Cryogenic technology progress for CO2 capture under carbon neutrality goals: A review
•An overview of cryogenic technology for CO2 capture in flue gas after combustion.•Discussed the cryogenic capture system in terms of constructing structures and exploring the optimal system operating parameters.•Compare cryogenic technology for CO2 capture based on economic cost, energy consumption...
Saved in:
Published in | Separation and purification technology Vol. 299; p. 121734 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.10.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1383-5866 1873-3794 |
DOI | 10.1016/j.seppur.2022.121734 |
Cover
Abstract | •An overview of cryogenic technology for CO2 capture in flue gas after combustion.•Discussed the cryogenic capture system in terms of constructing structures and exploring the optimal system operating parameters.•Compare cryogenic technology for CO2 capture based on economic cost, energy consumption, capture rate and purity.
This review discusses the cryogenic capture system from the perspective of constructing new cryogenic capture system structures, exploring the optimal system parameters, and analyzing the challenges faced by different cryogenic capture systems. The gas that needs to remove CO2 undergoes desulfurization, denitrification and dust removal treatment, which can effectively reduce impurities and remove, and ensure the progress of the subsequent carbon capture process. Among the cryogenic technologies of carbon capture, cryogenic distillation is restricted by the concentration of carbon dioxide (CO2) in the gas and cost, and it cannot be widely popularized. Cryogenic condensation offers a wide range of industrial applications because it may immediately liquefy CO2 for oil displacement. Currently, the most concerned cryogenic sublimation can capture low-concentration CO2 at a rate of 99.9% at 13.5 vol%, and energy consumption and annual investment costs can also be effectively reduced. In general, cryogenic CO2 capture technology provides remarkable cost and efficiency benefits compared with other carbon capture technologies. By 2030, China’s CO2 capture cost will be 13–57$/t, and it will be 3–19$/t in 2060. Combining fixed costs and operating costs, the total abatement cost is 65$/t CO2, which is similar to the cost of 54$/ton CO2 in Japan and 60–193$/t CO2 in Australia. By 2060, the carbon emission reduction ratio of carbon capture, utilization, and storage (CCUS) will account for about 10% of the total emission reduction, so the research on CCUS is very urgent. It must break through the extreme utilization of cold energy and energy consumption barriers as well as increase the efficiency of the system. |
---|---|
AbstractList | •An overview of cryogenic technology for CO2 capture in flue gas after combustion.•Discussed the cryogenic capture system in terms of constructing structures and exploring the optimal system operating parameters.•Compare cryogenic technology for CO2 capture based on economic cost, energy consumption, capture rate and purity.
This review discusses the cryogenic capture system from the perspective of constructing new cryogenic capture system structures, exploring the optimal system parameters, and analyzing the challenges faced by different cryogenic capture systems. The gas that needs to remove CO2 undergoes desulfurization, denitrification and dust removal treatment, which can effectively reduce impurities and remove, and ensure the progress of the subsequent carbon capture process. Among the cryogenic technologies of carbon capture, cryogenic distillation is restricted by the concentration of carbon dioxide (CO2) in the gas and cost, and it cannot be widely popularized. Cryogenic condensation offers a wide range of industrial applications because it may immediately liquefy CO2 for oil displacement. Currently, the most concerned cryogenic sublimation can capture low-concentration CO2 at a rate of 99.9% at 13.5 vol%, and energy consumption and annual investment costs can also be effectively reduced. In general, cryogenic CO2 capture technology provides remarkable cost and efficiency benefits compared with other carbon capture technologies. By 2030, China’s CO2 capture cost will be 13–57$/t, and it will be 3–19$/t in 2060. Combining fixed costs and operating costs, the total abatement cost is 65$/t CO2, which is similar to the cost of 54$/ton CO2 in Japan and 60–193$/t CO2 in Australia. By 2060, the carbon emission reduction ratio of carbon capture, utilization, and storage (CCUS) will account for about 10% of the total emission reduction, so the research on CCUS is very urgent. It must break through the extreme utilization of cold energy and energy consumption barriers as well as increase the efficiency of the system. |
ArticleNumber | 121734 |
Author | Wang, Li Tong, Lige Feng, Wujun Ding, Yulong Shen, Minghai Liu, Chuanping Yin, Shaowu |
Author_xml | – sequence: 1 givenname: Minghai surname: Shen fullname: Shen, Minghai organization: School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China – sequence: 2 givenname: Lige surname: Tong fullname: Tong, Lige email: tonglige@me.ustb.edu.cn organization: School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China – sequence: 3 givenname: Shaowu surname: Yin fullname: Yin, Shaowu organization: School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China – sequence: 4 givenname: Chuanping surname: Liu fullname: Liu, Chuanping organization: School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China – sequence: 5 givenname: Li surname: Wang fullname: Wang, Li organization: School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China – sequence: 6 givenname: Wujun surname: Feng fullname: Feng, Wujun organization: Beijing Jingneng Energy Technology Research Co. Ltd., 100022 Beijing, China – sequence: 7 givenname: Yulong surname: Ding fullname: Ding, Yulong organization: Birmingham Centre for Energy Storage & School of Chemical Engineering, University of Birmingham, B15 2TT, UK |
BookMark | eNqFkM1KAzEUhYMo2FbfwEVeYGqS6UwmXQil-AeFbuw6ZJKbMaUmQzJV-vamjCsXurr3HjiHe74puvTBA0J3lMwpofX9fp6g749xzghjc8ooLxcXaEIbXhYlF4vLvJdNWVRNXV-jaUp7QiinDZug3TqeQgfeaTyAfvfhELoT7mPoIqSEbYh4vWVYq344RsBHbyDmK7bBYw_HIaqDG064C-qQlniFI3w6-LpBVzYLcPszZ2j39Pi2fik22-fX9WpT6JLUQ1EZxrVlLVc1Na1ginMlhG5sJaqFBS1UbYTVymbV2NaQ0gjDBWltDaTK7WZoOebqGFKKYKV2gxpc8Pkxd5CUyDMguZcjIHkGJEdA2bz4Ze6j-1Dx9J_tYbRBLpbLRpm0A6_BuAh6kCa4vwO-ASnJhpM |
CitedBy_id | crossref_primary_10_3390_en16062824 crossref_primary_10_1016_j_advmem_2023_100071 crossref_primary_10_3390_molecules29010257 crossref_primary_10_1016_j_cej_2023_142317 crossref_primary_10_1016_j_chemosphere_2023_141024 crossref_primary_10_1021_acs_energyfuels_4c04924 crossref_primary_10_1016_j_cej_2024_157652 crossref_primary_10_1016_j_seppur_2023_124182 crossref_primary_10_1016_j_jcou_2025_103052 crossref_primary_10_1016_j_jechem_2023_11_041 crossref_primary_10_3389_fchem_2024_1448881 crossref_primary_10_1016_j_seppur_2024_127614 crossref_primary_10_1021_acssuschemeng_3c05757 crossref_primary_10_1016_j_jclepro_2022_135089 crossref_primary_10_1016_j_ijhydene_2024_10_100 crossref_primary_10_1016_j_jece_2024_113531 crossref_primary_10_1021_acsami_3c02751 crossref_primary_10_1016_j_ccst_2023_100113 crossref_primary_10_1016_j_energy_2024_133551 crossref_primary_10_1016_j_jtice_2024_105527 crossref_primary_10_1016_j_seppur_2023_123829 crossref_primary_10_1016_j_memsci_2023_122019 crossref_primary_10_3390_e24111572 crossref_primary_10_1016_j_ces_2024_120022 crossref_primary_10_1021_acssuschemeng_4c04908 crossref_primary_10_1016_j_seppur_2024_126510 crossref_primary_10_1021_acsaem_4c01465 crossref_primary_10_1016_j_enconman_2025_119561 crossref_primary_10_1016_j_applthermaleng_2023_121863 crossref_primary_10_1002_ceat_202400296 crossref_primary_10_1080_00219592_2024_2350748 crossref_primary_10_29047_01225383_758 crossref_primary_10_1016_j_seppur_2025_131783 crossref_primary_10_1016_j_egyr_2023_01_116 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125285 crossref_primary_10_1016_j_seppur_2024_127153 crossref_primary_10_1016_j_apenergy_2024_123856 crossref_primary_10_1038_s41598_023_48683_4 crossref_primary_10_1016_j_advmem_2025_100129 crossref_primary_10_1016_j_rsurfi_2024_100381 crossref_primary_10_1007_s00226_024_01591_w crossref_primary_10_1039_D3QM00715D crossref_primary_10_1016_j_seppur_2022_122625 crossref_primary_10_1039_D4TA07302A crossref_primary_10_1021_acs_jpca_3c04714 crossref_primary_10_1016_j_cherd_2023_12_035 crossref_primary_10_1016_j_jclepro_2024_142790 crossref_primary_10_1016_j_jece_2024_112741 crossref_primary_10_1016_j_jclepro_2024_144210 crossref_primary_10_1016_j_scitotenv_2023_166108 crossref_primary_10_1021_acsomega_2c08260 crossref_primary_10_1016_j_seppur_2024_128636 crossref_primary_10_15826_chimtech_2023_10_4_03 crossref_primary_10_1016_j_cej_2023_147923 crossref_primary_10_3390_pr12112315 crossref_primary_10_3390_en16062865 crossref_primary_10_1016_j_powtec_2022_117934 crossref_primary_10_1016_j_jece_2024_112533 crossref_primary_10_3390_en15218309 crossref_primary_10_1016_j_cherd_2024_03_007 crossref_primary_10_1016_j_tsep_2024_102566 crossref_primary_10_1016_j_seppur_2024_126722 crossref_primary_10_1016_j_clay_2024_107581 crossref_primary_10_3390_catal13091267 crossref_primary_10_1016_j_fuel_2024_134006 crossref_primary_10_1016_j_cej_2024_151998 crossref_primary_10_1166_eef_2023_1294 crossref_primary_10_1021_acs_iecr_3c02529 crossref_primary_10_1016_j_seppur_2025_132447 crossref_primary_10_1016_j_seppur_2024_128853 crossref_primary_10_1016_j_seppur_2023_124395 crossref_primary_10_1007_s43979_022_00039_z crossref_primary_10_1017_jfm_2023_227 crossref_primary_10_2139_ssrn_4645463 crossref_primary_10_1016_j_ccst_2024_100249 crossref_primary_10_1016_j_fuel_2025_134740 crossref_primary_10_1016_j_applthermaleng_2023_121172 crossref_primary_10_1016_j_ijggc_2024_104156 crossref_primary_10_1007_s11157_023_09662_3 crossref_primary_10_1016_j_enconman_2024_119443 crossref_primary_10_1016_j_envres_2024_119540 crossref_primary_10_1016_j_jcis_2024_02_098 crossref_primary_10_3389_fpubh_2024_1394678 crossref_primary_10_1016_j_seta_2024_103836 crossref_primary_10_1016_j_seppur_2025_132312 crossref_primary_10_1360_TB_2023_0606 crossref_primary_10_3390_pr12040645 crossref_primary_10_1016_j_jece_2025_115702 crossref_primary_10_1016_j_seppur_2024_126785 crossref_primary_10_1016_j_jece_2025_116077 crossref_primary_10_1021_acs_est_2c06133 crossref_primary_10_3389_fenrg_2023_1167099 crossref_primary_10_1016_j_micromeso_2024_113220 crossref_primary_10_3390_en17112673 crossref_primary_10_3390_molecules28093819 crossref_primary_10_1021_acs_iecr_4c03469 crossref_primary_10_1016_j_ccst_2023_100178 crossref_primary_10_1021_acsami_4c18377 crossref_primary_10_1016_j_energy_2024_132244 crossref_primary_10_1007_s11356_023_28122_7 crossref_primary_10_1016_j_memsci_2025_123688 crossref_primary_10_1016_j_ces_2023_119677 crossref_primary_10_1016_j_seppur_2024_129403 crossref_primary_10_3390_en17143560 crossref_primary_10_1016_j_psep_2023_11_079 crossref_primary_10_1016_j_seppur_2023_124296 crossref_primary_10_1016_j_compchemeng_2023_108545 crossref_primary_10_1016_j_seppur_2024_126899 crossref_primary_10_1016_j_jcou_2024_102756 crossref_primary_10_1021_acs_est_3c00372 crossref_primary_10_1016_j_energy_2023_129867 crossref_primary_10_1039_D4CS00574K |
Cites_doi | 10.1016/j.cherd.2016.01.020 10.1016/j.ijggc.2010.11.011 10.1016/j.egypro.2017.03.1385 10.1016/j.memsci.2014.04.026 10.1016/j.energy.2016.12.127 10.1016/j.renene.2014.08.071 10.1002/ghg.2031 10.1016/j.egypro.2011.02.312 10.1126/science.1175680 10.1016/j.jclepro.2019.04.225 10.1016/j.seppur.2018.07.079 10.15282/ijame.15.2.2018.16.0413 10.1016/j.jclepro.2018.11.256 10.1016/B978-0-12-819657-1.00002-5 10.1016/j.fuel.2020.117007 10.1103/PhysRevE.86.016103 10.1016/j.ijggc.2012.01.004 10.1126/sciadv.aax9171 10.1002/ghg.1313 10.1016/j.memsci.2019.03.052 10.1016/j.jtice.2019.07.008 10.1016/j.jenvman.2019.109572 10.1039/C8CS00877A 10.2516/ogst:2005031 10.1016/j.rser.2018.07.007 10.1016/B978-008044704-9/50210-X 10.1134/S0040579514030142 10.1016/j.rser.2017.09.040 10.1016/j.memsci.2012.05.029 10.15244/pjoes/75959 10.1021/ef8007568 10.1016/j.apenergy.2008.05.006 10.1016/j.rser.2018.11.018 10.1360/TB-2021-0017 10.1016/j.eneco.2018.08.017 10.1016/j.memsci.2015.03.074 10.1016/j.jhazmat.2020.122744 10.1016/j.apenergy.2018.09.005 10.1016/j.energy.2011.10.007 10.1016/j.supflu.2017.07.029 10.1016/j.jclepro.2020.122265 10.1021/acs.iecr.9b01793 10.1016/j.egypro.2017.03.1409 10.1016/j.jenvman.2020.110582 10.1016/j.pecs.2017.02.001 10.1016/j.memsci.2009.11.040 10.1061/(ASCE)EY.1943-7897.0000645 10.1016/j.scitotenv.2019.01.395 10.3390/en12030559 10.1016/j.egypro.2011.02.005 10.1063/1.555991 10.1016/j.ces.2009.01.055 10.1016/j.ijggc.2011.08.013 10.1016/j.ces.2015.02.039 10.1016/j.scitotenv.2020.142892 10.1016/j.energy.2017.02.054 10.1016/j.cherd.2010.08.016 10.1016/j.rser.2017.07.029 10.1016/j.apenergy.2019.02.019 10.1016/j.fuel.2019.115746 10.4209/aaqr.2020.02.0047 10.1016/j.jclepro.2016.11.112 10.1016/j.seppur.2020.118223 10.1016/j.rser.2021.111826 10.3390/en12214143 10.1016/j.fuel.2019.115783 10.1016/j.ijrefrig.2013.03.017 10.1038/nature18307 10.1021/acs.iecr.9b00305 10.1016/j.apenergy.2012.04.013 10.1016/j.apenergy.2009.04.013 10.3390/en8099495 10.1016/j.energy.2018.05.106 10.1021/acsami.9b08487 10.1021/jacs.9b12879 10.1016/j.renene.2017.08.007 10.1021/acssuschemeng.9b03727 10.1016/j.energy.2020.119134 10.1016/j.rser.2017.01.011 10.1016/j.egypro.2017.03.1532 10.1016/j.elstat.2009.01.059 10.1243/09576509JPE355 10.1063/1.4860829 10.1016/j.enconman.2009.06.012 10.1016/j.psep.2021.01.010 10.1016/S1001-0742(08)60002-9 10.1016/j.jclepro.2020.124409 10.1016/j.cryogenics.2019.06.001 10.1080/15435075.2021.1880916 10.1016/j.applthermaleng.2016.12.049 10.1016/j.fuel.2016.07.071 10.1016/j.egypro.2019.01.818 10.1016/j.ijggc.2008.04.006 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.seppur.2022.121734 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3794 |
ExternalDocumentID | 10_1016_j_seppur_2022_121734 S1383586622012904 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABJNI ABMAC ABNUV ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSG SSM SSZ T5K ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FGOYB HZ~ R2- RIG SEW SSH |
ID | FETCH-LOGICAL-c306t-5d27cf2b7a61db92a77a99c8f5954fec9a6d9fcafa99dfbd03d9d790bf6e05873 |
IEDL.DBID | AIKHN |
ISSN | 1383-5866 |
IngestDate | Tue Jul 01 00:33:03 EDT 2025 Thu Apr 24 23:05:59 EDT 2025 Fri Feb 23 02:36:37 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Cryogenic Distillation CO2 capture Condensation Sublimation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-5d27cf2b7a61db92a77a99c8f5954fec9a6d9fcafa99dfbd03d9d790bf6e05873 |
ParticipantIDs | crossref_citationtrail_10_1016_j_seppur_2022_121734 crossref_primary_10_1016_j_seppur_2022_121734 elsevier_sciencedirect_doi_10_1016_j_seppur_2022_121734 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-15 |
PublicationDateYYYYMMDD | 2022-10-15 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Separation and purification technology |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Hagen, Polman, Myken, Jensen, Joensson, Dahl (b0380) 2001 Younes (b0565) 2003 Sun, Tian, Song, Deng, Shi, Kang, Shu (b0560) 2021; 18 Babar, Bustam, Ali, Maulud (b0555) 2018; 15 M.L. Observatory, Atmospheric monthly in situ CO2 data [OL], https://research.noaa.gov/article/ArtMID/587/ArticleID/2461/Carbon-dioxide-levels-hit-record-peak-in-May. Chen, Kanehashi, Doherty, Hill, Kentish (b0215) 2015; 487 Brunetti, Scura, Barbieri, Drioli (b0445) 2010; 359 Sifat, Haseli (b0085) 2019; 12 Chen, Zhu, Wu, Yang, Zhang (b0430) 2017; 120 Xu, Wang, Qiao, Wu, Dong, Zhao, Wang (b0140) 2019; 581 Rogelj, Den Elzen, Höhne, Fransen, Fekete, Winkler, Schaeffer, Sha, Riahi, Meinshausen (b0060) 2016; 534 Burt, Baxter, Baxter (b0080) 2009 Bioenergy (b0375) 1999; 24 L. Yuan, J. Pfotenhauer, L. Qiu, A preliminary investigation of cryogenic CO 2 capture utilizing a reverse Brayton Cycle, AIP Conference Proceedings, American Institute of Physics, 2014, pp. 1107-1114. Naletov, Lukyanov, Kulov, Naletov, Glebov (b0450) 2014; 48 M. Tuinier, Novel process concept for cryogenic CO2 capture, (2011). Nelson, Kataria, Mobley, Soukri, Tanthana (b0135) 2017; 114 Fan, Chen, Feng, Wu, Liu (b0280) 2020; 265 Belaissaoui, Le Moullec, Willson, Favre (b0410) 2012; 415 Li, Yan, Anheden (b0250) 2009; 86 Song, Liu, Ji, Deng, Zhao, Li, Song, Li (b0390) 2018; 82 Song, Liu, Ji, Deng, Zhao, Li, Kitamura (b0155) 2017; 124 Berstad, Anantharaman, Nekså (b0195) 2013; 36 Babar, Bustam, Ali, Maulud, Shafiq, Shariff, Man (b0475) 2019; 101 Ghg (b0095) 2006 Wang, Pfotenhauer, Qiu, Zhi, Jiang (b0435) 2020 Zhang, Wang, Liu, Gao, Shi, Lu, Yang (b0330) 2021; 259 Yang, Li, Li, Liang, Zhang (b0550) 2015; 8 Schach, Oyarzún, Schramm, Schneider, Repke (b0485) 2011; 4 Song, Zhou, Li, Yang, Zhang, Li (b0335) 2020; 269 Song, Liu, Deng, Li, Kitamura (b0185) 2019; 101 De Visser, Hendriks, Barrio, Mølnvik, de Koeijer, Liljemark, Le Gallo (b0355) 2008; 2 Wawrzyńczak, Majchrzak-Kucęba, Srokosz, Kozak, Nowak, Zdeb, Smółka, Zajchowski (b0130) 2019; 209 Wang, Fan, Li, Xiao, Wang, Ren (b0285) 2012; 37 Yuan, Narakornpijit, Haghpanah, Wilcox (b0150) 2014; 465 Lefebvre, Fan, Gagnière, Bennici, Auroux, Mangin (b0045) 2015; 133 Clodic, M. Younes, A. Bill, Test results of CO2 capture by anti-sublimation Capture efficiency and energy consumption for Boiler plants, Greenhouse Gas Control Technologies 7, Elsevier2005, pp. 1775-1780. Liu, Baeyens, Deng, Wang, Zhang (b0040) 2020; 267 Liao, Hu, Wang, Yang, You (b0420) 2019; 7 Tuinier, van Sint Annaland, Kramer, Kuipers (b0525) 2010; 65 Yousef, El-Maghlany, Eldrainy, Attia (b0370) 2018; 156 Eide, Anheden, Lyngfelt, Abanades, Younes, Clodic, Bill, Feron, Rojey, Giroudiere (b0515) 2005; 60 Andrews (b0290) 2013 Keith (b0055) 2009; 325 Pan, Clodic, Toubassy (b0495) 2013; 3 Li, Zhang, Li, Ren, Yang, Jiang, Zhang (b0315) 2019; 255 Baxter, Baxter, Burt (b0440) 2009 Song, Liu, Ji, Deng, Zhao, Kitamura (b0225) 2017; 114 Song, Lu, Kitamura (b0470) 2015; 74 Lashaki, Khiavi, Sayari (b0235) 2019; 48 International Energy Agency. CO2 capture and storage: a key carbon abatement option, OECD Publishing, 2008. Zhang, Ji, Han, Li, Qi (b0345) 2019; 255 Span, Wagner (b0460) 1996; 25 Cheng, Zhang (b0260) 2018; 27 Voldsund, Gardarsdottir, De Lena, Pérez-Calvo, Jamali, Berstad, Fu, Romano, Roussanaly, Anantharaman (b0200) 2019; 12 Babar, Mukhtar, Mubashir, Saqib, Ullah, Quddusi, Bustam, Show (b0535) 2021; 147 Xu, Wang, Feng, Ding, Yu, Du, Zang (b0275) 2020; 146 Zhang, Wang, Pan, Romero (b0255) 2019 Pichot, Granados, Morel, Schuller, Dubettier, Lockwood (b0385) 2017; 114 Yang, Lin, Sammarchi, Li, Li, Wang (b0220) 2021; 11 Koralegedara, Pinto, Dionysiou, Al-Abed (b0300) 2019; 251 D. Surovtseva, R. Amin, A. Barifcani, Design and operation of pilot plant for CO2 capture from IGCC flue gases by combined cryogenic and hydrate method, Chem. Eng. Res. Des., 89 (2011) 1752-1757. Rahman, Aziz, Saidur, Bakar, Hainin, Putrajaya, Hassan (b0070) 2017; 71 Shen, Jiang, Zhang, Chen, Wang, Chen (b0115) 2018; 230 Liu, Yang, Chiang, Wang (b0415) 2020; 20 Ali, Maqsood, Redza, Hii, Shariff, Ganguly (b0540) 2016; 109 Yang, Xu, Fan, Gupta, Slimane, Bland, Wright (b0175) 2008; 20 Durmaz (b0020) 2018; 95 Li, Lin, Wang, Ding, Qi, Zhu (b0295) 2019; 228 Bologa, Paur, Seifert, Wäscher, Woletz (b0340) 2009; 67 IEA (b0025) 2019; 562 Xin, Zhou, Ming, Sun, Han, Ye, Dai, Jiang, Zhao, An (b0325) 2020; 397 Levin, Rich (b0030) 2017 Pardakhti, Jafari, Tobin, Dutta, Moharreri, Shemshaki, Suib, Srivastava (b0120) 2019; 11 Shi, Tao, Wu, Zhang, He, Long, Lee, Li, Zhang (b0125) 2020; 142 Riboldi, Bolland (b0210) 2017; 114 Sang Sefidi, Luis (b0105) 2019; 58 Sharma, Sharma, Sharma, Giri, Kumar, Pant (b0165) 2020 Mehrpooya, Esfilar, Moosavian (b0425) 2017; 142 Cheng, Zhou, Liu, Cao, Cen (b0320) 2009; 23 Cabral, Heldebrant, Mac Dowell (b0190) 2019; 58 Li, Zhou, Su, Chen, Qiao, Liu (b0270) 2016; 184 Dong, Hochman, Zhang, Sun, Li, Liao (b0075) 2018; 75 Pellegrini, De Guido, Langé (b0395) 2018; 124 Chisalita, Petrescu, Cobden, van Dijk, Cormos, Cormos (b0580) 2019; 211 Zhu, Ge, Wu, Yang, Wang (b0230) 2021; 66 Swanson, Elzey, Hershberger, Donnelly, Pfotenhauer (b0480) 2012; 86 Nakao, Yogo, Goto, Kai, Yamada (b0145) 2019 Liu, Zhang, Yang, Wang (b0170) 2019; 103 Song, Kitamura, Li (b0505) 2012; 98 Reddy, Johnson, Gilmartin (b0240) 2008 Dou, Pan, Jin, Wang, Li (b0310) 2009; 50 Agarwal, Singh, Maurya (b0265) 2017; 61 Prajapati, Mahajan (b0035) 2021; 215 Tuinier, van Sint Annaland, Kuipers (b0405) 2011; 5 Li (b0350) 2008 Guo, Li, Shi, Li, Shen (b0100) 2019; 239 Naquash, Qyyum, Haider, Bokhari, Lim, Lee (b0205) 2022; 154 E. Lemmon, I.H. Bell, M. Huber, M. McLinden, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0, National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg, (2018). Li, Yan (b0245) 2009; 86 Stuardi, MacPherson, Leclaire (b0010) 2019; 16 Mukherjee, Sikdar, O’Nolan, Franz, Gascón, Kumar, Kumar, Scott, Madden, Kruger (b0005) 2019; 5 Abuelgasim, Wang, Abdalazeez (b0090) 2021; 764 Zhang, Zhang, Yang, Liu, Jafari (b0160) 2021; 281 Koytsoumpa, Bergins, Kakaras (b0015) 2018; 132 Wang, Yang (b0305) 2018; 82 Kato, Kurosawa (b0570) 2019; 158 B. Kanjilal, M. Nabavinia, A. Masoumi, M. Savelski, I. Noshadi, Challenges on CO2 capture, utilization, and conversion, Advances in Carbon Capture, Elsevier 2020, pp. 29-48. H. Liu, X. Jiang, R. Idem, S. Dong, P. Tontiwachwuthikul, AI models for correlation of physical properties in system of 1DMA2P‐CO2‐H2O, AIChE J., e17761. Tuinier, Hamers, van Sint Annaland (b0500) 2011; 5 Clodic, Younes (b0510) 2003 Song, Kitamura, Li, Ogasawara (b0360) 2012; 7 Clodic, El Hitti, Younes, Bill, Casier (b0490) 2005 McGlashan, Marquis (b0365) 2008; 222 Goos, Riedel, Zhao, Blum (b0455) 2011; 4 Aldaco, Butnar, Margallo, Laso, Rumayor, Dominguez-Ramos, Irabien, Dodds (b0575) 2019; 663 Liu (10.1016/j.seppur.2022.121734_b0170) 2019; 103 Zhu (10.1016/j.seppur.2022.121734_b0230) 2021; 66 Li (10.1016/j.seppur.2022.121734_b0315) 2019; 255 Xu (10.1016/j.seppur.2022.121734_b0275) 2020; 146 Belaissaoui (10.1016/j.seppur.2022.121734_b0410) 2012; 415 Swanson (10.1016/j.seppur.2022.121734_b0480) 2012; 86 Li (10.1016/j.seppur.2022.121734_b0350) 2008 Tuinier (10.1016/j.seppur.2022.121734_b0405) 2011; 5 10.1016/j.seppur.2022.121734_b0545 Burt (10.1016/j.seppur.2022.121734_b0080) 2009 Stuardi (10.1016/j.seppur.2022.121734_b0010) 2019; 16 Dong (10.1016/j.seppur.2022.121734_b0075) 2018; 75 Zhang (10.1016/j.seppur.2022.121734_b0330) 2021; 259 Song (10.1016/j.seppur.2022.121734_b0390) 2018; 82 Guo (10.1016/j.seppur.2022.121734_b0100) 2019; 239 Koytsoumpa (10.1016/j.seppur.2022.121734_b0015) 2018; 132 Liu (10.1016/j.seppur.2022.121734_b0040) 2020; 267 Nelson (10.1016/j.seppur.2022.121734_b0135) 2017; 114 Younes (10.1016/j.seppur.2022.121734_b0565) 2003 Voldsund (10.1016/j.seppur.2022.121734_b0200) 2019; 12 Reddy (10.1016/j.seppur.2022.121734_b0240) 2008 IEA (10.1016/j.seppur.2022.121734_b0025) 2019; 562 Song (10.1016/j.seppur.2022.121734_b0185) 2019; 101 Babar (10.1016/j.seppur.2022.121734_b0535) 2021; 147 Aldaco (10.1016/j.seppur.2022.121734_b0575) 2019; 663 Abuelgasim (10.1016/j.seppur.2022.121734_b0090) 2021; 764 Keith (10.1016/j.seppur.2022.121734_b0055) 2009; 325 Song (10.1016/j.seppur.2022.121734_b0225) 2017; 114 Eide (10.1016/j.seppur.2022.121734_b0515) 2005; 60 Mehrpooya (10.1016/j.seppur.2022.121734_b0425) 2017; 142 Riboldi (10.1016/j.seppur.2022.121734_b0210) 2017; 114 10.1016/j.seppur.2022.121734_b0050 Hagen (10.1016/j.seppur.2022.121734_b0380) 2001 Berstad (10.1016/j.seppur.2022.121734_b0195) 2013; 36 Song (10.1016/j.seppur.2022.121734_b0335) 2020; 269 Cheng (10.1016/j.seppur.2022.121734_b0260) 2018; 27 Zhang (10.1016/j.seppur.2022.121734_b0160) 2021; 281 Chen (10.1016/j.seppur.2022.121734_b0215) 2015; 487 Span (10.1016/j.seppur.2022.121734_b0460) 1996; 25 Li (10.1016/j.seppur.2022.121734_b0295) 2019; 228 Cabral (10.1016/j.seppur.2022.121734_b0190) 2019; 58 Goos (10.1016/j.seppur.2022.121734_b0455) 2011; 4 Yang (10.1016/j.seppur.2022.121734_b0220) 2021; 11 Sun (10.1016/j.seppur.2022.121734_b0560) 2021; 18 Nakao (10.1016/j.seppur.2022.121734_b0145) 2019 Schach (10.1016/j.seppur.2022.121734_b0485) 2011; 4 Cheng (10.1016/j.seppur.2022.121734_b0320) 2009; 23 Baxter (10.1016/j.seppur.2022.121734_b0440) 2009 Pardakhti (10.1016/j.seppur.2022.121734_b0120) 2019; 11 Yang (10.1016/j.seppur.2022.121734_b0550) 2015; 8 Brunetti (10.1016/j.seppur.2022.121734_b0445) 2010; 359 Prajapati (10.1016/j.seppur.2022.121734_b0035) 2021; 215 Mukherjee (10.1016/j.seppur.2022.121734_b0005) 2019; 5 Chisalita (10.1016/j.seppur.2022.121734_b0580) 2019; 211 Koralegedara (10.1016/j.seppur.2022.121734_b0300) 2019; 251 Ghg (10.1016/j.seppur.2022.121734_b0095) 2006 Liao (10.1016/j.seppur.2022.121734_b0420) 2019; 7 Fan (10.1016/j.seppur.2022.121734_b0280) 2020; 265 Song (10.1016/j.seppur.2022.121734_b0470) 2015; 74 Shen (10.1016/j.seppur.2022.121734_b0115) 2018; 230 Yang (10.1016/j.seppur.2022.121734_b0175) 2008; 20 Liu (10.1016/j.seppur.2022.121734_b0415) 2020; 20 Li (10.1016/j.seppur.2022.121734_b0245) 2009; 86 Dou (10.1016/j.seppur.2022.121734_b0310) 2009; 50 10.1016/j.seppur.2022.121734_b0110 Babar (10.1016/j.seppur.2022.121734_b0555) 2018; 15 Song (10.1016/j.seppur.2022.121734_b0155) 2017; 124 Sang Sefidi (10.1016/j.seppur.2022.121734_b0105) 2019; 58 Wang (10.1016/j.seppur.2022.121734_b0305) 2018; 82 Sharma (10.1016/j.seppur.2022.121734_b0165) 2020 Song (10.1016/j.seppur.2022.121734_b0505) 2012; 98 Yousef (10.1016/j.seppur.2022.121734_b0370) 2018; 156 Naletov (10.1016/j.seppur.2022.121734_b0450) 2014; 48 Sifat (10.1016/j.seppur.2022.121734_b0085) 2019; 12 Wang (10.1016/j.seppur.2022.121734_b0285) 2012; 37 Wang (10.1016/j.seppur.2022.121734_b0435) 2020 Levin (10.1016/j.seppur.2022.121734_b0030) 2017 Rogelj (10.1016/j.seppur.2022.121734_b0060) 2016; 534 10.1016/j.seppur.2022.121734_b0180 Xin (10.1016/j.seppur.2022.121734_b0325) 2020; 397 10.1016/j.seppur.2022.121734_b0065 Lashaki (10.1016/j.seppur.2022.121734_b0235) 2019; 48 Naquash (10.1016/j.seppur.2022.121734_b0205) 2022; 154 Pichot (10.1016/j.seppur.2022.121734_b0385) 2017; 114 10.1016/j.seppur.2022.121734_b0465 Pellegrini (10.1016/j.seppur.2022.121734_b0395) 2018; 124 Clodic (10.1016/j.seppur.2022.121734_b0510) 2003 Tuinier (10.1016/j.seppur.2022.121734_b0525) 2010; 65 Zhang (10.1016/j.seppur.2022.121734_b0255) 2019 Li (10.1016/j.seppur.2022.121734_b0270) 2016; 184 Tuinier (10.1016/j.seppur.2022.121734_b0500) 2011; 5 Kato (10.1016/j.seppur.2022.121734_b0570) 2019; 158 Lefebvre (10.1016/j.seppur.2022.121734_b0045) 2015; 133 Wawrzyńczak (10.1016/j.seppur.2022.121734_b0130) 2019; 209 Ali (10.1016/j.seppur.2022.121734_b0540) 2016; 109 Zhang (10.1016/j.seppur.2022.121734_b0345) 2019; 255 10.1016/j.seppur.2022.121734_b0530 De Visser (10.1016/j.seppur.2022.121734_b0355) 2008; 2 Shi (10.1016/j.seppur.2022.121734_b0125) 2020; 142 Yuan (10.1016/j.seppur.2022.121734_b0150) 2014; 465 McGlashan (10.1016/j.seppur.2022.121734_b0365) 2008; 222 10.1016/j.seppur.2022.121734_b0400 Durmaz (10.1016/j.seppur.2022.121734_b0020) 2018; 95 Agarwal (10.1016/j.seppur.2022.121734_b0265) 2017; 61 Babar (10.1016/j.seppur.2022.121734_b0475) 2019; 101 Li (10.1016/j.seppur.2022.121734_b0250) 2009; 86 Bioenergy (10.1016/j.seppur.2022.121734_b0375) 1999; 24 Xu (10.1016/j.seppur.2022.121734_b0140) 2019; 581 Rahman (10.1016/j.seppur.2022.121734_b0070) 2017; 71 Andrews (10.1016/j.seppur.2022.121734_b0290) 2013 10.1016/j.seppur.2022.121734_b0520 Song (10.1016/j.seppur.2022.121734_b0360) 2012; 7 Chen (10.1016/j.seppur.2022.121734_b0430) 2017; 120 Pan (10.1016/j.seppur.2022.121734_b0495) 2013; 3 Bologa (10.1016/j.seppur.2022.121734_b0340) 2009; 67 Clodic (10.1016/j.seppur.2022.121734_b0490) 2005 |
References_xml | – volume: 5 start-page: 694 year: 2011 end-page: 701 ident: b0405 article-title: A novel process for cryogenic CO2 capture using dynamically operated packed beds—An experimental and numerical study publication-title: Int. J. Greenhouse Gas Control – volume: 581 start-page: 195 year: 2019 end-page: 213 ident: b0140 article-title: Post-combustion CO2 capture with membrane process: Practical membrane performance and appropriate pressure publication-title: J. Membr. Sci. – volume: 60 start-page: 497 year: 2005 end-page: 508 ident: b0515 article-title: Novel capture processes publication-title: Oil Gas Sci. Technol. – volume: 2 start-page: 478 year: 2008 end-page: 484 ident: b0355 article-title: Dynamis CO2 quality recommendations publication-title: Int. J. Greenhouse Gas Control – volume: 465 start-page: 177 year: 2014 end-page: 184 ident: b0150 article-title: Consideration of a nitrogen-selective membrane for postcombustion carbon capture through process modeling and optimization publication-title: J. Membr. Sci. – volume: 8 start-page: 9495 year: 2015 end-page: 9508 ident: b0550 article-title: Analysis of a new liquefaction combined with desublimation system for CO2 separation based on N2/CO2 phase equilibrium publication-title: Energies – volume: 75 start-page: 180 year: 2018 end-page: 192 ident: b0075 article-title: CO2 emissions, economic and population growth, and renewable energy: Empirical evidence across regions publication-title: Energy Econ. – volume: 24 start-page: 6475 year: 1999 end-page: 6481 ident: b0375 article-title: Biogas upgrading and utilisation publication-title: Task – volume: 5 start-page: 1559 year: 2011 end-page: 1565 ident: b0500 article-title: Techno-economic evaluation of cryogenic CO2 capture—A comparison with absorption and membrane technology publication-title: Int. J. Greenhouse Gas Control – volume: 12 start-page: 559 year: 2019 ident: b0200 article-title: Comparison of technologies for CO2 capture from cement production—Part 1: Technical evaluation publication-title: Energies – volume: 120 start-page: 128 year: 2017 end-page: 137 ident: b0430 article-title: A novel LNG/O2 combustion gas and steam mixture cycle with energy storage and CO2 capture publication-title: Energy – volume: 86 year: 2012 ident: b0480 article-title: Thermodynamic analysis of low-temperature carbon dioxide and sulfur dioxide capture from coal-burning power plants publication-title: Phys. Rev. E – volume: 86 start-page: 2760 year: 2009 end-page: 2770 ident: b0245 article-title: Impacts of equations of state (EOS) and impurities on the volume calculation of CO2 mixtures in the applications of CO2 capture and storage (CCS) processes publication-title: Appl. Energy – volume: 215 year: 2021 ident: b0035 article-title: Reliability assessment and congestion management of power system with energy storage system and uncertain renewable resources publication-title: Energy – volume: 37 start-page: 725 year: 2012 end-page: 736 ident: b0285 article-title: The effect of air staged combustion on NOx emissions in dried lignite combustion publication-title: Energy – volume: 359 start-page: 115 year: 2010 end-page: 125 ident: b0445 article-title: Membrane technologies for CO2 separation publication-title: J. Membr. Sci. – volume: 66 start-page: 2861 year: 2021 end-page: 2877 ident: b0230 article-title: Large-scale applications and challenges of adsorption-based carbon capture technologies publication-title: Chin. Sci. Bull. – volume: 255 year: 2019 ident: b0345 article-title: Multi-field coupling and synergistic removal of fine particles in coal-fired flue gas publication-title: Fuel – volume: 415 start-page: 424 year: 2012 end-page: 434 ident: b0410 article-title: Hybrid membrane cryogenic process for post-combustion CO2 capture publication-title: J. Membr. Sci. – volume: 20 start-page: 14 year: 2008 end-page: 27 ident: b0175 article-title: Progress in carbon dioxide separation and capture: A review publication-title: J. Environ. Sci. – volume: 663 start-page: 738 year: 2019 end-page: 753 ident: b0575 article-title: Bringing value to the chemical industry from capture, storage and use of CO2: A dynamic LCA of formic acid production publication-title: Sci. Total Environ. – volume: 71 start-page: 112 year: 2017 end-page: 126 ident: b0070 article-title: Pollution to solution: Capture and sequestration of carbon dioxide (CO2) and its utilization as a renewable energy source for a sustainable future publication-title: Renew. Sustain. Energy Rev. – reference: D. Surovtseva, R. Amin, A. Barifcani, Design and operation of pilot plant for CO2 capture from IGCC flue gases by combined cryogenic and hydrate method, Chem. Eng. Res. Des., 89 (2011) 1752-1757. – volume: 58 start-page: 6604 year: 2019 end-page: 6612 ident: b0190 article-title: A techno-economic analysis of a novel solvent-based oxycombustion CO2 capture process publication-title: Ind. Eng. Chem. Res. – volume: 184 start-page: 672 year: 2016 end-page: 680 ident: b0270 article-title: Combustion and emission characteristics of a lateral swirl combustion system for DI diesel engines under low excess air ratio conditions publication-title: Fuel – volume: 50 start-page: 2547 year: 2009 end-page: 2553 ident: b0310 article-title: Prediction of SO2 removal efficiency for wet flue gas desulfurization publication-title: Energy Convers. Manage. – volume: 48 start-page: 3320 year: 2019 end-page: 3405 ident: b0235 article-title: Stability of amine-functionalized CO 2 adsorbents: a multifaceted puzzle publication-title: Chem. Soc. Rev. – volume: 12 start-page: 4143 year: 2019 ident: b0085 article-title: A critical review of CO2 capture technologies and prospects for clean power generation publication-title: Energies – reference: . Clodic, M. Younes, A. Bill, Test results of CO2 capture by anti-sublimation Capture efficiency and energy consumption for Boiler plants, Greenhouse Gas Control Technologies 7, Elsevier2005, pp. 1775-1780. – start-page: 155 year: 2003 end-page: 160 ident: b0510 article-title: A new method for CO2 capture: frosting CO2 at atmospheric pressure publication-title: Greenhouse Gas Control Technologies-6th International Conference – volume: 209 start-page: 560 year: 2019 end-page: 570 ident: b0130 article-title: The pilot dual-reflux vacuum pressure swing adsorption unit for CO2 capture from flue gas publication-title: Sep. Purif. Technol. – volume: 397 year: 2020 ident: b0325 article-title: A two-stage desalination process for zero liquid discharge of flue gas desulfurization wastewater by chloride precipitation publication-title: J. Hazard. Mater. – volume: 562 year: 2019 ident: b0025 publication-title: CO2 Status Report 2018 – year: 2009 ident: b0440 article-title: Cryogenic CO2 capture as a cost-effective CO2 capture process publication-title: International Pittsburgh Coal Conference – start-page: 25 year: 2008 end-page: 28 ident: b0240 article-title: Fluor’s Econamine FG PlusSM technology for CO2 capture at coal-fired power plants publication-title: Power Plant Air Pollutant Control Mega Symposium – start-page: 715 year: 2013 end-page: 790 ident: b0290 article-title: Ultra-Low Nitrogen Oxides (NOx) Emissions Combustion in Gas Turbine Systems – volume: 5 start-page: eaax9171 year: 2019 ident: b0005 article-title: Trace CO2 capture by an ultramicroporous physisorbent with low water affinity publication-title: Sci. Adv. – volume: 487 start-page: 249 year: 2015 end-page: 255 ident: b0215 article-title: Water vapor permeation through cellulose acetate membranes and its impact upon membrane separation performance for natural gas purification publication-title: J. Membr. Sci. – volume: 103 start-page: 67 year: 2019 end-page: 74 ident: b0170 article-title: Simulation and energy analysis of CO2 capture from CO2-EOR extraction gas using cryogenic fractionation publication-title: J. Taiwan Inst. Chem. Eng. – volume: 133 start-page: 2 year: 2015 end-page: 8 ident: b0045 article-title: Lithium bromide crystallization in water applied to an inter-seasonal heat storage process publication-title: Chem. Eng. Sci. – volume: 255 year: 2019 ident: b0315 article-title: Utilization of low-quality desulfurized ash from semi-dry flue gas desulfurization by mixing with hemihydrate gypsum publication-title: Fuel – volume: 101 start-page: 265 year: 2019 end-page: 278 ident: b0185 article-title: Cryogenic-based CO2 capture technologies: State-of-the-art developments and current challenges publication-title: Renew. Sustain. Energy Rev. – volume: 82 start-page: 215 year: 2018 end-page: 231 ident: b0390 article-title: Alternative pathways for efficient CO2 capture by hybrid processes—a review publication-title: Renew. Sustain. Energy Rev. – reference: H. Liu, X. Jiang, R. Idem, S. Dong, P. Tontiwachwuthikul, AI models for correlation of physical properties in system of 1DMA2P‐CO2‐H2O, AIChE J., e17761. – volume: 15 year: 2018 ident: b0555 article-title: Identification and quantification of CO2 solidification in cryogenic CO2 capture from natural gas publication-title: Int. J. Automotive Mech. Eng. – volume: 534 start-page: 631 year: 2016 end-page: 639 ident: b0060 article-title: Paris Agreement climate proposals need a boost to keep warming well below 2 C publication-title: Nature – volume: 114 start-page: 2506 year: 2017 end-page: 2524 ident: b0135 article-title: RTI's solid sorbent-based CO2 capture process: technical and economic lessons learned for application in coal-fired, NGCC, and cement plants publication-title: Energy Procedia – volume: 147 start-page: 878 year: 2021 end-page: 887 ident: b0535 article-title: Development of a novel switched packed bed process for cryogenic CO2 capture from natural gas publication-title: Process Saf. Environ. Prot. – volume: 211 start-page: 1015 year: 2019 end-page: 1025 ident: b0580 article-title: Assessing the environmental impact of an integrated steel mill with post-combustion CO2 capture and storage using the LCA methodology publication-title: J. Cleaner Prod. – volume: 25 start-page: 1509 year: 1996 end-page: 1596 ident: b0460 article-title: A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa publication-title: J. Phys. Chem. Ref. Data – volume: 7 start-page: 107 year: 2012 end-page: 114 ident: b0360 article-title: Design of a cryogenic CO2 capture system based on Stirling coolers publication-title: Int. J. Greenhouse Gas Control – volume: 132 start-page: 3 year: 2018 end-page: 16 ident: b0015 article-title: The CO2 economy: Review of CO2 capture and reuse technologies publication-title: J. Supercrit. Fluids – volume: 114 start-page: 2390 year: 2017 end-page: 2400 ident: b0210 article-title: Overview on pressure swing adsorption (PSA) as CO2 capture technology: state-of-the-art, limits and potentials publication-title: Energy Procedia – volume: 4 start-page: 1403 year: 2011 end-page: 1410 ident: b0485 article-title: Feasibility study of CO2 capture by anti-sublimation publication-title: Energy Procedia – volume: 27 year: 2018 ident: b0260 article-title: Desulfurization and Denitrification Technologies of Coal-fired Flue Gas publication-title: Polish J. Environ. Stud. – volume: 109 start-page: 519 year: 2016 end-page: 531 ident: b0540 article-title: Performance enhancement using multiple cryogenic desublimation based pipeline network during dehydration and carbon capture from natural gas publication-title: Chem. Eng. Res. Des. – volume: 764 year: 2021 ident: b0090 article-title: A brief review for chemical looping combustion as a promising CO2 capture technology: Fundamentals and progress publication-title: Sci. Total Environ. – reference: International Energy Agency. CO2 capture and storage: a key carbon abatement option, OECD Publishing, 2008. – volume: 281 year: 2021 ident: b0160 article-title: CO2 capture and storage monitoring based on remote sensing techniques: A review publication-title: J. Cleaner Prod. – volume: 158 start-page: 4141 year: 2019 end-page: 4146 ident: b0570 article-title: Evaluation of Japanese energy system toward 2050 with TIMES-Japan–deep decarbonization pathways publication-title: Energy Procedia – volume: 3 start-page: 8 year: 2013 end-page: 20 ident: b0495 article-title: CO2 capture by antisublimation process and its technical economic analysis publication-title: Greenhouse Gases Sci. Technol. – year: 2017 ident: b0030 article-title: Turning points: trends in countries’ reaching peak greenhouse gas emissions over time publication-title: World Resources Institute – volume: 7 start-page: 17186 year: 2019 end-page: 17197 ident: b0420 article-title: Systematic Design and Optimization of a Membrane-Cryogenic Hybrid System for CO2 Capture publication-title: ACS Sustainable Chem. Eng. – volume: 86 start-page: 202 year: 2009 end-page: 213 ident: b0250 article-title: Impurity impacts on the purification process in oxy-fuel combustion based CO2 capture and storage system publication-title: Appl. Energy – reference: L. Yuan, J. Pfotenhauer, L. Qiu, A preliminary investigation of cryogenic CO 2 capture utilizing a reverse Brayton Cycle, AIP Conference Proceedings, American Institute of Physics, 2014, pp. 1107-1114. – volume: 36 start-page: 1403 year: 2013 end-page: 1416 ident: b0195 article-title: Low-temperature CO2 capture technologies–Applications and potential publication-title: Int. J. Refrig – volume: 20 start-page: 820 year: 2020 end-page: 832 ident: b0415 article-title: Energy consumption analysis of cryogenic-membrane hybrid process for CO2 capture from CO2-EOR extraction gas publication-title: Aerosol Air Qual. Res. – volume: 74 start-page: 948 year: 2015 end-page: 954 ident: b0470 article-title: Study on the COP of free piston Stirling cooler (FPSC) in the anti-sublimation CO2 capture process publication-title: Renewable Energy – volume: 65 start-page: 114 year: 2010 end-page: 119 ident: b0525 article-title: Cryogenic CO2 capture using dynamically operated packed beds publication-title: Chem. Eng. Sci. – volume: 18 start-page: 822 year: 2021 end-page: 833 ident: b0560 article-title: Performance analysis and comparison of cryogenic CO2 capture system publication-title: Int. J. Green Energy – volume: 142 start-page: 2750 year: 2020 end-page: 2754 ident: b0125 article-title: Robust metal–triazolate frameworks for CO2 capture from flue gas publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 52 year: 2021 end-page: 68 ident: b0220 article-title: Water vapor effects on CO2 separation of amine-containing facilitated transport membranes (AFTMs) module: mathematical modeling using tanks-in-series approach publication-title: Greenhouse Gases Sci. Technol. – volume: 23 start-page: 2506 year: 2009 end-page: 2516 ident: b0320 article-title: Physicochemical characterizations and desulfurization properties in coal combustion of three calcium and sodium industrial wastes publication-title: Energy Fuels – start-page: 1 year: 2020 end-page: 14 ident: b0165 article-title: Recent developments in CO2-capture and conversion technologies publication-title: Chemo-Biol. Syst. CO2 Utiliz. – volume: 228 start-page: 1391 year: 2019 end-page: 1400 ident: b0295 article-title: Carbon consumption of activated coke in the thermal regeneration process for flue gas desulfurization and denitrification publication-title: J. Cleaner Prod. – volume: 230 start-page: 726 year: 2018 end-page: 733 ident: b0115 article-title: Biphasic solvent for CO2 capture: Amine property-performance and heat duty relationship publication-title: Appl. Energy – volume: 269 year: 2020 ident: b0335 article-title: Production of high-quality combustible gas: The green and efficient utilization of inferior dust removal ash and high-temperature flue gas in converters publication-title: J. Cleaner Prod. – volume: 239 start-page: 725 year: 2019 end-page: 734 ident: b0100 article-title: Nonaqueous amine-based absorbents for energy efficient CO2 capture publication-title: Appl. Energy – volume: 67 start-page: 150 year: 2009 end-page: 153 ident: b0340 article-title: Novel wet electrostatic precipitator for collection of fine aerosol publication-title: J. Electrostat. – volume: 142 start-page: 1749 year: 2017 end-page: 1764 ident: b0425 article-title: Introducing a novel air separation process based on cold energy recovery of LNG integrated with coal gasification, transcritical carbon dioxide power cycle and cryogenic CO2 capture publication-title: J. Cleaner Prod. – volume: 146 start-page: 04019041 year: 2020 ident: b0275 article-title: Performance analysis of novel flue gas self-circulated burner based on low-NOx combustion publication-title: J. Energy Eng. – volume: 11 start-page: 34533 year: 2019 end-page: 34559 ident: b0120 article-title: Trends in solid adsorbent materials development for CO2 capture publication-title: ACS Appl. Mater. Interfaces – volume: 61 start-page: 1 year: 2017 end-page: 56 ident: b0265 article-title: Evolution, challenges and path forward for low temperature combustion engines publication-title: Prog. Energy Combust. Sci. – year: 2006 ident: b0095 article-title: international Oxy-combustion Research Network for CO2 capture publication-title: Report on Inaugural Workshop – volume: 124 start-page: 29 year: 2017 end-page: 39 ident: b0155 article-title: Reducing the energy consumption of membrane-cryogenic hybrid CO2 capture by process optimization publication-title: Energy – reference: M. Tuinier, Novel process concept for cryogenic CO2 capture, (2011). – volume: 58 start-page: 20181 year: 2019 end-page: 20194 ident: b0105 article-title: Advanced amino acid-based technologies for CO2 capture: a review publication-title: Ind. Eng. Chem. Res. – volume: 259 year: 2021 ident: b0330 article-title: Experiments and simulation of varying parameters in cryogenic flue gas desulfurization process based on Aspen plus publication-title: Sep. Purif. Technol. – reference: B. Kanjilal, M. Nabavinia, A. Masoumi, M. Savelski, I. Noshadi, Challenges on CO2 capture, utilization, and conversion, Advances in Carbon Capture, Elsevier 2020, pp. 29-48. – volume: 114 start-page: 2682 year: 2017 end-page: 2689 ident: b0385 article-title: Start-up of Port-Jérôme CRYOCAP™ Plant: Optimized Cryogenic CO2 Capture from H2 Plants publication-title: Energy Procedia – volume: 48 start-page: 312 year: 2014 end-page: 319 ident: b0450 article-title: An experimental study of desublimation of carbon dioxide from a gas mixture publication-title: Theor. Found. Chem. Eng. – year: 2009 ident: b0080 article-title: Cryogenic CO2 capture to control climate change emissions publication-title: Proceedings of the 34th International Technical Conference on Clean Coal & Fuel Systems – volume: 98 start-page: 491 year: 2012 end-page: 501 ident: b0505 article-title: Evaluation of Stirling cooler system for cryogenic CO2 capture publication-title: Appl. Energy – volume: 325 start-page: 1654 year: 2009 end-page: 1655 ident: b0055 article-title: Why capture CO2 from the atmosphere? publication-title: Science – volume: 251 year: 2019 ident: b0300 article-title: Recent advances in flue gas desulfurization gypsum processes and applications–A review publication-title: J. Environ. Manage. – volume: 267 year: 2020 ident: b0040 article-title: High temperature Mn2O3/Mn3O4 and Co3O4/CoO systems for thermo-chemical energy storage publication-title: J. Environ. Manage. – volume: 4 start-page: 3778 year: 2011 end-page: 3785 ident: b0455 article-title: Phase diagrams of CO2 and CO2–N2 gas mixtures and their application in compression processes publication-title: Energy Procedia – volume: 124 start-page: 75 year: 2018 end-page: 83 ident: b0395 article-title: Biogas to liquefied biomethane via cryogenic upgrading technologies publication-title: Renewable Energy – year: 2008 ident: b0350 article-title: Thermodynamic properties of CO2 mixtures and their applications in advanced power cycles with CO2 capture processes publication-title: KTH – volume: 156 start-page: 328 year: 2018 end-page: 351 ident: b0370 article-title: New approach for biogas purification using cryogenic separation and distillation process for CO2 capture publication-title: Energy – volume: 16 start-page: 71 year: 2019 end-page: 76 ident: b0010 article-title: Integrated CO2 capture and utilization: A priority research direction, Current Opinion in Green and Sustainable publication-title: Chemistry – start-page: 2 year: 2005 end-page: 5 ident: b0490 article-title: CO2 capture by anti-sublimation: Thermo-economic process evaluation, 4th annual conference on carbon capture and sequestration publication-title: Citeseer – volume: 82 start-page: 1969 year: 2018 end-page: 1978 ident: b0305 article-title: Potential flue gas desulfurization gypsum utilization in agriculture: A comprehensive review publication-title: Renew. Sustain. Energy Rev. – reference: E. Lemmon, I.H. Bell, M. Huber, M. McLinden, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0, National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg, (2018). – volume: 265 year: 2020 ident: b0280 article-title: Effects of reburning fuel characteristics on NOx emission during pulverized coal combustion and comparison with air-staged combustion publication-title: Fuel – year: 2019 ident: b0255 article-title: Advances in Ultra-Low Emission Control Technologies for Coal-Fired Power Plants – volume: 154 year: 2022 ident: b0205 article-title: State-of-the-art assessment of cryogenic technologies for biogas upgrading: Energy, economic, and environmental perspectives publication-title: Renew. Sustain. Energy Rev. – year: 2020 ident: b0435 article-title: Experimental study of carbon dioxide desublimation and sublimation process on low temperature surface publication-title: IOP Conf. Ser.: Mater. Sci. Eng., IOP Publishing – volume: 95 start-page: 328 year: 2018 end-page: 340 ident: b0020 article-title: The economics of CCS: Why have CCS technologies not had an international breakthrough? publication-title: Renew. Sustain. Energy Rev. – volume: 114 start-page: 887 year: 2017 end-page: 895 ident: b0225 article-title: Advanced cryogenic CO2 capture process based on Stirling coolers by heat integration publication-title: Appl. Therm. Eng. – year: 2001 ident: b0380 article-title: Adding gas from biomass to the gas grid publication-title: Final report – volume: 222 start-page: 31 year: 2008 end-page: 45 ident: b0365 article-title: Simultaneous removal of CO2, SO2, and NO x from flue gas by liquid phase dehumidification at cryogenic temperatures and low pressure publication-title: Proc. Instit. Mech. Eng. Part A: J. Power Energy – reference: M.L. Observatory, Atmospheric monthly in situ CO2 data [OL], https://research.noaa.gov/article/ArtMID/587/ArticleID/2461/Carbon-dioxide-levels-hit-record-peak-in-May. – volume: 101 start-page: 79 year: 2019 end-page: 88 ident: b0475 article-title: Efficient CO2 capture using NH2–MIL–101/CA composite cryogenic packed bed column publication-title: Cryogenics – year: 2019 ident: b0145 article-title: Advanced CO2 Capture Technologies: Absorption, Adsorption, and Membrane Separation Methods – year: 2003 ident: b0565 article-title: Capture du CO2 Par Anti-Sublimation: Conception, Simulation et réalisation d'un prototype – volume: 109 start-page: 519 year: 2016 ident: 10.1016/j.seppur.2022.121734_b0540 article-title: Performance enhancement using multiple cryogenic desublimation based pipeline network during dehydration and carbon capture from natural gas publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2016.01.020 – volume: 5 start-page: 694 year: 2011 ident: 10.1016/j.seppur.2022.121734_b0405 article-title: A novel process for cryogenic CO2 capture using dynamically operated packed beds—An experimental and numerical study publication-title: Int. J. Greenhouse Gas Control doi: 10.1016/j.ijggc.2010.11.011 – volume: 114 start-page: 2390 year: 2017 ident: 10.1016/j.seppur.2022.121734_b0210 article-title: Overview on pressure swing adsorption (PSA) as CO2 capture technology: state-of-the-art, limits and potentials publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.03.1385 – volume: 465 start-page: 177 year: 2014 ident: 10.1016/j.seppur.2022.121734_b0150 article-title: Consideration of a nitrogen-selective membrane for postcombustion carbon capture through process modeling and optimization publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2014.04.026 – volume: 120 start-page: 128 year: 2017 ident: 10.1016/j.seppur.2022.121734_b0430 article-title: A novel LNG/O2 combustion gas and steam mixture cycle with energy storage and CO2 capture publication-title: Energy doi: 10.1016/j.energy.2016.12.127 – volume: 74 start-page: 948 year: 2015 ident: 10.1016/j.seppur.2022.121734_b0470 article-title: Study on the COP of free piston Stirling cooler (FPSC) in the anti-sublimation CO2 capture process publication-title: Renewable Energy doi: 10.1016/j.renene.2014.08.071 – volume: 11 start-page: 52 year: 2021 ident: 10.1016/j.seppur.2022.121734_b0220 article-title: Water vapor effects on CO2 separation of amine-containing facilitated transport membranes (AFTMs) module: mathematical modeling using tanks-in-series approach publication-title: Greenhouse Gases Sci. Technol. doi: 10.1002/ghg.2031 – volume: 4 start-page: 3778 year: 2011 ident: 10.1016/j.seppur.2022.121734_b0455 article-title: Phase diagrams of CO2 and CO2–N2 gas mixtures and their application in compression processes publication-title: Energy Procedia doi: 10.1016/j.egypro.2011.02.312 – ident: 10.1016/j.seppur.2022.121734_b0465 – volume: 325 start-page: 1654 year: 2009 ident: 10.1016/j.seppur.2022.121734_b0055 article-title: Why capture CO2 from the atmosphere? publication-title: Science doi: 10.1126/science.1175680 – volume: 228 start-page: 1391 year: 2019 ident: 10.1016/j.seppur.2022.121734_b0295 article-title: Carbon consumption of activated coke in the thermal regeneration process for flue gas desulfurization and denitrification publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2019.04.225 – volume: 209 start-page: 560 year: 2019 ident: 10.1016/j.seppur.2022.121734_b0130 article-title: The pilot dual-reflux vacuum pressure swing adsorption unit for CO2 capture from flue gas publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2018.07.079 – ident: 10.1016/j.seppur.2022.121734_b0050 – volume: 15 year: 2018 ident: 10.1016/j.seppur.2022.121734_b0555 article-title: Identification and quantification of CO2 solidification in cryogenic CO2 capture from natural gas publication-title: Int. J. Automotive Mech. Eng. doi: 10.15282/ijame.15.2.2018.16.0413 – volume: 211 start-page: 1015 year: 2019 ident: 10.1016/j.seppur.2022.121734_b0580 article-title: Assessing the environmental impact of an integrated steel mill with post-combustion CO2 capture and storage using the LCA methodology publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2018.11.256 – ident: 10.1016/j.seppur.2022.121734_b0180 doi: 10.1016/B978-0-12-819657-1.00002-5 – volume: 265 year: 2020 ident: 10.1016/j.seppur.2022.121734_b0280 article-title: Effects of reburning fuel characteristics on NOx emission during pulverized coal combustion and comparison with air-staged combustion publication-title: Fuel doi: 10.1016/j.fuel.2020.117007 – volume: 24 start-page: 6475 year: 1999 ident: 10.1016/j.seppur.2022.121734_b0375 article-title: Biogas upgrading and utilisation publication-title: Task – volume: 86 year: 2012 ident: 10.1016/j.seppur.2022.121734_b0480 article-title: Thermodynamic analysis of low-temperature carbon dioxide and sulfur dioxide capture from coal-burning power plants publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.86.016103 – volume: 7 start-page: 107 year: 2012 ident: 10.1016/j.seppur.2022.121734_b0360 article-title: Design of a cryogenic CO2 capture system based on Stirling coolers publication-title: Int. J. Greenhouse Gas Control doi: 10.1016/j.ijggc.2012.01.004 – volume: 5 start-page: eaax9171 year: 2019 ident: 10.1016/j.seppur.2022.121734_b0005 article-title: Trace CO2 capture by an ultramicroporous physisorbent with low water affinity publication-title: Sci. Adv. doi: 10.1126/sciadv.aax9171 – year: 2017 ident: 10.1016/j.seppur.2022.121734_b0030 article-title: Turning points: trends in countries’ reaching peak greenhouse gas emissions over time publication-title: World Resources Institute – volume: 3 start-page: 8 year: 2013 ident: 10.1016/j.seppur.2022.121734_b0495 article-title: CO2 capture by antisublimation process and its technical economic analysis publication-title: Greenhouse Gases Sci. Technol. doi: 10.1002/ghg.1313 – volume: 581 start-page: 195 year: 2019 ident: 10.1016/j.seppur.2022.121734_b0140 article-title: Post-combustion CO2 capture with membrane process: Practical membrane performance and appropriate pressure publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2019.03.052 – volume: 103 start-page: 67 year: 2019 ident: 10.1016/j.seppur.2022.121734_b0170 article-title: Simulation and energy analysis of CO2 capture from CO2-EOR extraction gas using cryogenic fractionation publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2019.07.008 – volume: 251 year: 2019 ident: 10.1016/j.seppur.2022.121734_b0300 article-title: Recent advances in flue gas desulfurization gypsum processes and applications–A review publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2019.109572 – volume: 48 start-page: 3320 year: 2019 ident: 10.1016/j.seppur.2022.121734_b0235 article-title: Stability of amine-functionalized CO 2 adsorbents: a multifaceted puzzle publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00877A – year: 2020 ident: 10.1016/j.seppur.2022.121734_b0435 article-title: Experimental study of carbon dioxide desublimation and sublimation process on low temperature surface publication-title: IOP Conf. Ser.: Mater. Sci. Eng., IOP Publishing – start-page: 155 year: 2003 ident: 10.1016/j.seppur.2022.121734_b0510 article-title: A new method for CO2 capture: frosting CO2 at atmospheric pressure – volume: 60 start-page: 497 year: 2005 ident: 10.1016/j.seppur.2022.121734_b0515 article-title: Novel capture processes publication-title: Oil Gas Sci. Technol. doi: 10.2516/ogst:2005031 – ident: 10.1016/j.seppur.2022.121734_b0110 – start-page: 2 year: 2005 ident: 10.1016/j.seppur.2022.121734_b0490 article-title: CO2 capture by anti-sublimation: Thermo-economic process evaluation, 4th annual conference on carbon capture and sequestration publication-title: Citeseer – volume: 95 start-page: 328 year: 2018 ident: 10.1016/j.seppur.2022.121734_b0020 article-title: The economics of CCS: Why have CCS technologies not had an international breakthrough? publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.07.007 – start-page: 715 year: 2013 ident: 10.1016/j.seppur.2022.121734_b0290 – ident: 10.1016/j.seppur.2022.121734_b0520 doi: 10.1016/B978-008044704-9/50210-X – volume: 48 start-page: 312 year: 2014 ident: 10.1016/j.seppur.2022.121734_b0450 article-title: An experimental study of desublimation of carbon dioxide from a gas mixture publication-title: Theor. Found. Chem. Eng. doi: 10.1134/S0040579514030142 – year: 2009 ident: 10.1016/j.seppur.2022.121734_b0440 article-title: Cryogenic CO2 capture as a cost-effective CO2 capture process publication-title: International Pittsburgh Coal Conference – volume: 82 start-page: 215 year: 2018 ident: 10.1016/j.seppur.2022.121734_b0390 article-title: Alternative pathways for efficient CO2 capture by hybrid processes—a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.09.040 – volume: 415 start-page: 424 year: 2012 ident: 10.1016/j.seppur.2022.121734_b0410 article-title: Hybrid membrane cryogenic process for post-combustion CO2 capture publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2012.05.029 – volume: 27 year: 2018 ident: 10.1016/j.seppur.2022.121734_b0260 article-title: Desulfurization and Denitrification Technologies of Coal-fired Flue Gas publication-title: Polish J. Environ. Stud. doi: 10.15244/pjoes/75959 – year: 2019 ident: 10.1016/j.seppur.2022.121734_b0145 – volume: 23 start-page: 2506 year: 2009 ident: 10.1016/j.seppur.2022.121734_b0320 article-title: Physicochemical characterizations and desulfurization properties in coal combustion of three calcium and sodium industrial wastes publication-title: Energy Fuels doi: 10.1021/ef8007568 – volume: 86 start-page: 202 year: 2009 ident: 10.1016/j.seppur.2022.121734_b0250 article-title: Impurity impacts on the purification process in oxy-fuel combustion based CO2 capture and storage system publication-title: Appl. Energy doi: 10.1016/j.apenergy.2008.05.006 – volume: 101 start-page: 265 year: 2019 ident: 10.1016/j.seppur.2022.121734_b0185 article-title: Cryogenic-based CO2 capture technologies: State-of-the-art developments and current challenges publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.11.018 – volume: 66 start-page: 2861 year: 2021 ident: 10.1016/j.seppur.2022.121734_b0230 article-title: Large-scale applications and challenges of adsorption-based carbon capture technologies publication-title: Chin. Sci. Bull. doi: 10.1360/TB-2021-0017 – volume: 75 start-page: 180 year: 2018 ident: 10.1016/j.seppur.2022.121734_b0075 article-title: CO2 emissions, economic and population growth, and renewable energy: Empirical evidence across regions publication-title: Energy Econ. doi: 10.1016/j.eneco.2018.08.017 – volume: 487 start-page: 249 year: 2015 ident: 10.1016/j.seppur.2022.121734_b0215 article-title: Water vapor permeation through cellulose acetate membranes and its impact upon membrane separation performance for natural gas purification publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2015.03.074 – volume: 397 year: 2020 ident: 10.1016/j.seppur.2022.121734_b0325 article-title: A two-stage desalination process for zero liquid discharge of flue gas desulfurization wastewater by chloride precipitation publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.122744 – volume: 230 start-page: 726 year: 2018 ident: 10.1016/j.seppur.2022.121734_b0115 article-title: Biphasic solvent for CO2 capture: Amine property-performance and heat duty relationship publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.09.005 – volume: 37 start-page: 725 year: 2012 ident: 10.1016/j.seppur.2022.121734_b0285 article-title: The effect of air staged combustion on NOx emissions in dried lignite combustion publication-title: Energy doi: 10.1016/j.energy.2011.10.007 – volume: 132 start-page: 3 year: 2018 ident: 10.1016/j.seppur.2022.121734_b0015 article-title: The CO2 economy: Review of CO2 capture and reuse technologies publication-title: J. Supercrit. Fluids doi: 10.1016/j.supflu.2017.07.029 – volume: 269 year: 2020 ident: 10.1016/j.seppur.2022.121734_b0335 article-title: Production of high-quality combustible gas: The green and efficient utilization of inferior dust removal ash and high-temperature flue gas in converters publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2020.122265 – volume: 58 start-page: 20181 year: 2019 ident: 10.1016/j.seppur.2022.121734_b0105 article-title: Advanced amino acid-based technologies for CO2 capture: a review publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.9b01793 – volume: 114 start-page: 2506 year: 2017 ident: 10.1016/j.seppur.2022.121734_b0135 article-title: RTI's solid sorbent-based CO2 capture process: technical and economic lessons learned for application in coal-fired, NGCC, and cement plants publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.03.1409 – volume: 267 year: 2020 ident: 10.1016/j.seppur.2022.121734_b0040 article-title: High temperature Mn2O3/Mn3O4 and Co3O4/CoO systems for thermo-chemical energy storage publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2020.110582 – volume: 61 start-page: 1 year: 2017 ident: 10.1016/j.seppur.2022.121734_b0265 article-title: Evolution, challenges and path forward for low temperature combustion engines publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2017.02.001 – volume: 359 start-page: 115 year: 2010 ident: 10.1016/j.seppur.2022.121734_b0445 article-title: Membrane technologies for CO2 separation publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2009.11.040 – volume: 146 start-page: 04019041 year: 2020 ident: 10.1016/j.seppur.2022.121734_b0275 article-title: Performance analysis of novel flue gas self-circulated burner based on low-NOx combustion publication-title: J. Energy Eng. doi: 10.1061/(ASCE)EY.1943-7897.0000645 – volume: 663 start-page: 738 year: 2019 ident: 10.1016/j.seppur.2022.121734_b0575 article-title: Bringing value to the chemical industry from capture, storage and use of CO2: A dynamic LCA of formic acid production publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.01.395 – volume: 12 start-page: 559 year: 2019 ident: 10.1016/j.seppur.2022.121734_b0200 article-title: Comparison of technologies for CO2 capture from cement production—Part 1: Technical evaluation publication-title: Energies doi: 10.3390/en12030559 – volume: 4 start-page: 1403 year: 2011 ident: 10.1016/j.seppur.2022.121734_b0485 article-title: Feasibility study of CO2 capture by anti-sublimation publication-title: Energy Procedia doi: 10.1016/j.egypro.2011.02.005 – volume: 25 start-page: 1509 year: 1996 ident: 10.1016/j.seppur.2022.121734_b0460 article-title: A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa publication-title: J. Phys. Chem. Ref. Data doi: 10.1063/1.555991 – volume: 65 start-page: 114 year: 2010 ident: 10.1016/j.seppur.2022.121734_b0525 article-title: Cryogenic CO2 capture using dynamically operated packed beds publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2009.01.055 – volume: 5 start-page: 1559 year: 2011 ident: 10.1016/j.seppur.2022.121734_b0500 article-title: Techno-economic evaluation of cryogenic CO2 capture—A comparison with absorption and membrane technology publication-title: Int. J. Greenhouse Gas Control doi: 10.1016/j.ijggc.2011.08.013 – volume: 133 start-page: 2 year: 2015 ident: 10.1016/j.seppur.2022.121734_b0045 article-title: Lithium bromide crystallization in water applied to an inter-seasonal heat storage process publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2015.02.039 – volume: 764 year: 2021 ident: 10.1016/j.seppur.2022.121734_b0090 article-title: A brief review for chemical looping combustion as a promising CO2 capture technology: Fundamentals and progress publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.142892 – volume: 124 start-page: 29 year: 2017 ident: 10.1016/j.seppur.2022.121734_b0155 article-title: Reducing the energy consumption of membrane-cryogenic hybrid CO2 capture by process optimization publication-title: Energy doi: 10.1016/j.energy.2017.02.054 – year: 2001 ident: 10.1016/j.seppur.2022.121734_b0380 article-title: Adding gas from biomass to the gas grid publication-title: Final report – ident: 10.1016/j.seppur.2022.121734_b0400 doi: 10.1016/j.cherd.2010.08.016 – volume: 82 start-page: 1969 year: 2018 ident: 10.1016/j.seppur.2022.121734_b0305 article-title: Potential flue gas desulfurization gypsum utilization in agriculture: A comprehensive review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.07.029 – volume: 239 start-page: 725 year: 2019 ident: 10.1016/j.seppur.2022.121734_b0100 article-title: Nonaqueous amine-based absorbents for energy efficient CO2 capture publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.02.019 – year: 2009 ident: 10.1016/j.seppur.2022.121734_b0080 article-title: Cryogenic CO2 capture to control climate change emissions – year: 2019 ident: 10.1016/j.seppur.2022.121734_b0255 – volume: 255 year: 2019 ident: 10.1016/j.seppur.2022.121734_b0345 article-title: Multi-field coupling and synergistic removal of fine particles in coal-fired flue gas publication-title: Fuel doi: 10.1016/j.fuel.2019.115746 – volume: 20 start-page: 820 year: 2020 ident: 10.1016/j.seppur.2022.121734_b0415 article-title: Energy consumption analysis of cryogenic-membrane hybrid process for CO2 capture from CO2-EOR extraction gas publication-title: Aerosol Air Qual. Res. doi: 10.4209/aaqr.2020.02.0047 – volume: 142 start-page: 1749 year: 2017 ident: 10.1016/j.seppur.2022.121734_b0425 article-title: Introducing a novel air separation process based on cold energy recovery of LNG integrated with coal gasification, transcritical carbon dioxide power cycle and cryogenic CO2 capture publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2016.11.112 – volume: 259 year: 2021 ident: 10.1016/j.seppur.2022.121734_b0330 article-title: Experiments and simulation of varying parameters in cryogenic flue gas desulfurization process based on Aspen plus publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2020.118223 – volume: 154 year: 2022 ident: 10.1016/j.seppur.2022.121734_b0205 article-title: State-of-the-art assessment of cryogenic technologies for biogas upgrading: Energy, economic, and environmental perspectives publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2021.111826 – volume: 12 start-page: 4143 year: 2019 ident: 10.1016/j.seppur.2022.121734_b0085 article-title: A critical review of CO2 capture technologies and prospects for clean power generation publication-title: Energies doi: 10.3390/en12214143 – volume: 255 year: 2019 ident: 10.1016/j.seppur.2022.121734_b0315 article-title: Utilization of low-quality desulfurized ash from semi-dry flue gas desulfurization by mixing with hemihydrate gypsum publication-title: Fuel doi: 10.1016/j.fuel.2019.115783 – volume: 36 start-page: 1403 year: 2013 ident: 10.1016/j.seppur.2022.121734_b0195 article-title: Low-temperature CO2 capture technologies–Applications and potential publication-title: Int. J. Refrig doi: 10.1016/j.ijrefrig.2013.03.017 – volume: 534 start-page: 631 year: 2016 ident: 10.1016/j.seppur.2022.121734_b0060 article-title: Paris Agreement climate proposals need a boost to keep warming well below 2 C publication-title: Nature doi: 10.1038/nature18307 – volume: 58 start-page: 6604 year: 2019 ident: 10.1016/j.seppur.2022.121734_b0190 article-title: A techno-economic analysis of a novel solvent-based oxycombustion CO2 capture process publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.9b00305 – ident: 10.1016/j.seppur.2022.121734_b0530 – volume: 98 start-page: 491 year: 2012 ident: 10.1016/j.seppur.2022.121734_b0505 article-title: Evaluation of Stirling cooler system for cryogenic CO2 capture publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.04.013 – volume: 86 start-page: 2760 year: 2009 ident: 10.1016/j.seppur.2022.121734_b0245 article-title: Impacts of equations of state (EOS) and impurities on the volume calculation of CO2 mixtures in the applications of CO2 capture and storage (CCS) processes publication-title: Appl. Energy doi: 10.1016/j.apenergy.2009.04.013 – volume: 8 start-page: 9495 year: 2015 ident: 10.1016/j.seppur.2022.121734_b0550 article-title: Analysis of a new liquefaction combined with desublimation system for CO2 separation based on N2/CO2 phase equilibrium publication-title: Energies doi: 10.3390/en8099495 – year: 2006 ident: 10.1016/j.seppur.2022.121734_b0095 article-title: international Oxy-combustion Research Network for CO2 capture publication-title: Report on Inaugural Workshop – volume: 156 start-page: 328 year: 2018 ident: 10.1016/j.seppur.2022.121734_b0370 article-title: New approach for biogas purification using cryogenic separation and distillation process for CO2 capture publication-title: Energy doi: 10.1016/j.energy.2018.05.106 – volume: 11 start-page: 34533 year: 2019 ident: 10.1016/j.seppur.2022.121734_b0120 article-title: Trends in solid adsorbent materials development for CO2 capture publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b08487 – volume: 16 start-page: 71 year: 2019 ident: 10.1016/j.seppur.2022.121734_b0010 article-title: Integrated CO2 capture and utilization: A priority research direction, Current Opinion in Green and Sustainable publication-title: Chemistry – volume: 142 start-page: 2750 year: 2020 ident: 10.1016/j.seppur.2022.121734_b0125 article-title: Robust metal–triazolate frameworks for CO2 capture from flue gas publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b12879 – volume: 124 start-page: 75 year: 2018 ident: 10.1016/j.seppur.2022.121734_b0395 article-title: Biogas to liquefied biomethane via cryogenic upgrading technologies publication-title: Renewable Energy doi: 10.1016/j.renene.2017.08.007 – volume: 7 start-page: 17186 year: 2019 ident: 10.1016/j.seppur.2022.121734_b0420 article-title: Systematic Design and Optimization of a Membrane-Cryogenic Hybrid System for CO2 Capture publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.9b03727 – year: 2008 ident: 10.1016/j.seppur.2022.121734_b0350 article-title: Thermodynamic properties of CO2 mixtures and their applications in advanced power cycles with CO2 capture processes publication-title: KTH – volume: 215 year: 2021 ident: 10.1016/j.seppur.2022.121734_b0035 article-title: Reliability assessment and congestion management of power system with energy storage system and uncertain renewable resources publication-title: Energy doi: 10.1016/j.energy.2020.119134 – volume: 562 year: 2019 ident: 10.1016/j.seppur.2022.121734_b0025 – year: 2003 ident: 10.1016/j.seppur.2022.121734_b0565 – start-page: 25 year: 2008 ident: 10.1016/j.seppur.2022.121734_b0240 article-title: Fluor’s Econamine FG PlusSM technology for CO2 capture at coal-fired power plants publication-title: Power Plant Air Pollutant Control Mega Symposium – volume: 71 start-page: 112 year: 2017 ident: 10.1016/j.seppur.2022.121734_b0070 article-title: Pollution to solution: Capture and sequestration of carbon dioxide (CO2) and its utilization as a renewable energy source for a sustainable future publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.01.011 – start-page: 1 year: 2020 ident: 10.1016/j.seppur.2022.121734_b0165 article-title: Recent developments in CO2-capture and conversion technologies publication-title: Chemo-Biol. Syst. CO2 Utiliz. – volume: 114 start-page: 2682 year: 2017 ident: 10.1016/j.seppur.2022.121734_b0385 article-title: Start-up of Port-Jérôme CRYOCAP™ Plant: Optimized Cryogenic CO2 Capture from H2 Plants publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.03.1532 – ident: 10.1016/j.seppur.2022.121734_b0065 – volume: 67 start-page: 150 year: 2009 ident: 10.1016/j.seppur.2022.121734_b0340 article-title: Novel wet electrostatic precipitator for collection of fine aerosol publication-title: J. Electrostat. doi: 10.1016/j.elstat.2009.01.059 – volume: 222 start-page: 31 year: 2008 ident: 10.1016/j.seppur.2022.121734_b0365 article-title: Simultaneous removal of CO2, SO2, and NO x from flue gas by liquid phase dehumidification at cryogenic temperatures and low pressure publication-title: Proc. Instit. Mech. Eng. Part A: J. Power Energy doi: 10.1243/09576509JPE355 – ident: 10.1016/j.seppur.2022.121734_b0545 doi: 10.1063/1.4860829 – volume: 50 start-page: 2547 year: 2009 ident: 10.1016/j.seppur.2022.121734_b0310 article-title: Prediction of SO2 removal efficiency for wet flue gas desulfurization publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2009.06.012 – volume: 147 start-page: 878 year: 2021 ident: 10.1016/j.seppur.2022.121734_b0535 article-title: Development of a novel switched packed bed process for cryogenic CO2 capture from natural gas publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2021.01.010 – volume: 20 start-page: 14 year: 2008 ident: 10.1016/j.seppur.2022.121734_b0175 article-title: Progress in carbon dioxide separation and capture: A review publication-title: J. Environ. Sci. doi: 10.1016/S1001-0742(08)60002-9 – volume: 281 year: 2021 ident: 10.1016/j.seppur.2022.121734_b0160 article-title: CO2 capture and storage monitoring based on remote sensing techniques: A review publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2020.124409 – volume: 101 start-page: 79 year: 2019 ident: 10.1016/j.seppur.2022.121734_b0475 article-title: Efficient CO2 capture using NH2–MIL–101/CA composite cryogenic packed bed column publication-title: Cryogenics doi: 10.1016/j.cryogenics.2019.06.001 – volume: 18 start-page: 822 year: 2021 ident: 10.1016/j.seppur.2022.121734_b0560 article-title: Performance analysis and comparison of cryogenic CO2 capture system publication-title: Int. J. Green Energy doi: 10.1080/15435075.2021.1880916 – volume: 114 start-page: 887 year: 2017 ident: 10.1016/j.seppur.2022.121734_b0225 article-title: Advanced cryogenic CO2 capture process based on Stirling coolers by heat integration publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.12.049 – volume: 184 start-page: 672 year: 2016 ident: 10.1016/j.seppur.2022.121734_b0270 article-title: Combustion and emission characteristics of a lateral swirl combustion system for DI diesel engines under low excess air ratio conditions publication-title: Fuel doi: 10.1016/j.fuel.2016.07.071 – volume: 158 start-page: 4141 year: 2019 ident: 10.1016/j.seppur.2022.121734_b0570 article-title: Evaluation of Japanese energy system toward 2050 with TIMES-Japan–deep decarbonization pathways publication-title: Energy Procedia doi: 10.1016/j.egypro.2019.01.818 – volume: 2 start-page: 478 year: 2008 ident: 10.1016/j.seppur.2022.121734_b0355 article-title: Dynamis CO2 quality recommendations publication-title: Int. J. Greenhouse Gas Control doi: 10.1016/j.ijggc.2008.04.006 |
SSID | ssj0017182 |
Score | 2.66286 |
Snippet | •An overview of cryogenic technology for CO2 capture in flue gas after combustion.•Discussed the cryogenic capture system in terms of constructing structures... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 121734 |
SubjectTerms | CO2 capture Condensation Cryogenic Distillation Sublimation |
Title | Cryogenic technology progress for CO2 capture under carbon neutrality goals: A review |
URI | https://dx.doi.org/10.1016/j.seppur.2022.121734 |
Volume | 299 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB76uOhBfGJ9lBy8xnaT3ezGWymWqlgPWuhtyeYhFdkudXvoxd9uso9SQRQ87CEhA8tk-GYyT4ArpvuBjijF9nWhsa-JwcLePPZd5xblU9EvhvY9Tth46t_PglkDhnUtjEurrLC_xPQCraudXsXNXjaf9549-7gKIsYIKZwpfhPahHIWtKA9uHsYTzbBBAu_RdDTnseOoK6gK9K8PnSWrVxjUEJcp4WQ-j9rqC2tM9qHvcpcRIPyjw6godND2N1qIngE0-FyvbBiMJco3_jJUZF3ZVEMWaMUDZ8IkiJzwQLkisaWdrVMFilK9arwdORr9LqwgniDBqgsZjmG6ej2ZTjG1bAELK3Vn-NAkVAakoSCeSrhRISh4FxGJuCBb7TkgilupDB2V5lE9aniKuT9xLjrikJ6Aq10kepTQFoSolTiScKoLyKeSCM0o0J6zH5UdYDWDIpl1UncDbR4j-uUsbe4ZGvs2BqXbO0A3lBlZSeNP86HNe_jbxIRW7D_lfLs35TnsONWTjd5wQW08uVKX1qjI0-60Lz-9LqVaH0BY73YVQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LS8MwGP_QeVAP4hPf5uA1bE3StPE2hmO6OQ862K2kechEujK7g_-9SR9DQRQ89NA0H5RfPr5HvhfANTed0MSUYuddGMwMsVi6k8fMd27RjMpOObTvYcwHE3Y_Dadr0GtqYXxaZS37K5leSut6pV2j2c5ns_ZT4JyrMOackPIyha3DBgudt9eCje7dcDBeBROc-C2Dnm4_9gRNBV2Z5vVu8nzpG4MS4jstRJT9rKG-aJ3-LuzU5iLqVn-0B2sm24ftL00ED2DSW3zMHRvMFCpW9-SozLtyUgw5oxT1HglSMvfBAuSLxhbubZHOM5SZZXnTUXygl7ljxBvURVUxyyFM-rfPvQGuhyVg5az-AoeaRMqSNJI80KkgMoqkECq2oQiZNUpIroVV0rpVbVPdoVroSHRS648rjugRtLJ5Zo4BGUWI1mmgCKdMxiJVVhpOpQq4e6g-AdoAlKi6k7gfaPGWNCljr0kFa-JhTSpYTwCvqPKqk8Yf-6MG--QbRyRO2P9KefpvyivYHDw_jJLR3Xh4Blv-i9dTQXgOrWKxNBfOACnSy5rBPgGWP9pE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cryogenic+technology+progress+for+CO2+capture+under+carbon+neutrality+goals%3A+A+review&rft.jtitle=Separation+and+purification+technology&rft.au=Shen%2C+Minghai&rft.au=Tong%2C+Lige&rft.au=Yin%2C+Shaowu&rft.au=Liu%2C+Chuanping&rft.date=2022-10-15&rft.issn=1383-5866&rft.volume=299&rft.spage=121734&rft_id=info:doi/10.1016%2Fj.seppur.2022.121734&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_seppur_2022_121734 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1383-5866&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1383-5866&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1383-5866&client=summon |