Efficient 3D dental identification via signed feature histogram and learning keypoint detection
Current methods of dental identification are mainly based on 2D dental radiographs which suffer from speed and accuracy limitations. In this paper, we present an efficient dental identification approach based on 3D dental models. We propose a novel shape descriptor, the Signed Feature Histogram (SFH...
Saved in:
Published in | Pattern recognition Vol. 60; pp. 189 - 204 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0031-3203 1873-5142 |
DOI | 10.1016/j.patcog.2016.05.007 |
Cover
Abstract | Current methods of dental identification are mainly based on 2D dental radiographs which suffer from speed and accuracy limitations. In this paper, we present an efficient dental identification approach based on 3D dental models. We propose a novel shape descriptor, the Signed Feature Histogram (SFH), which is highly discriminative and can be easily computed to describe the local surface. Based on the SFH, a learning keypoint detection method is adopted to accurately detect the desired keypoints on both antemortem (AM) and postmortem (PM) models. For a given PM model, the optimal initial alignment to the AM model to be matched can be found efficiently and robustly by matching the SFHs between the keypoints. The final matching score is obtained by running the iterative closest point algorithm which further refines the initial alignment. We have performed comparative experiments for the SFH on a public dataset, and state-of-the-art performance is achieved. We also test the identification method on a database of 200 AM models and tested the performance of the proposed approach on 3 different PM datasets comprising complete, incomplete and single tooth models respectively. The experimental results show that both high accuracy and efficiency are achieved with 100% Rank-1 identification accuracy on both complete and incomplete PM models and 74% Rank-1 accuracy on single tooth PM models. The running time is only 300s on average which is about 80times faster than many 2D methods which can take several hours to identify one subject.
•We use a machine learning method to accurately detect keypoints on dental models.•A novel local shape descriptor is proposed which can be efficiently computed.•A highly efficient and robust dental identification algorithm is proposed.•The proposed method is about 80 times faster than traditional 2D based methods.•Promising results are achieved for single tooth identification. |
---|---|
AbstractList | Current methods of dental identification are mainly based on 2D dental radiographs which suffer from speed and accuracy limitations. In this paper, we present an efficient dental identification approach based on 3D dental models. We propose a novel shape descriptor, the Signed Feature Histogram (SFH), which is highly discriminative and can be easily computed to describe the local surface. Based on the SFH, a learning keypoint detection method is adopted to accurately detect the desired keypoints on both antemortem (AM) and postmortem (PM) models. For a given PM model, the optimal initial alignment to the AM model to be matched can be found efficiently and robustly by matching the SFHs between the keypoints. The final matching score is obtained by running the iterative closest point algorithm which further refines the initial alignment. We have performed comparative experiments for the SFH on a public dataset, and state-of-the-art performance is achieved. We also test the identification method on a database of 200 AM models and tested the performance of the proposed approach on 3 different PM datasets comprising complete, incomplete and single tooth models respectively. The experimental results show that both high accuracy and efficiency are achieved with 100% Rank-1 identification accuracy on both complete and incomplete PM models and 74% Rank-1 accuracy on single tooth PM models. The running time is only 300s on average which is about 80times faster than many 2D methods which can take several hours to identify one subject.
•We use a machine learning method to accurately detect keypoints on dental models.•A novel local shape descriptor is proposed which can be efficiently computed.•A highly efficient and robust dental identification algorithm is proposed.•The proposed method is about 80 times faster than traditional 2D based methods.•Promising results are achieved for single tooth identification. |
Author | Ong, Sim Heng Zhang, Zhiyuan Zhong, Xin Foong, Kelvin W.C. |
Author_xml | – sequence: 1 givenname: Zhiyuan orcidid: 0000-0003-3945-5638 surname: Zhang fullname: Zhang, Zhiyuan email: cszyzhang@gmail.com organization: Faculty of Dentistry, National University of Singapore, 11 Lower Kent Ridge Road, Singapore 119083, Singapore – sequence: 2 givenname: Sim Heng surname: Ong fullname: Ong, Sim Heng email: eleongsh@nus.edu.sg organization: Faculty of Engineering, National University of Singapore, Singapore 117583, Singapore – sequence: 3 givenname: Xin surname: Zhong fullname: Zhong, Xin email: andreayoung123@gmail.com organization: Institute of High Performance Computing, A⁎STAR, Singapore 138632, Singapore – sequence: 4 givenname: Kelvin W.C. surname: Foong fullname: Foong, Kelvin W.C. email: kelvinfoong@nuhs.edu.sg organization: Faculty of Dentistry, National University of Singapore, 11 Lower Kent Ridge Road, Singapore 119083, Singapore |
BookMark | eNqFkL1OwzAUhS1UJFrgDRj8AgnXcZw0DEiolB-pEgvMlmtfB5fUqRxTqW-PQ5kYYDqyr74jnW9GJr73SMgVg5wBq643-U5F3bd5kV45iBygPiFTNq95JlhZTMgUgLOMF8DPyGwYNgCsTocpkUtrnXboI-X31KRUHXVjuvSvous93TtFB9d6NNSiip8B6bsbYt8GtaXKG9qhCt75ln7gYde71GUwoh7hC3JqVTfg5U-ek7eH5eviKVu9PD4v7laZ5lDFrCpq5AytXaNFaNaNKBqjOMfSFGpu0h6lTMVAqKYpy8oC06VBQCNEIUQJ_JyUx14d-mEIaOUuuK0KB8lAjpLkRh4lyVGSBCFTacJufmHaxe_VMSjX_QffHmFMw_YOgxxGkxqNC2m9NL37u-ALEmyJWg |
CitedBy_id | crossref_primary_10_4103_sjhs_sjhs_124_23 crossref_primary_10_1016_j_procs_2021_08_191 crossref_primary_10_1016_j_neucom_2019_12_074 crossref_primary_10_1049_iet_bmt_2017_0078 crossref_primary_10_1080_03772063_2023_2178533 crossref_primary_10_1007_s11220_020_00326_y crossref_primary_10_1016_j_patcog_2021_108400 crossref_primary_10_1016_j_forsciint_2020_110538 crossref_primary_10_1016_j_patcog_2018_06_011 crossref_primary_10_1109_ACCESS_2017_2781280 crossref_primary_10_3390_app10144703 crossref_primary_10_1049_iet_bmt_2019_0064 crossref_primary_10_1007_s11042_022_12019_7 |
Cites_doi | 10.1109/ICIP.2012.6466915 10.1016/j.compind.2013.06.005 10.1109/SMI.2008.4547955 10.1007/3-540-44887-X_51 10.1007/s11263-013-0627-y 10.1109/SMI.2005.13 10.1007/s11263-012-0605-9 10.1111/j.1467-8659.2010.01788.x 10.1117/1.2135310 10.1111/j.1467-8659.2008.01162.x 10.1109/34.765655 10.1016/j.patcog.2004.12.010 10.1016/j.patcog.2009.10.005 10.1007/s11263-013-0623-2 10.1109/TIFS.2007.897245 10.1007/978-3-642-15558-1_26 10.1007/978-3-540-24672-5_18 10.1016/j.patrec.2007.02.009 10.1016/j.patcog.2003.12.016 10.1145/1073204.1073244 10.1109/ICCV.2011.6126503 10.1016/j.forsciint.2010.02.031 10.1023/A:1010933404324 10.1016/j.patcog.2011.08.027 10.1016/j.patcog.2007.05.015 10.1145/258734.258849 10.1109/TIFS.2008.919343 10.1109/IJCB.2011.6117541 10.1109/TPAMI.2014.2316828 10.1109/TPAMI.2005.157 10.1016/j.patcog.2005.01.011 10.1007/s11263-007-0085-5 10.1111/j.1556-4029.2007.00403.x 10.1109/34.121791 10.1023/A:1008663629662 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd |
Copyright_xml | – notice: 2016 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.patcog.2016.05.007 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-5142 |
EndPage | 204 |
ExternalDocumentID | 10_1016_j_patcog_2016_05_007 S0031320316300887 |
GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-627e31effbefe09b9529da33e4d2a8d007aad6105a99446f01c4de0ed55255403 |
IEDL.DBID | AIKHN |
ISSN | 0031-3203 |
IngestDate | Thu Apr 24 22:54:10 EDT 2025 Thu Jul 03 08:46:56 EDT 2025 Fri Feb 23 02:25:26 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Keypoint detection Tooth recognition Dental biometrics Postmortem identification Shape descriptor Shape matching Random Forest |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-627e31effbefe09b9529da33e4d2a8d007aad6105a99446f01c4de0ed55255403 |
ORCID | 0000-0003-3945-5638 |
PageCount | 16 |
ParticipantIDs | crossref_primary_10_1016_j_patcog_2016_05_007 crossref_citationtrail_10_1016_j_patcog_2016_05_007 elsevier_sciencedirect_doi_10_1016_j_patcog_2016_05_007 |
PublicationCentury | 2000 |
PublicationDate | December 2016 2016-12-00 |
PublicationDateYYYYMMDD | 2016-12-01 |
PublicationDate_xml | – month: 12 year: 2016 text: December 2016 |
PublicationDecade | 2010 |
PublicationTitle | Pattern recognition |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Woodford, Pham, Maki, Perbet, Stenger (bib25) 2014; 106 Zhong, Yu, Wong, Sim, Lu, Foong, Cheng (bib9) 2013; 64 Sweet (bib15) 2010; 201 N. Gelfand, N. J. Mitra, L. J. Guibas, H. Pottmann, Robust global registration, in: Symposium on Geometry Processing, vol. 2, 2005, p. 5. Fahmy, Chen, Nomir, Howell, Abdel-Mottaleb, Jain, Ammar, Zhou, Nassar, Haj-Said (bib14) 2005; 14 Nomir, Abdel-Mottaleb (bib17) 2008; 3 A.K. Jain, H. Chen, S. Minut, Dental biometrics: human identification using dental radiographs, in: Audio-and Video-Based Biometric Person Authentication, 2003, pp. 429–437. I. Rish, An empirical study of the naive Bayes classifier, in: IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, vol. 3, 2001, pp. 41–46. Jain, Chen (bib2) 2004; 37 Nomir, Abdel-Mottaleb (bib6) 2007; 2 P. OShaughnessy, More than half of victims idd, New York Daily News 11. A. Frome, D. Huber, R. Kolluri, T. Bülow, J. Malik, Recognizing objects in range data using regional point descriptors, in: European Conference on Computer Vision, 2004, pp. 224–237. New scientist news – dental records beat DNA in tsunami IDs. Castellani, Cristani, Fantoni, Murino (bib29) 2008; vol. 27 Johnson, Hebert (bib30) 1999; 21 Chen, Jain (bib3) 2005; 8 C.H. Lee, A. Varshney, D. W. Jacobs, Mesh saliency, in: ACM Transactions on Graphics, vol. 24, 2005, pp. 659–666. A. Petrelli, L. Di Stefano, On the repeatability of the local reference frame for partial shape matching, in: IEEE International Conference on Computer Vision, 2011, pp. 2244–2251. Kieser, Bernal, Neil Waddell, Raju (bib18) 2007; 52 Guo, Bennamoun, Sohel, Lu, Wan (bib24) 2014; 36 Besl, McKay (bib19) 1992; 14 Bredensteiner, Bennett (bib41) 1999 Nomir, Abdel-Mottaleb (bib5) 2005; 38 F. Tombari, S. Salti, L. Di Stefano, Unique signatures of histograms for local surface description, in: European Conference on Computer Vision, 2010, pp. 356–369. T. Gatzke, C. Grimm, M. Garland, S. Zelinka, Curvature maps for local shape comparison, in: International Conference on Shape Modeling and Applications, 2005, pp. 244–253. Creusot, Pears, Austin (bib33) 2013; 102 Lin, Lai, Huang (bib10) 2010; 43 Z. Zhang, S.H. Ong, K.W.C. Foong, Improved spin images for 3d surface matching using signed angles, in: IEEE International Conference on Image Processing, 2012, pp. 537–540. Chen, Bhanu (bib36) 2007; 28 P. Thepgumpanat, Thai tsunami forensic centre produces first ids, Reuters, 18 . Zhou, Abdel-Mottaleb (bib4) 2005; 38 Breiman (bib42) 2001; 45 Nomir, Abdel-Mottaleb (bib16) 2008; 41 Mian, Bennamoun, Owens (bib26) 2008; 79 Guo, Sohel, Bennamoun, Lu, Wan (bib32) 2013; 105 X. Zhong, D. Yu, T. Sim, Y. San Wong, H.-l. Cheng, Towards automated pose invariant 3d dental biometrics, in: International Joint Conference on Biometrics, 2011, pp. 1–7. M. Garland, P.S. Heckbert, Surface simplification using quadric error metrics, in: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, 1997, pp. 209–216. J. Weston, C. Watkins, Multi-class Support Vector Machines, Technical Report, 1998. Boyé, Guennebaud, Schlick (bib21) 2010; vol. 29 Lin, Lai, Huang (bib7) 2012; 45 R. Ohbuchi, K. Osada, T. Furuya, T. Banno, Salient local visual features for shape-based 3d model retrieval, in: IEEE International Conference on Shape Modeling and Applications, 2008, SMI 2008, 2008, pp. 93–102. Bishop (bib38) 1995 10.1016/j.patcog.2016.05.007_bib27 Mian (10.1016/j.patcog.2016.05.007_bib26) 2008; 79 10.1016/j.patcog.2016.05.007_bib28 10.1016/j.patcog.2016.05.007_bib23 Castellani (10.1016/j.patcog.2016.05.007_bib29) 2008; vol. 27 Bredensteiner (10.1016/j.patcog.2016.05.007_bib41) 1999 Jain (10.1016/j.patcog.2016.05.007_bib2) 2004; 37 Nomir (10.1016/j.patcog.2016.05.007_bib6) 2007; 2 Bishop (10.1016/j.patcog.2016.05.007_bib38) 1995 Zhong (10.1016/j.patcog.2016.05.007_bib9) 2013; 64 Fahmy (10.1016/j.patcog.2016.05.007_bib14) 2005; 14 Boyé (10.1016/j.patcog.2016.05.007_bib21) 2010; vol. 29 10.1016/j.patcog.2016.05.007_bib31 Nomir (10.1016/j.patcog.2016.05.007_bib5) 2005; 38 10.1016/j.patcog.2016.05.007_bib11 Nomir (10.1016/j.patcog.2016.05.007_bib17) 2008; 3 10.1016/j.patcog.2016.05.007_bib39 Chen (10.1016/j.patcog.2016.05.007_bib36) 2007; 28 Guo (10.1016/j.patcog.2016.05.007_bib32) 2013; 105 10.1016/j.patcog.2016.05.007_bib12 Kieser (10.1016/j.patcog.2016.05.007_bib18) 2007; 52 10.1016/j.patcog.2016.05.007_bib34 10.1016/j.patcog.2016.05.007_bib13 Besl (10.1016/j.patcog.2016.05.007_bib19) 1992; 14 10.1016/j.patcog.2016.05.007_bib35 Chen (10.1016/j.patcog.2016.05.007_bib3) 2005; 8 Johnson (10.1016/j.patcog.2016.05.007_bib30) 1999; 21 Guo (10.1016/j.patcog.2016.05.007_bib24) 2014; 36 10.1016/j.patcog.2016.05.007_bib37 Lin (10.1016/j.patcog.2016.05.007_bib10) 2010; 43 Zhou (10.1016/j.patcog.2016.05.007_bib4) 2005; 38 Woodford (10.1016/j.patcog.2016.05.007_bib25) 2014; 106 Creusot (10.1016/j.patcog.2016.05.007_bib33) 2013; 102 Breiman (10.1016/j.patcog.2016.05.007_bib42) 2001; 45 Nomir (10.1016/j.patcog.2016.05.007_bib16) 2008; 41 10.1016/j.patcog.2016.05.007_bib1 Lin (10.1016/j.patcog.2016.05.007_bib7) 2012; 45 10.1016/j.patcog.2016.05.007_bib20 10.1016/j.patcog.2016.05.007_bib22 10.1016/j.patcog.2016.05.007_bib8 Sweet (10.1016/j.patcog.2016.05.007_bib15) 2010; 201 10.1016/j.patcog.2016.05.007_bib40 |
References_xml | – reference: C.H. Lee, A. Varshney, D. W. Jacobs, Mesh saliency, in: ACM Transactions on Graphics, vol. 24, 2005, pp. 659–666. – volume: 38 start-page: 2132 year: 2005 end-page: 2142 ident: bib4 article-title: A content-based system for human identification based on bitewing dental x-ray images publication-title: Pattern Recognit. – year: 1995 ident: bib38 article-title: Neural Networks for Pattern Recognition – reference: P. Thepgumpanat, Thai tsunami forensic centre produces first ids, Reuters, 18, 〈 – reference: I. Rish, An empirical study of the naive Bayes classifier, in: IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, vol. 3, 2001, pp. 41–46. – volume: 201 start-page: 18 year: 2010 end-page: 21 ident: bib15 article-title: Interpol dvi best-practice standards—an overview publication-title: Forensic Sci. Int. – volume: 41 start-page: 130 year: 2008 end-page: 138 ident: bib16 article-title: Hierarchical contour matching for dental x-ray radiographs publication-title: Pattern Recognit. – reference: M. Garland, P.S. Heckbert, Surface simplification using quadric error metrics, in: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, 1997, pp. 209–216. – volume: 64 start-page: 1355 year: 2013 end-page: 1370 ident: bib9 article-title: 3d dental biometrics: alignment and matching of dental casts for human identification publication-title: Comput. Ind. – reference: T. Gatzke, C. Grimm, M. Garland, S. Zelinka, Curvature maps for local shape comparison, in: International Conference on Shape Modeling and Applications, 2005, pp. 244–253. – volume: 36 start-page: 2270 year: 2014 end-page: 2287 ident: bib24 article-title: 3d object recognition in cluttered scenes with local surface features publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 106 start-page: 332 year: 2014 end-page: 341 ident: bib25 article-title: Demisting the hough transform for 3d shape recognition and registration publication-title: Int. J. Comput. Vis. – volume: vol. 27 start-page: 643 year: 2008 end-page: 652 ident: bib29 article-title: Sparse points matching by combining 3d mesh saliency with statistical descriptors publication-title: Comput. Graph. Forum – volume: 102 start-page: 146 year: 2013 end-page: 179 ident: bib33 article-title: A machine-learning approach to keypoint detection and landmarking on 3d meshes publication-title: Int. J. Comput. Vis. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib42 article-title: Random forests publication-title: Mach. Learn. – reference: P. OShaughnessy, More than half of victims idd, New York Daily News 11. – reference: New scientist news – dental records beat DNA in tsunami IDs. – volume: 45 start-page: 934 year: 2012 end-page: 946 ident: bib7 article-title: Dental biometrics publication-title: Pattern Recognit. – volume: 38 start-page: 1295 year: 2005 end-page: 1305 ident: bib5 article-title: A system for human identification from x-ray dental radiographs publication-title: Pattern Recognit. – volume: 43 start-page: 1380 year: 2010 end-page: 1392 ident: bib10 article-title: An effective classification and numbering system for dental bitewing radiographs using teeth region and contour information publication-title: Pattern Recognit. – volume: 37 start-page: 1519 year: 2004 end-page: 1532 ident: bib2 article-title: Matching of dental x-ray images for human identification publication-title: Pattern Recognit. – reference: A. Frome, D. Huber, R. Kolluri, T. Bülow, J. Malik, Recognizing objects in range data using regional point descriptors, in: European Conference on Computer Vision, 2004, pp. 224–237. – reference: A. Petrelli, L. Di Stefano, On the repeatability of the local reference frame for partial shape matching, in: IEEE International Conference on Computer Vision, 2011, pp. 2244–2251. – reference: 〉. – reference: N. Gelfand, N. J. Mitra, L. J. Guibas, H. Pottmann, Robust global registration, in: Symposium on Geometry Processing, vol. 2, 2005, p. 5. – volume: 52 start-page: 671 year: 2007 end-page: 677 ident: bib18 article-title: The uniqueness of the human anterior dentition publication-title: J. Forensic Sci. – volume: 14 start-page: 239 year: 1992 end-page: 256 ident: bib19 article-title: A method for registration of 3-d shapes publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 53 year: 1999 end-page: 79 ident: bib41 article-title: Multicategory classification by support vector machines publication-title: Comput. Optim. – volume: 21 start-page: 433 year: 1999 end-page: 449 ident: bib30 article-title: Using spin images for efficient object recognition in cluttered 3d scenes publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 14 start-page: 1 year: 2005 end-page: 13 ident: bib14 article-title: Toward an automated dental identification system publication-title: J. Electron. Imaging – reference: Z. Zhang, S.H. Ong, K.W.C. Foong, Improved spin images for 3d surface matching using signed angles, in: IEEE International Conference on Image Processing, 2012, pp. 537–540. – reference: J. Weston, C. Watkins, Multi-class Support Vector Machines, Technical Report, 1998. – volume: 79 start-page: 1 year: 2008 end-page: 12 ident: bib26 article-title: Keypoint detection and local feature matching for textured 3d face recognition publication-title: Int. J. Comput. Vis. – reference: A.K. Jain, H. Chen, S. Minut, Dental biometrics: human identification using dental radiographs, in: Audio-and Video-Based Biometric Person Authentication, 2003, pp. 429–437. – reference: X. Zhong, D. Yu, T. Sim, Y. San Wong, H.-l. Cheng, Towards automated pose invariant 3d dental biometrics, in: International Joint Conference on Biometrics, 2011, pp. 1–7. – reference: F. Tombari, S. Salti, L. Di Stefano, Unique signatures of histograms for local surface description, in: European Conference on Computer Vision, 2010, pp. 356–369. – volume: vol. 29 start-page: 2021 year: 2010 end-page: 2028 ident: bib21 article-title: Least squares subdivision surfaces publication-title: Comput. Graph. Forum – reference: R. Ohbuchi, K. Osada, T. Furuya, T. Banno, Salient local visual features for shape-based 3d model retrieval, in: IEEE International Conference on Shape Modeling and Applications, 2008, SMI 2008, 2008, pp. 93–102. – volume: 3 start-page: 223 year: 2008 end-page: 233 ident: bib17 article-title: Fusion of matching algorithms for human identification using dental x-ray radiographs publication-title: IEEE Trans. Inf. Forensics Secur. – volume: 8 start-page: 1319 year: 2005 end-page: 1326 ident: bib3 article-title: Dental biometrics publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 28 start-page: 1252 year: 2007 end-page: 1262 ident: bib36 article-title: 3d free-form object recognition in range images using local surface patches publication-title: Pattern Recognit. Lett. – volume: 2 start-page: 188 year: 2007 end-page: 197 ident: bib6 article-title: Human identification from dental x-ray images based on the shape and appearance of the teeth publication-title: IEEE Trans. Inf. Forensics Secur. – volume: 105 start-page: 63 year: 2013 end-page: 86 ident: bib32 article-title: Rotational projection statistics for 3d local surface description and object recognition publication-title: Int. J. Comput. Vis. – ident: 10.1016/j.patcog.2016.05.007_bib34 doi: 10.1109/ICIP.2012.6466915 – volume: 64 start-page: 1355 issue: 9 year: 2013 ident: 10.1016/j.patcog.2016.05.007_bib9 article-title: 3d dental biometrics: alignment and matching of dental casts for human identification publication-title: Comput. Ind. doi: 10.1016/j.compind.2013.06.005 – ident: 10.1016/j.patcog.2016.05.007_bib22 doi: 10.1109/SMI.2008.4547955 – ident: 10.1016/j.patcog.2016.05.007_bib1 doi: 10.1007/3-540-44887-X_51 – ident: 10.1016/j.patcog.2016.05.007_bib39 – volume: 105 start-page: 63 issue: 1 year: 2013 ident: 10.1016/j.patcog.2016.05.007_bib32 article-title: Rotational projection statistics for 3d local surface description and object recognition publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-013-0627-y – ident: 10.1016/j.patcog.2016.05.007_bib12 – ident: 10.1016/j.patcog.2016.05.007_bib27 doi: 10.1109/SMI.2005.13 – year: 1995 ident: 10.1016/j.patcog.2016.05.007_bib38 – volume: 102 start-page: 146 issue: 1–3 year: 2013 ident: 10.1016/j.patcog.2016.05.007_bib33 article-title: A machine-learning approach to keypoint detection and landmarking on 3d meshes publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-012-0605-9 – volume: vol. 29 start-page: 2021 year: 2010 ident: 10.1016/j.patcog.2016.05.007_bib21 article-title: Least squares subdivision surfaces publication-title: Comput. Graph. Forum doi: 10.1111/j.1467-8659.2010.01788.x – volume: 14 start-page: 1 issue: 4 year: 2005 ident: 10.1016/j.patcog.2016.05.007_bib14 article-title: Toward an automated dental identification system publication-title: J. Electron. Imaging doi: 10.1117/1.2135310 – volume: vol. 27 start-page: 643 year: 2008 ident: 10.1016/j.patcog.2016.05.007_bib29 article-title: Sparse points matching by combining 3d mesh saliency with statistical descriptors publication-title: Comput. Graph. Forum doi: 10.1111/j.1467-8659.2008.01162.x – volume: 21 start-page: 433 issue: 5 year: 1999 ident: 10.1016/j.patcog.2016.05.007_bib30 article-title: Using spin images for efficient object recognition in cluttered 3d scenes publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.765655 – volume: 38 start-page: 1295 issue: 8 year: 2005 ident: 10.1016/j.patcog.2016.05.007_bib5 article-title: A system for human identification from x-ray dental radiographs publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2004.12.010 – volume: 43 start-page: 1380 issue: 4 year: 2010 ident: 10.1016/j.patcog.2016.05.007_bib10 article-title: An effective classification and numbering system for dental bitewing radiographs using teeth region and contour information publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2009.10.005 – volume: 106 start-page: 332 issue: 3 year: 2014 ident: 10.1016/j.patcog.2016.05.007_bib25 article-title: Demisting the hough transform for 3d shape recognition and registration publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-013-0623-2 – volume: 2 start-page: 188 issue: 2 year: 2007 ident: 10.1016/j.patcog.2016.05.007_bib6 article-title: Human identification from dental x-ray images based on the shape and appearance of the teeth publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2007.897245 – ident: 10.1016/j.patcog.2016.05.007_bib31 doi: 10.1007/978-3-642-15558-1_26 – ident: 10.1016/j.patcog.2016.05.007_bib35 doi: 10.1007/978-3-540-24672-5_18 – volume: 28 start-page: 1252 issue: 10 year: 2007 ident: 10.1016/j.patcog.2016.05.007_bib36 article-title: 3d free-form object recognition in range images using local surface patches publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2007.02.009 – volume: 37 start-page: 1519 issue: 7 year: 2004 ident: 10.1016/j.patcog.2016.05.007_bib2 article-title: Matching of dental x-ray images for human identification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2003.12.016 – ident: 10.1016/j.patcog.2016.05.007_bib11 – ident: 10.1016/j.patcog.2016.05.007_bib40 – ident: 10.1016/j.patcog.2016.05.007_bib13 – ident: 10.1016/j.patcog.2016.05.007_bib28 doi: 10.1145/1073204.1073244 – ident: 10.1016/j.patcog.2016.05.007_bib37 doi: 10.1109/ICCV.2011.6126503 – volume: 201 start-page: 18 issue: 1 year: 2010 ident: 10.1016/j.patcog.2016.05.007_bib15 article-title: Interpol dvi best-practice standards—an overview publication-title: Forensic Sci. Int. doi: 10.1016/j.forsciint.2010.02.031 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.patcog.2016.05.007_bib42 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 45 start-page: 934 issue: 3 year: 2012 ident: 10.1016/j.patcog.2016.05.007_bib7 article-title: Dental biometrics publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2011.08.027 – volume: 41 start-page: 130 issue: 1 year: 2008 ident: 10.1016/j.patcog.2016.05.007_bib16 article-title: Hierarchical contour matching for dental x-ray radiographs publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2007.05.015 – ident: 10.1016/j.patcog.2016.05.007_bib20 doi: 10.1145/258734.258849 – volume: 3 start-page: 223 issue: 2 year: 2008 ident: 10.1016/j.patcog.2016.05.007_bib17 article-title: Fusion of matching algorithms for human identification using dental x-ray radiographs publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2008.919343 – ident: 10.1016/j.patcog.2016.05.007_bib23 – ident: 10.1016/j.patcog.2016.05.007_bib8 doi: 10.1109/IJCB.2011.6117541 – volume: 36 start-page: 2270 issue: 11 year: 2014 ident: 10.1016/j.patcog.2016.05.007_bib24 article-title: 3d object recognition in cluttered scenes with local surface features publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2014.2316828 – volume: 8 start-page: 1319 year: 2005 ident: 10.1016/j.patcog.2016.05.007_bib3 article-title: Dental biometrics publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2005.157 – volume: 38 start-page: 2132 issue: 11 year: 2005 ident: 10.1016/j.patcog.2016.05.007_bib4 article-title: A content-based system for human identification based on bitewing dental x-ray images publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2005.01.011 – volume: 79 start-page: 1 issue: 1 year: 2008 ident: 10.1016/j.patcog.2016.05.007_bib26 article-title: Keypoint detection and local feature matching for textured 3d face recognition publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-007-0085-5 – volume: 52 start-page: 671 issue: 3 year: 2007 ident: 10.1016/j.patcog.2016.05.007_bib18 article-title: The uniqueness of the human anterior dentition publication-title: J. Forensic Sci. doi: 10.1111/j.1556-4029.2007.00403.x – volume: 14 start-page: 239 issue: 2 year: 1992 ident: 10.1016/j.patcog.2016.05.007_bib19 article-title: A method for registration of 3-d shapes publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.121791 – start-page: 53 year: 1999 ident: 10.1016/j.patcog.2016.05.007_bib41 article-title: Multicategory classification by support vector machines publication-title: Comput. Optim. doi: 10.1023/A:1008663629662 |
SSID | ssj0017142 |
Score | 2.2848294 |
Snippet | Current methods of dental identification are mainly based on 2D dental radiographs which suffer from speed and accuracy limitations. In this paper, we present... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 189 |
SubjectTerms | Dental biometrics Keypoint detection Postmortem identification Random Forest Shape descriptor Shape matching Tooth recognition |
Title | Efficient 3D dental identification via signed feature histogram and learning keypoint detection |
URI | https://dx.doi.org/10.1016/j.patcog.2016.05.007 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50vXjxLT6XHLxG2yZpN0dZlVXRk4K30DYTqUh3kdWjv91JmoqCKHgptHTSdJqZzNBvvgE4QiUkCqW5klnJZV6lXGOKvLAusZWkCDVgc25u88m9vHpQDwsw7mthPKwy-v7OpwdvHa-cRG2ezJrG1_h62kE6eNYospVFWMqEztUAlk4vrye3nz8TilR2pOEi5V6gr6ALMK8Zebzpo8d45YHC0_eV_WmH-rLrXKzBSgwX2Wk3o3VYwHYDVvtWDCxa5iaY80AFQTsIE2fMhhpH1tgIBQraZ29NyTxcAy1zGPg8WWAb9vgsVraWxQ4Sj4wMezZtaCyL8wDVarfg_uL8bjzhsXcCrykJmPM8K1Ck6FyFDhNdaZVpWwqB0mblyNJrlqWl0EmVWlNG6JK0lhYTtEpRkiETsQ2DdtriDjBXWRpTo3Ke2qWQo8zpmvKqkRMjzOt0F0SvL1NHYnHf3-LZ9AiyJ9Np2Xgtm0QZevwu8E-pWUes8cf9Rf8pzLcFYsj3_yq592_JfVj2Zx165QAG85dXPKQYZF4NYfH4PR3GlfYBmnDchg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYKDLDwRrzxwGpIYjupRwRUBdpORWKzkvhcBaG0QoWR387ZcSqQEEgsGRKf41x85zvpu-8IOQfJBXCpmBRJzkRaxExBDCwzNjKFwAjVY3OGo7T_KO6f5FOHXLe1MA5WGXx_49O9tw53LoM2L2dV5Wp8He0gXhxrFNrKElkRkmcO13fxscB5uAbfDWU4j5kb3tbPeZDXDP3ddOIQXqkn8HRdZX86n76cOb1Nsh6CRXrVrGeLdKDeJhttIwYa7HKH6FtPBIHnB-U31PgKR1qZAATyuqfvVU4dWAMMteDZPKnnGnboLJrXhob-EROKZj2bVjiXgbkHatW75LF3O77us9A5gZWYAsxZmmTAY7C2AAuRKpRMlMk5B2GSvGvwM_PcYOAkc6UwH7RRXAoDERgpMcUQEd8jy_W0hn1CbWFwTgXSOmKXTHQTq0rMqrqWdyEt4wPCW33pMtCKu-4WL7rFjz3rRsvaaVlHUuPrDwhbSM0aWo0_xmftr9DftodGz_-r5OG_Jc_Ian88HOjB3ejhiKy5Jw2O5Zgsz1_f4ASjkXlx6nfbJ3eR3VE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+3D+dental+identification+via+signed+feature+histogram+and+learning+keypoint+detection&rft.jtitle=Pattern+recognition&rft.au=Zhang%2C+Zhiyuan&rft.au=Ong%2C+Sim+Heng&rft.au=Zhong%2C+Xin&rft.au=Foong%2C+Kelvin+W.C.&rft.date=2016-12-01&rft.issn=0031-3203&rft.volume=60&rft.spage=189&rft.epage=204&rft_id=info:doi/10.1016%2Fj.patcog.2016.05.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2016_05_007 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |