_022_07990_7
crossref_primary_10_1007_s11071_021_06422_2
crossref_primary_10_1016_j_optlastec_2025_112751
crossref_primary_10_1007_s11042_023_17912_3
crossref_primary_10_1007_s11227_022_04999_y
crossref_primary_10_1007_s11071_023_08230_2
crossref_primary_10_1016_j_eswa_2023_122899
crossref_primary_10_1016_j_jksuci_2023_101839
crossref_primary_10_1007_s00521_021_06552_z
crossref_primary_10_3390_app14072808
crossref_primary_10_1007_s10470_022_02061_8
crossref_primary_10_1016_j_eswa_2024_125897
crossref_primary_10_3390_e26121013
crossref_primary_10_1007_s11071_023_08538_z
crossref_primary_10_1016_j_image_2021_116418
crossref_primary_10_1038_s41598_020_78127_2
crossref_primary_10_1142_S021812742250198X
crossref_primary_10_1038_s41598_021_94748_7
crossref_primary_10_1109_ACCESS_2021_3121588
crossref_primary_10_1109_ACCESS_2023_3269294
crossref_primary_10_1016_j_image_2021_116377
crossref_primary_10_1142_S0218127424500573
crossref_primary_10_1007_s11042_023_14947_4
crossref_primary_10_1088_1402_4896_abed7d
crossref_primary_10_1007_s11071_021_06923_0
crossref_primary_10_1007_s13369_023_07715_x
crossref_primary_10_1117_1_JEI_31_4_043047
crossref_primary_10_32604_cmc_2022_019455
crossref_primary_10_1007_s11042_021_10660_2
crossref_primary_10_1049_ipr2_12902
crossref_primary_10_1007_s11071_024_09547_2
crossref_primary_10_1038_s41598_024_77955_w
crossref_primary_10_1007_s11042_022_13250_y
crossref_primary_10_1109_ACCESS_2025_3541833
crossref_primary_10_1088_1402_4896_acd887
crossref_primary_10_1007_s00521_021_05937_4
crossref_primary_10_1007_s11042_023_16734_7
crossref_primary_10_3390_math9212778
crossref_primary_10_1016_j_ins_2021_01_041
crossref_primary_10_1007_s00034_024_02962_1
crossref_primary_10_1016_j_sigpro_2022_108554
crossref_primary_10_1109_ACCESS_2022_3194730
crossref_primary_10_3390_e23020258
crossref_primary_10_1080_09500340_2021_1900440
crossref_primary_10_1140_epjp_s13360_024_05599_w
crossref_primary_10_1007_s11042_023_17206_8
crossref_primary_10_1016_j_chaos_2024_115168
crossref_primary_10_3934_mbe_2021275
crossref_primary_10_1007_s00530_021_00861_y
crossref_primary_10_1109_ACCESS_2021_3054952
crossref_primary_10_1007_s11704_022_1419_8
crossref_primary_10_11834_jig_220807
crossref_primary_10_1007_s11042_023_15922_9
crossref_primary_10_3390_app10217469
crossref_primary_10_1016_j_ijleo_2022_170312
crossref_primary_10_1155_2022_8853448
crossref_primary_10_1016_j_cnsns_2021_105857
crossref_primary_10_1016_j_jisa_2022_103161
crossref_primary_10_1016_j_heliyon_2023_e14072
crossref_primary_10_1109_JPHOT_2022_3233129
crossref_primary_10_1016_j_eswa_2025_126407
crossref_primary_10_1007_s00530_021_00868_5
crossref_primary_10_1177_18479790251315317
crossref_primary_10_3390_e24050608
crossref_primary_10_1007_s11071_024_09292_6
crossref_primary_10_1007_s11042_023_14946_5
crossref_primary_10_1007_s11071_024_09634_4
crossref_primary_10_3390_math13010128
crossref_primary_10_1007_s11071_023_08835_7
crossref_primary_10_1007_s11042_021_11796_x
crossref_primary_10_1088_1402_4896_abd904
crossref_primary_10_1155_2021_6615512
crossref_primary_10_1007_s11071_024_09905_0
crossref_primary_10_1016_j_csi_2025_103974
crossref_primary_10_1109_ACCESS_2021_3054842
crossref_primary_10_1016_j_eswa_2023_122562
crossref_primary_10_1016_j_eswa_2023_122052
crossref_primary_10_1007_s40747_024_01568_z
crossref_primary_10_1109_ACCESS_2020_3040005
crossref_primary_10_1088_1402_4896_ad0268
crossref_primary_10_1007_s11042_023_16698_8
crossref_primary_10_1016_j_chaos_2023_114111
crossref_primary_10_1038_s41598_022_20145_3
crossref_primary_10_1109_ACCESS_2024_3406766
crossref_primary_10_1142_S0219467822500206
crossref_primary_10_1109_ACCESS_2021_3111691
crossref_primary_10_1007_s11042_021_11386_x
crossref_primary_10_1007_s00371_022_02517_y
crossref_primary_10_1007_s11071_024_10277_8
crossref_primary_10_1109_TII_2024_3403266
crossref_primary_10_1007_s11071_024_10638_3
crossref_primary_10_1016_j_optlaseng_2021_106570
crossref_primary_10_1007_s00521_021_05797_y
crossref_primary_10_1088_1674_1056_ac8cdf
crossref_primary_10_1088_1402_4896_aceb9b
crossref_primary_10_1109_ACCESS_2023_3347448
crossref_primary_10_1016_j_ins_2024_120332
crossref_primary_10_1016_j_chaos_2024_115701
crossref_primary_10_1109_ACCESS_2021_3083151
crossref_primary_10_1109_ACCESS_2021_3073514
crossref_primary_10_1088_1402_4896_ac55bb
crossref_primary_10_1016_j_chaos_2021_111577
crossref_primary_10_1007_s11042_022_13475_x
crossref_primary_10_1016_j_sciaf_2023_e01955
crossref_primary_10_1109_TSMC_2024_3450017
crossref_primary_10_1007_s11042_023_14379_0
crossref_primary_10_1007_s11042_022_13898_6
crossref_primary_10_1007_s11042_022_13414_w
crossref_primary_10_1016_j_sigpro_2021_108041
crossref_primary_10_1109_ACCESS_2021_3099214
crossref_primary_10_1007_s40747_022_00835_1
crossref_primary_10_1016_j_eswa_2022_118845
crossref_primary_10_1007_s11071_024_10334_2
crossref_primary_10_1080_14498596_2021_1982420
crossref_primary_10_3390_electronics10232890
crossref_primary_10_1016_j_heliyon_2023_e16514
crossref_primary_10_1049_ipr2_12429
crossref_primary_10_1007_s11042_024_18838_0
crossref_primary_10_1016_j_chaos_2022_112456
crossref_primary_10_1007_s11042_021_11803_1
crossref_primary_10_3390_app15031279
crossref_primary_10_1080_19393555_2021_1943572
crossref_primary_10_1007_s11227_023_05346_5
crossref_primary_10_1109_TCSI_2021_3133318
crossref_primary_10_1088_1402_4896_ac88a3
crossref_primary_10_1007_s11042_023_17999_8
crossref_primary_10_1109_ACCESS_2021_3096995
crossref_primary_10_3390_e24060784
crossref_primary_10_1016_j_jisa_2024_103938
crossref_primary_10_1038_s41598_024_53325_4
crossref_primary_10_1109_ACCESS_2023_3318014
crossref_primary_10_1007_s11042_022_13910_z
crossref_primary_10_1109_ACCESS_2021_3086044
crossref_primary_10_1145_3498342
crossref_primary_10_1007_s11042_023_17930_1
crossref_primary_10_1016_j_ins_2022_05_008
crossref_primary_10_3390_ijgi10050311
Cites_doi 10.1007/s11071-018-4391-y
10.1016/j.optlaseng.2018.12.002
10.1016/j.sigpro.2018.09.029
10.1109/TII.2019.2923553
10.1016/j.chaos.2008.07.031
10.1109/TIT.2005.858979
10.1016/j.optlaseng.2019.04.011
10.1016/j.sigpro.2020.107484
10.1007/s11042-016-3926-9
10.1016/j.optcom.2015.05.043
10.1007/s11042-018-6739-1
10.1007/s11042-017-4370-1
10.1016/j.jss.2014.08.066
10.1016/j.cnsns.2014.06.005
10.1016/j.sigpro.2016.11.016
10.1016/j.jss.2011.10.051
10.1016/j.sigpro.2015.01.016
10.1007/s00521-018-3541-y
10.1016/j.sigpro.2015.06.008
10.1016/j.sigpro.2017.03.011
10.3390/sym10090399
10.1109/TIT.2006.871582
10.1016/j.optlaseng.2018.05.014
10.1016/j.sigpro.2017.06.014
10.1016/j.optcom.2014.12.084
10.1007/s11042-018-5782-2
10.1109/ACCESS.2016.2569421
10.1016/j.optlaseng.2019.105837
10.1007/s11071-014-1287-3
10.1016/j.ins.2017.11.021
10.1016/j.jvcir.2017.01.022
10.1109/ACCESS.2018.2883690
10.1109/MMUL.2018.2873472
10.1016/j.sigpro.2018.02.007
10.1016/j.aeue.2012.01.015
10.1016/j.optcom.2011.07.070
10.1109/ACCESS.2018.2890116
10.1016/j.sigpro.2019.107373
10.1016/j.optlastec.2014.02.015
10.1016/j.sigpro.2017.11.005
10.1007/s11071-018-4332-9
10.1109/TIT.2009.2016006
10.1002/j.1538-7305.1949.tb00928.x
10.1016/j.optlastec.2019.01.039
10.1016/j.ijleo.2012.08.017
10.1016/j.ijleo.2017.07.063
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.sigpro.2020.107684
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_sigpro_2020_107684
S0165168420302279
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABDPE
ABFNM
ABFRF
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~02
~G-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c306t-6726a40cb42a8656ca455f59eeb2d2b8105cb4f60491b81f553107017d0e8c403
IEDL.DBID .~1
ISSN 0165-1684
IngestDate Tue Jul 01 02:07:29 EDT 2025
Thu Apr 24 22:57:07 EDT 2025
Sun Apr 06 06:53:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Chaos
Image encryption
Compressive sensing
Image compression
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-6726a40cb42a8656ca455f59eeb2d2b8105cb4f60491b81f553107017d0e8c403
ORCID 0000-0002-1138-1887
ParticipantIDs crossref_primary_10_1016_j_sigpro_2020_107684
crossref_citationtrail_10_1016_j_sigpro_2020_107684
elsevier_sciencedirect_doi_10_1016_j_sigpro_2020_107684
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2020
2020-11-00
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: November 2020
PublicationDecade 2020
PublicationTitle Signal processing
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Chai X, Gan Z, Chen Y, Zhang Y (bib0007) 2017; 134
Li, Lin, Feng, Lu (bib0030) 2018; 6
Zhang, Yu, Zhao Y (bib0027) 2016; 118
Pati Y, Rezaiifar, Krishnaprasad (bib0035) 1993
Li H, Wang Y, Zuo Z (bib0006) 2019; 115
Liu, Li, Zhang, Sui, Yang (bib0001) 2015; 20
Xu Q, Sun K, Cao, Zhu C (bib0011) 2019; 121
Zhou N, Zhang, Zheng, Gong (bib0012) 2014; 62
Pak, Huang L (bib0016) 2017; 138
Li C, Zhang, Xie Eric (bib0024) 2019
Wang, Xiao, Chen, Huang H (bib0026) 2018; 144
Wu X, Li, Kurths (bib0051) 2015; 10
Zhou, Li, Wang, Pan, Zhou (bib0041) 2015; 343
Hua Z, Xu B, Jin, Huang H (bib0005) 2019; 7
Gan Z, Chai X, Han D, Chen Y (bib0018) 2019; 31
Gong L, Qiu K, Deng C, Zhou N (bib0019) 2019; 115
Zarei, Tavakoli (bib0038) 2016; 291
Shannon C (bib0045) 1949; 28
Su M, Wen W, Zhang Y (bib0023) 2014; 77
Zhou, Jiang, Gong L, Xie X (bib0043) 2018; 110
Chai X, Fu X, Gan Z, Lu, Chen Y (bib0048) 2019; 155
Sheela S, Suresh K, Tandur (bib0021) 2018; 77
Lu, Xu Z, Lu, Liu X (bib0010) 2013; 124
Zhang, Tong X (bib0050) 2014; 98
Hua Z, Zhou Y, Bao B (bib0057) 2020; 16
Ye R (bib0052) 2011; 284
Abdullah A, Enayatifar, Lee (bib0053) 2012; 66
Donoho (bib0034) 2006; 52
Ye G, Pan, Huang X, Mei Q (bib0004) 2018; 94
Yang F, Mou, Liu, Ma C, Yan H (bib0046) 2020; 169
Liu H, Abdurahman (bib0047) 2015; 113
Wang, Kwok-Wo, Liao X, Xiang, Chen G (bib0015) 2009; 41
Bansal, Gupta, Sharma (bib0039) 2017; 76
Chen X, Wang, Wang, Wang Q (bib0042) 2019; 12
Tong X (bib0022) 2012; 85
Hua Z, Zhou Y (bib0058) 2019
Li C, Feng B, Li S, Kurths, Chen G (bib0003) 2019; 66
Chai X, Fu X, Gan Z, Zhang Y, Lu, Chen Y (bib0014) 2018
Dai, Milenkovic (bib0036) 2009; 55
Chai X, Wu H, Gan Z, Zhang Y, Chen Y, Kent (bib0049) 2020; 124
Zhang, Liu, Wang, Zhou J, Zhang Y, Chen G (bib0055) 2018; 430-431
Zhou M, Wang C (bib0002) 2020; 171
Zhu C, Wang G, Sun K (bib0029) 2018; 10
Zhang, Zhang L, Zhou, Liu, Chen, He (bib0009) 2016; 4
Candès (bib0032) 2006; 3
Devaraj, Kavitha (bib0044) 2017; 147
Li C, Lin D, Lu J, Feng (bib0025) 2018; 25
Chai X, Zheng X, Gan Z, Han D, Chen Y (bib0013) 2018; 148
Hu, Xiao, Wang, Xiang (bib0008) 2017; 44
Candes, Tao (bib0033) 2005; 51
Sun F, Lv Z (bib0020) 2011; 20
Zhang, Liao X, Yang, Zhang Y (bib0040) 2018; 77
Chanil, Kwangil, Paeksan, Jonggun, Sok (bib0017) 2019; 78
Wu J, Liao X, Yang (bib0028) 2018; 142
Chai X, Zheng X, Gan Z, Chen Y (bib0054) 2019
Zhou N, Yang J, Tan C, Pan S, Zhou Z (bib0037) 2015; 354
Chen J, Han F, Qian, Yao Y, Zhu Z (bib0031) 2018; 93
Ma Y, Li C, Ou (bib0056) 2020
Yang F (10.1016/j.sigpro.2020.107684_bib0046) 2020; 169
Chai X (10.1016/j.sigpro.2020.107684_bib0054) 2019
Zarei (10.1016/j.sigpro.2020.107684_bib0038) 2016; 291
Devaraj (10.1016/j.sigpro.2020.107684_bib0044) 2017; 147
Liu (10.1016/j.sigpro.2020.107684_bib0001) 2015; 20
Wu X (10.1016/j.sigpro.2020.107684_bib0051) 2015; 10
Zhang (10.1016/j.sigpro.2020.107684_bib0050) 2014; 98
Sheela S (10.1016/j.sigpro.2020.107684_bib0021) 2018; 77
Bansal (10.1016/j.sigpro.2020.107684_bib0039) 2017; 76
Zhou N (10.1016/j.sigpro.2020.107684_bib0012) 2014; 62
Chanil (10.1016/j.sigpro.2020.107684_bib0017) 2019; 78
Chai X (10.1016/j.sigpro.2020.107684_bib0049) 2020; 124
Hu (10.1016/j.sigpro.2020.107684_bib0008) 2017; 44
Dai (10.1016/j.sigpro.2020.107684_bib0036) 2009; 55
Chai X (10.1016/j.sigpro.2020.107684_bib0007) 2017; 134
Zhang (10.1016/j.sigpro.2020.107684_bib0009) 2016; 4
Ma Y (10.1016/j.sigpro.2020.107684_bib0056) 2020
Zhou N (10.1016/j.sigpro.2020.107684_bib0037) 2015; 354
Wu J (10.1016/j.sigpro.2020.107684_bib0028) 2018; 142
Ye G (10.1016/j.sigpro.2020.107684_bib0004) 2018; 94
Liu H (10.1016/j.sigpro.2020.107684_bib0047) 2015; 113
Hua Z (10.1016/j.sigpro.2020.107684_bib0058) 2019
Li H (10.1016/j.sigpro.2020.107684_bib0006) 2019; 115
Abdullah A (10.1016/j.sigpro.2020.107684_bib0053) 2012; 66
Zhang (10.1016/j.sigpro.2020.107684_bib0055) 2018; 430-431
Chai X (10.1016/j.sigpro.2020.107684_bib0014) 2018
Zhang (10.1016/j.sigpro.2020.107684_bib0027) 2016; 118
Hua Z (10.1016/j.sigpro.2020.107684_bib0005) 2019; 7
Chai X (10.1016/j.sigpro.2020.107684_bib0048) 2019; 155
Zhang (10.1016/j.sigpro.2020.107684_bib0040) 2018; 77
Xu Q (10.1016/j.sigpro.2020.107684_bib0011) 2019; 121
Li C (10.1016/j.sigpro.2020.107684_bib0024) 2019
Donoho (10.1016/j.sigpro.2020.107684_bib0034) 2006; 52
Candès (10.1016/j.sigpro.2020.107684_bib0032) 2006; 3
Candes (10.1016/j.sigpro.2020.107684_bib0033) 2005; 51
Li C (10.1016/j.sigpro.2020.107684_bib0003) 2019; 66
Shannon C (10.1016/j.sigpro.2020.107684_bib0045) 1949; 28
Wang (10.1016/j.sigpro.2020.107684_bib0026) 2018; 144
Zhou (10.1016/j.sigpro.2020.107684_bib0041) 2015; 343
Chai X (10.1016/j.sigpro.2020.107684_bib0013) 2018; 148
Tong X (10.1016/j.sigpro.2020.107684_bib0022) 2012; 85
Sun F (10.1016/j.sigpro.2020.107684_bib0020) 2011; 20
Lu (10.1016/j.sigpro.2020.107684_bib0010) 2013; 124
Zhou M (10.1016/j.sigpro.2020.107684_bib0002) 2020; 171
Pati Y (10.1016/j.sigpro.2020.107684_bib0035) 1993
Gong L (10.1016/j.sigpro.2020.107684_bib0019) 2019; 115
Chen X (10.1016/j.sigpro.2020.107684_bib0042) 2019; 12
Gan Z (10.1016/j.sigpro.2020.107684_bib0018) 2019; 31
Li (10.1016/j.sigpro.2020.107684_bib0030) 2018; 6
Zhou (10.1016/j.sigpro.2020.107684_bib0043) 2018; 110
Hua Z (10.1016/j.sigpro.2020.107684_bib0057) 2020; 16
Li C (10.1016/j.sigpro.2020.107684_bib0025) 2018; 25
Ye R (10.1016/j.sigpro.2020.107684_bib0052) 2011; 284
Su M (10.1016/j.sigpro.2020.107684_bib0023) 2014; 77
Wang (10.1016/j.sigpro.2020.107684_bib0015) 2009; 41
Zhu C (10.1016/j.sigpro.2020.107684_bib0029) 2018; 10
Pak (10.1016/j.sigpro.2020.107684_bib0016) 2017; 138
Chen J (10.1016/j.sigpro.2020.107684_bib0031) 2018; 93
References_xml – volume: 291
  start-page: 323
  year: 2016
  end-page: 339
  ident: bib0038
  article-title: Hopf bifurcation analysis and ultimate bound estimation of a new 4-D quadratic autonomous hyper-chaotic system
  publication-title: Appl. Math. Comput.
– volume: 85
  start-page: 850
  year: 2012
  end-page: 858
  ident: bib0022
  article-title: The novel bilateral-diffusion image encryption algorithm with dynamical compound chaos
  publication-title: J. Syst. Softw.
– volume: 41
  start-page: 1773
  year: 2009
  end-page: 1783
  ident: bib0015
  article-title: A chaos-based image encryption algorithm with variable control parameters
  publication-title: Chaos Soliton Fract
– volume: 20
  start-page: 405
  year: 2011
  end-page: 411
  ident: bib0020
  article-title: Digital image encryption with chaotic map lattices
  publication-title: Chinese Phys. B
– volume: 147
  start-page: 263
  year: 2017
  end-page: 276
  ident: bib0044
  article-title: Crypt analysis of an image compression- encryption algorithm and a modified scheme using compressive sensing
  publication-title: Optik
– volume: 110
  start-page: 72
  year: 2018
  end-page: 79
  ident: bib0043
  article-title: Double-image compression and encryption algorithm based on co-sparse representation and random pixel exchanging
  publication-title: Opt. Lasers Eng.
– year: 2019
  ident: bib0058
  article-title: Exponential chaotic model for generating robust chaos
  publication-title: IEEE T. Syst. Man Cy.
– volume: 77
  start-page: 2191
  year: 2018
  end-page: 2208
  ident: bib0040
  article-title: A fast and efficient approach to color-image encryption based on compressive sensing and fractional Fourier transform
  publication-title: Multimed. Tools Appl.
– volume: 155
  start-page: 44
  year: 2019
  end-page: 62
  ident: bib0048
  article-title: A color image cryptosystem based on dynamic DNA encryption and chaos
  publication-title: Signal Process
– volume: 12
  start-page: 1143
  year: 2019
  end-page: 1149
  ident: bib0042
  article-title: Asymmetric color cryptosystem based on compressed sensing and equal modulus decomposition in discrete fractional random transform domain
  publication-title: Opt. Lasers Eng.
– volume: 113
  start-page: 104
  year: 2015
  end-page: 112
  ident: bib0047
  article-title: Asymmetric color image encryption scheme using 2D discrete-time map
  publication-title: Signal Process
– volume: 78
  start-page: 12027
  year: 2019
  end-page: 12042
  ident: bib0017
  article-title: A novel bit-level color image encryption using improved 1D chaotic map
  publication-title: Multimed. Tool. Appl.
– volume: 142
  start-page: 292
  year: 2018
  end-page: 300
  ident: bib0028
  article-title: Cryptanalysis and enhancements of image encryption based on three-dimensional bit matrix permutation
  publication-title: Signal Process
– volume: 10
  start-page: 399
  year: 2018
  ident: bib0029
  article-title: Cryptanalysis and improvement on an image encryption algorithm design using a novel chaos based S-Box
  publication-title: Symmetry
– volume: 138
  start-page: 129
  year: 2017
  end-page: 137
  ident: bib0016
  article-title: A new color image encryption using combination of the 1D chaotic map
  publication-title: Signal Process
– year: 2018
  ident: bib0014
  article-title: An efficient chaos-based image compression and encryption scheme using block compressive sensing and elementary cellular automata
  publication-title: Neural Comput. Appl.
– volume: 98
  start-page: 140
  year: 2014
  end-page: 154
  ident: bib0050
  article-title: A new chaotic map based image encryption schemes for several image formats
  publication-title: J. Syst. Softw.
– volume: 3
  start-page: 1433
  year: 2006
  end-page: 1452
  ident: bib0032
  article-title: Compressive sampling
  publication-title: Int. Congress Math.
– volume: 52
  start-page: 1289
  year: 2006
  end-page: 1306
  ident: bib0034
  article-title: Compressed sensing
  publication-title: IEEE T. Inform. Theory
– volume: 4
  start-page: 2507
  year: 2016
  end-page: 2519
  ident: bib0009
  article-title: A review of compressive sensing in information security field
  publication-title: IEEE Access
– volume: 148
  start-page: 124
  year: 2018
  end-page: 144
  ident: bib0013
  article-title: An image encryption algorithm based on chaotic system and compressive sensing
  publication-title: Signal Process
– volume: 20
  start-page: 506
  year: 2015
  end-page: 515
  ident: bib0001
  article-title: A novel image encryption algorithm based on chaos maps with Markov properties
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 16
  start-page: 887
  year: 2020
  end-page: 897
  ident: bib0057
  article-title: Two-dimensional sine chaotification system with hardware implementation
  publication-title: IEEE T. Ind. Inform.
– volume: 76
  start-page: 16529
  year: 2017
  end-page: 16562
  ident: bib0039
  article-title: An innovative image encryption scheme based on chaotic map and Vigenère sheme
  publication-title: Multimed Tools Appl
– volume: 118
  start-page: 36
  year: 2016
  end-page: 50
  ident: bib0027
  article-title: Image encryption based on three-dimensional bit matrix permutation
  publication-title: Signal Process
– volume: 6
  start-page: 75834
  year: 2018
  end-page: 75842
  ident: bib0030
  article-title: Cryptanalysis of a chaotic image encryption algorithm based on information entropy
  publication-title: IEEE Access
– volume: 134
  start-page: 35
  year: 2017
  end-page: 51
  ident: bib0007
  article-title: A visually secure image encryption scheme based on compressive sensing
  publication-title: Signal Process
– volume: 44
  start-page: 116
  year: 2017
  end-page: 127
  ident: bib0008
  article-title: An image coding scheme using parallel compressive sensing for simultaneous compression-encryption applications
  publication-title: J. Visual Commun. Image Rep.
– volume: 25
  start-page: 46
  year: 2018
  end-page: 56
  ident: bib0025
  article-title: Cryptanalyzing an image encryption algorithm based on autoblocking and electrocardiography
  publication-title: IEEE Multimedia
– volume: 7
  start-page: 8660
  year: 2019
  end-page: 8674
  ident: bib0005
  article-title: Image Encryption Using Josephus Problem and Filtering Diffusion
  publication-title: IEEE Access
– volume: 343
  start-page: 10
  year: 2015
  end-page: 21
  ident: bib0041
  article-title: Image compression and encryption scheme based on 2D compressive sensing and fractional Mellin transform
  publication-title: Opt. Commun.
– volume: 28
  start-page: 656
  year: 1949
  end-page: 715
  ident: bib0045
  article-title: Communication theory of secrecy systems
  publication-title: Bell Labs Tech J
– volume: 354
  start-page: 112
  year: 2015
  end-page: 121
  ident: bib0037
  article-title: Double-image encryption scheme combining DWT-based compressive sensing with discrete fractional random transform
  publication-title: Opt. Commun.
– volume: 124
  start-page: 2514
  year: 2013
  end-page: 2518
  ident: bib0010
  article-title: Digital image information encryption based on compressive sensing and double random-phase encoding technique
  publication-title: Optik
– volume: 115
  start-page: 197
  year: 2019
  end-page: 207
  ident: bib0006
  article-title: Chaos-based image encryption algorithm with orbit perturbation and dynamic state variable selection mechanisms
  publication-title: Opt. Lasers Eng.
– volume: 31
  start-page: 7111
  year: 2019
  end-page: 7130
  ident: bib0018
  article-title: A chaotic image encryption algorithm based on 3-D bit-plane permutation
  publication-title: Neural Comput. Appl.
– volume: 77
  start-page: 243
  year: 2014
  end-page: 246
  ident: bib0023
  article-title: Security evaluation of bilateral-diffusion based image encryption algorithm
  publication-title: Nonlinear Dyn.
– volume: 284
  start-page: 5290
  year: 2011
  end-page: 5298
  ident: bib0052
  article-title: A novel chaos-based image encryption scheme with an efficient permutation-diffusion mechanism
  publication-title: Opt. Commun.
– volume: 66
  start-page: 806
  year: 2012
  end-page: 816
  ident: bib0053
  article-title: A hybrid genetic algorithm and chaotic function model for image encryption
  publication-title: AEÜ-Int. J. Electron C.
– volume: 51
  start-page: 4203
  year: 2005
  end-page: 4215
  ident: bib0033
  article-title: Decoding by linear programming
  publication-title: IEEE T. Inform. Theory
– volume: 55
  start-page: 2230
  year: 2009
  end-page: 2249
  ident: bib0036
  article-title: Subspace pursuit for compressive sensing signal reconstruction
  publication-title: IEEE Trans. Inf. Theory
– volume: 62
  start-page: 152
  year: 2014
  end-page: 160
  ident: bib0012
  article-title: Novel image compression-encryption hybrid algorithm based on key-controlled measurement matrix in compressive sensing
  publication-title: Opt. Laser Technol.
– volume: 124
  year: 2020
  ident: bib0049
  article-title: Nixon. An efficient visually meaningful image compression and encryption scheme based on compressive sensing and dynamic LSB embedding
  publication-title: Opt. Lasers Eng
– volume: 169
  year: 2020
  ident: bib0046
  article-title: Characteristic analysis of the fractional-order hyperchaotic complex system and its image encryption application
  publication-title: Signal Process
– volume: 10
  year: 2015
  ident: bib0051
  article-title: A new color image encryption scheme using CML and a fractional-order chaotic system
  publication-title: PLoS ONE
– volume: 430-431
  start-page: 228
  year: 2018
  end-page: 239
  ident: bib0055
  article-title: Improved known-plaintext attack to permutation-only multimedia ciphers
  publication-title: Inf. Sci.
– volume: 77
  start-page: 25223
  year: 2018
  end-page: 25251
  ident: bib0021
  article-title: Image encryption based on modified Henon map using hybrid chaotic shift transform
  publication-title: Multimed Tools Appl.
– year: 2020
  ident: bib0056
  article-title: Cryptanalysis of an image block encryption algorithm based on chaotic maps
  publication-title: J. Inf. Secur. Appl.
– volume: 144
  start-page: 444
  year: 2018
  end-page: 452
  ident: bib0026
  article-title: Cryptanalysis and enhancements of image encryption using combination of the 1D chaotic map
  publication-title: Signal Process
– volume: 93
  start-page: 2399
  year: 2018
  end-page: 2413
  ident: bib0031
  article-title: Cryptanalysis and improvement in an image encryption scheme using combination of the 1D chaotic map
  publication-title: Nonlinear Dyn.
– year: 2019
  ident: bib0054
  article-title: Exploiting plaintext-related mechanism for secure color image encryption
  publication-title: Neural Comput. Appl.
– volume: 121
  start-page: 203
  year: 2019
  end-page: 214
  ident: bib0011
  article-title: A fast image encryption algorithm based on compressive sensing and hyperchaotic map
  publication-title: Opt. Lasers Eng.
– volume: 115
  start-page: 257
  year: 2019
  end-page: 267
  ident: bib0019
  article-title: An image compression and encryption algorithm based on chaotic system and compressive sensing
  publication-title: Opt. Laser Technol.
– year: 2019
  ident: bib0024
  article-title: When an attacker meets a cipher-image in 2018: a year in review
  publication-title: J. Inf. Secur. Appl.
– volume: 66
  start-page: 2322
  year: 2019
  end-page: 2335
  ident: bib0003
  article-title: Dynamic analysis of digital chaotic maps via state-mapping networks
  publication-title: IEEE Transact. Circu. Syst. I
– volume: 94
  start-page: 745
  year: 2018
  end-page: 756
  ident: bib0004
  article-title: An efficient pixel-level chaotic image encryption algorithm
  publication-title: Nonlinear Dyn.
– start-page: 40
  year: 1993
  end-page: 44
  ident: bib0035
  article-title: Orthogonal matching pursuit : recursive function approximation with applications to wavelet decomposition
  publication-title: Asilomar Conference on Signals Systems and Computers
– volume: 171
  year: 2020
  ident: bib0002
  article-title: A novel image encryption scheme based on conservative hyperchaotic system and closed-loop diffusion between blocks
  publication-title: Signal Process
– volume: 94
  start-page: 745
  year: 2018
  ident: 10.1016/j.sigpro.2020.107684_bib0004
  article-title: An efficient pixel-level chaotic image encryption algorithm
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-018-4391-y
– volume: 115
  start-page: 197
  year: 2019
  ident: 10.1016/j.sigpro.2020.107684_bib0006
  article-title: Chaos-based image encryption algorithm with orbit perturbation and dynamic state variable selection mechanisms
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2018.12.002
– volume: 20
  start-page: 405
  issue: 4
  year: 2011
  ident: 10.1016/j.sigpro.2020.107684_bib0020
  article-title: Digital image encryption with chaotic map lattices
  publication-title: Chinese Phys. B
– volume: 155
  start-page: 44
  year: 2019
  ident: 10.1016/j.sigpro.2020.107684_bib0048
  article-title: A color image cryptosystem based on dynamic DNA encryption and chaos
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2018.09.029
– volume: 16
  start-page: 887
  year: 2020
  ident: 10.1016/j.sigpro.2020.107684_bib0057
  article-title: Two-dimensional sine chaotification system with hardware implementation
  publication-title: IEEE T. Ind. Inform.
  doi: 10.1109/TII.2019.2923553
– volume: 41
  start-page: 1773
  issue: 4
  year: 2009
  ident: 10.1016/j.sigpro.2020.107684_bib0015
  article-title: A chaos-based image encryption algorithm with variable control parameters
  publication-title: Chaos Soliton Fract
  doi: 10.1016/j.chaos.2008.07.031
– year: 2020
  ident: 10.1016/j.sigpro.2020.107684_bib0056
  article-title: Cryptanalysis of an image block encryption algorithm based on chaotic maps
  publication-title: J. Inf. Secur. Appl.
– volume: 51
  start-page: 4203
  issue: 12
  year: 2005
  ident: 10.1016/j.sigpro.2020.107684_bib0033
  article-title: Decoding by linear programming
  publication-title: IEEE T. Inform. Theory
  doi: 10.1109/TIT.2005.858979
– year: 2019
  ident: 10.1016/j.sigpro.2020.107684_bib0058
  article-title: Exponential chaotic model for generating robust chaos
  publication-title: IEEE T. Syst. Man Cy.
– volume: 121
  start-page: 203
  year: 2019
  ident: 10.1016/j.sigpro.2020.107684_bib0011
  article-title: A fast image encryption algorithm based on compressive sensing and hyperchaotic map
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2019.04.011
– volume: 171
  year: 2020
  ident: 10.1016/j.sigpro.2020.107684_bib0002
  article-title: A novel image encryption scheme based on conservative hyperchaotic system and closed-loop diffusion between blocks
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2020.107484
– volume: 76
  start-page: 16529
  issue: 15
  year: 2017
  ident: 10.1016/j.sigpro.2020.107684_bib0039
  article-title: An innovative image encryption scheme based on chaotic map and Vigenère sheme
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-016-3926-9
– volume: 354
  start-page: 112
  year: 2015
  ident: 10.1016/j.sigpro.2020.107684_bib0037
  article-title: Double-image encryption scheme combining DWT-based compressive sensing with discrete fractional random transform
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2015.05.043
– volume: 78
  start-page: 12027
  year: 2019
  ident: 10.1016/j.sigpro.2020.107684_bib0017
  article-title: A novel bit-level color image encryption using improved 1D chaotic map
  publication-title: Multimed. Tool. Appl.
  doi: 10.1007/s11042-018-6739-1
– volume: 291
  start-page: 323
  year: 2016
  ident: 10.1016/j.sigpro.2020.107684_bib0038
  article-title: Hopf bifurcation analysis and ultimate bound estimation of a new 4-D quadratic autonomous hyper-chaotic system
  publication-title: Appl. Math. Comput.
– year: 2018
  ident: 10.1016/j.sigpro.2020.107684_bib0014
  article-title: An efficient chaos-based image compression and encryption scheme using block compressive sensing and elementary cellular automata
  publication-title: Neural Comput. Appl.
– volume: 77
  start-page: 2191
  year: 2018
  ident: 10.1016/j.sigpro.2020.107684_bib0040
  article-title: A fast and efficient approach to color-image encryption based on compressive sensing and fractional Fourier transform
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-017-4370-1
– volume: 12
  start-page: 1143
  year: 2019
  ident: 10.1016/j.sigpro.2020.107684_bib0042
  article-title: Asymmetric color cryptosystem based on compressed sensing and equal modulus decomposition in discrete fractional random transform domain
  publication-title: Opt. Lasers Eng.
– volume: 98
  start-page: 140
  year: 2014
  ident: 10.1016/j.sigpro.2020.107684_bib0050
  article-title: A new chaotic map based image encryption schemes for several image formats
  publication-title: J. Syst. Softw.
  doi: 10.1016/j.jss.2014.08.066
– volume: 20
  start-page: 506
  year: 2015
  ident: 10.1016/j.sigpro.2020.107684_bib0001
  article-title: A novel image encryption algorithm based on chaos maps with Markov properties
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2014.06.005
– volume: 134
  start-page: 35
  year: 2017
  ident: 10.1016/j.sigpro.2020.107684_bib0007
  article-title: A visually secure image encryption scheme based on compressive sensing
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2016.11.016
– volume: 85
  start-page: 850
  year: 2012
  ident: 10.1016/j.sigpro.2020.107684_bib0022
  article-title: The novel bilateral-diffusion image encryption algorithm with dynamical compound chaos
  publication-title: J. Syst. Softw.
  doi: 10.1016/j.jss.2011.10.051
– volume: 113
  start-page: 104
  year: 2015
  ident: 10.1016/j.sigpro.2020.107684_bib0047
  article-title: Asymmetric color image encryption scheme using 2D discrete-time map
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2015.01.016
– volume: 31
  start-page: 7111
  year: 2019
  ident: 10.1016/j.sigpro.2020.107684_bib0018
  article-title: A chaotic image encryption algorithm based on 3-D bit-plane permutation
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-018-3541-y
– volume: 118
  start-page: 36
  year: 2016
  ident: 10.1016/j.sigpro.2020.107684_bib0027
  article-title: Image encryption based on three-dimensional bit matrix permutation
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2015.06.008
– volume: 138
  start-page: 129
  year: 2017
  ident: 10.1016/j.sigpro.2020.107684_bib0016
  article-title: A new color image encryption using combination of the 1D chaotic map
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2017.03.011
– volume: 10
  start-page: 399
  year: 2018
  ident: 10.1016/j.sigpro.2020.107684_bib0029
  article-title: Cryptanalysis and improvement on an image encryption algorithm design using a novel chaos based S-Box
  publication-title: Symmetry
  doi: 10.3390/sym10090399
– volume: 10
  issue: 3
  year: 2015
  ident: 10.1016/j.sigpro.2020.107684_bib0051
  article-title: A new color image encryption scheme using CML and a fractional-order chaotic system
  publication-title: PLoS ONE
– volume: 52
  start-page: 1289
  issue: 4
  year: 2006
  ident: 10.1016/j.sigpro.2020.107684_bib0034
  article-title: Compressed sensing
  publication-title: IEEE T. Inform. Theory
  doi: 10.1109/TIT.2006.871582
– volume: 110
  start-page: 72
  year: 2018
  ident: 10.1016/j.sigpro.2020.107684_bib0043
  article-title: Double-image compression and encryption algorithm based on co-sparse representation and random pixel exchanging
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2018.05.014
– volume: 142
  start-page: 292
  year: 2018
  ident: 10.1016/j.sigpro.2020.107684_bib0028
  article-title: Cryptanalysis and enhancements of image encryption based on three-dimensional bit matrix permutation
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2017.06.014
– volume: 343
  start-page: 10
  year: 2015
  ident: 10.1016/j.sigpro.2020.107684_bib0041
  article-title: Image compression and encryption scheme based on 2D compressive sensing and fractional Mellin transform
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2014.12.084
– volume: 77
  start-page: 25223
  year: 2018
  ident: 10.1016/j.sigpro.2020.107684_bib0021
  article-title: Image encryption based on modified Henon map using hybrid chaotic shift transform
  publication-title: Multimed Tools Appl.
  doi: 10.1007/s11042-018-5782-2
– volume: 4
  start-page: 2507
  year: 2016
  ident: 10.1016/j.sigpro.2020.107684_bib0009
  article-title: A review of compressive sensing in information security field
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2016.2569421
– volume: 124
  year: 2020
  ident: 10.1016/j.sigpro.2020.107684_bib0049
  article-title: Nixon. An efficient visually meaningful image compression and encryption scheme based on compressive sensing and dynamic LSB embedding
  publication-title: Opt. Lasers Eng
  doi: 10.1016/j.optlaseng.2019.105837
– volume: 77
  start-page: 243
  year: 2014
  ident: 10.1016/j.sigpro.2020.107684_bib0023
  article-title: Security evaluation of bilateral-diffusion based image encryption algorithm
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-014-1287-3
– volume: 430-431
  start-page: 228
  year: 2018
  ident: 10.1016/j.sigpro.2020.107684_bib0055
  article-title: Improved known-plaintext attack to permutation-only multimedia ciphers
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.11.021
– start-page: 40
  year: 1993
  ident: 10.1016/j.sigpro.2020.107684_bib0035
  article-title: Orthogonal matching pursuit : recursive function approximation with applications to wavelet decomposition
– volume: 44
  start-page: 116
  year: 2017
  ident: 10.1016/j.sigpro.2020.107684_bib0008
  article-title: An image coding scheme using parallel compressive sensing for simultaneous compression-encryption applications
  publication-title: J. Visual Commun. Image Rep.
  doi: 10.1016/j.jvcir.2017.01.022
– volume: 6
  start-page: 75834
  year: 2018
  ident: 10.1016/j.sigpro.2020.107684_bib0030
  article-title: Cryptanalysis of a chaotic image encryption algorithm based on information entropy
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2883690
– volume: 25
  start-page: 46
  year: 2018
  ident: 10.1016/j.sigpro.2020.107684_bib0025
  article-title: Cryptanalyzing an image encryption algorithm based on autoblocking and electrocardiography
  publication-title: IEEE Multimedia
  doi: 10.1109/MMUL.2018.2873472
– volume: 66
  start-page: 2322
  year: 2019
  ident: 10.1016/j.sigpro.2020.107684_bib0003
  article-title: Dynamic analysis of digital chaotic maps via state-mapping networks
  publication-title: IEEE Transact. Circu. Syst. I
– volume: 148
  start-page: 124
  year: 2018
  ident: 10.1016/j.sigpro.2020.107684_bib0013
  article-title: An image encryption algorithm based on chaotic system and compressive sensing
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2018.02.007
– volume: 66
  start-page: 806
  year: 2012
  ident: 10.1016/j.sigpro.2020.107684_bib0053
  article-title: A hybrid genetic algorithm and chaotic function model for image encryption
  publication-title: AEÜ-Int. J. Electron C.
  doi: 10.1016/j.aeue.2012.01.015
– volume: 284
  start-page: 5290
  issue: 22
  year: 2011
  ident: 10.1016/j.sigpro.2020.107684_bib0052
  article-title: A novel chaos-based image encryption scheme with an efficient permutation-diffusion mechanism
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2011.07.070
– volume: 7
  start-page: 8660
  year: 2019
  ident: 10.1016/j.sigpro.2020.107684_bib0005
  article-title: Image Encryption Using Josephus Problem and Filtering Diffusion
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2890116
– volume: 169
  year: 2020
  ident: 10.1016/j.sigpro.2020.107684_bib0046
  article-title: Characteristic analysis of the fractional-order hyperchaotic complex system and its image encryption application
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2019.107373
– year: 2019
  ident: 10.1016/j.sigpro.2020.107684_bib0024
  article-title: When an attacker meets a cipher-image in 2018: a year in review
  publication-title: J. Inf. Secur. Appl.
– volume: 62
  start-page: 152
  year: 2014
  ident: 10.1016/j.sigpro.2020.107684_bib0012
  article-title: Novel image compression-encryption hybrid algorithm based on key-controlled measurement matrix in compressive sensing
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2014.02.015
– volume: 144
  start-page: 444
  year: 2018
  ident: 10.1016/j.sigpro.2020.107684_bib0026
  article-title: Cryptanalysis and enhancements of image encryption using combination of the 1D chaotic map
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2017.11.005
– volume: 93
  start-page: 2399
  year: 2018
  ident: 10.1016/j.sigpro.2020.107684_bib0031
  article-title: Cryptanalysis and improvement in an image encryption scheme using combination of the 1D chaotic map
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-018-4332-9
– volume: 3
  start-page: 1433
  year: 2006
  ident: 10.1016/j.sigpro.2020.107684_bib0032
  article-title: Compressive sampling
  publication-title: Int. Congress Math.
– year: 2019
  ident: 10.1016/j.sigpro.2020.107684_bib0054
  article-title: Exploiting plaintext-related mechanism for secure color image encryption
  publication-title: Neural Comput. Appl.
– volume: 55
  start-page: 2230
  year: 2009
  ident: 10.1016/j.sigpro.2020.107684_bib0036
  article-title: Subspace pursuit for compressive sensing signal reconstruction
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2009.2016006
– volume: 28
  start-page: 656
  year: 1949
  ident: 10.1016/j.sigpro.2020.107684_bib0045
  article-title: Communication theory of secrecy systems
  publication-title: Bell Labs Tech J
  doi: 10.1002/j.1538-7305.1949.tb00928.x
– volume: 115
  start-page: 257
  year: 2019
  ident: 10.1016/j.sigpro.2020.107684_bib0019
  article-title: An image compression and encryption algorithm based on chaotic system and compressive sensing
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2019.01.039
– volume: 124
  start-page: 2514
  year: 2013
  ident: 10.1016/j.sigpro.2020.107684_bib0010
  article-title: Digital image information encryption based on compressive sensing and double random-phase encoding technique
  publication-title: Optik
  doi: 10.1016/j.ijleo.2012.08.017
– volume: 147
  start-page: 263
  year: 2017
  ident: 10.1016/j.sigpro.2020.107684_bib0044
  article-title: Crypt analysis of an image compression- encryption algorithm and a modified scheme using compressive sensing
  publication-title: Optik
  doi: 10.1016/j.ijleo.2017.07.063
SSID ssj0001360
Score 2.641493
Snippet •Based on compressive sensing and double random encryption strategy, a novel color image compression and encryption scheme is proposed.•DRPP is presented to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107684
SubjectTerms Chaos
Compressive sensing
Image compression
Image encryption
Title Color image compression and encryption scheme based on compressive sensing and double random encryption strategy
URI https://dx.doi.org/10.1016/j.sigpro.2020.107684
Volume 176
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8MwDDalu2yHsSd7Fh929ZqHncexlJVuY71shd5C4kfJaJPSx6CX_fZJeXQtjA12tCOFWFY-SViSCbnjOhTc2IqFnPuM24azwBjJpK0CSwdukgRY4Pwy8PpD_jQSowbp1rUwmFZZYX-J6QVaVzPtSprtWZq2X7EQx8ZjJNBT7IOHFezcRy2___xO87DdolIYiRlS1-VzRY7XIh0DTkGU6OAUnkn9bJ62TE7viBxWviLtlJ9zTBo6OyEHWx0ET8kMAv98TtMpwALF9PAyrTWjcaYoLGa-LiCBQgyrp5qizVIUxhvSD00XmMOejQsWla-SiaZgwFQ-3XlB2cV2fUaGvYe3bp9VlygwCdHAknm-48Xckgl34gCcNxlzIYwINYTUykkC8K_gmfEgUrBhZAT8lAADtq9gqyS33HPSzPJMXxBqxbHLJYS0njLc9UzINfiXQvmJG0phy0vi1rKLZNVhHC-6mER1Ktl7VEo8QolHpcQvCdtwzcoOG3_Q-_W2RDuaEoER-JXz6t-c12QfR2UN4g1pLucrfQvOyDJpFdrWInudx-f-4AtRKOCL
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Za8JAEB6sPrR9KD2pPfehr4vG7OZ4FKloPV6q4FtI9hCLJuJR8N93NodUKC30cY8Jyezmm_nYmVmAF6Z8zrQlqc-YS5mlGfW0FlRY0qsrz44izyQ4D4ZOZ8zeJnxSglaRC2PCKnPszzA9Reu8p5Zrs7aczWrvJhHHMsdIuE9NHbwjqJjqVLwMlWa31xnuAdmy02RhM58agSKDLg3zWs-mCFVIFBumyxxL_Wyhvlmd9jmc5e4iaWZvdAElFV_C6bciglewRO6frMhsgchATIR4FtkakzCWBL9ntUtRgSCNVQtFjNmSBNv7qZ-KrE0YezxNRWSyjeaKoA2TyeLgAVkh2901jNuvo1aH5vcoUIGEYEMdt-GErC4i1gg99N9EyDjX3FfIqmUj8tDFwjHtIFmwsKU5_peIBJYrcbUEq9s3UI6TWN0CqYehzQSyWkdqZjvaZwpdTC7dyPYFt0QV7EJ3gciLjJu7LuZBEU32EWQaD4zGg0zjVaB7qWVWZOOP-W6xLMHBZgnQDvwqefdvyWc47owG_aDfHfbu4cSMZCmJD1DerLbqEX2TTfSU770vCMHjPA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Color+image+compression+and+encryption+scheme+based+on+compressive+sensing+and+double+random+encryption+strategy&rft.jtitle=Signal+processing&rft.au=Chai%2C+Xiuli&rft.au=Bi%2C+Jianqiang&rft.au=Gan%2C+Zhihua&rft.au=Liu%2C+Xianxing&rft.date=2020-11-01&rft.pub=Elsevier+B.V&rft.issn=0165-1684&rft.volume=176&rft_id=info:doi/10.1016%2Fj.sigpro.2020.107684&rft.externalDocID=S0165168420302279
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon