Efficient 3D dental identification via signed feature histogram and learning keypoint detection

Current methods of dental identification are mainly based on 2D dental radiographs which suffer from speed and accuracy limitations. In this paper, we present an efficient dental identification approach based on 3D dental models. We propose a novel shape descriptor, the Signed Feature Histogram (SFH...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition Vol. 60; pp. 189 - 204
Main Authors Zhang, Zhiyuan, Ong, Sim Heng, Zhong, Xin, Foong, Kelvin W.C.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2016
Subjects
Online AccessGet full text
ISSN0031-3203
1873-5142
DOI10.1016/j.patcog.2016.05.007

Cover

Abstract Current methods of dental identification are mainly based on 2D dental radiographs which suffer from speed and accuracy limitations. In this paper, we present an efficient dental identification approach based on 3D dental models. We propose a novel shape descriptor, the Signed Feature Histogram (SFH), which is highly discriminative and can be easily computed to describe the local surface. Based on the SFH, a learning keypoint detection method is adopted to accurately detect the desired keypoints on both antemortem (AM) and postmortem (PM) models. For a given PM model, the optimal initial alignment to the AM model to be matched can be found efficiently and robustly by matching the SFHs between the keypoints. The final matching score is obtained by running the iterative closest point algorithm which further refines the initial alignment. We have performed comparative experiments for the SFH on a public dataset, and state-of-the-art performance is achieved. We also test the identification method on a database of 200 AM models and tested the performance of the proposed approach on 3 different PM datasets comprising complete, incomplete and single tooth models respectively. The experimental results show that both high accuracy and efficiency are achieved with 100% Rank-1 identification accuracy on both complete and incomplete PM models and 74% Rank-1 accuracy on single tooth PM models. The running time is only 300s on average which is about 80times faster than many 2D methods which can take several hours to identify one subject. •We use a machine learning method to accurately detect keypoints on dental models.•A novel local shape descriptor is proposed which can be efficiently computed.•A highly efficient and robust dental identification algorithm is proposed.•The proposed method is about 80 times faster than traditional 2D based methods.•Promising results are achieved for single tooth identification.
AbstractList Current methods of dental identification are mainly based on 2D dental radiographs which suffer from speed and accuracy limitations. In this paper, we present an efficient dental identification approach based on 3D dental models. We propose a novel shape descriptor, the Signed Feature Histogram (SFH), which is highly discriminative and can be easily computed to describe the local surface. Based on the SFH, a learning keypoint detection method is adopted to accurately detect the desired keypoints on both antemortem (AM) and postmortem (PM) models. For a given PM model, the optimal initial alignment to the AM model to be matched can be found efficiently and robustly by matching the SFHs between the keypoints. The final matching score is obtained by running the iterative closest point algorithm which further refines the initial alignment. We have performed comparative experiments for the SFH on a public dataset, and state-of-the-art performance is achieved. We also test the identification method on a database of 200 AM models and tested the performance of the proposed approach on 3 different PM datasets comprising complete, incomplete and single tooth models respectively. The experimental results show that both high accuracy and efficiency are achieved with 100% Rank-1 identification accuracy on both complete and incomplete PM models and 74% Rank-1 accuracy on single tooth PM models. The running time is only 300s on average which is about 80times faster than many 2D methods which can take several hours to identify one subject. •We use a machine learning method to accurately detect keypoints on dental models.•A novel local shape descriptor is proposed which can be efficiently computed.•A highly efficient and robust dental identification algorithm is proposed.•The proposed method is about 80 times faster than traditional 2D based methods.•Promising results are achieved for single tooth identification.
Author Ong, Sim Heng
Zhang, Zhiyuan
Zhong, Xin
Foong, Kelvin W.C.
Author_xml – sequence: 1
  givenname: Zhiyuan
  orcidid: 0000-0003-3945-5638
  surname: Zhang
  fullname: Zhang, Zhiyuan
  email: cszyzhang@gmail.com
  organization: Faculty of Dentistry, National University of Singapore, 11 Lower Kent Ridge Road, Singapore 119083, Singapore
– sequence: 2
  givenname: Sim Heng
  surname: Ong
  fullname: Ong, Sim Heng
  email: eleongsh@nus.edu.sg
  organization: Faculty of Engineering, National University of Singapore, Singapore 117583, Singapore
– sequence: 3
  givenname: Xin
  surname: Zhong
  fullname: Zhong, Xin
  email: andreayoung123@gmail.com
  organization: Institute of High Performance Computing, A⁎STAR, Singapore 138632, Singapore
– sequence: 4
  givenname: Kelvin W.C.
  surname: Foong
  fullname: Foong, Kelvin W.C.
  email: kelvinfoong@nuhs.edu.sg
  organization: Faculty of Dentistry, National University of Singapore, 11 Lower Kent Ridge Road, Singapore 119083, Singapore
BookMark eNqFkL1OwzAUhS1UJFrgDRj8AgnXcZw0DEiolB-pEgvMlmtfB5fUqRxTqW-PQ5kYYDqyr74jnW9GJr73SMgVg5wBq643-U5F3bd5kV45iBygPiFTNq95JlhZTMgUgLOMF8DPyGwYNgCsTocpkUtrnXboI-X31KRUHXVjuvSvous93TtFB9d6NNSiip8B6bsbYt8GtaXKG9qhCt75ln7gYde71GUwoh7hC3JqVTfg5U-ek7eH5eviKVu9PD4v7laZ5lDFrCpq5AytXaNFaNaNKBqjOMfSFGpu0h6lTMVAqKYpy8oC06VBQCNEIUQJ_JyUx14d-mEIaOUuuK0KB8lAjpLkRh4lyVGSBCFTacJufmHaxe_VMSjX_QffHmFMw_YOgxxGkxqNC2m9NL37u-ALEmyJWg
CitedBy_id crossref_primary_10_4103_sjhs_sjhs_124_23
crossref_primary_10_1016_j_procs_2021_08_191
crossref_primary_10_1016_j_neucom_2019_12_074
crossref_primary_10_1049_iet_bmt_2017_0078
crossref_primary_10_1080_03772063_2023_2178533
crossref_primary_10_1007_s11220_020_00326_y
crossref_primary_10_1016_j_patcog_2021_108400
crossref_primary_10_1016_j_forsciint_2020_110538
crossref_primary_10_1016_j_patcog_2018_06_011
crossref_primary_10_1109_ACCESS_2017_2781280
crossref_primary_10_3390_app10144703
crossref_primary_10_1049_iet_bmt_2019_0064
crossref_primary_10_1007_s11042_022_12019_7
Cites_doi 10.1109/ICIP.2012.6466915
10.1016/j.compind.2013.06.005
10.1109/SMI.2008.4547955
10.1007/3-540-44887-X_51
10.1007/s11263-013-0627-y
10.1109/SMI.2005.13
10.1007/s11263-012-0605-9
10.1111/j.1467-8659.2010.01788.x
10.1117/1.2135310
10.1111/j.1467-8659.2008.01162.x
10.1109/34.765655
10.1016/j.patcog.2004.12.010
10.1016/j.patcog.2009.10.005
10.1007/s11263-013-0623-2
10.1109/TIFS.2007.897245
10.1007/978-3-642-15558-1_26
10.1007/978-3-540-24672-5_18
10.1016/j.patrec.2007.02.009
10.1016/j.patcog.2003.12.016
10.1145/1073204.1073244
10.1109/ICCV.2011.6126503
10.1016/j.forsciint.2010.02.031
10.1023/A:1010933404324
10.1016/j.patcog.2011.08.027
10.1016/j.patcog.2007.05.015
10.1145/258734.258849
10.1109/TIFS.2008.919343
10.1109/IJCB.2011.6117541
10.1109/TPAMI.2014.2316828
10.1109/TPAMI.2005.157
10.1016/j.patcog.2005.01.011
10.1007/s11263-007-0085-5
10.1111/j.1556-4029.2007.00403.x
10.1109/34.121791
10.1023/A:1008663629662
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2016.05.007
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
EndPage 204
ExternalDocumentID 10_1016_j_patcog_2016_05_007
S0031320316300887
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-627e31effbefe09b9529da33e4d2a8d007aad6105a99446f01c4de0ed55255403
IEDL.DBID AIKHN
ISSN 0031-3203
IngestDate Thu Apr 24 22:54:10 EDT 2025
Thu Jul 03 08:46:56 EDT 2025
Fri Feb 23 02:25:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Keypoint detection
Tooth recognition
Dental biometrics
Postmortem identification
Shape descriptor
Shape matching
Random Forest
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-627e31effbefe09b9529da33e4d2a8d007aad6105a99446f01c4de0ed55255403
ORCID 0000-0003-3945-5638
PageCount 16
ParticipantIDs crossref_primary_10_1016_j_patcog_2016_05_007
crossref_citationtrail_10_1016_j_patcog_2016_05_007
elsevier_sciencedirect_doi_10_1016_j_patcog_2016_05_007
PublicationCentury 2000
PublicationDate December 2016
2016-12-00
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: December 2016
PublicationDecade 2010
PublicationTitle Pattern recognition
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Woodford, Pham, Maki, Perbet, Stenger (bib25) 2014; 106
Zhong, Yu, Wong, Sim, Lu, Foong, Cheng (bib9) 2013; 64
Sweet (bib15) 2010; 201
N. Gelfand, N. J. Mitra, L. J. Guibas, H. Pottmann, Robust global registration, in: Symposium on Geometry Processing, vol. 2, 2005, p. 5.
Fahmy, Chen, Nomir, Howell, Abdel-Mottaleb, Jain, Ammar, Zhou, Nassar, Haj-Said (bib14) 2005; 14
Nomir, Abdel-Mottaleb (bib17) 2008; 3
A.K. Jain, H. Chen, S. Minut, Dental biometrics: human identification using dental radiographs, in: Audio-and Video-Based Biometric Person Authentication, 2003, pp. 429–437.
I. Rish, An empirical study of the naive Bayes classifier, in: IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, vol. 3, 2001, pp. 41–46.
Jain, Chen (bib2) 2004; 37
Nomir, Abdel-Mottaleb (bib6) 2007; 2
P. OShaughnessy, More than half of victims idd, New York Daily News 11.
A. Frome, D. Huber, R. Kolluri, T. Bülow, J. Malik, Recognizing objects in range data using regional point descriptors, in: European Conference on Computer Vision, 2004, pp. 224–237.
New scientist news – dental records beat DNA in tsunami IDs.
Castellani, Cristani, Fantoni, Murino (bib29) 2008; vol. 27
Johnson, Hebert (bib30) 1999; 21
Chen, Jain (bib3) 2005; 8
C.H. Lee, A. Varshney, D. W. Jacobs, Mesh saliency, in: ACM Transactions on Graphics, vol. 24, 2005, pp. 659–666.
A. Petrelli, L. Di Stefano, On the repeatability of the local reference frame for partial shape matching, in: IEEE International Conference on Computer Vision, 2011, pp. 2244–2251.
Kieser, Bernal, Neil Waddell, Raju (bib18) 2007; 52
Guo, Bennamoun, Sohel, Lu, Wan (bib24) 2014; 36
Besl, McKay (bib19) 1992; 14
Bredensteiner, Bennett (bib41) 1999
Nomir, Abdel-Mottaleb (bib5) 2005; 38
F. Tombari, S. Salti, L. Di Stefano, Unique signatures of histograms for local surface description, in: European Conference on Computer Vision, 2010, pp. 356–369.
T. Gatzke, C. Grimm, M. Garland, S. Zelinka, Curvature maps for local shape comparison, in: International Conference on Shape Modeling and Applications, 2005, pp. 244–253.
Creusot, Pears, Austin (bib33) 2013; 102
Lin, Lai, Huang (bib10) 2010; 43
Z. Zhang, S.H. Ong, K.W.C. Foong, Improved spin images for 3d surface matching using signed angles, in: IEEE International Conference on Image Processing, 2012, pp. 537–540.
Chen, Bhanu (bib36) 2007; 28
P. Thepgumpanat, Thai tsunami forensic centre produces first ids, Reuters, 18
.
Zhou, Abdel-Mottaleb (bib4) 2005; 38
Breiman (bib42) 2001; 45
Nomir, Abdel-Mottaleb (bib16) 2008; 41
Mian, Bennamoun, Owens (bib26) 2008; 79
Guo, Sohel, Bennamoun, Lu, Wan (bib32) 2013; 105
X. Zhong, D. Yu, T. Sim, Y. San Wong, H.-l. Cheng, Towards automated pose invariant 3d dental biometrics, in: International Joint Conference on Biometrics, 2011, pp. 1–7.
M. Garland, P.S. Heckbert, Surface simplification using quadric error metrics, in: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, 1997, pp. 209–216.
J. Weston, C. Watkins, Multi-class Support Vector Machines, Technical Report, 1998.
Boyé, Guennebaud, Schlick (bib21) 2010; vol. 29
Lin, Lai, Huang (bib7) 2012; 45
R. Ohbuchi, K. Osada, T. Furuya, T. Banno, Salient local visual features for shape-based 3d model retrieval, in: IEEE International Conference on Shape Modeling and Applications, 2008, SMI 2008, 2008, pp. 93–102.
Bishop (bib38) 1995
10.1016/j.patcog.2016.05.007_bib27
Mian (10.1016/j.patcog.2016.05.007_bib26) 2008; 79
10.1016/j.patcog.2016.05.007_bib28
10.1016/j.patcog.2016.05.007_bib23
Castellani (10.1016/j.patcog.2016.05.007_bib29) 2008; vol. 27
Bredensteiner (10.1016/j.patcog.2016.05.007_bib41) 1999
Jain (10.1016/j.patcog.2016.05.007_bib2) 2004; 37
Nomir (10.1016/j.patcog.2016.05.007_bib6) 2007; 2
Bishop (10.1016/j.patcog.2016.05.007_bib38) 1995
Zhong (10.1016/j.patcog.2016.05.007_bib9) 2013; 64
Fahmy (10.1016/j.patcog.2016.05.007_bib14) 2005; 14
Boyé (10.1016/j.patcog.2016.05.007_bib21) 2010; vol. 29
10.1016/j.patcog.2016.05.007_bib31
Nomir (10.1016/j.patcog.2016.05.007_bib5) 2005; 38
10.1016/j.patcog.2016.05.007_bib11
Nomir (10.1016/j.patcog.2016.05.007_bib17) 2008; 3
10.1016/j.patcog.2016.05.007_bib39
Chen (10.1016/j.patcog.2016.05.007_bib36) 2007; 28
Guo (10.1016/j.patcog.2016.05.007_bib32) 2013; 105
10.1016/j.patcog.2016.05.007_bib12
Kieser (10.1016/j.patcog.2016.05.007_bib18) 2007; 52
10.1016/j.patcog.2016.05.007_bib34
10.1016/j.patcog.2016.05.007_bib13
Besl (10.1016/j.patcog.2016.05.007_bib19) 1992; 14
10.1016/j.patcog.2016.05.007_bib35
Chen (10.1016/j.patcog.2016.05.007_bib3) 2005; 8
Johnson (10.1016/j.patcog.2016.05.007_bib30) 1999; 21
Guo (10.1016/j.patcog.2016.05.007_bib24) 2014; 36
10.1016/j.patcog.2016.05.007_bib37
Lin (10.1016/j.patcog.2016.05.007_bib10) 2010; 43
Zhou (10.1016/j.patcog.2016.05.007_bib4) 2005; 38
Woodford (10.1016/j.patcog.2016.05.007_bib25) 2014; 106
Creusot (10.1016/j.patcog.2016.05.007_bib33) 2013; 102
Breiman (10.1016/j.patcog.2016.05.007_bib42) 2001; 45
Nomir (10.1016/j.patcog.2016.05.007_bib16) 2008; 41
10.1016/j.patcog.2016.05.007_bib1
Lin (10.1016/j.patcog.2016.05.007_bib7) 2012; 45
10.1016/j.patcog.2016.05.007_bib20
10.1016/j.patcog.2016.05.007_bib22
10.1016/j.patcog.2016.05.007_bib8
Sweet (10.1016/j.patcog.2016.05.007_bib15) 2010; 201
10.1016/j.patcog.2016.05.007_bib40
References_xml – reference: C.H. Lee, A. Varshney, D. W. Jacobs, Mesh saliency, in: ACM Transactions on Graphics, vol. 24, 2005, pp. 659–666.
– volume: 38
  start-page: 2132
  year: 2005
  end-page: 2142
  ident: bib4
  article-title: A content-based system for human identification based on bitewing dental x-ray images
  publication-title: Pattern Recognit.
– year: 1995
  ident: bib38
  article-title: Neural Networks for Pattern Recognition
– reference: P. Thepgumpanat, Thai tsunami forensic centre produces first ids, Reuters, 18, 〈
– reference: I. Rish, An empirical study of the naive Bayes classifier, in: IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, vol. 3, 2001, pp. 41–46.
– volume: 201
  start-page: 18
  year: 2010
  end-page: 21
  ident: bib15
  article-title: Interpol dvi best-practice standards—an overview
  publication-title: Forensic Sci. Int.
– volume: 41
  start-page: 130
  year: 2008
  end-page: 138
  ident: bib16
  article-title: Hierarchical contour matching for dental x-ray radiographs
  publication-title: Pattern Recognit.
– reference: M. Garland, P.S. Heckbert, Surface simplification using quadric error metrics, in: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, 1997, pp. 209–216.
– volume: 64
  start-page: 1355
  year: 2013
  end-page: 1370
  ident: bib9
  article-title: 3d dental biometrics: alignment and matching of dental casts for human identification
  publication-title: Comput. Ind.
– reference: T. Gatzke, C. Grimm, M. Garland, S. Zelinka, Curvature maps for local shape comparison, in: International Conference on Shape Modeling and Applications, 2005, pp. 244–253.
– volume: 36
  start-page: 2270
  year: 2014
  end-page: 2287
  ident: bib24
  article-title: 3d object recognition in cluttered scenes with local surface features
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 106
  start-page: 332
  year: 2014
  end-page: 341
  ident: bib25
  article-title: Demisting the hough transform for 3d shape recognition and registration
  publication-title: Int. J. Comput. Vis.
– volume: vol. 27
  start-page: 643
  year: 2008
  end-page: 652
  ident: bib29
  article-title: Sparse points matching by combining 3d mesh saliency with statistical descriptors
  publication-title: Comput. Graph. Forum
– volume: 102
  start-page: 146
  year: 2013
  end-page: 179
  ident: bib33
  article-title: A machine-learning approach to keypoint detection and landmarking on 3d meshes
  publication-title: Int. J. Comput. Vis.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib42
  article-title: Random forests
  publication-title: Mach. Learn.
– reference: P. OShaughnessy, More than half of victims idd, New York Daily News 11.
– reference: New scientist news – dental records beat DNA in tsunami IDs.
– volume: 45
  start-page: 934
  year: 2012
  end-page: 946
  ident: bib7
  article-title: Dental biometrics
  publication-title: Pattern Recognit.
– volume: 38
  start-page: 1295
  year: 2005
  end-page: 1305
  ident: bib5
  article-title: A system for human identification from x-ray dental radiographs
  publication-title: Pattern Recognit.
– volume: 43
  start-page: 1380
  year: 2010
  end-page: 1392
  ident: bib10
  article-title: An effective classification and numbering system for dental bitewing radiographs using teeth region and contour information
  publication-title: Pattern Recognit.
– volume: 37
  start-page: 1519
  year: 2004
  end-page: 1532
  ident: bib2
  article-title: Matching of dental x-ray images for human identification
  publication-title: Pattern Recognit.
– reference: A. Frome, D. Huber, R. Kolluri, T. Bülow, J. Malik, Recognizing objects in range data using regional point descriptors, in: European Conference on Computer Vision, 2004, pp. 224–237.
– reference: A. Petrelli, L. Di Stefano, On the repeatability of the local reference frame for partial shape matching, in: IEEE International Conference on Computer Vision, 2011, pp. 2244–2251.
– reference: 〉.
– reference: N. Gelfand, N. J. Mitra, L. J. Guibas, H. Pottmann, Robust global registration, in: Symposium on Geometry Processing, vol. 2, 2005, p. 5.
– volume: 52
  start-page: 671
  year: 2007
  end-page: 677
  ident: bib18
  article-title: The uniqueness of the human anterior dentition
  publication-title: J. Forensic Sci.
– volume: 14
  start-page: 239
  year: 1992
  end-page: 256
  ident: bib19
  article-title: A method for registration of 3-d shapes
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 53
  year: 1999
  end-page: 79
  ident: bib41
  article-title: Multicategory classification by support vector machines
  publication-title: Comput. Optim.
– volume: 21
  start-page: 433
  year: 1999
  end-page: 449
  ident: bib30
  article-title: Using spin images for efficient object recognition in cluttered 3d scenes
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 14
  start-page: 1
  year: 2005
  end-page: 13
  ident: bib14
  article-title: Toward an automated dental identification system
  publication-title: J. Electron. Imaging
– reference: Z. Zhang, S.H. Ong, K.W.C. Foong, Improved spin images for 3d surface matching using signed angles, in: IEEE International Conference on Image Processing, 2012, pp. 537–540.
– reference: J. Weston, C. Watkins, Multi-class Support Vector Machines, Technical Report, 1998.
– volume: 79
  start-page: 1
  year: 2008
  end-page: 12
  ident: bib26
  article-title: Keypoint detection and local feature matching for textured 3d face recognition
  publication-title: Int. J. Comput. Vis.
– reference: A.K. Jain, H. Chen, S. Minut, Dental biometrics: human identification using dental radiographs, in: Audio-and Video-Based Biometric Person Authentication, 2003, pp. 429–437.
– reference: X. Zhong, D. Yu, T. Sim, Y. San Wong, H.-l. Cheng, Towards automated pose invariant 3d dental biometrics, in: International Joint Conference on Biometrics, 2011, pp. 1–7.
– reference: F. Tombari, S. Salti, L. Di Stefano, Unique signatures of histograms for local surface description, in: European Conference on Computer Vision, 2010, pp. 356–369.
– volume: vol. 29
  start-page: 2021
  year: 2010
  end-page: 2028
  ident: bib21
  article-title: Least squares subdivision surfaces
  publication-title: Comput. Graph. Forum
– reference: R. Ohbuchi, K. Osada, T. Furuya, T. Banno, Salient local visual features for shape-based 3d model retrieval, in: IEEE International Conference on Shape Modeling and Applications, 2008, SMI 2008, 2008, pp. 93–102.
– volume: 3
  start-page: 223
  year: 2008
  end-page: 233
  ident: bib17
  article-title: Fusion of matching algorithms for human identification using dental x-ray radiographs
  publication-title: IEEE Trans. Inf. Forensics Secur.
– volume: 8
  start-page: 1319
  year: 2005
  end-page: 1326
  ident: bib3
  article-title: Dental biometrics
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 28
  start-page: 1252
  year: 2007
  end-page: 1262
  ident: bib36
  article-title: 3d free-form object recognition in range images using local surface patches
  publication-title: Pattern Recognit. Lett.
– volume: 2
  start-page: 188
  year: 2007
  end-page: 197
  ident: bib6
  article-title: Human identification from dental x-ray images based on the shape and appearance of the teeth
  publication-title: IEEE Trans. Inf. Forensics Secur.
– volume: 105
  start-page: 63
  year: 2013
  end-page: 86
  ident: bib32
  article-title: Rotational projection statistics for 3d local surface description and object recognition
  publication-title: Int. J. Comput. Vis.
– ident: 10.1016/j.patcog.2016.05.007_bib34
  doi: 10.1109/ICIP.2012.6466915
– volume: 64
  start-page: 1355
  issue: 9
  year: 2013
  ident: 10.1016/j.patcog.2016.05.007_bib9
  article-title: 3d dental biometrics: alignment and matching of dental casts for human identification
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2013.06.005
– ident: 10.1016/j.patcog.2016.05.007_bib22
  doi: 10.1109/SMI.2008.4547955
– ident: 10.1016/j.patcog.2016.05.007_bib1
  doi: 10.1007/3-540-44887-X_51
– ident: 10.1016/j.patcog.2016.05.007_bib39
– volume: 105
  start-page: 63
  issue: 1
  year: 2013
  ident: 10.1016/j.patcog.2016.05.007_bib32
  article-title: Rotational projection statistics for 3d local surface description and object recognition
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-013-0627-y
– ident: 10.1016/j.patcog.2016.05.007_bib12
– ident: 10.1016/j.patcog.2016.05.007_bib27
  doi: 10.1109/SMI.2005.13
– year: 1995
  ident: 10.1016/j.patcog.2016.05.007_bib38
– volume: 102
  start-page: 146
  issue: 1–3
  year: 2013
  ident: 10.1016/j.patcog.2016.05.007_bib33
  article-title: A machine-learning approach to keypoint detection and landmarking on 3d meshes
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-012-0605-9
– volume: vol. 29
  start-page: 2021
  year: 2010
  ident: 10.1016/j.patcog.2016.05.007_bib21
  article-title: Least squares subdivision surfaces
  publication-title: Comput. Graph. Forum
  doi: 10.1111/j.1467-8659.2010.01788.x
– volume: 14
  start-page: 1
  issue: 4
  year: 2005
  ident: 10.1016/j.patcog.2016.05.007_bib14
  article-title: Toward an automated dental identification system
  publication-title: J. Electron. Imaging
  doi: 10.1117/1.2135310
– volume: vol. 27
  start-page: 643
  year: 2008
  ident: 10.1016/j.patcog.2016.05.007_bib29
  article-title: Sparse points matching by combining 3d mesh saliency with statistical descriptors
  publication-title: Comput. Graph. Forum
  doi: 10.1111/j.1467-8659.2008.01162.x
– volume: 21
  start-page: 433
  issue: 5
  year: 1999
  ident: 10.1016/j.patcog.2016.05.007_bib30
  article-title: Using spin images for efficient object recognition in cluttered 3d scenes
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.765655
– volume: 38
  start-page: 1295
  issue: 8
  year: 2005
  ident: 10.1016/j.patcog.2016.05.007_bib5
  article-title: A system for human identification from x-ray dental radiographs
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2004.12.010
– volume: 43
  start-page: 1380
  issue: 4
  year: 2010
  ident: 10.1016/j.patcog.2016.05.007_bib10
  article-title: An effective classification and numbering system for dental bitewing radiographs using teeth region and contour information
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2009.10.005
– volume: 106
  start-page: 332
  issue: 3
  year: 2014
  ident: 10.1016/j.patcog.2016.05.007_bib25
  article-title: Demisting the hough transform for 3d shape recognition and registration
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-013-0623-2
– volume: 2
  start-page: 188
  issue: 2
  year: 2007
  ident: 10.1016/j.patcog.2016.05.007_bib6
  article-title: Human identification from dental x-ray images based on the shape and appearance of the teeth
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2007.897245
– ident: 10.1016/j.patcog.2016.05.007_bib31
  doi: 10.1007/978-3-642-15558-1_26
– ident: 10.1016/j.patcog.2016.05.007_bib35
  doi: 10.1007/978-3-540-24672-5_18
– volume: 28
  start-page: 1252
  issue: 10
  year: 2007
  ident: 10.1016/j.patcog.2016.05.007_bib36
  article-title: 3d free-form object recognition in range images using local surface patches
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2007.02.009
– volume: 37
  start-page: 1519
  issue: 7
  year: 2004
  ident: 10.1016/j.patcog.2016.05.007_bib2
  article-title: Matching of dental x-ray images for human identification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2003.12.016
– ident: 10.1016/j.patcog.2016.05.007_bib11
– ident: 10.1016/j.patcog.2016.05.007_bib40
– ident: 10.1016/j.patcog.2016.05.007_bib13
– ident: 10.1016/j.patcog.2016.05.007_bib28
  doi: 10.1145/1073204.1073244
– ident: 10.1016/j.patcog.2016.05.007_bib37
  doi: 10.1109/ICCV.2011.6126503
– volume: 201
  start-page: 18
  issue: 1
  year: 2010
  ident: 10.1016/j.patcog.2016.05.007_bib15
  article-title: Interpol dvi best-practice standards—an overview
  publication-title: Forensic Sci. Int.
  doi: 10.1016/j.forsciint.2010.02.031
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.patcog.2016.05.007_bib42
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 45
  start-page: 934
  issue: 3
  year: 2012
  ident: 10.1016/j.patcog.2016.05.007_bib7
  article-title: Dental biometrics
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2011.08.027
– volume: 41
  start-page: 130
  issue: 1
  year: 2008
  ident: 10.1016/j.patcog.2016.05.007_bib16
  article-title: Hierarchical contour matching for dental x-ray radiographs
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2007.05.015
– ident: 10.1016/j.patcog.2016.05.007_bib20
  doi: 10.1145/258734.258849
– volume: 3
  start-page: 223
  issue: 2
  year: 2008
  ident: 10.1016/j.patcog.2016.05.007_bib17
  article-title: Fusion of matching algorithms for human identification using dental x-ray radiographs
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2008.919343
– ident: 10.1016/j.patcog.2016.05.007_bib23
– ident: 10.1016/j.patcog.2016.05.007_bib8
  doi: 10.1109/IJCB.2011.6117541
– volume: 36
  start-page: 2270
  issue: 11
  year: 2014
  ident: 10.1016/j.patcog.2016.05.007_bib24
  article-title: 3d object recognition in cluttered scenes with local surface features
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2014.2316828
– volume: 8
  start-page: 1319
  year: 2005
  ident: 10.1016/j.patcog.2016.05.007_bib3
  article-title: Dental biometrics
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.157
– volume: 38
  start-page: 2132
  issue: 11
  year: 2005
  ident: 10.1016/j.patcog.2016.05.007_bib4
  article-title: A content-based system for human identification based on bitewing dental x-ray images
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2005.01.011
– volume: 79
  start-page: 1
  issue: 1
  year: 2008
  ident: 10.1016/j.patcog.2016.05.007_bib26
  article-title: Keypoint detection and local feature matching for textured 3d face recognition
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-007-0085-5
– volume: 52
  start-page: 671
  issue: 3
  year: 2007
  ident: 10.1016/j.patcog.2016.05.007_bib18
  article-title: The uniqueness of the human anterior dentition
  publication-title: J. Forensic Sci.
  doi: 10.1111/j.1556-4029.2007.00403.x
– volume: 14
  start-page: 239
  issue: 2
  year: 1992
  ident: 10.1016/j.patcog.2016.05.007_bib19
  article-title: A method for registration of 3-d shapes
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.121791
– start-page: 53
  year: 1999
  ident: 10.1016/j.patcog.2016.05.007_bib41
  article-title: Multicategory classification by support vector machines
  publication-title: Comput. Optim.
  doi: 10.1023/A:1008663629662
SSID ssj0017142
Score 2.2848294
Snippet Current methods of dental identification are mainly based on 2D dental radiographs which suffer from speed and accuracy limitations. In this paper, we present...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 189
SubjectTerms Dental biometrics
Keypoint detection
Postmortem identification
Random Forest
Shape descriptor
Shape matching
Tooth recognition
Title Efficient 3D dental identification via signed feature histogram and learning keypoint detection
URI https://dx.doi.org/10.1016/j.patcog.2016.05.007
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50vXjxLT6XHLxG2yZpN0dZlVXRk4K30DYTqUh3kdWjv91JmoqCKHgptHTSdJqZzNBvvgE4QiUkCqW5klnJZV6lXGOKvLAusZWkCDVgc25u88m9vHpQDwsw7mthPKwy-v7OpwdvHa-cRG2ezJrG1_h62kE6eNYospVFWMqEztUAlk4vrye3nz8TilR2pOEi5V6gr6ALMK8Zebzpo8d45YHC0_eV_WmH-rLrXKzBSgwX2Wk3o3VYwHYDVvtWDCxa5iaY80AFQTsIE2fMhhpH1tgIBQraZ29NyTxcAy1zGPg8WWAb9vgsVraWxQ4Sj4wMezZtaCyL8wDVarfg_uL8bjzhsXcCrykJmPM8K1Ck6FyFDhNdaZVpWwqB0mblyNJrlqWl0EmVWlNG6JK0lhYTtEpRkiETsQ2DdtriDjBXWRpTo3Ke2qWQo8zpmvKqkRMjzOt0F0SvL1NHYnHf3-LZ9AiyJ9Np2Xgtm0QZevwu8E-pWUes8cf9Rf8pzLcFYsj3_yq592_JfVj2Zx165QAG85dXPKQYZF4NYfH4PR3GlfYBmnDchg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYKDLDwRrzxwGpIYjupRwRUBdpORWKzkvhcBaG0QoWR387ZcSqQEEgsGRKf41x85zvpu-8IOQfJBXCpmBRJzkRaxExBDCwzNjKFwAjVY3OGo7T_KO6f5FOHXLe1MA5WGXx_49O9tw53LoM2L2dV5Wp8He0gXhxrFNrKElkRkmcO13fxscB5uAbfDWU4j5kb3tbPeZDXDP3ddOIQXqkn8HRdZX86n76cOb1Nsh6CRXrVrGeLdKDeJhttIwYa7HKH6FtPBIHnB-U31PgKR1qZAATyuqfvVU4dWAMMteDZPKnnGnboLJrXhob-EROKZj2bVjiXgbkHatW75LF3O77us9A5gZWYAsxZmmTAY7C2AAuRKpRMlMk5B2GSvGvwM_PcYOAkc6UwH7RRXAoDERgpMcUQEd8jy_W0hn1CbWFwTgXSOmKXTHQTq0rMqrqWdyEt4wPCW33pMtCKu-4WL7rFjz3rRsvaaVlHUuPrDwhbSM0aWo0_xmftr9DftodGz_-r5OG_Jc_Ian88HOjB3ejhiKy5Jw2O5Zgsz1_f4ASjkXlx6nfbJ3eR3VE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+3D+dental+identification+via+signed+feature+histogram+and+learning+keypoint+detection&rft.jtitle=Pattern+recognition&rft.au=Zhang%2C+Zhiyuan&rft.au=Ong%2C+Sim+Heng&rft.au=Zhong%2C+Xin&rft.au=Foong%2C+Kelvin+W.C.&rft.date=2016-12-01&rft.issn=0031-3203&rft.volume=60&rft.spage=189&rft.epage=204&rft_id=info:doi/10.1016%2Fj.patcog.2016.05.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2016_05_007
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon