A sulfur-rich small molecule as a bifunctional interfacial layer for stable perovskite solar cells with efficiencies exceeding 22
Remarkable progress has been made in perovskite solar cells (PSCs) recently. However, the defects present in the perovskite layer act as non-radiative recombination centers to decrease the stability and restrict the further performance improvement of the device. We report herein a sulfur-rich two-di...
Saved in:
Published in | Nano energy Vol. 79; p. 105462 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Remarkable progress has been made in perovskite solar cells (PSCs) recently. However, the defects present in the perovskite layer act as non-radiative recombination centers to decrease the stability and restrict the further performance improvement of the device. We report herein a sulfur-rich two-dimensional small molecule, SMe-TATPyr, as a bifunctional layer to efficiently passivate the surface defects of perovskite and facilitate the hole transfer at the perovskite/spiro-OMeTAD interface. X-ray photoelectron spectroscopy analyses show that the sulfur atoms of SMe-TATPyr can passivate the uncoordinated Pb2+ defects and suppress the Pb0 defect formation as Lewis bases. As a result, the power conversion efficiency of PSCs is distinctly increased from 20.4% to 22.3%. Moreover, this simple interfacial modification could effectively enhance the stability of unencapsulated PSCs to retain 95% of the initial efficiency after storage for 1500 h at ambient conditions, in contrast to 70% efficiency retention of the device without SMe-TATPyr under the same conditions.
[Display omitted]
A sulfur-rich two-dimensional small molecule, SMe-TATPyr, has been used as a bifunctional interlayer to efficiently passivate the surface defects of perovskite and facilitate the hole transfer at the perovskite/spiro-OMeTAD interface. The SMe-TATPyr-treated perovskite solar cells demonstrate a remarkable efficiency of 22.3%, along with 95% retention of the initial efficiency under storage for 1500 h at ambient conditions.
•A sulfur-rich small molecule is designed as a bifunctional reagent for interfacial defect passivation and hole transfer.•The use of the interfacial layer leads to the efficiency enhancement from 20.4% to 22.3%.•The effect of interfacial defect passivation is fully supported by different physical measurements. |
---|---|
AbstractList | Remarkable progress has been made in perovskite solar cells (PSCs) recently. However, the defects present in the perovskite layer act as non-radiative recombination centers to decrease the stability and restrict the further performance improvement of the device. We report herein a sulfur-rich two-dimensional small molecule, SMe-TATPyr, as a bifunctional layer to efficiently passivate the surface defects of perovskite and facilitate the hole transfer at the perovskite/spiro-OMeTAD interface. X-ray photoelectron spectroscopy analyses show that the sulfur atoms of SMe-TATPyr can passivate the uncoordinated Pb2+ defects and suppress the Pb0 defect formation as Lewis bases. As a result, the power conversion efficiency of PSCs is distinctly increased from 20.4% to 22.3%. Moreover, this simple interfacial modification could effectively enhance the stability of unencapsulated PSCs to retain 95% of the initial efficiency after storage for 1500 h at ambient conditions, in contrast to 70% efficiency retention of the device without SMe-TATPyr under the same conditions.
[Display omitted]
A sulfur-rich two-dimensional small molecule, SMe-TATPyr, has been used as a bifunctional interlayer to efficiently passivate the surface defects of perovskite and facilitate the hole transfer at the perovskite/spiro-OMeTAD interface. The SMe-TATPyr-treated perovskite solar cells demonstrate a remarkable efficiency of 22.3%, along with 95% retention of the initial efficiency under storage for 1500 h at ambient conditions.
•A sulfur-rich small molecule is designed as a bifunctional reagent for interfacial defect passivation and hole transfer.•The use of the interfacial layer leads to the efficiency enhancement from 20.4% to 22.3%.•The effect of interfacial defect passivation is fully supported by different physical measurements. |
ArticleNumber | 105462 |
Author | Hu, Jin-Song Shao, Jiang-Yang Li, Ming-Hua Wang, Yu-Duan Sun, Tian-Ge Zhong, Yu-Wu |
Author_xml | – sequence: 1 givenname: Ming-Hua surname: Li fullname: Li, Ming-Hua organization: Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China – sequence: 2 givenname: Tian-Ge surname: Sun fullname: Sun, Tian-Ge organization: Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China – sequence: 3 givenname: Jiang-Yang surname: Shao fullname: Shao, Jiang-Yang email: shaojiangyang@iccas.ac.cn organization: Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China – sequence: 4 givenname: Yu-Duan surname: Wang fullname: Wang, Yu-Duan organization: Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China – sequence: 5 givenname: Jin-Song surname: Hu fullname: Hu, Jin-Song email: hujs@iccas.ac.cn organization: Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China – sequence: 6 givenname: Yu-Wu surname: Zhong fullname: Zhong, Yu-Wu email: zhongyuwu@iccas.ac organization: Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China |
BookMark | eNqFkL9OAzEMxjMUiVL6Bgx5gStJrndtGZCqin8SEgvMUS6xaUqaVEla6Mibc8cxMYAly5bln63vOyMDHzwQcsHZhDNeX24mXvkAfiKY6EbVtBYDMhSC80LMq-qUjFPasDbqis-4GJLPJU17h_tYRKvXNG2Vc3QbHOi9A6oSVbSxuPc62-CVo9ZniKi0bXunjhAphkhTVk27voMYDunNZqApOBWpBucSfbd5TQHRagu-zUThQwMY61-pEOfkBJVLMP6pI_Jye_O8ui8en-4eVsvHQpeszkWFnDedLMYRa80WNWONrhY1AtZmhoYD05VBhgtgYspmgKBNaczcGKGbshyRq_6ujiGlCCi1zaqTlaOyTnImOw_lRvYeyu6Z7D1s4ekveBftVsXjf9h1j0Er7GAhyvTtQas9gs7SBPv3gS_AzZTk |
CitedBy_id | crossref_primary_10_1007_s40243_024_00275_6 crossref_primary_10_1002_adfm_202314086 crossref_primary_10_1002_solr_202101007 crossref_primary_10_1021_acsenergylett_3c02439 crossref_primary_10_1016_j_cej_2021_129579 crossref_primary_10_1021_acsami_1c21081 crossref_primary_10_1016_j_matt_2023_12_003 crossref_primary_10_1039_D1TA06410J crossref_primary_10_1002_ente_202400918 crossref_primary_10_1002_smll_202311914 crossref_primary_10_1016_j_cej_2022_139345 crossref_primary_10_1016_j_nanoen_2021_106608 crossref_primary_10_1002_adfm_202312819 crossref_primary_10_1021_acsenergylett_1c01126 crossref_primary_10_3390_molecules27217566 crossref_primary_10_1021_acsanm_3c06004 crossref_primary_10_1016_j_cej_2022_139308 crossref_primary_10_1002_ange_202105176 crossref_primary_10_1021_acsmaterialslett_4c02453 crossref_primary_10_1002_adfm_202412389 crossref_primary_10_1002_admi_202202159 crossref_primary_10_1002_ange_202303486 crossref_primary_10_1039_D1CS01157J crossref_primary_10_1021_acsaem_2c00400 crossref_primary_10_1038_s41560_023_01310_y crossref_primary_10_1039_D2TA08258F crossref_primary_10_1055_a_1873_5360 crossref_primary_10_1002_anie_202203949 crossref_primary_10_1016_j_optmat_2023_113881 crossref_primary_10_1021_acsaem_1c02033 crossref_primary_10_1002_adfm_202105884 crossref_primary_10_1016_j_apsusc_2025_162306 crossref_primary_10_1021_acsami_2c05956 crossref_primary_10_1002_cssc_202301349 crossref_primary_10_1021_acsami_3c13950 crossref_primary_10_1246_bcsj_20200331 crossref_primary_10_1016_j_orgel_2022_106719 crossref_primary_10_1021_acsami_3c19619 crossref_primary_10_1002_adfm_202314349 crossref_primary_10_1002_adfm_202418798 crossref_primary_10_1016_j_surfin_2021_101213 crossref_primary_10_1021_acsaem_2c00197 crossref_primary_10_1021_acssusresmgt_4c00422 crossref_primary_10_1002_smll_202204081 crossref_primary_10_1016_j_cej_2021_132869 crossref_primary_10_1016_j_dyepig_2022_110170 crossref_primary_10_1002_anie_202303486 crossref_primary_10_1002_advs_202203681 crossref_primary_10_1007_s11426_024_2142_4 crossref_primary_10_1016_j_synthmet_2024_117647 crossref_primary_10_1039_D2TA04502H crossref_primary_10_1039_D2TC01692C crossref_primary_10_1002_anie_202105176 crossref_primary_10_1021_acsenergylett_1c00531 crossref_primary_10_1039_D2TC05468J crossref_primary_10_1016_j_mtadv_2022_100300 crossref_primary_10_1039_D3TC01566A crossref_primary_10_1016_j_dyepig_2023_111635 crossref_primary_10_1038_s41467_024_53263_9 crossref_primary_10_1002_pol_20210400 crossref_primary_10_1016_j_cej_2021_133265 crossref_primary_10_1039_D2TC03649E crossref_primary_10_1002_ange_202203949 crossref_primary_10_1002_aenm_202300219 crossref_primary_10_1134_S1070363222060251 crossref_primary_10_1016_j_cej_2022_136936 crossref_primary_10_1016_j_mtener_2024_101726 crossref_primary_10_1016_j_nanoen_2021_106152 crossref_primary_10_1021_acsami_4c06226 crossref_primary_10_1039_D3TC03472K crossref_primary_10_1002_aenm_202100967 crossref_primary_10_1007_s10854_022_08435_y crossref_primary_10_1039_D4NR03140G crossref_primary_10_1039_D3CP05445D crossref_primary_10_1016_j_dyepig_2024_112533 crossref_primary_10_1002_aenm_202200867 crossref_primary_10_1002_solr_202000713 crossref_primary_10_1021_acsenergylett_1c00685 crossref_primary_10_1039_D1TC05354J crossref_primary_10_1002_aenm_202103175 crossref_primary_10_1002_solr_202200590 crossref_primary_10_1039_D1TC02307A crossref_primary_10_1002_chem_202402205 crossref_primary_10_1002_smll_202304834 crossref_primary_10_1002_marc_202300634 crossref_primary_10_1021_acs_jpcc_1c08189 crossref_primary_10_1016_j_dyepig_2021_109506 crossref_primary_10_1016_j_orgel_2022_106656 crossref_primary_10_1021_acsami_2c13746 |
Cites_doi | 10.1002/anie.201806392 10.1002/solr.201800055 10.1002/adma.201908011 10.1039/C9TA07657C 10.1038/nenergy.2016.81 10.1016/j.nanoen.2020.105249 10.1002/anie.201905521 10.1016/j.nanoen.2020.104673 10.1038/s41566-019-0398-2 10.1126/science.aau5701 10.1126/science.aan2301 10.1016/j.nanoen.2020.104604 10.1126/science.aat8235 10.1002/adma.202001581 10.1021/acs.jpclett.7b03054 10.1038/s41467-019-10985-5 10.1002/aenm.201703392 10.1002/admi.201901469 10.1002/aenm.201801208 10.1021/jacs.6b04519 10.1002/adma.201907757 10.1002/advs.201600269 10.1002/aenm.201903487 10.1016/j.scib.2020.04.021 10.1021/ja809598r 10.1038/s41586-019-1036-3 10.1021/acsenergylett.9b02375 10.1021/nn5036476 10.1126/science.aav8680 10.1126/sciadv.aav2012 10.1002/aenm.201903090 10.1039/C8TA08503J 10.1002/aenm.201700012 10.1038/s41560-020-0653-2 10.1038/s41467-019-08455-z 10.1002/aenm.201903696 10.1002/anie.201809781 10.1126/science.aay7044 10.1126/science.aai9081 10.1039/C9EE02020A 10.1016/j.nanoen.2020.104753 10.1038/s41560-018-0200-6 10.1039/C6EE01337F |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.nanoen.2020.105462 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_nanoen_2020_105462 S2211285520310375 |
GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FNPLU FYGXN GBLVA HZ~ JARJE KOM M41 MAGPM MO0 O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SPC SPCBC SSM SSR SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-5f11b202001ff6c09600bc596fef6d7fd1e0c5df0f9e02407efecd3dd8dd2cb33 |
IEDL.DBID | .~1 |
ISSN | 2211-2855 |
IngestDate | Tue Jul 01 00:56:42 EDT 2025 Thu Apr 24 22:51:42 EDT 2025 Tue Feb 13 08:07:43 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Defect passivation Hole-transport Materials Bifunctional molecules Interface Perovskite solar cells |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-5f11b202001ff6c09600bc596fef6d7fd1e0c5df0f9e02407efecd3dd8dd2cb33 |
ParticipantIDs | crossref_citationtrail_10_1016_j_nanoen_2020_105462 crossref_primary_10_1016_j_nanoen_2020_105462 elsevier_sciencedirect_doi_10_1016_j_nanoen_2020_105462 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2021 2021-01-00 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
PublicationDecade | 2020 |
PublicationTitle | Nano energy |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Chen, Wei, Saidaminov, Wang, Johnston, Hou, Peng, Xu, Zhou, Liu, Qiao, Wang, Xu, Li, Long, Ke, Sargent, Ning (bb10) 2019; 31 Jeon, Na, Jung, Yang, Lee, Kim, Shin, Seok, Lee, Seo (bb4) 2018; 3 Akin, Arora, Zakeeruddin, Grätzel, Friend, Dar (bb26) 2020; 10 Ono, Liu, Qi (bb27) 2020; 59 Garcia-Benito, Zimmermann, Urieta-Mora, Arago, Calbo, Perles, Serrano, Molina-Ontoria, Orti, Martin, Nazeeruddin (bb5) 2018; 28 Cai, Wu, Chen, Yang, Qiang, Han (bb7) 2017; 4 Cheng, Zuo, Wuc, Li, Xu, Hua, Ding (bb14) 2020; 65 Chen, Wu, Ding, Tian, Zheng, Cheng, Xu, Jin, Ding (bb45) 2020; 71 Li, Xiang, Jayawardena, Luo, Wang, Yang, Watts, Hinder, Sajjad, Webb, Luo, Marko, Li, Thomson, Zhu, Shao, Sweeney, Silva, Zhang (bb44) 2020; 78 Wang, Zhou, Hu, Huang, Sun, Dong, Zheng, Huang, Chen, Li, Xu, Li, Liu, Chen, Sun, Yan (bb11) 2019; 363 Shao, Lo (bb22) 2020; 7 Ru, Bi, Zhang, Wang, Kong, Sha, Tang, Zhang, Wu, Chen, Yang, Chen, Han (bb43) 2020; 10 Jiang, Ni, Xu, Lin, Rudd, Xue, Li, Li, Gao, Huang (bb33) 2020; 32 Noel, Abate, Stranks, Parrott, Burlakov, Goriely, Snaith (bb21) 2014; 8 Li, Zhang, Wang, Zhang, Wang, Fang (bb18) 2018; 9 Yang, Park, Jung, Jeon, Kim, Lee, Shin, Seo, Kim, Noh, Seok (bb3) 2017; 356 Jung, Jeon, Park, Moon, Shin, Yang, Noh, Seo (bb48) 2019; 567 Kojima, Teshima, Shirai, Miyasaka (bb1) 2009; 131 Cha, Da, Wang, Wang, Chen, Xiu, Zheng, Wang (bb32) 2016; 138 Ge, Shao, Ding, Deng, Zhou, Chen, Ma, Wan, Yao, Hu, Zhong (bb34) 2018; 57 Zhu, Liu, Eickemeyer, Pan, Ren, Ruiz-Preciado, Carlsen, Yang, Dong, Wang, Liu, Wang, Zakeeruddin, Hagfeldt, Dar, Li, Grätzel (bb41) 2020; 32 Liu, Qiu, Ono, He, Hu, Jiang, Tong, Wu, Jiang, Son, Dang, Kazaoui, Qi (bb47) 2020; 5 Chen, Fu, Huang, Zhang, Li, Ding, Shi, Li, Jen, Chen (bb35) 2017; 7 Liu, Zheng, Xu, Zhang, Xu, Xu, Pan (bb13) 2020; 73 Tan, Jain, Voznyy, Lan, de Arquer, Fan, Quintero-Bermudez, Yuan, Zhang, Zhao, Fan, Li, Quan, Zhao, Lu, Yang, Hoogland, Sargent (bb29) 2017; 355 Jiang, Zhao, Zhang, Yang, Chen, Chu, Ye, Li, Yin, You (bb38) 2019; 13 Pazos-Outón, Xiao, Yablonovitch (bb9) 2018; 9 Abdi-Jalebi, Dar, Senanayak, Sadhanala, Andaji-Garmaroudi, Pazos-Outon, Richter, Pearson, Sirringhaus, Gratzel, Friend (bb25) 2019; 5 Wu, Jiang, Liu, Jamshaid, Ono, Qi (bb39) 2020; 10 Wang, Dar, Ono, Zhang, Kan, Li, Zhang, Wang, Yang, Gao, Qi, Grätzel, Zhao (bb12) 2019; 365 Sathiyan, Syed, Chen, Wu, Tao, Ding, Miao, Li, Cheng, Ding (bb28) 2020; 72 Zhuang, Mao, Luan, Yi, Tu, Zhang, Yi, Wei, Chen, Lin, Wang, Li, Wang (bb40) 2019; 4 Yang, Yang, Priya, Liu (bb8) 2019; 58 Alharbi, Alyamani, Kubicki, Uhl, Walder, Alanazi, Luo, Caminal, Albadri, Albrithen, Alotaibi, Moser, Zakeeruddin, Giordano, Emsley, Grätzel (bb15) 2019; 10 Stolterfoht, Caprioglio, Wolff, Márquez, Nordmann, Zhang, Rothhardt, Hörmann, Amir, Redinger, Kegelmann, Zu, Albrecht, Koch, Kirchartz, Saliba, Unold, Neher (bb31) 2019; 12 Cho, Soufiani, Yun, Kim, Lee, Seidel, Deng, Green, Huang, Ho-Baillie (bb17) 2018; 8 . Peng, Khan, Liu, Ugur, Duong, Wu, Shen, Wang, Dang, Aydin, Yang, Wan, Weber, Catchpole, Laquai, DeWolf, White (bb19) 2018; 8 Son, Lee, Choi, Jang, Lee, Yoo, Shin, Ahn, Choi, Kim, Park (bb16) 2016; 1 Rong, Hu, Mei, Tan, Saidaminov, Seok, McGehee, Sargent, Han (bb6) 2018; 361 Jiang, Wang, Wu, Xue, Yao, Zhang, Chen, Zhang, Zhu, Yan, Zhu, Yip (bb37) 2020; 32 Mahapatra, Prochowicz, Tavakoli, Trivedi, Kumar, Yadav (bb23) 2020; 8 Gangala, Misra (bb30) 2018; 6 Zhang, Wu, Shen, Li, Yan, Zhang, Tian, Han, Zhu (bb36) 2019; 9 Shao, Abdu-Aguye, Qiu, Lai, Liu, Adjokatse, Jahani, Kamminga, ten Brink, Palstra, Kooi, Hummelen, Loi (bb42) 2016; 9 Yang, Qin, Fang, Li (bb24) 2018; 2 Han, Lee, Choi, Tan, Lee, Zhao, Dai, De Marco, Lee, Bae, Yuan, Lee, Huang, Yang (bb20) 2019; 10 Min, Kim, Lee, Kim, Kim, Choi, Lee, Seok (bb46) 2019; 366 Pazos-Outón (10.1016/j.nanoen.2020.105462_bb9) 2018; 9 Son (10.1016/j.nanoen.2020.105462_bb16) 2016; 1 Abdi-Jalebi (10.1016/j.nanoen.2020.105462_bb25) 2019; 5 Yang (10.1016/j.nanoen.2020.105462_bb3) 2017; 356 Jiang (10.1016/j.nanoen.2020.105462_bb33) 2020; 32 Han (10.1016/j.nanoen.2020.105462_bb20) 2019; 10 Zhu (10.1016/j.nanoen.2020.105462_bb41) 2020; 32 Cheng (10.1016/j.nanoen.2020.105462_bb14) 2020; 65 Zhang (10.1016/j.nanoen.2020.105462_bb36) 2019; 9 Ono (10.1016/j.nanoen.2020.105462_bb27) 2020; 59 Chen (10.1016/j.nanoen.2020.105462_bb10) 2019; 31 Kojima (10.1016/j.nanoen.2020.105462_bb1) 2009; 131 Wang (10.1016/j.nanoen.2020.105462_bb12) 2019; 365 Yang (10.1016/j.nanoen.2020.105462_bb8) 2019; 58 Cai (10.1016/j.nanoen.2020.105462_bb7) 2017; 4 Tan (10.1016/j.nanoen.2020.105462_bb29) 2017; 355 Shao (10.1016/j.nanoen.2020.105462_bb42) 2016; 9 Ru (10.1016/j.nanoen.2020.105462_bb43) 2020; 10 Chen (10.1016/j.nanoen.2020.105462_bb45) 2020; 71 Alharbi (10.1016/j.nanoen.2020.105462_bb15) 2019; 10 Mahapatra (10.1016/j.nanoen.2020.105462_bb23) 2020; 8 Jiang (10.1016/j.nanoen.2020.105462_bb38) 2019; 13 Noel (10.1016/j.nanoen.2020.105462_bb21) 2014; 8 10.1016/j.nanoen.2020.105462_bb2 Liu (10.1016/j.nanoen.2020.105462_bb13) 2020; 73 Gangala (10.1016/j.nanoen.2020.105462_bb30) 2018; 6 Wu (10.1016/j.nanoen.2020.105462_bb39) 2020; 10 Shao (10.1016/j.nanoen.2020.105462_bb22) 2020; 7 Li (10.1016/j.nanoen.2020.105462_bb44) 2020; 78 Yang (10.1016/j.nanoen.2020.105462_bb24) 2018; 2 Stolterfoht (10.1016/j.nanoen.2020.105462_bb31) 2019; 12 Ge (10.1016/j.nanoen.2020.105462_bb34) 2018; 57 Wang (10.1016/j.nanoen.2020.105462_bb11) 2019; 363 Cha (10.1016/j.nanoen.2020.105462_bb32) 2016; 138 Chen (10.1016/j.nanoen.2020.105462_bb35) 2017; 7 Rong (10.1016/j.nanoen.2020.105462_bb6) 2018; 361 Jeon (10.1016/j.nanoen.2020.105462_bb4) 2018; 3 Peng (10.1016/j.nanoen.2020.105462_bb19) 2018; 8 Cho (10.1016/j.nanoen.2020.105462_bb17) 2018; 8 Garcia-Benito (10.1016/j.nanoen.2020.105462_bb5) 2018; 28 Li (10.1016/j.nanoen.2020.105462_bb18) 2018; 9 Sathiyan (10.1016/j.nanoen.2020.105462_bb28) 2020; 72 Akin (10.1016/j.nanoen.2020.105462_bb26) 2020; 10 Jiang (10.1016/j.nanoen.2020.105462_bb37) 2020; 32 Zhuang (10.1016/j.nanoen.2020.105462_bb40) 2019; 4 Min (10.1016/j.nanoen.2020.105462_bb46) 2019; 366 Liu (10.1016/j.nanoen.2020.105462_bb47) 2020; 5 Jung (10.1016/j.nanoen.2020.105462_bb48) 2019; 567 |
References_xml | – volume: 8 year: 2018 ident: bb19 article-title: A universal double-side passivation for high open-circuit voltage in perovskite solar cells: role of carbonyl groups in poly(methyl methacrylate) publication-title: Adv. Energy Mater. – volume: 9 start-page: 1703 year: 2018 end-page: 1711 ident: bb9 article-title: Fundamental efficiency limit of lead iodide perovskite solar cells publication-title: J. Phys. Chem. Lett. – volume: 361 year: 2018 ident: bb6 article-title: Challenges for commercializing perovskite solar cells publication-title: Science – volume: 8 start-page: 9815 year: 2014 end-page: 9821 ident: bb21 article-title: Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic–inorganic lead halide perovskites publication-title: ACS Nano – volume: 138 start-page: 8581 year: 2016 end-page: 8587 ident: bb32 article-title: Enhancing perovskite solar cell performance by interface engineering using CH3NH3PbBr0.9I2.1 quantum dots publication-title: J. Am. Chem. Soc. – volume: 8 year: 2018 ident: bb17 article-title: Mixed publication-title: Adv. Energy Mater. – volume: 363 start-page: 265 year: 2019 end-page: 270 ident: bb11 article-title: A Eu publication-title: Science – volume: 6 start-page: 18750 year: 2018 end-page: 18765 ident: bb30 article-title: Spiro-linked organic small molecules as hole-transport materials for perovskite solar cells publication-title: J. Mater. Chem. A – volume: 7 year: 2017 ident: bb35 article-title: Molecular engineered hole-extraction materials to enable dopant-free, efficient p-i-n perovskite solar cells publication-title: Adv. Energy Mater. – volume: 10 year: 2020 ident: bb43 article-title: High electron affinity enables fast hole extraction for efficient flexible inverted perovskite solar cells publication-title: Adv. Energy Mater. – volume: 356 start-page: 1376 year: 2017 end-page: 1379 ident: bb3 article-title: Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells publication-title: Science – volume: 5 start-page: 596 year: 2020 end-page: 604 ident: bb47 article-title: A holistic approach to interface stabilization for efficient perovskite solar modules with over 2000-hour operational stability publication-title: Nat. Energy – volume: 131 start-page: 6050 year: 2009 end-page: 6051 ident: bb1 article-title: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells publication-title: J. Am. Chem. Soc. – volume: 32 year: 2020 ident: bb37 article-title: Dopant-free organic hole-transporting material for efficient and stable inverted all-inorganic and hybrid perovskite solar cells publication-title: Adv. Mater. – volume: 12 start-page: 2778 year: 2019 end-page: 2788 ident: bb31 article-title: The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells publication-title: Energy Environ. Sci. – volume: 32 year: 2020 ident: bb33 article-title: Interfacial molecular doping of metal halide perovskites for highly efficient solar cells publication-title: Adv. Mater. – volume: 32 year: 2020 ident: bb41 article-title: Tailored amphiphilic molecular mitigators for stable perovskite solar cells with 23.5% efficiency publication-title: Adv. Mater. – volume: 31 year: 2019 ident: bb10 article-title: Efficient and stable inverted perovskite solar cells incorporating secondary amines publication-title: Adv. Mater. – volume: 78 year: 2020 ident: bb44 article-title: Reduced bilateral recombination by functional molecular interface engineering for efficient inverted perovskite solar cells publication-title: Nano Energy – volume: 71 year: 2020 ident: bb45 article-title: Constructing binary electron transport layer with cascade energy level alignment for efficient CsPbI publication-title: Nano Energy – volume: 5 year: 2019 ident: bb25 article-title: Charge extraction via graded doping of hole transport layers gives highly luminescent and stable metal halide perovskite devices publication-title: Sci. Adv. – volume: 28 year: 2018 ident: bb5 article-title: Heteroatom effect on star-shaped hole-transporting materials for perovskite solar cells publication-title: Adv. Funct. Mater. – volume: 8 start-page: 27 year: 2020 end-page: 54 ident: bb23 article-title: A review of aspects of additive engineering in perovskite solar cells publication-title: J. Mater. Chem. A – volume: 366 start-page: 749 year: 2019 end-page: 753 ident: bb46 article-title: Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide publication-title: Science – volume: 72 year: 2020 ident: bb28 article-title: Dual effective dopant based hole transport layer for stable and efficient perovskite solar cells publication-title: Nano Energy – volume: 355 start-page: 722 year: 2017 end-page: 726 ident: bb29 article-title: Efficient and stable solution-processed planar perovskite solar cells via contact passivation publication-title: Science – volume: 7 year: 2020 ident: bb22 article-title: The role of the interfaces in perovskite solar cells publication-title: Adv. Mater. Interfaces – volume: 73 year: 2020 ident: bb13 article-title: Interface passivation treatment by halogenated low-dimensional perovskites for high-performance and stable perovskite photovoltaics publication-title: Nano Energy – volume: 4 year: 2017 ident: bb7 article-title: Cost-performance analysis of perovskite solar modules publication-title: Adv. Sci. – volume: 3 start-page: 682 year: 2018 end-page: 689 ident: bb4 article-title: A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells publication-title: Nat. Energy – volume: 57 start-page: 10959 year: 2018 end-page: 10965 ident: bb34 article-title: A two-dimensional hole-transporting material for high‐performance perovskite solar cells with 20% average efficiency publication-title: Angew. Chem. Int. Ed. – reference: . – volume: 10 year: 2020 ident: bb39 article-title: Highly efficient perovskite solar cells enabled by multiple ligand passivation publication-title: Adv. Energy Mater. – volume: 365 start-page: 591 year: 2019 end-page: 595 ident: bb12 article-title: Thermodynamically stabilized β-CsPbI publication-title: Science – volume: 10 year: 2019 ident: bb20 article-title: Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells publication-title: Nat. Commun. – volume: 10 year: 2020 ident: bb26 article-title: New strategies for defect passivation in high-efficiency perovskite solar cells publication-title: Adv. Energy Mater. – volume: 9 start-page: 2444 year: 2016 end-page: 2452 ident: bb42 article-title: Elimination of the light soaking effect and performance enhancement in perovskite solar cells using a fullerene derivative publication-title: Energy Environ. Sci. – volume: 10 year: 2019 ident: bb15 article-title: Atomic-level passivation mechanism of ammonium salts enabling highly efficient perovskite solar cells publication-title: Nat. Commun. – volume: 59 start-page: 6676 year: 2020 end-page: 6698 ident: bb27 article-title: Reducing detrimental defects for high-performance metal halide perovskite solar cells publication-title: Angew. Chem. Int. Ed. – volume: 4 start-page: 2913 year: 2019 end-page: 2921 ident: bb40 article-title: Interfacial passivation for perovskite solar cells: the effects of the functional group in phenethylammonium iodide publication-title: ACS Energy Lett. – volume: 65 start-page: 1237 year: 2020 end-page: 1241 ident: bb14 article-title: Charge-transport layer engineering in perovskite solar cells publication-title: Sci. Bull. – volume: 567 start-page: 511 year: 2019 end-page: 515 ident: bb48 article-title: Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene) publication-title: Nature – volume: 58 start-page: 4466 year: 2019 end-page: 4483 ident: bb8 article-title: Recent advances in flexible perovskite solar cells: fabrication and applications publication-title: Angew. Chem. Int. Ed. – volume: 1 year: 2016 ident: bb16 article-title: Self-formed grain boundary healing layer for highly efficient CH publication-title: Nat. Energy – volume: 9 year: 2019 ident: bb36 article-title: Efficient and stable chemical passivation on perovskite surface via bidentate anchoring publication-title: Adv. Energy Mater. – volume: 13 start-page: 460 year: 2019 end-page: 466 ident: bb38 article-title: Surface passivation of perovskite film for efficient solar cells publication-title: Nat. Photonics – volume: 9 year: 2018 ident: bb18 article-title: In-situ cross-linking strategy for efficient and operationally stable methylammoniun lead iodide solar cells publication-title: Nat. Commun. – volume: 2 year: 2018 ident: bb24 article-title: A Lewis base-assisted passivation strategy towards highly efficient and stable perovskite solar cells publication-title: Sol. RRL – volume: 57 start-page: 10959 year: 2018 ident: 10.1016/j.nanoen.2020.105462_bb34 article-title: A two-dimensional hole-transporting material for high‐performance perovskite solar cells with 20% average efficiency publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201806392 – volume: 9 year: 2019 ident: 10.1016/j.nanoen.2020.105462_bb36 article-title: Efficient and stable chemical passivation on perovskite surface via bidentate anchoring publication-title: Adv. Energy Mater. – volume: 2 year: 2018 ident: 10.1016/j.nanoen.2020.105462_bb24 article-title: A Lewis base-assisted passivation strategy towards highly efficient and stable perovskite solar cells publication-title: Sol. RRL doi: 10.1002/solr.201800055 – volume: 32 year: 2020 ident: 10.1016/j.nanoen.2020.105462_bb37 article-title: Dopant-free organic hole-transporting material for efficient and stable inverted all-inorganic and hybrid perovskite solar cells publication-title: Adv. Mater. doi: 10.1002/adma.201908011 – volume: 8 start-page: 27 year: 2020 ident: 10.1016/j.nanoen.2020.105462_bb23 article-title: A review of aspects of additive engineering in perovskite solar cells publication-title: J. Mater. Chem. A doi: 10.1039/C9TA07657C – volume: 1 year: 2016 ident: 10.1016/j.nanoen.2020.105462_bb16 article-title: Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells publication-title: Nat. Energy doi: 10.1038/nenergy.2016.81 – volume: 31 year: 2019 ident: 10.1016/j.nanoen.2020.105462_bb10 article-title: Efficient and stable inverted perovskite solar cells incorporating secondary amines publication-title: Adv. Mater. – volume: 78 year: 2020 ident: 10.1016/j.nanoen.2020.105462_bb44 article-title: Reduced bilateral recombination by functional molecular interface engineering for efficient inverted perovskite solar cells publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105249 – volume: 59 start-page: 6676 year: 2020 ident: 10.1016/j.nanoen.2020.105462_bb27 article-title: Reducing detrimental defects for high-performance metal halide perovskite solar cells publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201905521 – ident: 10.1016/j.nanoen.2020.105462_bb2 – volume: 72 year: 2020 ident: 10.1016/j.nanoen.2020.105462_bb28 article-title: Dual effective dopant based hole transport layer for stable and efficient perovskite solar cells publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104673 – volume: 13 start-page: 460 year: 2019 ident: 10.1016/j.nanoen.2020.105462_bb38 article-title: Surface passivation of perovskite film for efficient solar cells publication-title: Nat. Photonics doi: 10.1038/s41566-019-0398-2 – volume: 363 start-page: 265 year: 2019 ident: 10.1016/j.nanoen.2020.105462_bb11 article-title: A Eu3+-Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells publication-title: Science doi: 10.1126/science.aau5701 – volume: 356 start-page: 1376 year: 2017 ident: 10.1016/j.nanoen.2020.105462_bb3 article-title: Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells publication-title: Science doi: 10.1126/science.aan2301 – volume: 71 year: 2020 ident: 10.1016/j.nanoen.2020.105462_bb45 article-title: Constructing binary electron transport layer with cascade energy level alignment for efficient CsPbI2Br solar cells publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104604 – volume: 361 year: 2018 ident: 10.1016/j.nanoen.2020.105462_bb6 article-title: Challenges for commercializing perovskite solar cells publication-title: Science doi: 10.1126/science.aat8235 – volume: 32 year: 2020 ident: 10.1016/j.nanoen.2020.105462_bb33 article-title: Interfacial molecular doping of metal halide perovskites for highly efficient solar cells publication-title: Adv. Mater. doi: 10.1002/adma.202001581 – volume: 9 start-page: 1703 year: 2018 ident: 10.1016/j.nanoen.2020.105462_bb9 article-title: Fundamental efficiency limit of lead iodide perovskite solar cells publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.7b03054 – volume: 10 year: 2019 ident: 10.1016/j.nanoen.2020.105462_bb15 article-title: Atomic-level passivation mechanism of ammonium salts enabling highly efficient perovskite solar cells publication-title: Nat. Commun. doi: 10.1038/s41467-019-10985-5 – volume: 8 year: 2018 ident: 10.1016/j.nanoen.2020.105462_bb17 article-title: Mixed 3D–2D passivation treatment for mixed-cation lead mixed-halide perovskite solar cells for higher efficiency and better stability publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703392 – volume: 7 year: 2020 ident: 10.1016/j.nanoen.2020.105462_bb22 article-title: The role of the interfaces in perovskite solar cells publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201901469 – volume: 8 year: 2018 ident: 10.1016/j.nanoen.2020.105462_bb19 article-title: A universal double-side passivation for high open-circuit voltage in perovskite solar cells: role of carbonyl groups in poly(methyl methacrylate) publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801208 – volume: 138 start-page: 8581 year: 2016 ident: 10.1016/j.nanoen.2020.105462_bb32 article-title: Enhancing perovskite solar cell performance by interface engineering using CH3NH3PbBr0.9I2.1 quantum dots publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b04519 – volume: 32 year: 2020 ident: 10.1016/j.nanoen.2020.105462_bb41 article-title: Tailored amphiphilic molecular mitigators for stable perovskite solar cells with 23.5% efficiency publication-title: Adv. Mater. doi: 10.1002/adma.201907757 – volume: 4 year: 2017 ident: 10.1016/j.nanoen.2020.105462_bb7 article-title: Cost-performance analysis of perovskite solar modules publication-title: Adv. Sci. doi: 10.1002/advs.201600269 – volume: 10 year: 2020 ident: 10.1016/j.nanoen.2020.105462_bb43 article-title: High electron affinity enables fast hole extraction for efficient flexible inverted perovskite solar cells publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903487 – volume: 65 start-page: 1237 year: 2020 ident: 10.1016/j.nanoen.2020.105462_bb14 article-title: Charge-transport layer engineering in perovskite solar cells publication-title: Sci. Bull. doi: 10.1016/j.scib.2020.04.021 – volume: 131 start-page: 6050 year: 2009 ident: 10.1016/j.nanoen.2020.105462_bb1 article-title: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells publication-title: J. Am. Chem. Soc. doi: 10.1021/ja809598r – volume: 567 start-page: 511 year: 2019 ident: 10.1016/j.nanoen.2020.105462_bb48 article-title: Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene) publication-title: Nature doi: 10.1038/s41586-019-1036-3 – volume: 28 year: 2018 ident: 10.1016/j.nanoen.2020.105462_bb5 article-title: Heteroatom effect on star-shaped hole-transporting materials for perovskite solar cells publication-title: Adv. Funct. Mater. – volume: 4 start-page: 2913 year: 2019 ident: 10.1016/j.nanoen.2020.105462_bb40 article-title: Interfacial passivation for perovskite solar cells: the effects of the functional group in phenethylammonium iodide publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b02375 – volume: 9 year: 2018 ident: 10.1016/j.nanoen.2020.105462_bb18 article-title: In-situ cross-linking strategy for efficient and operationally stable methylammoniun lead iodide solar cells publication-title: Nat. Commun. – volume: 8 start-page: 9815 year: 2014 ident: 10.1016/j.nanoen.2020.105462_bb21 article-title: Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic–inorganic lead halide perovskites publication-title: ACS Nano doi: 10.1021/nn5036476 – volume: 365 start-page: 591 year: 2019 ident: 10.1016/j.nanoen.2020.105462_bb12 article-title: Thermodynamically stabilized β-CsPbI3–based perovskite solar cells with efficiencies >18% publication-title: Science doi: 10.1126/science.aav8680 – volume: 5 year: 2019 ident: 10.1016/j.nanoen.2020.105462_bb25 article-title: Charge extraction via graded doping of hole transport layers gives highly luminescent and stable metal halide perovskite devices publication-title: Sci. Adv. doi: 10.1126/sciadv.aav2012 – volume: 10 year: 2020 ident: 10.1016/j.nanoen.2020.105462_bb26 article-title: New strategies for defect passivation in high-efficiency perovskite solar cells publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903090 – volume: 6 start-page: 18750 year: 2018 ident: 10.1016/j.nanoen.2020.105462_bb30 article-title: Spiro-linked organic small molecules as hole-transport materials for perovskite solar cells publication-title: J. Mater. Chem. A doi: 10.1039/C8TA08503J – volume: 7 year: 2017 ident: 10.1016/j.nanoen.2020.105462_bb35 article-title: Molecular engineered hole-extraction materials to enable dopant-free, efficient p-i-n perovskite solar cells publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700012 – volume: 5 start-page: 596 year: 2020 ident: 10.1016/j.nanoen.2020.105462_bb47 article-title: A holistic approach to interface stabilization for efficient perovskite solar modules with over 2000-hour operational stability publication-title: Nat. Energy doi: 10.1038/s41560-020-0653-2 – volume: 10 year: 2019 ident: 10.1016/j.nanoen.2020.105462_bb20 article-title: Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells publication-title: Nat. Commun. doi: 10.1038/s41467-019-08455-z – volume: 10 year: 2020 ident: 10.1016/j.nanoen.2020.105462_bb39 article-title: Highly efficient perovskite solar cells enabled by multiple ligand passivation publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903696 – volume: 58 start-page: 4466 year: 2019 ident: 10.1016/j.nanoen.2020.105462_bb8 article-title: Recent advances in flexible perovskite solar cells: fabrication and applications publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201809781 – volume: 366 start-page: 749 year: 2019 ident: 10.1016/j.nanoen.2020.105462_bb46 article-title: Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide publication-title: Science doi: 10.1126/science.aay7044 – volume: 355 start-page: 722 year: 2017 ident: 10.1016/j.nanoen.2020.105462_bb29 article-title: Efficient and stable solution-processed planar perovskite solar cells via contact passivation publication-title: Science doi: 10.1126/science.aai9081 – volume: 12 start-page: 2778 year: 2019 ident: 10.1016/j.nanoen.2020.105462_bb31 article-title: The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells publication-title: Energy Environ. Sci. doi: 10.1039/C9EE02020A – volume: 73 year: 2020 ident: 10.1016/j.nanoen.2020.105462_bb13 article-title: Interface passivation treatment by halogenated low-dimensional perovskites for high-performance and stable perovskite photovoltaics publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104753 – volume: 3 start-page: 682 year: 2018 ident: 10.1016/j.nanoen.2020.105462_bb4 article-title: A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells publication-title: Nat. Energy doi: 10.1038/s41560-018-0200-6 – volume: 9 start-page: 2444 year: 2016 ident: 10.1016/j.nanoen.2020.105462_bb42 article-title: Elimination of the light soaking effect and performance enhancement in perovskite solar cells using a fullerene derivative publication-title: Energy Environ. Sci. doi: 10.1039/C6EE01337F |
SSID | ssj0000651712 |
Score | 2.5536942 |
Snippet | Remarkable progress has been made in perovskite solar cells (PSCs) recently. However, the defects present in the perovskite layer act as non-radiative... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 105462 |
SubjectTerms | Bifunctional molecules Defect passivation Hole-transport Materials Interface Perovskite solar cells |
Title | A sulfur-rich small molecule as a bifunctional interfacial layer for stable perovskite solar cells with efficiencies exceeding 22 |
URI | https://dx.doi.org/10.1016/j.nanoen.2020.105462 |
Volume | 79 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbL5tIcStImNM2DOfSqri3Lln1cQsK2pbm0C7kZPUZkg9cJ692SUyD_PBo_QgIhgV6NBiSNmMfnmW8Y-4YmVRojalGWnksrcq6Vizh64VWR5pktqMH590U2m8ufl-nliJ0OvTBUVtnb_s6mt9a6_zLpb3Nyu1hM_oiQu4g8TQWxWyaKGs2lVPTKv9_HTzhLcLGxan960npOAkMHXVvmVev6BokIVbQzb2UmXvdQz7zO-Q772IeLMO12tMtGWH9i289IBD-zhyk0m8pvVjyYtCtolrqqYNlNvUXQDWgwC3JfHeoHRBCx8pqgcqh0iLghxK0QgkQTlhNt-L-GEF1oKOkFAvYbILQWsGWbQJrm2wDe9X4PhNhj8_Ozv6cz3g9W4DZkCGue-jg2dOIo9j6zlMVExqZF5tFnTnkXY2RT5yNfIHGgKfRoXeJc7pywJkn22bi-qfELgyREJCidyiITUkWpi9zZKDOIhXQm6PmAJcNllrZnHafhF1U5lJddl50KStpQ2anggPEnqduOdeOd9WrQU_ni9ZTBMbwp-fW_JQ_ZB0H1LS0cc8TG69UGj0OAsjYn7Qs8YVvTH79mF4-vYOgC |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELaAHloOqKVFPMscuJpNnDhOjgiBtuVxASRukR9jsSgEtNmtekLin-PJA1EJUYlr5JEcjzOPLzPfMLaHRiqNEbUop56nVuRcKxdx9MKrQuaZLajB-ew8G1-lv6_l9QI7HHphqKyyt_2dTW-tdf9k1J_m6GEyGV2IkLuIXEpB7JaJkovsUxo-XxpjsP8YvwAtwcfGqv3rSQKcJIYWurbOq9b1PRITqmiH3qaZeNtFvXI7x1_ZSh8vwkG3pW9sAetVtvyKRfA7ezqAZl75-ZQHm3YDzZ2uKrjrxt4i6AY0mAn5rw72A2KImHpNWDlUOoTcEAJXCFGiCcuJN_xPQ5AuNJT1AiH7DRBcC9jSTSCN820A__aOD4T4wa6Ojy4Px7yfrMBtSBFmXPo4NvTGUex9ZimNiYyVRebRZ055F2NkpfORL5BI0BR6tC5xLndOWJMka2ypvq9xnUESQhJMncoiE3LFVBe5s1FmEIvUmaDoDZYMh1nannacpl9U5VBfdlt2KihpQ2Wngg3GX6QeOtqN_6xXg57Kf65PGTzDu5KbH5bcZZ_Hl2en5emv85Mt9kVQsUuLzWyzpdl0jjshWpmZn-1tfAYKyemQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+sulfur-rich+small+molecule+as+a+bifunctional+interfacial+layer+for+stable+perovskite+solar+cells+with+efficiencies+exceeding+22&rft.jtitle=Nano+energy&rft.au=Li%2C+Ming-Hua&rft.au=Sun%2C+Tian-Ge&rft.au=Shao%2C+Jiang-Yang&rft.au=Wang%2C+Yu-Duan&rft.date=2021-01-01&rft.pub=Elsevier+Ltd&rft.issn=2211-2855&rft.volume=79&rft_id=info:doi/10.1016%2Fj.nanoen.2020.105462&rft.externalDocID=S2211285520310375 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon |