A sulfur-rich small molecule as a bifunctional interfacial layer for stable perovskite solar cells with efficiencies exceeding 22

Remarkable progress has been made in perovskite solar cells (PSCs) recently. However, the defects present in the perovskite layer act as non-radiative recombination centers to decrease the stability and restrict the further performance improvement of the device. We report herein a sulfur-rich two-di...

Full description

Saved in:
Bibliographic Details
Published inNano energy Vol. 79; p. 105462
Main Authors Li, Ming-Hua, Sun, Tian-Ge, Shao, Jiang-Yang, Wang, Yu-Duan, Hu, Jin-Song, Zhong, Yu-Wu
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Remarkable progress has been made in perovskite solar cells (PSCs) recently. However, the defects present in the perovskite layer act as non-radiative recombination centers to decrease the stability and restrict the further performance improvement of the device. We report herein a sulfur-rich two-dimensional small molecule, SMe-TATPyr, as a bifunctional layer to efficiently passivate the surface defects of perovskite and facilitate the hole transfer at the perovskite/spiro-OMeTAD interface. X-ray photoelectron spectroscopy analyses show that the sulfur atoms of SMe-TATPyr can passivate the uncoordinated Pb2+ defects and suppress the Pb0 defect formation as Lewis bases. As a result, the power conversion efficiency of PSCs is distinctly increased from 20.4% to 22.3%. Moreover, this simple interfacial modification could effectively enhance the stability of unencapsulated PSCs to retain 95% of the initial efficiency after storage for 1500 h at ambient conditions, in contrast to 70% efficiency retention of the device without SMe-TATPyr under the same conditions. [Display omitted] A sulfur-rich two-dimensional small molecule, SMe-TATPyr, has been used as a bifunctional interlayer to efficiently passivate the surface defects of perovskite and facilitate the hole transfer at the perovskite/spiro-OMeTAD interface. The SMe-TATPyr-treated perovskite solar cells demonstrate a remarkable efficiency of 22.3%, along with 95% retention of the initial efficiency under storage for 1500 h at ambient conditions. •A sulfur-rich small molecule is designed as a bifunctional reagent for interfacial defect passivation and hole transfer.•The use of the interfacial layer leads to the efficiency enhancement from 20.4% to 22.3%.•The effect of interfacial defect passivation is fully supported by different physical measurements.
AbstractList Remarkable progress has been made in perovskite solar cells (PSCs) recently. However, the defects present in the perovskite layer act as non-radiative recombination centers to decrease the stability and restrict the further performance improvement of the device. We report herein a sulfur-rich two-dimensional small molecule, SMe-TATPyr, as a bifunctional layer to efficiently passivate the surface defects of perovskite and facilitate the hole transfer at the perovskite/spiro-OMeTAD interface. X-ray photoelectron spectroscopy analyses show that the sulfur atoms of SMe-TATPyr can passivate the uncoordinated Pb2+ defects and suppress the Pb0 defect formation as Lewis bases. As a result, the power conversion efficiency of PSCs is distinctly increased from 20.4% to 22.3%. Moreover, this simple interfacial modification could effectively enhance the stability of unencapsulated PSCs to retain 95% of the initial efficiency after storage for 1500 h at ambient conditions, in contrast to 70% efficiency retention of the device without SMe-TATPyr under the same conditions. [Display omitted] A sulfur-rich two-dimensional small molecule, SMe-TATPyr, has been used as a bifunctional interlayer to efficiently passivate the surface defects of perovskite and facilitate the hole transfer at the perovskite/spiro-OMeTAD interface. The SMe-TATPyr-treated perovskite solar cells demonstrate a remarkable efficiency of 22.3%, along with 95% retention of the initial efficiency under storage for 1500 h at ambient conditions. •A sulfur-rich small molecule is designed as a bifunctional reagent for interfacial defect passivation and hole transfer.•The use of the interfacial layer leads to the efficiency enhancement from 20.4% to 22.3%.•The effect of interfacial defect passivation is fully supported by different physical measurements.
ArticleNumber 105462
Author Hu, Jin-Song
Shao, Jiang-Yang
Li, Ming-Hua
Wang, Yu-Duan
Sun, Tian-Ge
Zhong, Yu-Wu
Author_xml – sequence: 1
  givenname: Ming-Hua
  surname: Li
  fullname: Li, Ming-Hua
  organization: Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
– sequence: 2
  givenname: Tian-Ge
  surname: Sun
  fullname: Sun, Tian-Ge
  organization: Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
– sequence: 3
  givenname: Jiang-Yang
  surname: Shao
  fullname: Shao, Jiang-Yang
  email: shaojiangyang@iccas.ac.cn
  organization: Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
– sequence: 4
  givenname: Yu-Duan
  surname: Wang
  fullname: Wang, Yu-Duan
  organization: Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
– sequence: 5
  givenname: Jin-Song
  surname: Hu
  fullname: Hu, Jin-Song
  email: hujs@iccas.ac.cn
  organization: Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
– sequence: 6
  givenname: Yu-Wu
  surname: Zhong
  fullname: Zhong, Yu-Wu
  email: zhongyuwu@iccas.ac
  organization: Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
BookMark eNqFkL9OAzEMxjMUiVL6Bgx5gStJrndtGZCqin8SEgvMUS6xaUqaVEla6Mibc8cxMYAly5bln63vOyMDHzwQcsHZhDNeX24mXvkAfiKY6EbVtBYDMhSC80LMq-qUjFPasDbqis-4GJLPJU17h_tYRKvXNG2Vc3QbHOi9A6oSVbSxuPc62-CVo9ZniKi0bXunjhAphkhTVk27voMYDunNZqApOBWpBucSfbd5TQHRagu-zUThQwMY61-pEOfkBJVLMP6pI_Jye_O8ui8en-4eVsvHQpeszkWFnDedLMYRa80WNWONrhY1AtZmhoYD05VBhgtgYspmgKBNaczcGKGbshyRq_6ujiGlCCi1zaqTlaOyTnImOw_lRvYeyu6Z7D1s4ekveBftVsXjf9h1j0Er7GAhyvTtQas9gs7SBPv3gS_AzZTk
CitedBy_id crossref_primary_10_1007_s40243_024_00275_6
crossref_primary_10_1002_adfm_202314086
crossref_primary_10_1002_solr_202101007
crossref_primary_10_1021_acsenergylett_3c02439
crossref_primary_10_1016_j_cej_2021_129579
crossref_primary_10_1021_acsami_1c21081
crossref_primary_10_1016_j_matt_2023_12_003
crossref_primary_10_1039_D1TA06410J
crossref_primary_10_1002_ente_202400918
crossref_primary_10_1002_smll_202311914
crossref_primary_10_1016_j_cej_2022_139345
crossref_primary_10_1016_j_nanoen_2021_106608
crossref_primary_10_1002_adfm_202312819
crossref_primary_10_1021_acsenergylett_1c01126
crossref_primary_10_3390_molecules27217566
crossref_primary_10_1021_acsanm_3c06004
crossref_primary_10_1016_j_cej_2022_139308
crossref_primary_10_1002_ange_202105176
crossref_primary_10_1021_acsmaterialslett_4c02453
crossref_primary_10_1002_adfm_202412389
crossref_primary_10_1002_admi_202202159
crossref_primary_10_1002_ange_202303486
crossref_primary_10_1039_D1CS01157J
crossref_primary_10_1021_acsaem_2c00400
crossref_primary_10_1038_s41560_023_01310_y
crossref_primary_10_1039_D2TA08258F
crossref_primary_10_1055_a_1873_5360
crossref_primary_10_1002_anie_202203949
crossref_primary_10_1016_j_optmat_2023_113881
crossref_primary_10_1021_acsaem_1c02033
crossref_primary_10_1002_adfm_202105884
crossref_primary_10_1016_j_apsusc_2025_162306
crossref_primary_10_1021_acsami_2c05956
crossref_primary_10_1002_cssc_202301349
crossref_primary_10_1021_acsami_3c13950
crossref_primary_10_1246_bcsj_20200331
crossref_primary_10_1016_j_orgel_2022_106719
crossref_primary_10_1021_acsami_3c19619
crossref_primary_10_1002_adfm_202314349
crossref_primary_10_1002_adfm_202418798
crossref_primary_10_1016_j_surfin_2021_101213
crossref_primary_10_1021_acsaem_2c00197
crossref_primary_10_1021_acssusresmgt_4c00422
crossref_primary_10_1002_smll_202204081
crossref_primary_10_1016_j_cej_2021_132869
crossref_primary_10_1016_j_dyepig_2022_110170
crossref_primary_10_1002_anie_202303486
crossref_primary_10_1002_advs_202203681
crossref_primary_10_1007_s11426_024_2142_4
crossref_primary_10_1016_j_synthmet_2024_117647
crossref_primary_10_1039_D2TA04502H
crossref_primary_10_1039_D2TC01692C
crossref_primary_10_1002_anie_202105176
crossref_primary_10_1021_acsenergylett_1c00531
crossref_primary_10_1039_D2TC05468J
crossref_primary_10_1016_j_mtadv_2022_100300
crossref_primary_10_1039_D3TC01566A
crossref_primary_10_1016_j_dyepig_2023_111635
crossref_primary_10_1038_s41467_024_53263_9
crossref_primary_10_1002_pol_20210400
crossref_primary_10_1016_j_cej_2021_133265
crossref_primary_10_1039_D2TC03649E
crossref_primary_10_1002_ange_202203949
crossref_primary_10_1002_aenm_202300219
crossref_primary_10_1134_S1070363222060251
crossref_primary_10_1016_j_cej_2022_136936
crossref_primary_10_1016_j_mtener_2024_101726
crossref_primary_10_1016_j_nanoen_2021_106152
crossref_primary_10_1021_acsami_4c06226
crossref_primary_10_1039_D3TC03472K
crossref_primary_10_1002_aenm_202100967
crossref_primary_10_1007_s10854_022_08435_y
crossref_primary_10_1039_D4NR03140G
crossref_primary_10_1039_D3CP05445D
crossref_primary_10_1016_j_dyepig_2024_112533
crossref_primary_10_1002_aenm_202200867
crossref_primary_10_1002_solr_202000713
crossref_primary_10_1021_acsenergylett_1c00685
crossref_primary_10_1039_D1TC05354J
crossref_primary_10_1002_aenm_202103175
crossref_primary_10_1002_solr_202200590
crossref_primary_10_1039_D1TC02307A
crossref_primary_10_1002_chem_202402205
crossref_primary_10_1002_smll_202304834
crossref_primary_10_1002_marc_202300634
crossref_primary_10_1021_acs_jpcc_1c08189
crossref_primary_10_1016_j_dyepig_2021_109506
crossref_primary_10_1016_j_orgel_2022_106656
crossref_primary_10_1021_acsami_2c13746
Cites_doi 10.1002/anie.201806392
10.1002/solr.201800055
10.1002/adma.201908011
10.1039/C9TA07657C
10.1038/nenergy.2016.81
10.1016/j.nanoen.2020.105249
10.1002/anie.201905521
10.1016/j.nanoen.2020.104673
10.1038/s41566-019-0398-2
10.1126/science.aau5701
10.1126/science.aan2301
10.1016/j.nanoen.2020.104604
10.1126/science.aat8235
10.1002/adma.202001581
10.1021/acs.jpclett.7b03054
10.1038/s41467-019-10985-5
10.1002/aenm.201703392
10.1002/admi.201901469
10.1002/aenm.201801208
10.1021/jacs.6b04519
10.1002/adma.201907757
10.1002/advs.201600269
10.1002/aenm.201903487
10.1016/j.scib.2020.04.021
10.1021/ja809598r
10.1038/s41586-019-1036-3
10.1021/acsenergylett.9b02375
10.1021/nn5036476
10.1126/science.aav8680
10.1126/sciadv.aav2012
10.1002/aenm.201903090
10.1039/C8TA08503J
10.1002/aenm.201700012
10.1038/s41560-020-0653-2
10.1038/s41467-019-08455-z
10.1002/aenm.201903696
10.1002/anie.201809781
10.1126/science.aay7044
10.1126/science.aai9081
10.1039/C9EE02020A
10.1016/j.nanoen.2020.104753
10.1038/s41560-018-0200-6
10.1039/C6EE01337F
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.nanoen.2020.105462
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_nanoen_2020_105462
S2211285520310375
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FNPLU
FYGXN
GBLVA
HZ~
JARJE
KOM
M41
MAGPM
MO0
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SPC
SPCBC
SSM
SSR
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-5f11b202001ff6c09600bc596fef6d7fd1e0c5df0f9e02407efecd3dd8dd2cb33
IEDL.DBID .~1
ISSN 2211-2855
IngestDate Tue Jul 01 00:56:42 EDT 2025
Thu Apr 24 22:51:42 EDT 2025
Tue Feb 13 08:07:43 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Defect passivation
Hole-transport Materials
Bifunctional molecules
Interface
Perovskite solar cells
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-5f11b202001ff6c09600bc596fef6d7fd1e0c5df0f9e02407efecd3dd8dd2cb33
ParticipantIDs crossref_citationtrail_10_1016_j_nanoen_2020_105462
crossref_primary_10_1016_j_nanoen_2020_105462
elsevier_sciencedirect_doi_10_1016_j_nanoen_2020_105462
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2021
2021-01-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationTitle Nano energy
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chen, Wei, Saidaminov, Wang, Johnston, Hou, Peng, Xu, Zhou, Liu, Qiao, Wang, Xu, Li, Long, Ke, Sargent, Ning (bb10) 2019; 31
Jeon, Na, Jung, Yang, Lee, Kim, Shin, Seok, Lee, Seo (bb4) 2018; 3
Akin, Arora, Zakeeruddin, Grätzel, Friend, Dar (bb26) 2020; 10
Ono, Liu, Qi (bb27) 2020; 59
Garcia-Benito, Zimmermann, Urieta-Mora, Arago, Calbo, Perles, Serrano, Molina-Ontoria, Orti, Martin, Nazeeruddin (bb5) 2018; 28
Cai, Wu, Chen, Yang, Qiang, Han (bb7) 2017; 4
Cheng, Zuo, Wuc, Li, Xu, Hua, Ding (bb14) 2020; 65
Chen, Wu, Ding, Tian, Zheng, Cheng, Xu, Jin, Ding (bb45) 2020; 71
Li, Xiang, Jayawardena, Luo, Wang, Yang, Watts, Hinder, Sajjad, Webb, Luo, Marko, Li, Thomson, Zhu, Shao, Sweeney, Silva, Zhang (bb44) 2020; 78
Wang, Zhou, Hu, Huang, Sun, Dong, Zheng, Huang, Chen, Li, Xu, Li, Liu, Chen, Sun, Yan (bb11) 2019; 363
Shao, Lo (bb22) 2020; 7
Ru, Bi, Zhang, Wang, Kong, Sha, Tang, Zhang, Wu, Chen, Yang, Chen, Han (bb43) 2020; 10
Jiang, Ni, Xu, Lin, Rudd, Xue, Li, Li, Gao, Huang (bb33) 2020; 32
Noel, Abate, Stranks, Parrott, Burlakov, Goriely, Snaith (bb21) 2014; 8
Li, Zhang, Wang, Zhang, Wang, Fang (bb18) 2018; 9
Yang, Park, Jung, Jeon, Kim, Lee, Shin, Seo, Kim, Noh, Seok (bb3) 2017; 356
Jung, Jeon, Park, Moon, Shin, Yang, Noh, Seo (bb48) 2019; 567
Kojima, Teshima, Shirai, Miyasaka (bb1) 2009; 131
Cha, Da, Wang, Wang, Chen, Xiu, Zheng, Wang (bb32) 2016; 138
Ge, Shao, Ding, Deng, Zhou, Chen, Ma, Wan, Yao, Hu, Zhong (bb34) 2018; 57
Zhu, Liu, Eickemeyer, Pan, Ren, Ruiz-Preciado, Carlsen, Yang, Dong, Wang, Liu, Wang, Zakeeruddin, Hagfeldt, Dar, Li, Grätzel (bb41) 2020; 32
Liu, Qiu, Ono, He, Hu, Jiang, Tong, Wu, Jiang, Son, Dang, Kazaoui, Qi (bb47) 2020; 5
Chen, Fu, Huang, Zhang, Li, Ding, Shi, Li, Jen, Chen (bb35) 2017; 7
Liu, Zheng, Xu, Zhang, Xu, Xu, Pan (bb13) 2020; 73
Tan, Jain, Voznyy, Lan, de Arquer, Fan, Quintero-Bermudez, Yuan, Zhang, Zhao, Fan, Li, Quan, Zhao, Lu, Yang, Hoogland, Sargent (bb29) 2017; 355
Jiang, Zhao, Zhang, Yang, Chen, Chu, Ye, Li, Yin, You (bb38) 2019; 13
Pazos-Outón, Xiao, Yablonovitch (bb9) 2018; 9
Abdi-Jalebi, Dar, Senanayak, Sadhanala, Andaji-Garmaroudi, Pazos-Outon, Richter, Pearson, Sirringhaus, Gratzel, Friend (bb25) 2019; 5
Wu, Jiang, Liu, Jamshaid, Ono, Qi (bb39) 2020; 10
Wang, Dar, Ono, Zhang, Kan, Li, Zhang, Wang, Yang, Gao, Qi, Grätzel, Zhao (bb12) 2019; 365
Sathiyan, Syed, Chen, Wu, Tao, Ding, Miao, Li, Cheng, Ding (bb28) 2020; 72
Zhuang, Mao, Luan, Yi, Tu, Zhang, Yi, Wei, Chen, Lin, Wang, Li, Wang (bb40) 2019; 4
Yang, Yang, Priya, Liu (bb8) 2019; 58
Alharbi, Alyamani, Kubicki, Uhl, Walder, Alanazi, Luo, Caminal, Albadri, Albrithen, Alotaibi, Moser, Zakeeruddin, Giordano, Emsley, Grätzel (bb15) 2019; 10
Stolterfoht, Caprioglio, Wolff, Márquez, Nordmann, Zhang, Rothhardt, Hörmann, Amir, Redinger, Kegelmann, Zu, Albrecht, Koch, Kirchartz, Saliba, Unold, Neher (bb31) 2019; 12
Cho, Soufiani, Yun, Kim, Lee, Seidel, Deng, Green, Huang, Ho-Baillie (bb17) 2018; 8
.
Peng, Khan, Liu, Ugur, Duong, Wu, Shen, Wang, Dang, Aydin, Yang, Wan, Weber, Catchpole, Laquai, DeWolf, White (bb19) 2018; 8
Son, Lee, Choi, Jang, Lee, Yoo, Shin, Ahn, Choi, Kim, Park (bb16) 2016; 1
Rong, Hu, Mei, Tan, Saidaminov, Seok, McGehee, Sargent, Han (bb6) 2018; 361
Jiang, Wang, Wu, Xue, Yao, Zhang, Chen, Zhang, Zhu, Yan, Zhu, Yip (bb37) 2020; 32
Mahapatra, Prochowicz, Tavakoli, Trivedi, Kumar, Yadav (bb23) 2020; 8
Gangala, Misra (bb30) 2018; 6
Zhang, Wu, Shen, Li, Yan, Zhang, Tian, Han, Zhu (bb36) 2019; 9
Shao, Abdu-Aguye, Qiu, Lai, Liu, Adjokatse, Jahani, Kamminga, ten Brink, Palstra, Kooi, Hummelen, Loi (bb42) 2016; 9
Yang, Qin, Fang, Li (bb24) 2018; 2
Han, Lee, Choi, Tan, Lee, Zhao, Dai, De Marco, Lee, Bae, Yuan, Lee, Huang, Yang (bb20) 2019; 10
Min, Kim, Lee, Kim, Kim, Choi, Lee, Seok (bb46) 2019; 366
Pazos-Outón (10.1016/j.nanoen.2020.105462_bb9) 2018; 9
Son (10.1016/j.nanoen.2020.105462_bb16) 2016; 1
Abdi-Jalebi (10.1016/j.nanoen.2020.105462_bb25) 2019; 5
Yang (10.1016/j.nanoen.2020.105462_bb3) 2017; 356
Jiang (10.1016/j.nanoen.2020.105462_bb33) 2020; 32
Han (10.1016/j.nanoen.2020.105462_bb20) 2019; 10
Zhu (10.1016/j.nanoen.2020.105462_bb41) 2020; 32
Cheng (10.1016/j.nanoen.2020.105462_bb14) 2020; 65
Zhang (10.1016/j.nanoen.2020.105462_bb36) 2019; 9
Ono (10.1016/j.nanoen.2020.105462_bb27) 2020; 59
Chen (10.1016/j.nanoen.2020.105462_bb10) 2019; 31
Kojima (10.1016/j.nanoen.2020.105462_bb1) 2009; 131
Wang (10.1016/j.nanoen.2020.105462_bb12) 2019; 365
Yang (10.1016/j.nanoen.2020.105462_bb8) 2019; 58
Cai (10.1016/j.nanoen.2020.105462_bb7) 2017; 4
Tan (10.1016/j.nanoen.2020.105462_bb29) 2017; 355
Shao (10.1016/j.nanoen.2020.105462_bb42) 2016; 9
Ru (10.1016/j.nanoen.2020.105462_bb43) 2020; 10
Chen (10.1016/j.nanoen.2020.105462_bb45) 2020; 71
Alharbi (10.1016/j.nanoen.2020.105462_bb15) 2019; 10
Mahapatra (10.1016/j.nanoen.2020.105462_bb23) 2020; 8
Jiang (10.1016/j.nanoen.2020.105462_bb38) 2019; 13
Noel (10.1016/j.nanoen.2020.105462_bb21) 2014; 8
10.1016/j.nanoen.2020.105462_bb2
Liu (10.1016/j.nanoen.2020.105462_bb13) 2020; 73
Gangala (10.1016/j.nanoen.2020.105462_bb30) 2018; 6
Wu (10.1016/j.nanoen.2020.105462_bb39) 2020; 10
Shao (10.1016/j.nanoen.2020.105462_bb22) 2020; 7
Li (10.1016/j.nanoen.2020.105462_bb44) 2020; 78
Yang (10.1016/j.nanoen.2020.105462_bb24) 2018; 2
Stolterfoht (10.1016/j.nanoen.2020.105462_bb31) 2019; 12
Ge (10.1016/j.nanoen.2020.105462_bb34) 2018; 57
Wang (10.1016/j.nanoen.2020.105462_bb11) 2019; 363
Cha (10.1016/j.nanoen.2020.105462_bb32) 2016; 138
Chen (10.1016/j.nanoen.2020.105462_bb35) 2017; 7
Rong (10.1016/j.nanoen.2020.105462_bb6) 2018; 361
Jeon (10.1016/j.nanoen.2020.105462_bb4) 2018; 3
Peng (10.1016/j.nanoen.2020.105462_bb19) 2018; 8
Cho (10.1016/j.nanoen.2020.105462_bb17) 2018; 8
Garcia-Benito (10.1016/j.nanoen.2020.105462_bb5) 2018; 28
Li (10.1016/j.nanoen.2020.105462_bb18) 2018; 9
Sathiyan (10.1016/j.nanoen.2020.105462_bb28) 2020; 72
Akin (10.1016/j.nanoen.2020.105462_bb26) 2020; 10
Jiang (10.1016/j.nanoen.2020.105462_bb37) 2020; 32
Zhuang (10.1016/j.nanoen.2020.105462_bb40) 2019; 4
Min (10.1016/j.nanoen.2020.105462_bb46) 2019; 366
Liu (10.1016/j.nanoen.2020.105462_bb47) 2020; 5
Jung (10.1016/j.nanoen.2020.105462_bb48) 2019; 567
References_xml – volume: 8
  year: 2018
  ident: bb19
  article-title: A universal double-side passivation for high open-circuit voltage in perovskite solar cells: role of carbonyl groups in poly(methyl methacrylate)
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 1703
  year: 2018
  end-page: 1711
  ident: bb9
  article-title: Fundamental efficiency limit of lead iodide perovskite solar cells
  publication-title: J. Phys. Chem. Lett.
– volume: 361
  year: 2018
  ident: bb6
  article-title: Challenges for commercializing perovskite solar cells
  publication-title: Science
– volume: 8
  start-page: 9815
  year: 2014
  end-page: 9821
  ident: bb21
  article-title: Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic–inorganic lead halide perovskites
  publication-title: ACS Nano
– volume: 138
  start-page: 8581
  year: 2016
  end-page: 8587
  ident: bb32
  article-title: Enhancing perovskite solar cell performance by interface engineering using CH3NH3PbBr0.9I2.1 quantum dots
  publication-title: J. Am. Chem. Soc.
– volume: 8
  year: 2018
  ident: bb17
  article-title: Mixed
  publication-title: Adv. Energy Mater.
– volume: 363
  start-page: 265
  year: 2019
  end-page: 270
  ident: bb11
  article-title: A Eu
  publication-title: Science
– volume: 6
  start-page: 18750
  year: 2018
  end-page: 18765
  ident: bb30
  article-title: Spiro-linked organic small molecules as hole-transport materials for perovskite solar cells
  publication-title: J. Mater. Chem. A
– volume: 7
  year: 2017
  ident: bb35
  article-title: Molecular engineered hole-extraction materials to enable dopant-free, efficient p-i-n perovskite solar cells
  publication-title: Adv. Energy Mater.
– volume: 10
  year: 2020
  ident: bb43
  article-title: High electron affinity enables fast hole extraction for efficient flexible inverted perovskite solar cells
  publication-title: Adv. Energy Mater.
– volume: 356
  start-page: 1376
  year: 2017
  end-page: 1379
  ident: bb3
  article-title: Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells
  publication-title: Science
– volume: 5
  start-page: 596
  year: 2020
  end-page: 604
  ident: bb47
  article-title: A holistic approach to interface stabilization for efficient perovskite solar modules with over 2000-hour operational stability
  publication-title: Nat. Energy
– volume: 131
  start-page: 6050
  year: 2009
  end-page: 6051
  ident: bb1
  article-title: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells
  publication-title: J. Am. Chem. Soc.
– volume: 32
  year: 2020
  ident: bb37
  article-title: Dopant-free organic hole-transporting material for efficient and stable inverted all-inorganic and hybrid perovskite solar cells
  publication-title: Adv. Mater.
– volume: 12
  start-page: 2778
  year: 2019
  end-page: 2788
  ident: bb31
  article-title: The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells
  publication-title: Energy Environ. Sci.
– volume: 32
  year: 2020
  ident: bb33
  article-title: Interfacial molecular doping of metal halide perovskites for highly efficient solar cells
  publication-title: Adv. Mater.
– volume: 32
  year: 2020
  ident: bb41
  article-title: Tailored amphiphilic molecular mitigators for stable perovskite solar cells with 23.5% efficiency
  publication-title: Adv. Mater.
– volume: 31
  year: 2019
  ident: bb10
  article-title: Efficient and stable inverted perovskite solar cells incorporating secondary amines
  publication-title: Adv. Mater.
– volume: 78
  year: 2020
  ident: bb44
  article-title: Reduced bilateral recombination by functional molecular interface engineering for efficient inverted perovskite solar cells
  publication-title: Nano Energy
– volume: 71
  year: 2020
  ident: bb45
  article-title: Constructing binary electron transport layer with cascade energy level alignment for efficient CsPbI
  publication-title: Nano Energy
– volume: 5
  year: 2019
  ident: bb25
  article-title: Charge extraction via graded doping of hole transport layers gives highly luminescent and stable metal halide perovskite devices
  publication-title: Sci. Adv.
– volume: 28
  year: 2018
  ident: bb5
  article-title: Heteroatom effect on star-shaped hole-transporting materials for perovskite solar cells
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 27
  year: 2020
  end-page: 54
  ident: bb23
  article-title: A review of aspects of additive engineering in perovskite solar cells
  publication-title: J. Mater. Chem. A
– volume: 366
  start-page: 749
  year: 2019
  end-page: 753
  ident: bb46
  article-title: Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide
  publication-title: Science
– volume: 72
  year: 2020
  ident: bb28
  article-title: Dual effective dopant based hole transport layer for stable and efficient perovskite solar cells
  publication-title: Nano Energy
– volume: 355
  start-page: 722
  year: 2017
  end-page: 726
  ident: bb29
  article-title: Efficient and stable solution-processed planar perovskite solar cells via contact passivation
  publication-title: Science
– volume: 7
  year: 2020
  ident: bb22
  article-title: The role of the interfaces in perovskite solar cells
  publication-title: Adv. Mater. Interfaces
– volume: 73
  year: 2020
  ident: bb13
  article-title: Interface passivation treatment by halogenated low-dimensional perovskites for high-performance and stable perovskite photovoltaics
  publication-title: Nano Energy
– volume: 4
  year: 2017
  ident: bb7
  article-title: Cost-performance analysis of perovskite solar modules
  publication-title: Adv. Sci.
– volume: 3
  start-page: 682
  year: 2018
  end-page: 689
  ident: bb4
  article-title: A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells
  publication-title: Nat. Energy
– volume: 57
  start-page: 10959
  year: 2018
  end-page: 10965
  ident: bb34
  article-title: A two-dimensional hole-transporting material for high‐performance perovskite solar cells with 20% average efficiency
  publication-title: Angew. Chem. Int. Ed.
– reference: .
– volume: 10
  year: 2020
  ident: bb39
  article-title: Highly efficient perovskite solar cells enabled by multiple ligand passivation
  publication-title: Adv. Energy Mater.
– volume: 365
  start-page: 591
  year: 2019
  end-page: 595
  ident: bb12
  article-title: Thermodynamically stabilized β-CsPbI
  publication-title: Science
– volume: 10
  year: 2019
  ident: bb20
  article-title: Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells
  publication-title: Nat. Commun.
– volume: 10
  year: 2020
  ident: bb26
  article-title: New strategies for defect passivation in high-efficiency perovskite solar cells
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 2444
  year: 2016
  end-page: 2452
  ident: bb42
  article-title: Elimination of the light soaking effect and performance enhancement in perovskite solar cells using a fullerene derivative
  publication-title: Energy Environ. Sci.
– volume: 10
  year: 2019
  ident: bb15
  article-title: Atomic-level passivation mechanism of ammonium salts enabling highly efficient perovskite solar cells
  publication-title: Nat. Commun.
– volume: 59
  start-page: 6676
  year: 2020
  end-page: 6698
  ident: bb27
  article-title: Reducing detrimental defects for high-performance metal halide perovskite solar cells
  publication-title: Angew. Chem. Int. Ed.
– volume: 4
  start-page: 2913
  year: 2019
  end-page: 2921
  ident: bb40
  article-title: Interfacial passivation for perovskite solar cells: the effects of the functional group in phenethylammonium iodide
  publication-title: ACS Energy Lett.
– volume: 65
  start-page: 1237
  year: 2020
  end-page: 1241
  ident: bb14
  article-title: Charge-transport layer engineering in perovskite solar cells
  publication-title: Sci. Bull.
– volume: 567
  start-page: 511
  year: 2019
  end-page: 515
  ident: bb48
  article-title: Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene)
  publication-title: Nature
– volume: 58
  start-page: 4466
  year: 2019
  end-page: 4483
  ident: bb8
  article-title: Recent advances in flexible perovskite solar cells: fabrication and applications
  publication-title: Angew. Chem. Int. Ed.
– volume: 1
  year: 2016
  ident: bb16
  article-title: Self-formed grain boundary healing layer for highly efficient CH
  publication-title: Nat. Energy
– volume: 9
  year: 2019
  ident: bb36
  article-title: Efficient and stable chemical passivation on perovskite surface via bidentate anchoring
  publication-title: Adv. Energy Mater.
– volume: 13
  start-page: 460
  year: 2019
  end-page: 466
  ident: bb38
  article-title: Surface passivation of perovskite film for efficient solar cells
  publication-title: Nat. Photonics
– volume: 9
  year: 2018
  ident: bb18
  article-title: In-situ cross-linking strategy for efficient and operationally stable methylammoniun lead iodide solar cells
  publication-title: Nat. Commun.
– volume: 2
  year: 2018
  ident: bb24
  article-title: A Lewis base-assisted passivation strategy towards highly efficient and stable perovskite solar cells
  publication-title: Sol. RRL
– volume: 57
  start-page: 10959
  year: 2018
  ident: 10.1016/j.nanoen.2020.105462_bb34
  article-title: A two-dimensional hole-transporting material for high‐performance perovskite solar cells with 20% average efficiency
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201806392
– volume: 9
  year: 2019
  ident: 10.1016/j.nanoen.2020.105462_bb36
  article-title: Efficient and stable chemical passivation on perovskite surface via bidentate anchoring
  publication-title: Adv. Energy Mater.
– volume: 2
  year: 2018
  ident: 10.1016/j.nanoen.2020.105462_bb24
  article-title: A Lewis base-assisted passivation strategy towards highly efficient and stable perovskite solar cells
  publication-title: Sol. RRL
  doi: 10.1002/solr.201800055
– volume: 32
  year: 2020
  ident: 10.1016/j.nanoen.2020.105462_bb37
  article-title: Dopant-free organic hole-transporting material for efficient and stable inverted all-inorganic and hybrid perovskite solar cells
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201908011
– volume: 8
  start-page: 27
  year: 2020
  ident: 10.1016/j.nanoen.2020.105462_bb23
  article-title: A review of aspects of additive engineering in perovskite solar cells
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA07657C
– volume: 1
  year: 2016
  ident: 10.1016/j.nanoen.2020.105462_bb16
  article-title: Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.81
– volume: 31
  year: 2019
  ident: 10.1016/j.nanoen.2020.105462_bb10
  article-title: Efficient and stable inverted perovskite solar cells incorporating secondary amines
  publication-title: Adv. Mater.
– volume: 78
  year: 2020
  ident: 10.1016/j.nanoen.2020.105462_bb44
  article-title: Reduced bilateral recombination by functional molecular interface engineering for efficient inverted perovskite solar cells
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105249
– volume: 59
  start-page: 6676
  year: 2020
  ident: 10.1016/j.nanoen.2020.105462_bb27
  article-title: Reducing detrimental defects for high-performance metal halide perovskite solar cells
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201905521
– ident: 10.1016/j.nanoen.2020.105462_bb2
– volume: 72
  year: 2020
  ident: 10.1016/j.nanoen.2020.105462_bb28
  article-title: Dual effective dopant based hole transport layer for stable and efficient perovskite solar cells
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104673
– volume: 13
  start-page: 460
  year: 2019
  ident: 10.1016/j.nanoen.2020.105462_bb38
  article-title: Surface passivation of perovskite film for efficient solar cells
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-019-0398-2
– volume: 363
  start-page: 265
  year: 2019
  ident: 10.1016/j.nanoen.2020.105462_bb11
  article-title: A Eu3+-Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells
  publication-title: Science
  doi: 10.1126/science.aau5701
– volume: 356
  start-page: 1376
  year: 2017
  ident: 10.1016/j.nanoen.2020.105462_bb3
  article-title: Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells
  publication-title: Science
  doi: 10.1126/science.aan2301
– volume: 71
  year: 2020
  ident: 10.1016/j.nanoen.2020.105462_bb45
  article-title: Constructing binary electron transport layer with cascade energy level alignment for efficient CsPbI2Br solar cells
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104604
– volume: 361
  year: 2018
  ident: 10.1016/j.nanoen.2020.105462_bb6
  article-title: Challenges for commercializing perovskite solar cells
  publication-title: Science
  doi: 10.1126/science.aat8235
– volume: 32
  year: 2020
  ident: 10.1016/j.nanoen.2020.105462_bb33
  article-title: Interfacial molecular doping of metal halide perovskites for highly efficient solar cells
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202001581
– volume: 9
  start-page: 1703
  year: 2018
  ident: 10.1016/j.nanoen.2020.105462_bb9
  article-title: Fundamental efficiency limit of lead iodide perovskite solar cells
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.7b03054
– volume: 10
  year: 2019
  ident: 10.1016/j.nanoen.2020.105462_bb15
  article-title: Atomic-level passivation mechanism of ammonium salts enabling highly efficient perovskite solar cells
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10985-5
– volume: 8
  year: 2018
  ident: 10.1016/j.nanoen.2020.105462_bb17
  article-title: Mixed 3D–2D passivation treatment for mixed-cation lead mixed-halide perovskite solar cells for higher efficiency and better stability
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703392
– volume: 7
  year: 2020
  ident: 10.1016/j.nanoen.2020.105462_bb22
  article-title: The role of the interfaces in perovskite solar cells
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201901469
– volume: 8
  year: 2018
  ident: 10.1016/j.nanoen.2020.105462_bb19
  article-title: A universal double-side passivation for high open-circuit voltage in perovskite solar cells: role of carbonyl groups in poly(methyl methacrylate)
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801208
– volume: 138
  start-page: 8581
  year: 2016
  ident: 10.1016/j.nanoen.2020.105462_bb32
  article-title: Enhancing perovskite solar cell performance by interface engineering using CH3NH3PbBr0.9I2.1 quantum dots
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b04519
– volume: 32
  year: 2020
  ident: 10.1016/j.nanoen.2020.105462_bb41
  article-title: Tailored amphiphilic molecular mitigators for stable perovskite solar cells with 23.5% efficiency
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201907757
– volume: 4
  year: 2017
  ident: 10.1016/j.nanoen.2020.105462_bb7
  article-title: Cost-performance analysis of perovskite solar modules
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201600269
– volume: 10
  year: 2020
  ident: 10.1016/j.nanoen.2020.105462_bb43
  article-title: High electron affinity enables fast hole extraction for efficient flexible inverted perovskite solar cells
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903487
– volume: 65
  start-page: 1237
  year: 2020
  ident: 10.1016/j.nanoen.2020.105462_bb14
  article-title: Charge-transport layer engineering in perovskite solar cells
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2020.04.021
– volume: 131
  start-page: 6050
  year: 2009
  ident: 10.1016/j.nanoen.2020.105462_bb1
  article-title: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja809598r
– volume: 567
  start-page: 511
  year: 2019
  ident: 10.1016/j.nanoen.2020.105462_bb48
  article-title: Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene)
  publication-title: Nature
  doi: 10.1038/s41586-019-1036-3
– volume: 28
  year: 2018
  ident: 10.1016/j.nanoen.2020.105462_bb5
  article-title: Heteroatom effect on star-shaped hole-transporting materials for perovskite solar cells
  publication-title: Adv. Funct. Mater.
– volume: 4
  start-page: 2913
  year: 2019
  ident: 10.1016/j.nanoen.2020.105462_bb40
  article-title: Interfacial passivation for perovskite solar cells: the effects of the functional group in phenethylammonium iodide
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b02375
– volume: 9
  year: 2018
  ident: 10.1016/j.nanoen.2020.105462_bb18
  article-title: In-situ cross-linking strategy for efficient and operationally stable methylammoniun lead iodide solar cells
  publication-title: Nat. Commun.
– volume: 8
  start-page: 9815
  year: 2014
  ident: 10.1016/j.nanoen.2020.105462_bb21
  article-title: Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic–inorganic lead halide perovskites
  publication-title: ACS Nano
  doi: 10.1021/nn5036476
– volume: 365
  start-page: 591
  year: 2019
  ident: 10.1016/j.nanoen.2020.105462_bb12
  article-title: Thermodynamically stabilized β-CsPbI3–based perovskite solar cells with efficiencies >18%
  publication-title: Science
  doi: 10.1126/science.aav8680
– volume: 5
  year: 2019
  ident: 10.1016/j.nanoen.2020.105462_bb25
  article-title: Charge extraction via graded doping of hole transport layers gives highly luminescent and stable metal halide perovskite devices
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aav2012
– volume: 10
  year: 2020
  ident: 10.1016/j.nanoen.2020.105462_bb26
  article-title: New strategies for defect passivation in high-efficiency perovskite solar cells
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903090
– volume: 6
  start-page: 18750
  year: 2018
  ident: 10.1016/j.nanoen.2020.105462_bb30
  article-title: Spiro-linked organic small molecules as hole-transport materials for perovskite solar cells
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA08503J
– volume: 7
  year: 2017
  ident: 10.1016/j.nanoen.2020.105462_bb35
  article-title: Molecular engineered hole-extraction materials to enable dopant-free, efficient p-i-n perovskite solar cells
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700012
– volume: 5
  start-page: 596
  year: 2020
  ident: 10.1016/j.nanoen.2020.105462_bb47
  article-title: A holistic approach to interface stabilization for efficient perovskite solar modules with over 2000-hour operational stability
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-0653-2
– volume: 10
  year: 2019
  ident: 10.1016/j.nanoen.2020.105462_bb20
  article-title: Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08455-z
– volume: 10
  year: 2020
  ident: 10.1016/j.nanoen.2020.105462_bb39
  article-title: Highly efficient perovskite solar cells enabled by multiple ligand passivation
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903696
– volume: 58
  start-page: 4466
  year: 2019
  ident: 10.1016/j.nanoen.2020.105462_bb8
  article-title: Recent advances in flexible perovskite solar cells: fabrication and applications
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201809781
– volume: 366
  start-page: 749
  year: 2019
  ident: 10.1016/j.nanoen.2020.105462_bb46
  article-title: Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide
  publication-title: Science
  doi: 10.1126/science.aay7044
– volume: 355
  start-page: 722
  year: 2017
  ident: 10.1016/j.nanoen.2020.105462_bb29
  article-title: Efficient and stable solution-processed planar perovskite solar cells via contact passivation
  publication-title: Science
  doi: 10.1126/science.aai9081
– volume: 12
  start-page: 2778
  year: 2019
  ident: 10.1016/j.nanoen.2020.105462_bb31
  article-title: The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE02020A
– volume: 73
  year: 2020
  ident: 10.1016/j.nanoen.2020.105462_bb13
  article-title: Interface passivation treatment by halogenated low-dimensional perovskites for high-performance and stable perovskite photovoltaics
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104753
– volume: 3
  start-page: 682
  year: 2018
  ident: 10.1016/j.nanoen.2020.105462_bb4
  article-title: A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0200-6
– volume: 9
  start-page: 2444
  year: 2016
  ident: 10.1016/j.nanoen.2020.105462_bb42
  article-title: Elimination of the light soaking effect and performance enhancement in perovskite solar cells using a fullerene derivative
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE01337F
SSID ssj0000651712
Score 2.5536942
Snippet Remarkable progress has been made in perovskite solar cells (PSCs) recently. However, the defects present in the perovskite layer act as non-radiative...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105462
SubjectTerms Bifunctional molecules
Defect passivation
Hole-transport Materials
Interface
Perovskite solar cells
Title A sulfur-rich small molecule as a bifunctional interfacial layer for stable perovskite solar cells with efficiencies exceeding 22
URI https://dx.doi.org/10.1016/j.nanoen.2020.105462
Volume 79
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbL5tIcStImNM2DOfSqri3Lln1cQsK2pbm0C7kZPUZkg9cJ692SUyD_PBo_QgIhgV6NBiSNmMfnmW8Y-4YmVRojalGWnksrcq6Vizh64VWR5pktqMH590U2m8ufl-nliJ0OvTBUVtnb_s6mt9a6_zLpb3Nyu1hM_oiQu4g8TQWxWyaKGs2lVPTKv9_HTzhLcLGxan960npOAkMHXVvmVev6BokIVbQzb2UmXvdQz7zO-Q772IeLMO12tMtGWH9i289IBD-zhyk0m8pvVjyYtCtolrqqYNlNvUXQDWgwC3JfHeoHRBCx8pqgcqh0iLghxK0QgkQTlhNt-L-GEF1oKOkFAvYbILQWsGWbQJrm2wDe9X4PhNhj8_Ozv6cz3g9W4DZkCGue-jg2dOIo9j6zlMVExqZF5tFnTnkXY2RT5yNfIHGgKfRoXeJc7pywJkn22bi-qfELgyREJCidyiITUkWpi9zZKDOIhXQm6PmAJcNllrZnHafhF1U5lJddl50KStpQ2anggPEnqduOdeOd9WrQU_ni9ZTBMbwp-fW_JQ_ZB0H1LS0cc8TG69UGj0OAsjYn7Qs8YVvTH79mF4-vYOgC
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELaAHloOqKVFPMscuJpNnDhOjgiBtuVxASRukR9jsSgEtNmtekLin-PJA1EJUYlr5JEcjzOPLzPfMLaHRiqNEbUop56nVuRcKxdx9MKrQuaZLajB-ew8G1-lv6_l9QI7HHphqKyyt_2dTW-tdf9k1J_m6GEyGV2IkLuIXEpB7JaJkovsUxo-XxpjsP8YvwAtwcfGqv3rSQKcJIYWurbOq9b1PRITqmiH3qaZeNtFvXI7x1_ZSh8vwkG3pW9sAetVtvyKRfA7ezqAZl75-ZQHm3YDzZ2uKrjrxt4i6AY0mAn5rw72A2KImHpNWDlUOoTcEAJXCFGiCcuJN_xPQ5AuNJT1AiH7DRBcC9jSTSCN820A__aOD4T4wa6Ojy4Px7yfrMBtSBFmXPo4NvTGUex9ZimNiYyVRebRZ055F2NkpfORL5BI0BR6tC5xLndOWJMka2ypvq9xnUESQhJMncoiE3LFVBe5s1FmEIvUmaDoDZYMh1nannacpl9U5VBfdlt2KihpQ2Wngg3GX6QeOtqN_6xXg57Kf65PGTzDu5KbH5bcZZ_Hl2en5emv85Mt9kVQsUuLzWyzpdl0jjshWpmZn-1tfAYKyemQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+sulfur-rich+small+molecule+as+a+bifunctional+interfacial+layer+for+stable+perovskite+solar+cells+with+efficiencies+exceeding+22&rft.jtitle=Nano+energy&rft.au=Li%2C+Ming-Hua&rft.au=Sun%2C+Tian-Ge&rft.au=Shao%2C+Jiang-Yang&rft.au=Wang%2C+Yu-Duan&rft.date=2021-01-01&rft.pub=Elsevier+Ltd&rft.issn=2211-2855&rft.volume=79&rft_id=info:doi/10.1016%2Fj.nanoen.2020.105462&rft.externalDocID=S2211285520310375
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon