Dual-layer vermiculite nanosheet based hybrid film to suppress dendrite growth in lithium metal batteries
A dual-layer vermiculite nanosheet based hybrid film can achieve a dendrite-free lithium metal anode. [Display omitted] Lithium metal anode has become a favorable candidate for next-generation rechargeable batteries. However, the unstable interface between lithium metal and electrolyte leads to the...
Saved in:
Published in | Journal of energy chemistry Vol. 69; pp. 205 - 210 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2095-4956 |
DOI | 10.1016/j.jechem.2022.01.019 |
Cover
Loading…
Abstract | A dual-layer vermiculite nanosheet based hybrid film can achieve a dendrite-free lithium metal anode.
[Display omitted]
Lithium metal anode has become a favorable candidate for next-generation rechargeable batteries. However, the unstable interface between lithium metal and electrolyte leads to the growth of dendrites, resulting in the low Coulombic efficiency and even the safety concerns. Herein, a rigid-flexible dual-layer vermiculite nanosheet (VN) based organic-inorganic hybrid film on lithium metal anode is proposed to suppress dendrite growth and relieve volume fluctuations. The inner mechanically robust VN layer (3 μm thick) enhances the mechanical properties of the protective layer, while the outer polymer (4 μm thick) can enhance the flexibility of the hybrid layer. The Li | Li symmetric cell with protected lithium shows an extended life of over 670 h. The full cell with Li anode protected by dual-layer interface exhibits a better capacity retention of 80% after 174 cycles in comparison to bare Li anode with 94 cycles. This study provides a novel approach and a significant step towards prolonging lifespan of lithium metal batteries. |
---|---|
AbstractList | A dual-layer vermiculite nanosheet based hybrid film can achieve a dendrite-free lithium metal anode.
[Display omitted]
Lithium metal anode has become a favorable candidate for next-generation rechargeable batteries. However, the unstable interface between lithium metal and electrolyte leads to the growth of dendrites, resulting in the low Coulombic efficiency and even the safety concerns. Herein, a rigid-flexible dual-layer vermiculite nanosheet (VN) based organic-inorganic hybrid film on lithium metal anode is proposed to suppress dendrite growth and relieve volume fluctuations. The inner mechanically robust VN layer (3 μm thick) enhances the mechanical properties of the protective layer, while the outer polymer (4 μm thick) can enhance the flexibility of the hybrid layer. The Li | Li symmetric cell with protected lithium shows an extended life of over 670 h. The full cell with Li anode protected by dual-layer interface exhibits a better capacity retention of 80% after 174 cycles in comparison to bare Li anode with 94 cycles. This study provides a novel approach and a significant step towards prolonging lifespan of lithium metal batteries. |
Author | Liu, He Xiao, Ye Yang, Shi-Jie Liu, Fangyang Xu, Xiang-Qun Liu, Lei Cheng, Xin-Bing Jiang, Feng-Ni |
Author_xml | – sequence: 1 givenname: Xiang-Qun surname: Xu fullname: Xu, Xiang-Qun organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China – sequence: 2 givenname: Feng-Ni surname: Jiang fullname: Jiang, Feng-Ni organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China – sequence: 3 givenname: Shi-Jie surname: Yang fullname: Yang, Shi-Jie organization: Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China – sequence: 4 givenname: Ye surname: Xiao fullname: Xiao, Ye organization: Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China – sequence: 5 givenname: He surname: Liu fullname: Liu, He organization: School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China – sequence: 6 givenname: Fangyang surname: Liu fullname: Liu, Fangyang organization: School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China – sequence: 7 givenname: Lei surname: Liu fullname: Liu, Lei organization: College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China – sequence: 8 givenname: Xin-Bing surname: Cheng fullname: Cheng, Xin-Bing email: cxb12@mails.tsinghua.edu.cn organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China |
BookMark | eNqF0MtKAzEUBuAsKlhr38BFXmDGZK7GhSD1CgU3ug65nHHOMJeSZCp9e1PqyoUeDpzV98P5L8hinEYg5IqzlDNeXXdpB6aFIc1YlqWMxxULssyYKJNClNU5WXvfsTii4JkolwQfZtUnvTqAo3twA5q5xwB0VOPkW4BAtfJgaXvQDi1tsB9omKifdzsH3lMLo3VH8Ommr9BSHGn0Lc4DHSCoPvIQwCH4S3LWqN7D-ueuyMfT4_vmJdm-Pb9u7reJyVkVkqrOSt4oURZ1ZawGZQUXmgsButF1WSjNM92UualvlK2UzXNeG6WKJre2iDhfkeKUa9zkvYNG7hwOyh0kZ_LYkuzkqSV5bEkyHldEdvuLGQwq4DQGp7D_D9-dMMTH9ghOeoMwGrDowARpJ_w74Bsiu4zE |
CitedBy_id | crossref_primary_10_1039_D4TA08225G crossref_primary_10_1016_j_jechem_2022_10_037 crossref_primary_10_1002_smll_202401675 crossref_primary_10_1002_aenm_202202518 crossref_primary_10_1002_adma_202209114 crossref_primary_10_1039_D4RA00333K crossref_primary_10_1002_smtd_202201555 crossref_primary_10_1016_j_partic_2022_11_009 crossref_primary_10_1021_acssuschemeng_3c04640 crossref_primary_10_3390_en16093745 crossref_primary_10_34133_energymatadv_0084 crossref_primary_10_1007_s11705_022_2286_4 crossref_primary_10_1016_j_jechem_2022_09_030 crossref_primary_10_1002_anie_202214545 crossref_primary_10_1016_j_jechem_2022_09_017 crossref_primary_10_1021_acsami_2c06522 crossref_primary_10_1002_elt2_8 crossref_primary_10_1016_j_etran_2022_100211 crossref_primary_10_1016_j_etran_2023_100279 crossref_primary_10_1039_D3QM01151H crossref_primary_10_1007_s12598_024_02858_8 crossref_primary_10_1039_D4YA00209A crossref_primary_10_1016_j_mtener_2023_101298 crossref_primary_10_1016_j_cej_2022_136801 crossref_primary_10_1016_j_jechem_2022_05_005 crossref_primary_10_1002_sus2_74 crossref_primary_10_1002_ange_202214545 crossref_primary_10_1016_j_jechem_2024_09_047 crossref_primary_10_1002_adfm_202202013 |
Cites_doi | 10.1016/j.jechem.2020.08.029 10.1016/j.ensm.2018.05.018 10.1002/aenm.201800866 10.1038/nnano.2016.207 10.1002/anie.202110917 10.1039/C8TA07241H 10.1016/j.joule.2018.11.025 10.1038/s41467-019-11960-w 10.1016/j.memsci.2006.04.013 10.1002/smtd.201800546 10.1016/j.ensm.2017.09.007 10.1038/s41467-019-09211-z 10.1002/aenm.202001440 10.1126/science.156.3773.385 10.1002/anie.201913351 10.1016/j.jpowsour.2015.03.004 10.1002/aenm.201802833 10.1016/j.ensm.2020.06.037 10.1002/anie.201915440 10.1016/j.joule.2018.05.007 10.1021/jacs.0c09649 10.1016/j.jechem.2021.04.045 10.1002/inf2.12056 10.1016/j.partic.2020.12.003 10.1016/j.ensm.2018.05.007 10.1002/eom2.12019 10.1002/aenm.201902254 10.1021/ja305366r 10.1002/anie.201900783 10.1039/C9CS00838A 10.1016/j.mattod.2020.06.011 10.1002/adma.201902785 10.1002/adfm.202009925 10.1002/eem2.12008 10.1016/j.matt.2019.06.020 10.1021/am5001163 10.1002/sus2.4 10.1021/acsami.0c12248 10.1016/j.matt.2019.05.016 10.1039/D1TA02615A 10.1002/inf2.12046 10.1002/aenm.201802350 10.1021/acsenergylett.0c00851 10.1002/adma.202001740 10.1021/jacs.8b06047 |
ContentType | Journal Article |
Copyright | 2021 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences |
Copyright_xml | – notice: 2021 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jechem.2022.01.019 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 210 |
ExternalDocumentID | 10_1016_j_jechem_2022_01_019 S2095495622000286 |
GroupedDBID | --M .~1 0R~ 1~. 2B. 2C0 4.4 457 4G. 5VR 5VS 7-5 8P~ 92H 92I AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFUIB AGHFR AGUBO AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CCEZO CDRFL CHBEP EBS EFJIC EFLBG EJD ENUVR FA0 FDB FEDTE FIRID FNPLU FYGXN GBLVA HVGLF HZ~ KOM M41 MO0 O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SPC SPCBC SSG SSR SSZ T5K TCJ TGT ~G- -SB -S~ 5XA 5XC AATTM AAXKI AAYWO AAYXX ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CAJEB CITATION Q-- SSH U1G U5L |
ID | FETCH-LOGICAL-c306t-67251fa95476cdbead919b199ebfb754ab12bf53c78ad6ad3317caa4f3dd46723 |
IEDL.DBID | .~1 |
ISSN | 2095-4956 |
IngestDate | Thu Apr 24 22:57:19 EDT 2025 Tue Jul 01 03:48:57 EDT 2025 Fri Feb 23 02:41:21 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Dual-layer interface Organic-inorganic hybrid layer Lithium metal anode Two-dimensional vermiculite nanosheet Dendrite |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-67251fa95476cdbead919b199ebfb754ab12bf53c78ad6ad3317caa4f3dd46723 |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_1016_j_jechem_2022_01_019 crossref_citationtrail_10_1016_j_jechem_2022_01_019 elsevier_sciencedirect_doi_10_1016_j_jechem_2022_01_019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2022 2022-06-00 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: June 2022 |
PublicationDecade | 2020 |
PublicationTitle | Journal of energy chemistry |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Cheng, Liu, Yuan, Peng, Tang, Huang, Zhang (b0020) 2021; 1 Shi, Liu, Zhang, Chen, Yao, Xie, Jin, Zhan, Ye, Huang, Ifan, Maria-Magdalena, Zhang (b0055) 2022; 64 Shi, Cheng, Li, Zhang, Liu, Yan, Zhang, Huang, Zhang (b0045) 2019; 31 Zhang, Wang, Zhang, Guan, Tang, Luo (b0205) 2018; 8 Yang, Chen, Ma, Lai, Huang, Mi, Biao, Zhang, Shi, Xia, Zhong, Kang, He (b0145) 2021; 60 Lei, He, Huang, Yuan, Zhong, Zhao, Hao, Zhang, Lai, Zhang, Ma, Wei, Yu, Lv, Yu, Li, Yang, Yang, Lu, Kang (b0235) 2019; 10 Lopez, Pei, Oh, Wang, Cui, Bao (b0230) 2018; 140 Wang, Chen, Chen, Kang, Yang, Wang, Liu, Xiong (b0185) 2020; 59 Zheng, Xiang, Jiang, Liu, Sun, Liang, Feng, Yu (b0075) 2020; 10 Zhang, Wu, Huang, Fan, Shen, He, Feng, Zhu, Lu (b0080) 2020; 32 Lu, Zhao, Yuan, Cheng, Huang, Zhang (b0155) 2021; 31 Lee, Lee, Kim, Park, Kim (b0180) 2015; 284 Shi, Lu, Liu, Qi, Hector, Li, Harris (b0190) 2012; 134 Liu, Yuan, Tao, Liang, Yang, Huang, Yuan, Titirici, Zhang (b0140) 2020; 2 Chen, Fan, Ji, Chen, Hou, Wang (b0065) 2019; 3 Yamada, Usui, Chiang, Kikuchi, Furukawa, Yamada (b0240) 2014; 6 Gao, Sun, Liu, Yang, Cao (b0175) 2020; 40 Zhao, Amirmaleki, Sun, Zhao, Codirenzi, Goncharova, Wang, Adair, Li, Yang, Zhao, Li, Filleter, Cai, Sun (b0200) 2019; 1 Ma, Sun, Liu, Xia, Liu, Luo (b0215) 2019; 58 Fan, Li, Liu, Zhang, Gao, Fu, Chen, Li, Zhuang, Lu (b0070) 2018; 8 Hu, Li, Wang, Tenhaeff (b0100) 2020; 12 Liu, Cheng, Xu, Zhang, Yan, Huang, Zhang (b0245) 2019; 9 Fan, Chen, Legut, Zhang (b0040) 2019; 16 Liu, Cheng, Chong, Yuan, Huang, Zhang (b0015) 2021; 57 Tang, Tang, Zhang, Ma, Xiang, Yang, Luo (b0220) 2018; 8 Zhang, Mu, Yang, Wang, Guo, Han, He, Zhou (b0035) 2018; 1 Lu, Chen, Ma, Pan, Curtiss, Amine (b0010) 2016; 11 Zhao, Wang, Tan, Huang, Song, Sun, Cui, Wei, Guo, Li, Yu, Qiu, Sun (b0050) 2019; 3 Lu, Huang, Ruan, Wang, Kun, Yang, Wen (b0135) 2018; 6 Li, Kong, Zhao, Jin, Chen, Peng, Qin, Chen, Yuan, Zhang, Huang (b0030) 2019; 1 Xu, Xu, Cheng, Xiao, Peng, Yuan, Liu (b0115) 2021; 56 Walker, Garrett (b0210) 1967; 156 Li, Liu, Shi, Liang, Lu, Fu, Wu (b0125) 2019; 10 Yu, Cui, Bao (b0165) 2020; 1 Lu, Gu, Hong, Rui, Huang, Jin, Chen, Yang, Wen (b0170) 2018; 11 Wang, Xu, Hong, Bai, Li, Zhang, Lai (b0090) 2022; 428 Huang, Choudhury, Gong, Cui, Bao (b0095) 2020; 142 Chen, Zhang, Zhao, Qi, Li, Sun, Ma, Qie, Huang (b0120) 2020; 31 Lu, Huang, Song, Rui, Wang, Gu, Yang, Xiu, Badding, Wen (b0150) 2018; 15 Liu, Tzeng, Lin, Pei, Lu, Melosh, Shen, Chu, Cui (b0195) 2018; 2 Yang, Yao, Xu, Jiang, Chen, Liu, Yuan, Huang, Cheng (b0085) 2021; 9 Cao, Zhu, Xu (b0225) 2006; 281 Liang, Chen, Liao, Yao, Zhu, Lv, Wang, Chen, Zhu (b0130) 2020; 59 Zhou, Feng, Wang, Liang, Li, Song, Itkis, Song (b0105) 2020; 396 Xu, Cheng, Yan, Zhang, Xiao, Zhao, Huang, Zhang (b0160) 2019; 1 Han, Li, Kong, Zhang, Tao, Li, Yang, Chen (b0005) 2020; 5 Cheng, Ke, Chen, Huang, Shi, Guo (b0060) 2019; 63 Zhang, Yang, Zhou (b0025) 2020; 49 Yao, Zhang, Li, Yan, Chen, Huang, Zhang (b0110) 2019; 2 Zhang (10.1016/j.jechem.2022.01.019_b0025) 2020; 49 Liang (10.1016/j.jechem.2022.01.019_b0130) 2020; 59 Fan (10.1016/j.jechem.2022.01.019_b0040) 2019; 16 Xu (10.1016/j.jechem.2022.01.019_b0160) 2019; 1 Lee (10.1016/j.jechem.2022.01.019_b0180) 2015; 284 Zhang (10.1016/j.jechem.2022.01.019_b0035) 2018; 1 Huang (10.1016/j.jechem.2022.01.019_b0095) 2020; 142 Hu (10.1016/j.jechem.2022.01.019_b0100) 2020; 12 Li (10.1016/j.jechem.2022.01.019_b0030) 2019; 1 Lu (10.1016/j.jechem.2022.01.019_b0135) 2018; 6 Yu (10.1016/j.jechem.2022.01.019_b0165) 2020; 1 Yang (10.1016/j.jechem.2022.01.019_b0085) 2021; 9 Cao (10.1016/j.jechem.2022.01.019_b0225) 2006; 281 Wang (10.1016/j.jechem.2022.01.019_b0090) 2022; 428 Xu (10.1016/j.jechem.2022.01.019_b0115) 2021; 56 Zhang (10.1016/j.jechem.2022.01.019_b0080) 2020; 32 Han (10.1016/j.jechem.2022.01.019_b0005) 2020; 5 Chen (10.1016/j.jechem.2022.01.019_b0120) 2020; 31 Liu (10.1016/j.jechem.2022.01.019_b0245) 2019; 9 Cheng (10.1016/j.jechem.2022.01.019_b0020) 2021; 1 Yang (10.1016/j.jechem.2022.01.019_b0145) 2021; 60 Wang (10.1016/j.jechem.2022.01.019_b0185) 2020; 59 Chen (10.1016/j.jechem.2022.01.019_b0065) 2019; 3 Liu (10.1016/j.jechem.2022.01.019_b0015) 2021; 57 Shi (10.1016/j.jechem.2022.01.019_b0190) 2012; 134 Fan (10.1016/j.jechem.2022.01.019_b0070) 2018; 8 Zhang (10.1016/j.jechem.2022.01.019_b0205) 2018; 8 Shi (10.1016/j.jechem.2022.01.019_b0045) 2019; 31 Tang (10.1016/j.jechem.2022.01.019_b0220) 2018; 8 Walker (10.1016/j.jechem.2022.01.019_b0210) 1967; 156 Lu (10.1016/j.jechem.2022.01.019_b0010) 2016; 11 Gao (10.1016/j.jechem.2022.01.019_b0175) 2020; 40 Li (10.1016/j.jechem.2022.01.019_b0125) 2019; 10 Zhou (10.1016/j.jechem.2022.01.019_b0105) 2020; 396 Lei (10.1016/j.jechem.2022.01.019_b0235) 2019; 10 Zhao (10.1016/j.jechem.2022.01.019_b0050) 2019; 3 Cheng (10.1016/j.jechem.2022.01.019_b0060) 2019; 63 Lopez (10.1016/j.jechem.2022.01.019_b0230) 2018; 140 Lu (10.1016/j.jechem.2022.01.019_b0170) 2018; 11 Lu (10.1016/j.jechem.2022.01.019_b0155) 2021; 31 Liu (10.1016/j.jechem.2022.01.019_b0140) 2020; 2 Yamada (10.1016/j.jechem.2022.01.019_b0240) 2014; 6 Yao (10.1016/j.jechem.2022.01.019_b0110) 2019; 2 Ma (10.1016/j.jechem.2022.01.019_b0215) 2019; 58 Liu (10.1016/j.jechem.2022.01.019_b0195) 2018; 2 Zhao (10.1016/j.jechem.2022.01.019_b0200) 2019; 1 Zheng (10.1016/j.jechem.2022.01.019_b0075) 2020; 10 Shi (10.1016/j.jechem.2022.01.019_b0055) 2022; 64 Lu (10.1016/j.jechem.2022.01.019_b0150) 2018; 15 |
References_xml | – volume: 31 start-page: 181 year: 2020 end-page: 186 ident: b0120 publication-title: Energy Storage Mater. – volume: 63 year: 2019 ident: b0060 publication-title: Nano Energy – volume: 8 start-page: 1802350 year: 2018 ident: b0070 publication-title: Adv. Energy Mater. – volume: 428 year: 2022 ident: b0090 publication-title: Chem. Eng. J. – volume: 3 start-page: 732 year: 2019 end-page: 744 ident: b0065 publication-title: Joule – volume: 49 start-page: 3040 year: 2020 end-page: 3071 ident: b0025 publication-title: Chem. Soc. Rev. – volume: 58 start-page: 6200 year: 2019 end-page: 6206 ident: b0215 publication-title: Angew. Chem. Int. Ed. – volume: 1 start-page: 1215 year: 2019 end-page: 1231 ident: b0200 publication-title: Matter – volume: 11 start-page: 1031 year: 2016 end-page: 1038 ident: b0010 publication-title: Nat. Nanotechnol. – volume: 2 start-page: 1595 year: 2018 end-page: 1609 ident: b0195 publication-title: Joule – volume: 284 start-page: 103 year: 2015 end-page: 108 ident: b0180 publication-title: J. Power Sources – volume: 8 start-page: 1800866 year: 2018 ident: b0220 publication-title: Adv. Energy Mater. – volume: 11 start-page: 16 year: 2018 end-page: 23 ident: b0170 publication-title: Energy Storage Mater. – volume: 31 start-page: 1902785 year: 2019 ident: b0045 publication-title: Adv. Mater. – volume: 40 start-page: 140 year: 2020 end-page: 159 ident: b0175 publication-title: Mater. Today – volume: 32 start-page: 2001740 year: 2020 ident: b0080 publication-title: Adv. Mater. – volume: 31 start-page: 2009925 year: 2021 ident: b0155 publication-title: Adv. Funct. Mater. – volume: 2 start-page: 379 year: 2019 end-page: 388 ident: b0110 publication-title: InfoMat – volume: 5 start-page: 1986 year: 2020 end-page: 1995 ident: b0005 publication-title: ACS Energy Lett. – volume: 2 start-page: 12019 year: 2020 ident: b0140 publication-title: Ecomat – volume: 10 start-page: 2001440 year: 2020 ident: b0075 publication-title: Adv. Energy Mater. – volume: 6 start-page: 10892 year: 2014 end-page: 10899 ident: b0240 publication-title: ACS Appl. Mater. Interfaces – volume: 1 start-page: 38 year: 2021 end-page: 50 ident: b0020 publication-title: SusMat – volume: 9 start-page: 1902254 year: 2019 ident: b0245 publication-title: Adv. Energy Mater. – volume: 64 start-page: 172 year: 2022 end-page: 178 ident: b0055 publication-title: J. Energy Chem. – volume: 9 start-page: 19664 year: 2021 end-page: 19668 ident: b0085 publication-title: J. Mater. Chem. A – volume: 3 start-page: 1800546 year: 2019 ident: b0050 publication-title: Small Methods – volume: 134 start-page: 15476 year: 2012 end-page: 15487 ident: b0190 publication-title: J. Am. Chem. Soc. – volume: 156 start-page: 385 year: 1967 end-page: 387 ident: b0210 publication-title: Science – volume: 1 start-page: 317 year: 2019 end-page: 344 ident: b0160 publication-title: Matter – volume: 1 year: 2020 ident: b0165 publication-title: Cell Rep. Phys. Sci. – volume: 12 start-page: 39674 year: 2020 end-page: 39684 ident: b0100 publication-title: ACS Appl. Mater. Interfaces – volume: 57 start-page: 56 year: 2021 end-page: 71 ident: b0015 publication-title: Particuology – volume: 10 start-page: 1363 year: 2019 ident: b0125 publication-title: Nat. Commun. – volume: 60 start-page: 24668 year: 2021 end-page: 24675 ident: b0145 publication-title: Angew. Chem. Int. Ed. – volume: 140 start-page: 11735 year: 2018 end-page: 11744 ident: b0230 publication-title: J. Am. Chem. Soc. – volume: 56 start-page: 391 year: 2021 end-page: 394 ident: b0115 publication-title: J. Energy Chem. – volume: 396 year: 2020 ident: b0105 publication-title: Chem. Eng. J. – volume: 59 start-page: 2055 year: 2020 end-page: 2060 ident: b0185 publication-title: Angew. Chem. Int. Ed. – volume: 1 start-page: 61 year: 2018 end-page: 74 ident: b0035 publication-title: Energy Environ. Mater. – volume: 142 start-page: 21393 year: 2020 end-page: 21403 ident: b0095 publication-title: J. Am. Chem. Soc. – volume: 59 start-page: 6561 year: 2020 end-page: 6566 ident: b0130 publication-title: Angew. Chem. Int. Ed. – volume: 1 start-page: 533 year: 2019 end-page: 541 ident: b0030 publication-title: InfoMat – volume: 6 start-page: 18853 year: 2018 end-page: 18858 ident: b0135 publication-title: J. Mater. Chem. A – volume: 281 start-page: 446 year: 2006 end-page: 453 ident: b0225 publication-title: J. Membrane Sci. – volume: 8 start-page: 1802833 year: 2018 ident: b0205 publication-title: Adv. Energy Mater. – volume: 15 start-page: 282 year: 2018 end-page: 290 ident: b0150 publication-title: Energy Storage Mater. – volume: 16 start-page: 169 year: 2019 end-page: 193 ident: b0040 publication-title: Energy Storage Mater. – volume: 10 start-page: 4244 year: 2019 ident: b0235 publication-title: Nat. Commun. – volume: 56 start-page: 391 year: 2021 ident: 10.1016/j.jechem.2022.01.019_b0115 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.08.029 – volume: 15 start-page: 282 year: 2018 ident: 10.1016/j.jechem.2022.01.019_b0150 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.05.018 – volume: 8 start-page: 1800866 year: 2018 ident: 10.1016/j.jechem.2022.01.019_b0220 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201800866 – volume: 11 start-page: 1031 year: 2016 ident: 10.1016/j.jechem.2022.01.019_b0010 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.207 – volume: 60 start-page: 24668 year: 2021 ident: 10.1016/j.jechem.2022.01.019_b0145 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202110917 – volume: 6 start-page: 18853 year: 2018 ident: 10.1016/j.jechem.2022.01.019_b0135 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA07241H – volume: 3 start-page: 732 year: 2019 ident: 10.1016/j.jechem.2022.01.019_b0065 publication-title: Joule doi: 10.1016/j.joule.2018.11.025 – volume: 10 start-page: 4244 year: 2019 ident: 10.1016/j.jechem.2022.01.019_b0235 publication-title: Nat. Commun. doi: 10.1038/s41467-019-11960-w – volume: 281 start-page: 446 year: 2006 ident: 10.1016/j.jechem.2022.01.019_b0225 publication-title: J. Membrane Sci. doi: 10.1016/j.memsci.2006.04.013 – volume: 3 start-page: 1800546 year: 2019 ident: 10.1016/j.jechem.2022.01.019_b0050 publication-title: Small Methods doi: 10.1002/smtd.201800546 – volume: 11 start-page: 16 year: 2018 ident: 10.1016/j.jechem.2022.01.019_b0170 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2017.09.007 – volume: 10 start-page: 1363 year: 2019 ident: 10.1016/j.jechem.2022.01.019_b0125 publication-title: Nat. Commun. doi: 10.1038/s41467-019-09211-z – volume: 10 start-page: 2001440 year: 2020 ident: 10.1016/j.jechem.2022.01.019_b0075 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202001440 – volume: 156 start-page: 385 year: 1967 ident: 10.1016/j.jechem.2022.01.019_b0210 publication-title: Science doi: 10.1126/science.156.3773.385 – volume: 59 start-page: 2055 year: 2020 ident: 10.1016/j.jechem.2022.01.019_b0185 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201913351 – volume: 284 start-page: 103 year: 2015 ident: 10.1016/j.jechem.2022.01.019_b0180 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.03.004 – volume: 8 start-page: 1802833 year: 2018 ident: 10.1016/j.jechem.2022.01.019_b0205 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201802833 – volume: 31 start-page: 181 year: 2020 ident: 10.1016/j.jechem.2022.01.019_b0120 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.06.037 – volume: 59 start-page: 6561 year: 2020 ident: 10.1016/j.jechem.2022.01.019_b0130 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201915440 – volume: 2 start-page: 1595 year: 2018 ident: 10.1016/j.jechem.2022.01.019_b0195 publication-title: Joule doi: 10.1016/j.joule.2018.05.007 – volume: 142 start-page: 21393 year: 2020 ident: 10.1016/j.jechem.2022.01.019_b0095 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c09649 – volume: 64 start-page: 172 year: 2022 ident: 10.1016/j.jechem.2022.01.019_b0055 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2021.04.045 – volume: 1 start-page: 533 year: 2019 ident: 10.1016/j.jechem.2022.01.019_b0030 publication-title: InfoMat doi: 10.1002/inf2.12056 – volume: 57 start-page: 56 year: 2021 ident: 10.1016/j.jechem.2022.01.019_b0015 publication-title: Particuology doi: 10.1016/j.partic.2020.12.003 – volume: 16 start-page: 169 year: 2019 ident: 10.1016/j.jechem.2022.01.019_b0040 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.05.007 – volume: 2 start-page: 12019 year: 2020 ident: 10.1016/j.jechem.2022.01.019_b0140 publication-title: Ecomat doi: 10.1002/eom2.12019 – volume: 9 start-page: 1902254 year: 2019 ident: 10.1016/j.jechem.2022.01.019_b0245 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201902254 – volume: 63 year: 2019 ident: 10.1016/j.jechem.2022.01.019_b0060 publication-title: Nano Energy – volume: 134 start-page: 15476 year: 2012 ident: 10.1016/j.jechem.2022.01.019_b0190 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja305366r – volume: 58 start-page: 6200 year: 2019 ident: 10.1016/j.jechem.2022.01.019_b0215 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201900783 – volume: 49 start-page: 3040 year: 2020 ident: 10.1016/j.jechem.2022.01.019_b0025 publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00838A – volume: 40 start-page: 140 year: 2020 ident: 10.1016/j.jechem.2022.01.019_b0175 publication-title: Mater. Today doi: 10.1016/j.mattod.2020.06.011 – volume: 31 start-page: 1902785 year: 2019 ident: 10.1016/j.jechem.2022.01.019_b0045 publication-title: Adv. Mater. doi: 10.1002/adma.201902785 – volume: 31 start-page: 2009925 year: 2021 ident: 10.1016/j.jechem.2022.01.019_b0155 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202009925 – volume: 1 start-page: 61 year: 2018 ident: 10.1016/j.jechem.2022.01.019_b0035 publication-title: Energy Environ. Mater. doi: 10.1002/eem2.12008 – volume: 1 start-page: 1215 year: 2019 ident: 10.1016/j.jechem.2022.01.019_b0200 publication-title: Matter doi: 10.1016/j.matt.2019.06.020 – volume: 1 year: 2020 ident: 10.1016/j.jechem.2022.01.019_b0165 publication-title: Cell Rep. Phys. Sci. – volume: 6 start-page: 10892 year: 2014 ident: 10.1016/j.jechem.2022.01.019_b0240 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am5001163 – volume: 1 start-page: 38 year: 2021 ident: 10.1016/j.jechem.2022.01.019_b0020 publication-title: SusMat doi: 10.1002/sus2.4 – volume: 396 year: 2020 ident: 10.1016/j.jechem.2022.01.019_b0105 publication-title: Chem. Eng. J. – volume: 12 start-page: 39674 year: 2020 ident: 10.1016/j.jechem.2022.01.019_b0100 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c12248 – volume: 1 start-page: 317 year: 2019 ident: 10.1016/j.jechem.2022.01.019_b0160 publication-title: Matter doi: 10.1016/j.matt.2019.05.016 – volume: 9 start-page: 19664 year: 2021 ident: 10.1016/j.jechem.2022.01.019_b0085 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA02615A – volume: 2 start-page: 379 year: 2019 ident: 10.1016/j.jechem.2022.01.019_b0110 publication-title: InfoMat doi: 10.1002/inf2.12046 – volume: 8 start-page: 1802350 year: 2018 ident: 10.1016/j.jechem.2022.01.019_b0070 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201802350 – volume: 5 start-page: 1986 year: 2020 ident: 10.1016/j.jechem.2022.01.019_b0005 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c00851 – volume: 32 start-page: 2001740 year: 2020 ident: 10.1016/j.jechem.2022.01.019_b0080 publication-title: Adv. Mater. doi: 10.1002/adma.202001740 – volume: 428 year: 2022 ident: 10.1016/j.jechem.2022.01.019_b0090 publication-title: Chem. Eng. J. – volume: 140 start-page: 11735 year: 2018 ident: 10.1016/j.jechem.2022.01.019_b0230 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b06047 |
SSID | ssj0000941295 |
Score | 2.429324 |
Snippet | A dual-layer vermiculite nanosheet based hybrid film can achieve a dendrite-free lithium metal anode.
[Display omitted]
Lithium metal anode has become a... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 205 |
SubjectTerms | Dendrite Dual-layer interface Lithium metal anode Organic-inorganic hybrid layer Two-dimensional vermiculite nanosheet |
Title | Dual-layer vermiculite nanosheet based hybrid film to suppress dendrite growth in lithium metal batteries |
URI | https://dx.doi.org/10.1016/j.jechem.2022.01.019 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LXvQgPvG55OA1bpO26fa4rC6r4l5U8FbSJrGVbnfRVvDib3emD1EQBaGXlgyUyTCP9vu-EHI6VNyzjhoy43geg4QnmXKEYb6Rdmh9YaxE7vDNTE7vvasH_6FHxh0XBmGVbe5vcnqdrdsng9abg2WWDW6Fg7-ooH6L-hsRym6jeh3E9Nk7__zOAuMLlDREMuJ6hgYdg66GeT0ZcA5S0oWo9TtRcuenCvWl6kw2yUbbLtJR80ZbpGeKbbL-RURwh2TnlcpZrqB3pq8IbUkq5BXTQhWLl9SYkmKl0jR9Q3IWtVk-p-WCvlTLGgNLIfHoZzR4hIm8TGlWULBPs2pO5wZaczBHxg9M1LvkfnJxN56y9gAFlsAkUDIZQPdiFbgpkImOIWhCHsY8DE1s48D3VMxFbH03CYZKS6VdaCYSpTzrag0JVLh7ZKVYFGafUK6l4MoXUgewqYmIuUYlfBtq15rECQ6I2zktSlp1cTzkIo86GNlT1Lg6QldHDocrPCDs02rZqGv8sT7o9iP6FiURFIBfLQ__bXlE1vCugYcdk5XyuTIn0IiUcb-OtD5ZHV1eT2cfySPfYw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qPagH8Ylv9-B1abJJNs1RfFBfvajgLWyyuzbSpkUTwX_vTB5FQRSEnJJ8EGaHeWy-bxbgpK9c3zqqz43j-xwDnuTKEYYHRtq-DYSxkrTDd0M5ePSvn4KnDpy1WhiiVTaxv47pVbRu7vQaa_ZmWda7Fw79osL8Lao9IrkAizSdyu_C4unVzWA432rBDgazGpEZCcIJ04roKqbXi0H7kCpdiGqEJ03d-SlJfUk8l2uw2lSM7LT-qHXomHwDVr7MEdyE7LxUYz5WWD6zd2K3pCVJi1mu8unbyJiCUbLSbPRB-ixms_GEFVP2Vs4qGizD2KNfCfCMTXkxYlnOED_KygmbGKzOEU6iH2yqt-Dx8uLhbMCbMxR4is1AwWWIBYxVaKlQpjpBv4ncKHGjyCQ2CQNfJa5IbOClYV9pqbSH9USqlG89rTGGCm8buvk0NzvAXC2FqwIhdYjrmorE1TQM30basyZ1wl3wWqPFaTNgnM65GMctk-wlrk0dk6ljx8Ur2gU-R83qARt_vB-26xF_c5QYc8CvyL1_I49hafBwdxvfXg1v9mGZntRssQPoFq-lOcS6pEiOGr_7BHW04hQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual-layer+vermiculite+nanosheet+based+hybrid+film+to+suppress+dendrite+growth+in+lithium+metal+batteries&rft.jtitle=Journal+of+energy+chemistry&rft.au=Xu%2C+Xiang-Qun&rft.au=Jiang%2C+Feng-Ni&rft.au=Yang%2C+Shi-Jie&rft.au=Xiao%2C+Ye&rft.date=2022-06-01&rft.pub=Elsevier+B.V&rft.issn=2095-4956&rft.volume=69&rft.spage=205&rft.epage=210&rft_id=info:doi/10.1016%2Fj.jechem.2022.01.019&rft.externalDocID=S2095495622000286 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-4956&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-4956&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-4956&client=summon |