Cryogenic technology progress for CO2 capture under carbon neutrality goals: A review

•An overview of cryogenic technology for CO2 capture in flue gas after combustion.•Discussed the cryogenic capture system in terms of constructing structures and exploring the optimal system operating parameters.•Compare cryogenic technology for CO2 capture based on economic cost, energy consumption...

Full description

Saved in:
Bibliographic Details
Published inSeparation and purification technology Vol. 299; p. 121734
Main Authors Shen, Minghai, Tong, Lige, Yin, Shaowu, Liu, Chuanping, Wang, Li, Feng, Wujun, Ding, Yulong
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.10.2022
Subjects
Online AccessGet full text
ISSN1383-5866
1873-3794
DOI10.1016/j.seppur.2022.121734

Cover

Abstract •An overview of cryogenic technology for CO2 capture in flue gas after combustion.•Discussed the cryogenic capture system in terms of constructing structures and exploring the optimal system operating parameters.•Compare cryogenic technology for CO2 capture based on economic cost, energy consumption, capture rate and purity. This review discusses the cryogenic capture system from the perspective of constructing new cryogenic capture system structures, exploring the optimal system parameters, and analyzing the challenges faced by different cryogenic capture systems. The gas that needs to remove CO2 undergoes desulfurization, denitrification and dust removal treatment, which can effectively reduce impurities and remove, and ensure the progress of the subsequent carbon capture process. Among the cryogenic technologies of carbon capture, cryogenic distillation is restricted by the concentration of carbon dioxide (CO2) in the gas and cost, and it cannot be widely popularized. Cryogenic condensation offers a wide range of industrial applications because it may immediately liquefy CO2 for oil displacement. Currently, the most concerned cryogenic sublimation can capture low-concentration CO2 at a rate of 99.9% at 13.5 vol%, and energy consumption and annual investment costs can also be effectively reduced. In general, cryogenic CO2 capture technology provides remarkable cost and efficiency benefits compared with other carbon capture technologies. By 2030, China’s CO2 capture cost will be 13–57$/t, and it will be 3–19$/t in 2060. Combining fixed costs and operating costs, the total abatement cost is 65$/t CO2, which is similar to the cost of 54$/ton CO2 in Japan and 60–193$/t CO2 in Australia. By 2060, the carbon emission reduction ratio of carbon capture, utilization, and storage (CCUS) will account for about 10% of the total emission reduction, so the research on CCUS is very urgent. It must break through the extreme utilization of cold energy and energy consumption barriers as well as increase the efficiency of the system.
AbstractList •An overview of cryogenic technology for CO2 capture in flue gas after combustion.•Discussed the cryogenic capture system in terms of constructing structures and exploring the optimal system operating parameters.•Compare cryogenic technology for CO2 capture based on economic cost, energy consumption, capture rate and purity. This review discusses the cryogenic capture system from the perspective of constructing new cryogenic capture system structures, exploring the optimal system parameters, and analyzing the challenges faced by different cryogenic capture systems. The gas that needs to remove CO2 undergoes desulfurization, denitrification and dust removal treatment, which can effectively reduce impurities and remove, and ensure the progress of the subsequent carbon capture process. Among the cryogenic technologies of carbon capture, cryogenic distillation is restricted by the concentration of carbon dioxide (CO2) in the gas and cost, and it cannot be widely popularized. Cryogenic condensation offers a wide range of industrial applications because it may immediately liquefy CO2 for oil displacement. Currently, the most concerned cryogenic sublimation can capture low-concentration CO2 at a rate of 99.9% at 13.5 vol%, and energy consumption and annual investment costs can also be effectively reduced. In general, cryogenic CO2 capture technology provides remarkable cost and efficiency benefits compared with other carbon capture technologies. By 2030, China’s CO2 capture cost will be 13–57$/t, and it will be 3–19$/t in 2060. Combining fixed costs and operating costs, the total abatement cost is 65$/t CO2, which is similar to the cost of 54$/ton CO2 in Japan and 60–193$/t CO2 in Australia. By 2060, the carbon emission reduction ratio of carbon capture, utilization, and storage (CCUS) will account for about 10% of the total emission reduction, so the research on CCUS is very urgent. It must break through the extreme utilization of cold energy and energy consumption barriers as well as increase the efficiency of the system.
ArticleNumber 121734
Author Wang, Li
Tong, Lige
Feng, Wujun
Ding, Yulong
Shen, Minghai
Liu, Chuanping
Yin, Shaowu
Author_xml – sequence: 1
  givenname: Minghai
  surname: Shen
  fullname: Shen, Minghai
  organization: School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
– sequence: 2
  givenname: Lige
  surname: Tong
  fullname: Tong, Lige
  email: tonglige@me.ustb.edu.cn
  organization: School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
– sequence: 3
  givenname: Shaowu
  surname: Yin
  fullname: Yin, Shaowu
  organization: School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
– sequence: 4
  givenname: Chuanping
  surname: Liu
  fullname: Liu, Chuanping
  organization: School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
– sequence: 5
  givenname: Li
  surname: Wang
  fullname: Wang, Li
  organization: School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
– sequence: 6
  givenname: Wujun
  surname: Feng
  fullname: Feng, Wujun
  organization: Beijing Jingneng Energy Technology Research Co. Ltd., 100022 Beijing, China
– sequence: 7
  givenname: Yulong
  surname: Ding
  fullname: Ding, Yulong
  organization: Birmingham Centre for Energy Storage & School of Chemical Engineering, University of Birmingham, B15 2TT, UK
BookMark eNqFkM1KAzEUhYMo2FbfwEVeYGqS6UwmXQil-AeFbuw6ZJKbMaUmQzJV-vamjCsXurr3HjiHe74puvTBA0J3lMwpofX9fp6g749xzghjc8ooLxcXaEIbXhYlF4vLvJdNWVRNXV-jaUp7QiinDZug3TqeQgfeaTyAfvfhELoT7mPoIqSEbYh4vWVYq344RsBHbyDmK7bBYw_HIaqDG064C-qQlniFI3w6-LpBVzYLcPszZ2j39Pi2fik22-fX9WpT6JLUQ1EZxrVlLVc1Na1ginMlhG5sJaqFBS1UbYTVymbV2NaQ0gjDBWltDaTK7WZoOebqGFKKYKV2gxpc8Pkxd5CUyDMguZcjIHkGJEdA2bz4Ze6j-1Dx9J_tYbRBLpbLRpm0A6_BuAh6kCa4vwO-ASnJhpM
CitedBy_id crossref_primary_10_3390_en16062824
crossref_primary_10_1016_j_advmem_2023_100071
crossref_primary_10_3390_molecules29010257
crossref_primary_10_1016_j_cej_2023_142317
crossref_primary_10_1016_j_chemosphere_2023_141024
crossref_primary_10_1021_acs_energyfuels_4c04924
crossref_primary_10_1016_j_cej_2024_157652
crossref_primary_10_1016_j_seppur_2023_124182
crossref_primary_10_1016_j_jcou_2025_103052
crossref_primary_10_1016_j_jechem_2023_11_041
crossref_primary_10_3389_fchem_2024_1448881
crossref_primary_10_1016_j_seppur_2024_127614
crossref_primary_10_1021_acssuschemeng_3c05757
crossref_primary_10_1016_j_jclepro_2022_135089
crossref_primary_10_1016_j_ijhydene_2024_10_100
crossref_primary_10_1016_j_jece_2024_113531
crossref_primary_10_1021_acsami_3c02751
crossref_primary_10_1016_j_ccst_2023_100113
crossref_primary_10_1016_j_energy_2024_133551
crossref_primary_10_1016_j_jtice_2024_105527
crossref_primary_10_1016_j_seppur_2023_123829
crossref_primary_10_1016_j_memsci_2023_122019
crossref_primary_10_3390_e24111572
crossref_primary_10_1016_j_ces_2024_120022
crossref_primary_10_1021_acssuschemeng_4c04908
crossref_primary_10_1016_j_seppur_2024_126510
crossref_primary_10_1021_acsaem_4c01465
crossref_primary_10_1016_j_enconman_2025_119561
crossref_primary_10_1016_j_applthermaleng_2023_121863
crossref_primary_10_1002_ceat_202400296
crossref_primary_10_1080_00219592_2024_2350748
crossref_primary_10_29047_01225383_758
crossref_primary_10_1016_j_seppur_2025_131783
crossref_primary_10_1016_j_egyr_2023_01_116
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125285
crossref_primary_10_1016_j_seppur_2024_127153
crossref_primary_10_1016_j_apenergy_2024_123856
crossref_primary_10_1038_s41598_023_48683_4
crossref_primary_10_1016_j_advmem_2025_100129
crossref_primary_10_1016_j_rsurfi_2024_100381
crossref_primary_10_1007_s00226_024_01591_w
crossref_primary_10_1039_D3QM00715D
crossref_primary_10_1016_j_seppur_2022_122625
crossref_primary_10_1039_D4TA07302A
crossref_primary_10_1021_acs_jpca_3c04714
crossref_primary_10_1016_j_cherd_2023_12_035
crossref_primary_10_1016_j_jclepro_2024_142790
crossref_primary_10_1016_j_jece_2024_112741
crossref_primary_10_1016_j_jclepro_2024_144210
crossref_primary_10_1016_j_scitotenv_2023_166108
crossref_primary_10_1021_acsomega_2c08260
crossref_primary_10_1016_j_seppur_2024_128636
crossref_primary_10_15826_chimtech_2023_10_4_03
crossref_primary_10_1016_j_cej_2023_147923
crossref_primary_10_3390_pr12112315
crossref_primary_10_3390_en16062865
crossref_primary_10_1016_j_powtec_2022_117934
crossref_primary_10_1016_j_jece_2024_112533
crossref_primary_10_3390_en15218309
crossref_primary_10_1016_j_cherd_2024_03_007
crossref_primary_10_1016_j_tsep_2024_102566
crossref_primary_10_1016_j_seppur_2024_126722
crossref_primary_10_1016_j_clay_2024_107581
crossref_primary_10_3390_catal13091267
crossref_primary_10_1016_j_fuel_2024_134006
crossref_primary_10_1016_j_cej_2024_151998
crossref_primary_10_1166_eef_2023_1294
crossref_primary_10_1021_acs_iecr_3c02529
crossref_primary_10_1016_j_seppur_2025_132447
crossref_primary_10_1016_j_seppur_2024_128853
crossref_primary_10_1016_j_seppur_2023_124395
crossref_primary_10_1007_s43979_022_00039_z
crossref_primary_10_1017_jfm_2023_227
crossref_primary_10_2139_ssrn_4645463
crossref_primary_10_1016_j_ccst_2024_100249
crossref_primary_10_1016_j_fuel_2025_134740
crossref_primary_10_1016_j_applthermaleng_2023_121172
crossref_primary_10_1016_j_ijggc_2024_104156
crossref_primary_10_1007_s11157_023_09662_3
crossref_primary_10_1016_j_enconman_2024_119443
crossref_primary_10_1016_j_envres_2024_119540
crossref_primary_10_1016_j_jcis_2024_02_098
crossref_primary_10_3389_fpubh_2024_1394678
crossref_primary_10_1016_j_seta_2024_103836
crossref_primary_10_1016_j_seppur_2025_132312
crossref_primary_10_1360_TB_2023_0606
crossref_primary_10_3390_pr12040645
crossref_primary_10_1016_j_jece_2025_115702
crossref_primary_10_1016_j_seppur_2024_126785
crossref_primary_10_1016_j_jece_2025_116077
crossref_primary_10_1021_acs_est_2c06133
crossref_primary_10_3389_fenrg_2023_1167099
crossref_primary_10_1016_j_micromeso_2024_113220
crossref_primary_10_3390_en17112673
crossref_primary_10_3390_molecules28093819
crossref_primary_10_1021_acs_iecr_4c03469
crossref_primary_10_1016_j_ccst_2023_100178
crossref_primary_10_1021_acsami_4c18377
crossref_primary_10_1016_j_energy_2024_132244
crossref_primary_10_1007_s11356_023_28122_7
crossref_primary_10_1016_j_memsci_2025_123688
crossref_primary_10_1016_j_ces_2023_119677
crossref_primary_10_1016_j_seppur_2024_129403
crossref_primary_10_3390_en17143560
crossref_primary_10_1016_j_psep_2023_11_079
crossref_primary_10_1016_j_seppur_2023_124296
crossref_primary_10_1016_j_compchemeng_2023_108545
crossref_primary_10_1016_j_seppur_2024_126899
crossref_primary_10_1016_j_jcou_2024_102756
crossref_primary_10_1021_acs_est_3c00372
crossref_primary_10_1016_j_energy_2023_129867
crossref_primary_10_1039_D4CS00574K
Cites_doi 10.1016/j.cherd.2016.01.020
10.1016/j.ijggc.2010.11.011
10.1016/j.egypro.2017.03.1385
10.1016/j.memsci.2014.04.026
10.1016/j.energy.2016.12.127
10.1016/j.renene.2014.08.071
10.1002/ghg.2031
10.1016/j.egypro.2011.02.312
10.1126/science.1175680
10.1016/j.jclepro.2019.04.225
10.1016/j.seppur.2018.07.079
10.15282/ijame.15.2.2018.16.0413
10.1016/j.jclepro.2018.11.256
10.1016/B978-0-12-819657-1.00002-5
10.1016/j.fuel.2020.117007
10.1103/PhysRevE.86.016103
10.1016/j.ijggc.2012.01.004
10.1126/sciadv.aax9171
10.1002/ghg.1313
10.1016/j.memsci.2019.03.052
10.1016/j.jtice.2019.07.008
10.1016/j.jenvman.2019.109572
10.1039/C8CS00877A
10.2516/ogst:2005031
10.1016/j.rser.2018.07.007
10.1016/B978-008044704-9/50210-X
10.1134/S0040579514030142
10.1016/j.rser.2017.09.040
10.1016/j.memsci.2012.05.029
10.15244/pjoes/75959
10.1021/ef8007568
10.1016/j.apenergy.2008.05.006
10.1016/j.rser.2018.11.018
10.1360/TB-2021-0017
10.1016/j.eneco.2018.08.017
10.1016/j.memsci.2015.03.074
10.1016/j.jhazmat.2020.122744
10.1016/j.apenergy.2018.09.005
10.1016/j.energy.2011.10.007
10.1016/j.supflu.2017.07.029
10.1016/j.jclepro.2020.122265
10.1021/acs.iecr.9b01793
10.1016/j.egypro.2017.03.1409
10.1016/j.jenvman.2020.110582
10.1016/j.pecs.2017.02.001
10.1016/j.memsci.2009.11.040
10.1061/(ASCE)EY.1943-7897.0000645
10.1016/j.scitotenv.2019.01.395
10.3390/en12030559
10.1016/j.egypro.2011.02.005
10.1063/1.555991
10.1016/j.ces.2009.01.055
10.1016/j.ijggc.2011.08.013
10.1016/j.ces.2015.02.039
10.1016/j.scitotenv.2020.142892
10.1016/j.energy.2017.02.054
10.1016/j.cherd.2010.08.016
10.1016/j.rser.2017.07.029
10.1016/j.apenergy.2019.02.019
10.1016/j.fuel.2019.115746
10.4209/aaqr.2020.02.0047
10.1016/j.jclepro.2016.11.112
10.1016/j.seppur.2020.118223
10.1016/j.rser.2021.111826
10.3390/en12214143
10.1016/j.fuel.2019.115783
10.1016/j.ijrefrig.2013.03.017
10.1038/nature18307
10.1021/acs.iecr.9b00305
10.1016/j.apenergy.2012.04.013
10.1016/j.apenergy.2009.04.013
10.3390/en8099495
10.1016/j.energy.2018.05.106
10.1021/acsami.9b08487
10.1021/jacs.9b12879
10.1016/j.renene.2017.08.007
10.1021/acssuschemeng.9b03727
10.1016/j.energy.2020.119134
10.1016/j.rser.2017.01.011
10.1016/j.egypro.2017.03.1532
10.1016/j.elstat.2009.01.059
10.1243/09576509JPE355
10.1063/1.4860829
10.1016/j.enconman.2009.06.012
10.1016/j.psep.2021.01.010
10.1016/S1001-0742(08)60002-9
10.1016/j.jclepro.2020.124409
10.1016/j.cryogenics.2019.06.001
10.1080/15435075.2021.1880916
10.1016/j.applthermaleng.2016.12.049
10.1016/j.fuel.2016.07.071
10.1016/j.egypro.2019.01.818
10.1016/j.ijggc.2008.04.006
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.seppur.2022.121734
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3794
ExternalDocumentID 10_1016_j_seppur_2022_121734
S1383586622012904
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABJNI
ABMAC
ABNUV
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSG
SSM
SSZ
T5K
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FGOYB
HZ~
R2-
RIG
SEW
SSH
ID FETCH-LOGICAL-c306t-5d27cf2b7a61db92a77a99c8f5954fec9a6d9fcafa99dfbd03d9d790bf6e05873
IEDL.DBID AIKHN
ISSN 1383-5866
IngestDate Tue Jul 01 00:33:03 EDT 2025
Thu Apr 24 23:05:59 EDT 2025
Fri Feb 23 02:36:37 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Cryogenic
Distillation
CO2 capture
Condensation
Sublimation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-5d27cf2b7a61db92a77a99c8f5954fec9a6d9fcafa99dfbd03d9d790bf6e05873
ParticipantIDs crossref_citationtrail_10_1016_j_seppur_2022_121734
crossref_primary_10_1016_j_seppur_2022_121734
elsevier_sciencedirect_doi_10_1016_j_seppur_2022_121734
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-15
PublicationDateYYYYMMDD 2022-10-15
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-15
  day: 15
PublicationDecade 2020
PublicationTitle Separation and purification technology
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Hagen, Polman, Myken, Jensen, Joensson, Dahl (b0380) 2001
Younes (b0565) 2003
Sun, Tian, Song, Deng, Shi, Kang, Shu (b0560) 2021; 18
Babar, Bustam, Ali, Maulud (b0555) 2018; 15
M.L. Observatory, Atmospheric monthly in situ CO2 data [OL], https://research.noaa.gov/article/ArtMID/587/ArticleID/2461/Carbon-dioxide-levels-hit-record-peak-in-May.
Chen, Kanehashi, Doherty, Hill, Kentish (b0215) 2015; 487
Brunetti, Scura, Barbieri, Drioli (b0445) 2010; 359
Sifat, Haseli (b0085) 2019; 12
Chen, Zhu, Wu, Yang, Zhang (b0430) 2017; 120
Xu, Wang, Qiao, Wu, Dong, Zhao, Wang (b0140) 2019; 581
Rogelj, Den Elzen, Höhne, Fransen, Fekete, Winkler, Schaeffer, Sha, Riahi, Meinshausen (b0060) 2016; 534
Burt, Baxter, Baxter (b0080) 2009
Bioenergy (b0375) 1999; 24
L. Yuan, J. Pfotenhauer, L. Qiu, A preliminary investigation of cryogenic CO 2 capture utilizing a reverse Brayton Cycle, AIP Conference Proceedings, American Institute of Physics, 2014, pp. 1107-1114.
Naletov, Lukyanov, Kulov, Naletov, Glebov (b0450) 2014; 48
M. Tuinier, Novel process concept for cryogenic CO2 capture, (2011).
Nelson, Kataria, Mobley, Soukri, Tanthana (b0135) 2017; 114
Fan, Chen, Feng, Wu, Liu (b0280) 2020; 265
Belaissaoui, Le Moullec, Willson, Favre (b0410) 2012; 415
Li, Yan, Anheden (b0250) 2009; 86
Song, Liu, Ji, Deng, Zhao, Li, Song, Li (b0390) 2018; 82
Song, Liu, Ji, Deng, Zhao, Li, Kitamura (b0155) 2017; 124
Berstad, Anantharaman, Nekså (b0195) 2013; 36
Babar, Bustam, Ali, Maulud, Shafiq, Shariff, Man (b0475) 2019; 101
Ghg (b0095) 2006
Wang, Pfotenhauer, Qiu, Zhi, Jiang (b0435) 2020
Zhang, Wang, Liu, Gao, Shi, Lu, Yang (b0330) 2021; 259
Yang, Li, Li, Liang, Zhang (b0550) 2015; 8
Schach, Oyarzún, Schramm, Schneider, Repke (b0485) 2011; 4
Song, Zhou, Li, Yang, Zhang, Li (b0335) 2020; 269
Song, Liu, Deng, Li, Kitamura (b0185) 2019; 101
De Visser, Hendriks, Barrio, Mølnvik, de Koeijer, Liljemark, Le Gallo (b0355) 2008; 2
Wawrzyńczak, Majchrzak-Kucęba, Srokosz, Kozak, Nowak, Zdeb, Smółka, Zajchowski (b0130) 2019; 209
Wang, Fan, Li, Xiao, Wang, Ren (b0285) 2012; 37
Yuan, Narakornpijit, Haghpanah, Wilcox (b0150) 2014; 465
Lefebvre, Fan, Gagnière, Bennici, Auroux, Mangin (b0045) 2015; 133
Clodic, M. Younes, A. Bill, Test results of CO2 capture by anti-sublimation Capture efficiency and energy consumption for Boiler plants, Greenhouse Gas Control Technologies 7, Elsevier2005, pp. 1775-1780.
Liu, Baeyens, Deng, Wang, Zhang (b0040) 2020; 267
Liao, Hu, Wang, Yang, You (b0420) 2019; 7
Tuinier, van Sint Annaland, Kramer, Kuipers (b0525) 2010; 65
Yousef, El-Maghlany, Eldrainy, Attia (b0370) 2018; 156
Eide, Anheden, Lyngfelt, Abanades, Younes, Clodic, Bill, Feron, Rojey, Giroudiere (b0515) 2005; 60
Andrews (b0290) 2013
Keith (b0055) 2009; 325
Pan, Clodic, Toubassy (b0495) 2013; 3
Li, Zhang, Li, Ren, Yang, Jiang, Zhang (b0315) 2019; 255
Baxter, Baxter, Burt (b0440) 2009
Song, Liu, Ji, Deng, Zhao, Kitamura (b0225) 2017; 114
Song, Lu, Kitamura (b0470) 2015; 74
Lashaki, Khiavi, Sayari (b0235) 2019; 48
International Energy Agency. CO2 capture and storage: a key carbon abatement option, OECD Publishing, 2008.
Zhang, Ji, Han, Li, Qi (b0345) 2019; 255
Span, Wagner (b0460) 1996; 25
Cheng, Zhang (b0260) 2018; 27
Voldsund, Gardarsdottir, De Lena, Pérez-Calvo, Jamali, Berstad, Fu, Romano, Roussanaly, Anantharaman (b0200) 2019; 12
Babar, Mukhtar, Mubashir, Saqib, Ullah, Quddusi, Bustam, Show (b0535) 2021; 147
Xu, Wang, Feng, Ding, Yu, Du, Zang (b0275) 2020; 146
Zhang, Wang, Pan, Romero (b0255) 2019
Pichot, Granados, Morel, Schuller, Dubettier, Lockwood (b0385) 2017; 114
Yang, Lin, Sammarchi, Li, Li, Wang (b0220) 2021; 11
Koralegedara, Pinto, Dionysiou, Al-Abed (b0300) 2019; 251
D. Surovtseva, R. Amin, A. Barifcani, Design and operation of pilot plant for CO2 capture from IGCC flue gases by combined cryogenic and hydrate method, Chem. Eng. Res. Des., 89 (2011) 1752-1757.
Rahman, Aziz, Saidur, Bakar, Hainin, Putrajaya, Hassan (b0070) 2017; 71
Shen, Jiang, Zhang, Chen, Wang, Chen (b0115) 2018; 230
Liu, Yang, Chiang, Wang (b0415) 2020; 20
Ali, Maqsood, Redza, Hii, Shariff, Ganguly (b0540) 2016; 109
Yang, Xu, Fan, Gupta, Slimane, Bland, Wright (b0175) 2008; 20
Durmaz (b0020) 2018; 95
Li, Lin, Wang, Ding, Qi, Zhu (b0295) 2019; 228
Bologa, Paur, Seifert, Wäscher, Woletz (b0340) 2009; 67
IEA (b0025) 2019; 562
Xin, Zhou, Ming, Sun, Han, Ye, Dai, Jiang, Zhao, An (b0325) 2020; 397
Levin, Rich (b0030) 2017
Pardakhti, Jafari, Tobin, Dutta, Moharreri, Shemshaki, Suib, Srivastava (b0120) 2019; 11
Shi, Tao, Wu, Zhang, He, Long, Lee, Li, Zhang (b0125) 2020; 142
Riboldi, Bolland (b0210) 2017; 114
Sang Sefidi, Luis (b0105) 2019; 58
Sharma, Sharma, Sharma, Giri, Kumar, Pant (b0165) 2020
Mehrpooya, Esfilar, Moosavian (b0425) 2017; 142
Cheng, Zhou, Liu, Cao, Cen (b0320) 2009; 23
Cabral, Heldebrant, Mac Dowell (b0190) 2019; 58
Li, Zhou, Su, Chen, Qiao, Liu (b0270) 2016; 184
Dong, Hochman, Zhang, Sun, Li, Liao (b0075) 2018; 75
Pellegrini, De Guido, Langé (b0395) 2018; 124
Chisalita, Petrescu, Cobden, van Dijk, Cormos, Cormos (b0580) 2019; 211
Zhu, Ge, Wu, Yang, Wang (b0230) 2021; 66
Swanson, Elzey, Hershberger, Donnelly, Pfotenhauer (b0480) 2012; 86
Nakao, Yogo, Goto, Kai, Yamada (b0145) 2019
Liu, Zhang, Yang, Wang (b0170) 2019; 103
Song, Kitamura, Li (b0505) 2012; 98
Reddy, Johnson, Gilmartin (b0240) 2008
Dou, Pan, Jin, Wang, Li (b0310) 2009; 50
Agarwal, Singh, Maurya (b0265) 2017; 61
Prajapati, Mahajan (b0035) 2021; 215
Tuinier, van Sint Annaland, Kuipers (b0405) 2011; 5
Li (b0350) 2008
Guo, Li, Shi, Li, Shen (b0100) 2019; 239
Naquash, Qyyum, Haider, Bokhari, Lim, Lee (b0205) 2022; 154
E. Lemmon, I.H. Bell, M. Huber, M. McLinden, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0, National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg, (2018).
Li, Yan (b0245) 2009; 86
Stuardi, MacPherson, Leclaire (b0010) 2019; 16
Mukherjee, Sikdar, O’Nolan, Franz, Gascón, Kumar, Kumar, Scott, Madden, Kruger (b0005) 2019; 5
Abuelgasim, Wang, Abdalazeez (b0090) 2021; 764
Zhang, Zhang, Yang, Liu, Jafari (b0160) 2021; 281
Koytsoumpa, Bergins, Kakaras (b0015) 2018; 132
Wang, Yang (b0305) 2018; 82
Kato, Kurosawa (b0570) 2019; 158
B. Kanjilal, M. Nabavinia, A. Masoumi, M. Savelski, I. Noshadi, Challenges on CO2 capture, utilization, and conversion, Advances in Carbon Capture, Elsevier 2020, pp. 29-48.
H. Liu, X. Jiang, R. Idem, S. Dong, P. Tontiwachwuthikul, AI models for correlation of physical properties in system of 1DMA2P‐CO2‐H2O, AIChE J., e17761.
Tuinier, Hamers, van Sint Annaland (b0500) 2011; 5
Clodic, Younes (b0510) 2003
Song, Kitamura, Li, Ogasawara (b0360) 2012; 7
Clodic, El Hitti, Younes, Bill, Casier (b0490) 2005
McGlashan, Marquis (b0365) 2008; 222
Goos, Riedel, Zhao, Blum (b0455) 2011; 4
Aldaco, Butnar, Margallo, Laso, Rumayor, Dominguez-Ramos, Irabien, Dodds (b0575) 2019; 663
Liu (10.1016/j.seppur.2022.121734_b0170) 2019; 103
Zhu (10.1016/j.seppur.2022.121734_b0230) 2021; 66
Li (10.1016/j.seppur.2022.121734_b0315) 2019; 255
Xu (10.1016/j.seppur.2022.121734_b0275) 2020; 146
Belaissaoui (10.1016/j.seppur.2022.121734_b0410) 2012; 415
Swanson (10.1016/j.seppur.2022.121734_b0480) 2012; 86
Li (10.1016/j.seppur.2022.121734_b0350) 2008
Tuinier (10.1016/j.seppur.2022.121734_b0405) 2011; 5
10.1016/j.seppur.2022.121734_b0545
Burt (10.1016/j.seppur.2022.121734_b0080) 2009
Stuardi (10.1016/j.seppur.2022.121734_b0010) 2019; 16
Dong (10.1016/j.seppur.2022.121734_b0075) 2018; 75
Zhang (10.1016/j.seppur.2022.121734_b0330) 2021; 259
Song (10.1016/j.seppur.2022.121734_b0390) 2018; 82
Guo (10.1016/j.seppur.2022.121734_b0100) 2019; 239
Koytsoumpa (10.1016/j.seppur.2022.121734_b0015) 2018; 132
Liu (10.1016/j.seppur.2022.121734_b0040) 2020; 267
Nelson (10.1016/j.seppur.2022.121734_b0135) 2017; 114
Younes (10.1016/j.seppur.2022.121734_b0565) 2003
Voldsund (10.1016/j.seppur.2022.121734_b0200) 2019; 12
Reddy (10.1016/j.seppur.2022.121734_b0240) 2008
IEA (10.1016/j.seppur.2022.121734_b0025) 2019; 562
Song (10.1016/j.seppur.2022.121734_b0185) 2019; 101
Babar (10.1016/j.seppur.2022.121734_b0535) 2021; 147
Aldaco (10.1016/j.seppur.2022.121734_b0575) 2019; 663
Abuelgasim (10.1016/j.seppur.2022.121734_b0090) 2021; 764
Keith (10.1016/j.seppur.2022.121734_b0055) 2009; 325
Song (10.1016/j.seppur.2022.121734_b0225) 2017; 114
Eide (10.1016/j.seppur.2022.121734_b0515) 2005; 60
Mehrpooya (10.1016/j.seppur.2022.121734_b0425) 2017; 142
Riboldi (10.1016/j.seppur.2022.121734_b0210) 2017; 114
10.1016/j.seppur.2022.121734_b0050
Hagen (10.1016/j.seppur.2022.121734_b0380) 2001
Berstad (10.1016/j.seppur.2022.121734_b0195) 2013; 36
Song (10.1016/j.seppur.2022.121734_b0335) 2020; 269
Cheng (10.1016/j.seppur.2022.121734_b0260) 2018; 27
Zhang (10.1016/j.seppur.2022.121734_b0160) 2021; 281
Chen (10.1016/j.seppur.2022.121734_b0215) 2015; 487
Span (10.1016/j.seppur.2022.121734_b0460) 1996; 25
Li (10.1016/j.seppur.2022.121734_b0295) 2019; 228
Cabral (10.1016/j.seppur.2022.121734_b0190) 2019; 58
Goos (10.1016/j.seppur.2022.121734_b0455) 2011; 4
Yang (10.1016/j.seppur.2022.121734_b0220) 2021; 11
Sun (10.1016/j.seppur.2022.121734_b0560) 2021; 18
Nakao (10.1016/j.seppur.2022.121734_b0145) 2019
Schach (10.1016/j.seppur.2022.121734_b0485) 2011; 4
Cheng (10.1016/j.seppur.2022.121734_b0320) 2009; 23
Baxter (10.1016/j.seppur.2022.121734_b0440) 2009
Pardakhti (10.1016/j.seppur.2022.121734_b0120) 2019; 11
Yang (10.1016/j.seppur.2022.121734_b0550) 2015; 8
Brunetti (10.1016/j.seppur.2022.121734_b0445) 2010; 359
Prajapati (10.1016/j.seppur.2022.121734_b0035) 2021; 215
Mukherjee (10.1016/j.seppur.2022.121734_b0005) 2019; 5
Chisalita (10.1016/j.seppur.2022.121734_b0580) 2019; 211
Koralegedara (10.1016/j.seppur.2022.121734_b0300) 2019; 251
Ghg (10.1016/j.seppur.2022.121734_b0095) 2006
Liao (10.1016/j.seppur.2022.121734_b0420) 2019; 7
Fan (10.1016/j.seppur.2022.121734_b0280) 2020; 265
Song (10.1016/j.seppur.2022.121734_b0470) 2015; 74
Shen (10.1016/j.seppur.2022.121734_b0115) 2018; 230
Yang (10.1016/j.seppur.2022.121734_b0175) 2008; 20
Liu (10.1016/j.seppur.2022.121734_b0415) 2020; 20
Li (10.1016/j.seppur.2022.121734_b0245) 2009; 86
Dou (10.1016/j.seppur.2022.121734_b0310) 2009; 50
10.1016/j.seppur.2022.121734_b0110
Babar (10.1016/j.seppur.2022.121734_b0555) 2018; 15
Song (10.1016/j.seppur.2022.121734_b0155) 2017; 124
Sang Sefidi (10.1016/j.seppur.2022.121734_b0105) 2019; 58
Wang (10.1016/j.seppur.2022.121734_b0305) 2018; 82
Sharma (10.1016/j.seppur.2022.121734_b0165) 2020
Song (10.1016/j.seppur.2022.121734_b0505) 2012; 98
Yousef (10.1016/j.seppur.2022.121734_b0370) 2018; 156
Naletov (10.1016/j.seppur.2022.121734_b0450) 2014; 48
Sifat (10.1016/j.seppur.2022.121734_b0085) 2019; 12
Wang (10.1016/j.seppur.2022.121734_b0285) 2012; 37
Wang (10.1016/j.seppur.2022.121734_b0435) 2020
Levin (10.1016/j.seppur.2022.121734_b0030) 2017
Rogelj (10.1016/j.seppur.2022.121734_b0060) 2016; 534
10.1016/j.seppur.2022.121734_b0180
Xin (10.1016/j.seppur.2022.121734_b0325) 2020; 397
10.1016/j.seppur.2022.121734_b0065
Lashaki (10.1016/j.seppur.2022.121734_b0235) 2019; 48
Naquash (10.1016/j.seppur.2022.121734_b0205) 2022; 154
Pichot (10.1016/j.seppur.2022.121734_b0385) 2017; 114
10.1016/j.seppur.2022.121734_b0465
Pellegrini (10.1016/j.seppur.2022.121734_b0395) 2018; 124
Clodic (10.1016/j.seppur.2022.121734_b0510) 2003
Tuinier (10.1016/j.seppur.2022.121734_b0525) 2010; 65
Zhang (10.1016/j.seppur.2022.121734_b0255) 2019
Li (10.1016/j.seppur.2022.121734_b0270) 2016; 184
Tuinier (10.1016/j.seppur.2022.121734_b0500) 2011; 5
Kato (10.1016/j.seppur.2022.121734_b0570) 2019; 158
Lefebvre (10.1016/j.seppur.2022.121734_b0045) 2015; 133
Wawrzyńczak (10.1016/j.seppur.2022.121734_b0130) 2019; 209
Ali (10.1016/j.seppur.2022.121734_b0540) 2016; 109
Zhang (10.1016/j.seppur.2022.121734_b0345) 2019; 255
10.1016/j.seppur.2022.121734_b0530
De Visser (10.1016/j.seppur.2022.121734_b0355) 2008; 2
Shi (10.1016/j.seppur.2022.121734_b0125) 2020; 142
Yuan (10.1016/j.seppur.2022.121734_b0150) 2014; 465
McGlashan (10.1016/j.seppur.2022.121734_b0365) 2008; 222
10.1016/j.seppur.2022.121734_b0400
Durmaz (10.1016/j.seppur.2022.121734_b0020) 2018; 95
Agarwal (10.1016/j.seppur.2022.121734_b0265) 2017; 61
Babar (10.1016/j.seppur.2022.121734_b0475) 2019; 101
Li (10.1016/j.seppur.2022.121734_b0250) 2009; 86
Bioenergy (10.1016/j.seppur.2022.121734_b0375) 1999; 24
Xu (10.1016/j.seppur.2022.121734_b0140) 2019; 581
Rahman (10.1016/j.seppur.2022.121734_b0070) 2017; 71
Andrews (10.1016/j.seppur.2022.121734_b0290) 2013
10.1016/j.seppur.2022.121734_b0520
Song (10.1016/j.seppur.2022.121734_b0360) 2012; 7
Chen (10.1016/j.seppur.2022.121734_b0430) 2017; 120
Pan (10.1016/j.seppur.2022.121734_b0495) 2013; 3
Bologa (10.1016/j.seppur.2022.121734_b0340) 2009; 67
Clodic (10.1016/j.seppur.2022.121734_b0490) 2005
References_xml – volume: 5
  start-page: 694
  year: 2011
  end-page: 701
  ident: b0405
  article-title: A novel process for cryogenic CO2 capture using dynamically operated packed beds—An experimental and numerical study
  publication-title: Int. J. Greenhouse Gas Control
– volume: 581
  start-page: 195
  year: 2019
  end-page: 213
  ident: b0140
  article-title: Post-combustion CO2 capture with membrane process: Practical membrane performance and appropriate pressure
  publication-title: J. Membr. Sci.
– volume: 60
  start-page: 497
  year: 2005
  end-page: 508
  ident: b0515
  article-title: Novel capture processes
  publication-title: Oil Gas Sci. Technol.
– volume: 2
  start-page: 478
  year: 2008
  end-page: 484
  ident: b0355
  article-title: Dynamis CO2 quality recommendations
  publication-title: Int. J. Greenhouse Gas Control
– volume: 465
  start-page: 177
  year: 2014
  end-page: 184
  ident: b0150
  article-title: Consideration of a nitrogen-selective membrane for postcombustion carbon capture through process modeling and optimization
  publication-title: J. Membr. Sci.
– volume: 8
  start-page: 9495
  year: 2015
  end-page: 9508
  ident: b0550
  article-title: Analysis of a new liquefaction combined with desublimation system for CO2 separation based on N2/CO2 phase equilibrium
  publication-title: Energies
– volume: 75
  start-page: 180
  year: 2018
  end-page: 192
  ident: b0075
  article-title: CO2 emissions, economic and population growth, and renewable energy: Empirical evidence across regions
  publication-title: Energy Econ.
– volume: 24
  start-page: 6475
  year: 1999
  end-page: 6481
  ident: b0375
  article-title: Biogas upgrading and utilisation
  publication-title: Task
– volume: 5
  start-page: 1559
  year: 2011
  end-page: 1565
  ident: b0500
  article-title: Techno-economic evaluation of cryogenic CO2 capture—A comparison with absorption and membrane technology
  publication-title: Int. J. Greenhouse Gas Control
– volume: 12
  start-page: 559
  year: 2019
  ident: b0200
  article-title: Comparison of technologies for CO2 capture from cement production—Part 1: Technical evaluation
  publication-title: Energies
– volume: 120
  start-page: 128
  year: 2017
  end-page: 137
  ident: b0430
  article-title: A novel LNG/O2 combustion gas and steam mixture cycle with energy storage and CO2 capture
  publication-title: Energy
– volume: 86
  year: 2012
  ident: b0480
  article-title: Thermodynamic analysis of low-temperature carbon dioxide and sulfur dioxide capture from coal-burning power plants
  publication-title: Phys. Rev. E
– volume: 86
  start-page: 2760
  year: 2009
  end-page: 2770
  ident: b0245
  article-title: Impacts of equations of state (EOS) and impurities on the volume calculation of CO2 mixtures in the applications of CO2 capture and storage (CCS) processes
  publication-title: Appl. Energy
– volume: 215
  year: 2021
  ident: b0035
  article-title: Reliability assessment and congestion management of power system with energy storage system and uncertain renewable resources
  publication-title: Energy
– volume: 37
  start-page: 725
  year: 2012
  end-page: 736
  ident: b0285
  article-title: The effect of air staged combustion on NOx emissions in dried lignite combustion
  publication-title: Energy
– volume: 359
  start-page: 115
  year: 2010
  end-page: 125
  ident: b0445
  article-title: Membrane technologies for CO2 separation
  publication-title: J. Membr. Sci.
– volume: 66
  start-page: 2861
  year: 2021
  end-page: 2877
  ident: b0230
  article-title: Large-scale applications and challenges of adsorption-based carbon capture technologies
  publication-title: Chin. Sci. Bull.
– volume: 255
  year: 2019
  ident: b0345
  article-title: Multi-field coupling and synergistic removal of fine particles in coal-fired flue gas
  publication-title: Fuel
– volume: 415
  start-page: 424
  year: 2012
  end-page: 434
  ident: b0410
  article-title: Hybrid membrane cryogenic process for post-combustion CO2 capture
  publication-title: J. Membr. Sci.
– volume: 20
  start-page: 14
  year: 2008
  end-page: 27
  ident: b0175
  article-title: Progress in carbon dioxide separation and capture: A review
  publication-title: J. Environ. Sci.
– volume: 663
  start-page: 738
  year: 2019
  end-page: 753
  ident: b0575
  article-title: Bringing value to the chemical industry from capture, storage and use of CO2: A dynamic LCA of formic acid production
  publication-title: Sci. Total Environ.
– volume: 71
  start-page: 112
  year: 2017
  end-page: 126
  ident: b0070
  article-title: Pollution to solution: Capture and sequestration of carbon dioxide (CO2) and its utilization as a renewable energy source for a sustainable future
  publication-title: Renew. Sustain. Energy Rev.
– reference: D. Surovtseva, R. Amin, A. Barifcani, Design and operation of pilot plant for CO2 capture from IGCC flue gases by combined cryogenic and hydrate method, Chem. Eng. Res. Des., 89 (2011) 1752-1757.
– volume: 58
  start-page: 6604
  year: 2019
  end-page: 6612
  ident: b0190
  article-title: A techno-economic analysis of a novel solvent-based oxycombustion CO2 capture process
  publication-title: Ind. Eng. Chem. Res.
– volume: 184
  start-page: 672
  year: 2016
  end-page: 680
  ident: b0270
  article-title: Combustion and emission characteristics of a lateral swirl combustion system for DI diesel engines under low excess air ratio conditions
  publication-title: Fuel
– volume: 50
  start-page: 2547
  year: 2009
  end-page: 2553
  ident: b0310
  article-title: Prediction of SO2 removal efficiency for wet flue gas desulfurization
  publication-title: Energy Convers. Manage.
– volume: 48
  start-page: 3320
  year: 2019
  end-page: 3405
  ident: b0235
  article-title: Stability of amine-functionalized CO 2 adsorbents: a multifaceted puzzle
  publication-title: Chem. Soc. Rev.
– volume: 12
  start-page: 4143
  year: 2019
  ident: b0085
  article-title: A critical review of CO2 capture technologies and prospects for clean power generation
  publication-title: Energies
– reference: . Clodic, M. Younes, A. Bill, Test results of CO2 capture by anti-sublimation Capture efficiency and energy consumption for Boiler plants, Greenhouse Gas Control Technologies 7, Elsevier2005, pp. 1775-1780.
– start-page: 155
  year: 2003
  end-page: 160
  ident: b0510
  article-title: A new method for CO2 capture: frosting CO2 at atmospheric pressure
  publication-title: Greenhouse Gas Control Technologies-6th International Conference
– volume: 209
  start-page: 560
  year: 2019
  end-page: 570
  ident: b0130
  article-title: The pilot dual-reflux vacuum pressure swing adsorption unit for CO2 capture from flue gas
  publication-title: Sep. Purif. Technol.
– volume: 397
  year: 2020
  ident: b0325
  article-title: A two-stage desalination process for zero liquid discharge of flue gas desulfurization wastewater by chloride precipitation
  publication-title: J. Hazard. Mater.
– volume: 562
  year: 2019
  ident: b0025
  publication-title: CO2 Status Report 2018
– year: 2009
  ident: b0440
  article-title: Cryogenic CO2 capture as a cost-effective CO2 capture process
  publication-title: International Pittsburgh Coal Conference
– start-page: 25
  year: 2008
  end-page: 28
  ident: b0240
  article-title: Fluor’s Econamine FG PlusSM technology for CO2 capture at coal-fired power plants
  publication-title: Power Plant Air Pollutant Control Mega Symposium
– start-page: 715
  year: 2013
  end-page: 790
  ident: b0290
  article-title: Ultra-Low Nitrogen Oxides (NOx) Emissions Combustion in Gas Turbine Systems
– volume: 5
  start-page: eaax9171
  year: 2019
  ident: b0005
  article-title: Trace CO2 capture by an ultramicroporous physisorbent with low water affinity
  publication-title: Sci. Adv.
– volume: 487
  start-page: 249
  year: 2015
  end-page: 255
  ident: b0215
  article-title: Water vapor permeation through cellulose acetate membranes and its impact upon membrane separation performance for natural gas purification
  publication-title: J. Membr. Sci.
– volume: 103
  start-page: 67
  year: 2019
  end-page: 74
  ident: b0170
  article-title: Simulation and energy analysis of CO2 capture from CO2-EOR extraction gas using cryogenic fractionation
  publication-title: J. Taiwan Inst. Chem. Eng.
– volume: 133
  start-page: 2
  year: 2015
  end-page: 8
  ident: b0045
  article-title: Lithium bromide crystallization in water applied to an inter-seasonal heat storage process
  publication-title: Chem. Eng. Sci.
– volume: 255
  year: 2019
  ident: b0315
  article-title: Utilization of low-quality desulfurized ash from semi-dry flue gas desulfurization by mixing with hemihydrate gypsum
  publication-title: Fuel
– volume: 101
  start-page: 265
  year: 2019
  end-page: 278
  ident: b0185
  article-title: Cryogenic-based CO2 capture technologies: State-of-the-art developments and current challenges
  publication-title: Renew. Sustain. Energy Rev.
– volume: 82
  start-page: 215
  year: 2018
  end-page: 231
  ident: b0390
  article-title: Alternative pathways for efficient CO2 capture by hybrid processes—a review
  publication-title: Renew. Sustain. Energy Rev.
– reference: H. Liu, X. Jiang, R. Idem, S. Dong, P. Tontiwachwuthikul, AI models for correlation of physical properties in system of 1DMA2P‐CO2‐H2O, AIChE J., e17761.
– volume: 15
  year: 2018
  ident: b0555
  article-title: Identification and quantification of CO2 solidification in cryogenic CO2 capture from natural gas
  publication-title: Int. J. Automotive Mech. Eng.
– volume: 534
  start-page: 631
  year: 2016
  end-page: 639
  ident: b0060
  article-title: Paris Agreement climate proposals need a boost to keep warming well below 2 C
  publication-title: Nature
– volume: 114
  start-page: 2506
  year: 2017
  end-page: 2524
  ident: b0135
  article-title: RTI's solid sorbent-based CO2 capture process: technical and economic lessons learned for application in coal-fired, NGCC, and cement plants
  publication-title: Energy Procedia
– volume: 147
  start-page: 878
  year: 2021
  end-page: 887
  ident: b0535
  article-title: Development of a novel switched packed bed process for cryogenic CO2 capture from natural gas
  publication-title: Process Saf. Environ. Prot.
– volume: 211
  start-page: 1015
  year: 2019
  end-page: 1025
  ident: b0580
  article-title: Assessing the environmental impact of an integrated steel mill with post-combustion CO2 capture and storage using the LCA methodology
  publication-title: J. Cleaner Prod.
– volume: 25
  start-page: 1509
  year: 1996
  end-page: 1596
  ident: b0460
  article-title: A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa
  publication-title: J. Phys. Chem. Ref. Data
– volume: 7
  start-page: 107
  year: 2012
  end-page: 114
  ident: b0360
  article-title: Design of a cryogenic CO2 capture system based on Stirling coolers
  publication-title: Int. J. Greenhouse Gas Control
– volume: 132
  start-page: 3
  year: 2018
  end-page: 16
  ident: b0015
  article-title: The CO2 economy: Review of CO2 capture and reuse technologies
  publication-title: J. Supercrit. Fluids
– volume: 114
  start-page: 2390
  year: 2017
  end-page: 2400
  ident: b0210
  article-title: Overview on pressure swing adsorption (PSA) as CO2 capture technology: state-of-the-art, limits and potentials
  publication-title: Energy Procedia
– volume: 4
  start-page: 1403
  year: 2011
  end-page: 1410
  ident: b0485
  article-title: Feasibility study of CO2 capture by anti-sublimation
  publication-title: Energy Procedia
– volume: 27
  year: 2018
  ident: b0260
  article-title: Desulfurization and Denitrification Technologies of Coal-fired Flue Gas
  publication-title: Polish J. Environ. Stud.
– volume: 109
  start-page: 519
  year: 2016
  end-page: 531
  ident: b0540
  article-title: Performance enhancement using multiple cryogenic desublimation based pipeline network during dehydration and carbon capture from natural gas
  publication-title: Chem. Eng. Res. Des.
– volume: 764
  year: 2021
  ident: b0090
  article-title: A brief review for chemical looping combustion as a promising CO2 capture technology: Fundamentals and progress
  publication-title: Sci. Total Environ.
– reference: International Energy Agency. CO2 capture and storage: a key carbon abatement option, OECD Publishing, 2008.
– volume: 281
  year: 2021
  ident: b0160
  article-title: CO2 capture and storage monitoring based on remote sensing techniques: A review
  publication-title: J. Cleaner Prod.
– volume: 158
  start-page: 4141
  year: 2019
  end-page: 4146
  ident: b0570
  article-title: Evaluation of Japanese energy system toward 2050 with TIMES-Japan–deep decarbonization pathways
  publication-title: Energy Procedia
– volume: 3
  start-page: 8
  year: 2013
  end-page: 20
  ident: b0495
  article-title: CO2 capture by antisublimation process and its technical economic analysis
  publication-title: Greenhouse Gases Sci. Technol.
– year: 2017
  ident: b0030
  article-title: Turning points: trends in countries’ reaching peak greenhouse gas emissions over time
  publication-title: World Resources Institute
– volume: 7
  start-page: 17186
  year: 2019
  end-page: 17197
  ident: b0420
  article-title: Systematic Design and Optimization of a Membrane-Cryogenic Hybrid System for CO2 Capture
  publication-title: ACS Sustainable Chem. Eng.
– volume: 86
  start-page: 202
  year: 2009
  end-page: 213
  ident: b0250
  article-title: Impurity impacts on the purification process in oxy-fuel combustion based CO2 capture and storage system
  publication-title: Appl. Energy
– reference: L. Yuan, J. Pfotenhauer, L. Qiu, A preliminary investigation of cryogenic CO 2 capture utilizing a reverse Brayton Cycle, AIP Conference Proceedings, American Institute of Physics, 2014, pp. 1107-1114.
– volume: 36
  start-page: 1403
  year: 2013
  end-page: 1416
  ident: b0195
  article-title: Low-temperature CO2 capture technologies–Applications and potential
  publication-title: Int. J. Refrig
– volume: 20
  start-page: 820
  year: 2020
  end-page: 832
  ident: b0415
  article-title: Energy consumption analysis of cryogenic-membrane hybrid process for CO2 capture from CO2-EOR extraction gas
  publication-title: Aerosol Air Qual. Res.
– volume: 74
  start-page: 948
  year: 2015
  end-page: 954
  ident: b0470
  article-title: Study on the COP of free piston Stirling cooler (FPSC) in the anti-sublimation CO2 capture process
  publication-title: Renewable Energy
– volume: 65
  start-page: 114
  year: 2010
  end-page: 119
  ident: b0525
  article-title: Cryogenic CO2 capture using dynamically operated packed beds
  publication-title: Chem. Eng. Sci.
– volume: 18
  start-page: 822
  year: 2021
  end-page: 833
  ident: b0560
  article-title: Performance analysis and comparison of cryogenic CO2 capture system
  publication-title: Int. J. Green Energy
– volume: 142
  start-page: 2750
  year: 2020
  end-page: 2754
  ident: b0125
  article-title: Robust metal–triazolate frameworks for CO2 capture from flue gas
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 52
  year: 2021
  end-page: 68
  ident: b0220
  article-title: Water vapor effects on CO2 separation of amine-containing facilitated transport membranes (AFTMs) module: mathematical modeling using tanks-in-series approach
  publication-title: Greenhouse Gases Sci. Technol.
– volume: 23
  start-page: 2506
  year: 2009
  end-page: 2516
  ident: b0320
  article-title: Physicochemical characterizations and desulfurization properties in coal combustion of three calcium and sodium industrial wastes
  publication-title: Energy Fuels
– start-page: 1
  year: 2020
  end-page: 14
  ident: b0165
  article-title: Recent developments in CO2-capture and conversion technologies
  publication-title: Chemo-Biol. Syst. CO2 Utiliz.
– volume: 228
  start-page: 1391
  year: 2019
  end-page: 1400
  ident: b0295
  article-title: Carbon consumption of activated coke in the thermal regeneration process for flue gas desulfurization and denitrification
  publication-title: J. Cleaner Prod.
– volume: 230
  start-page: 726
  year: 2018
  end-page: 733
  ident: b0115
  article-title: Biphasic solvent for CO2 capture: Amine property-performance and heat duty relationship
  publication-title: Appl. Energy
– volume: 269
  year: 2020
  ident: b0335
  article-title: Production of high-quality combustible gas: The green and efficient utilization of inferior dust removal ash and high-temperature flue gas in converters
  publication-title: J. Cleaner Prod.
– volume: 239
  start-page: 725
  year: 2019
  end-page: 734
  ident: b0100
  article-title: Nonaqueous amine-based absorbents for energy efficient CO2 capture
  publication-title: Appl. Energy
– volume: 67
  start-page: 150
  year: 2009
  end-page: 153
  ident: b0340
  article-title: Novel wet electrostatic precipitator for collection of fine aerosol
  publication-title: J. Electrostat.
– volume: 142
  start-page: 1749
  year: 2017
  end-page: 1764
  ident: b0425
  article-title: Introducing a novel air separation process based on cold energy recovery of LNG integrated with coal gasification, transcritical carbon dioxide power cycle and cryogenic CO2 capture
  publication-title: J. Cleaner Prod.
– volume: 146
  start-page: 04019041
  year: 2020
  ident: b0275
  article-title: Performance analysis of novel flue gas self-circulated burner based on low-NOx combustion
  publication-title: J. Energy Eng.
– volume: 11
  start-page: 34533
  year: 2019
  end-page: 34559
  ident: b0120
  article-title: Trends in solid adsorbent materials development for CO2 capture
  publication-title: ACS Appl. Mater. Interfaces
– volume: 61
  start-page: 1
  year: 2017
  end-page: 56
  ident: b0265
  article-title: Evolution, challenges and path forward for low temperature combustion engines
  publication-title: Prog. Energy Combust. Sci.
– year: 2006
  ident: b0095
  article-title: international Oxy-combustion Research Network for CO2 capture
  publication-title: Report on Inaugural Workshop
– volume: 124
  start-page: 29
  year: 2017
  end-page: 39
  ident: b0155
  article-title: Reducing the energy consumption of membrane-cryogenic hybrid CO2 capture by process optimization
  publication-title: Energy
– reference: M. Tuinier, Novel process concept for cryogenic CO2 capture, (2011).
– volume: 58
  start-page: 20181
  year: 2019
  end-page: 20194
  ident: b0105
  article-title: Advanced amino acid-based technologies for CO2 capture: a review
  publication-title: Ind. Eng. Chem. Res.
– volume: 259
  year: 2021
  ident: b0330
  article-title: Experiments and simulation of varying parameters in cryogenic flue gas desulfurization process based on Aspen plus
  publication-title: Sep. Purif. Technol.
– reference: B. Kanjilal, M. Nabavinia, A. Masoumi, M. Savelski, I. Noshadi, Challenges on CO2 capture, utilization, and conversion, Advances in Carbon Capture, Elsevier 2020, pp. 29-48.
– volume: 114
  start-page: 2682
  year: 2017
  end-page: 2689
  ident: b0385
  article-title: Start-up of Port-Jérôme CRYOCAP™ Plant: Optimized Cryogenic CO2 Capture from H2 Plants
  publication-title: Energy Procedia
– volume: 48
  start-page: 312
  year: 2014
  end-page: 319
  ident: b0450
  article-title: An experimental study of desublimation of carbon dioxide from a gas mixture
  publication-title: Theor. Found. Chem. Eng.
– year: 2009
  ident: b0080
  article-title: Cryogenic CO2 capture to control climate change emissions
  publication-title: Proceedings of the 34th International Technical Conference on Clean Coal & Fuel Systems
– volume: 98
  start-page: 491
  year: 2012
  end-page: 501
  ident: b0505
  article-title: Evaluation of Stirling cooler system for cryogenic CO2 capture
  publication-title: Appl. Energy
– volume: 325
  start-page: 1654
  year: 2009
  end-page: 1655
  ident: b0055
  article-title: Why capture CO2 from the atmosphere?
  publication-title: Science
– volume: 251
  year: 2019
  ident: b0300
  article-title: Recent advances in flue gas desulfurization gypsum processes and applications–A review
  publication-title: J. Environ. Manage.
– volume: 267
  year: 2020
  ident: b0040
  article-title: High temperature Mn2O3/Mn3O4 and Co3O4/CoO systems for thermo-chemical energy storage
  publication-title: J. Environ. Manage.
– volume: 4
  start-page: 3778
  year: 2011
  end-page: 3785
  ident: b0455
  article-title: Phase diagrams of CO2 and CO2–N2 gas mixtures and their application in compression processes
  publication-title: Energy Procedia
– volume: 124
  start-page: 75
  year: 2018
  end-page: 83
  ident: b0395
  article-title: Biogas to liquefied biomethane via cryogenic upgrading technologies
  publication-title: Renewable Energy
– year: 2008
  ident: b0350
  article-title: Thermodynamic properties of CO2 mixtures and their applications in advanced power cycles with CO2 capture processes
  publication-title: KTH
– volume: 156
  start-page: 328
  year: 2018
  end-page: 351
  ident: b0370
  article-title: New approach for biogas purification using cryogenic separation and distillation process for CO2 capture
  publication-title: Energy
– volume: 16
  start-page: 71
  year: 2019
  end-page: 76
  ident: b0010
  article-title: Integrated CO2 capture and utilization: A priority research direction, Current Opinion in Green and Sustainable
  publication-title: Chemistry
– start-page: 2
  year: 2005
  end-page: 5
  ident: b0490
  article-title: CO2 capture by anti-sublimation: Thermo-economic process evaluation, 4th annual conference on carbon capture and sequestration
  publication-title: Citeseer
– volume: 82
  start-page: 1969
  year: 2018
  end-page: 1978
  ident: b0305
  article-title: Potential flue gas desulfurization gypsum utilization in agriculture: A comprehensive review
  publication-title: Renew. Sustain. Energy Rev.
– reference: E. Lemmon, I.H. Bell, M. Huber, M. McLinden, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0, National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg, (2018).
– volume: 265
  year: 2020
  ident: b0280
  article-title: Effects of reburning fuel characteristics on NOx emission during pulverized coal combustion and comparison with air-staged combustion
  publication-title: Fuel
– year: 2019
  ident: b0255
  article-title: Advances in Ultra-Low Emission Control Technologies for Coal-Fired Power Plants
– volume: 154
  year: 2022
  ident: b0205
  article-title: State-of-the-art assessment of cryogenic technologies for biogas upgrading: Energy, economic, and environmental perspectives
  publication-title: Renew. Sustain. Energy Rev.
– year: 2020
  ident: b0435
  article-title: Experimental study of carbon dioxide desublimation and sublimation process on low temperature surface
  publication-title: IOP Conf. Ser.: Mater. Sci. Eng., IOP Publishing
– volume: 95
  start-page: 328
  year: 2018
  end-page: 340
  ident: b0020
  article-title: The economics of CCS: Why have CCS technologies not had an international breakthrough?
  publication-title: Renew. Sustain. Energy Rev.
– volume: 114
  start-page: 887
  year: 2017
  end-page: 895
  ident: b0225
  article-title: Advanced cryogenic CO2 capture process based on Stirling coolers by heat integration
  publication-title: Appl. Therm. Eng.
– year: 2001
  ident: b0380
  article-title: Adding gas from biomass to the gas grid
  publication-title: Final report
– volume: 222
  start-page: 31
  year: 2008
  end-page: 45
  ident: b0365
  article-title: Simultaneous removal of CO2, SO2, and NO x from flue gas by liquid phase dehumidification at cryogenic temperatures and low pressure
  publication-title: Proc. Instit. Mech. Eng. Part A: J. Power Energy
– reference: M.L. Observatory, Atmospheric monthly in situ CO2 data [OL], https://research.noaa.gov/article/ArtMID/587/ArticleID/2461/Carbon-dioxide-levels-hit-record-peak-in-May.
– volume: 101
  start-page: 79
  year: 2019
  end-page: 88
  ident: b0475
  article-title: Efficient CO2 capture using NH2–MIL–101/CA composite cryogenic packed bed column
  publication-title: Cryogenics
– year: 2019
  ident: b0145
  article-title: Advanced CO2 Capture Technologies: Absorption, Adsorption, and Membrane Separation Methods
– year: 2003
  ident: b0565
  article-title: Capture du CO2 Par Anti-Sublimation: Conception, Simulation et réalisation d'un prototype
– volume: 109
  start-page: 519
  year: 2016
  ident: 10.1016/j.seppur.2022.121734_b0540
  article-title: Performance enhancement using multiple cryogenic desublimation based pipeline network during dehydration and carbon capture from natural gas
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2016.01.020
– volume: 5
  start-page: 694
  year: 2011
  ident: 10.1016/j.seppur.2022.121734_b0405
  article-title: A novel process for cryogenic CO2 capture using dynamically operated packed beds—An experimental and numerical study
  publication-title: Int. J. Greenhouse Gas Control
  doi: 10.1016/j.ijggc.2010.11.011
– volume: 114
  start-page: 2390
  year: 2017
  ident: 10.1016/j.seppur.2022.121734_b0210
  article-title: Overview on pressure swing adsorption (PSA) as CO2 capture technology: state-of-the-art, limits and potentials
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.03.1385
– volume: 465
  start-page: 177
  year: 2014
  ident: 10.1016/j.seppur.2022.121734_b0150
  article-title: Consideration of a nitrogen-selective membrane for postcombustion carbon capture through process modeling and optimization
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2014.04.026
– volume: 120
  start-page: 128
  year: 2017
  ident: 10.1016/j.seppur.2022.121734_b0430
  article-title: A novel LNG/O2 combustion gas and steam mixture cycle with energy storage and CO2 capture
  publication-title: Energy
  doi: 10.1016/j.energy.2016.12.127
– volume: 74
  start-page: 948
  year: 2015
  ident: 10.1016/j.seppur.2022.121734_b0470
  article-title: Study on the COP of free piston Stirling cooler (FPSC) in the anti-sublimation CO2 capture process
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2014.08.071
– volume: 11
  start-page: 52
  year: 2021
  ident: 10.1016/j.seppur.2022.121734_b0220
  article-title: Water vapor effects on CO2 separation of amine-containing facilitated transport membranes (AFTMs) module: mathematical modeling using tanks-in-series approach
  publication-title: Greenhouse Gases Sci. Technol.
  doi: 10.1002/ghg.2031
– volume: 4
  start-page: 3778
  year: 2011
  ident: 10.1016/j.seppur.2022.121734_b0455
  article-title: Phase diagrams of CO2 and CO2–N2 gas mixtures and their application in compression processes
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2011.02.312
– ident: 10.1016/j.seppur.2022.121734_b0465
– volume: 325
  start-page: 1654
  year: 2009
  ident: 10.1016/j.seppur.2022.121734_b0055
  article-title: Why capture CO2 from the atmosphere?
  publication-title: Science
  doi: 10.1126/science.1175680
– volume: 228
  start-page: 1391
  year: 2019
  ident: 10.1016/j.seppur.2022.121734_b0295
  article-title: Carbon consumption of activated coke in the thermal regeneration process for flue gas desulfurization and denitrification
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2019.04.225
– volume: 209
  start-page: 560
  year: 2019
  ident: 10.1016/j.seppur.2022.121734_b0130
  article-title: The pilot dual-reflux vacuum pressure swing adsorption unit for CO2 capture from flue gas
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2018.07.079
– ident: 10.1016/j.seppur.2022.121734_b0050
– volume: 15
  year: 2018
  ident: 10.1016/j.seppur.2022.121734_b0555
  article-title: Identification and quantification of CO2 solidification in cryogenic CO2 capture from natural gas
  publication-title: Int. J. Automotive Mech. Eng.
  doi: 10.15282/ijame.15.2.2018.16.0413
– volume: 211
  start-page: 1015
  year: 2019
  ident: 10.1016/j.seppur.2022.121734_b0580
  article-title: Assessing the environmental impact of an integrated steel mill with post-combustion CO2 capture and storage using the LCA methodology
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2018.11.256
– ident: 10.1016/j.seppur.2022.121734_b0180
  doi: 10.1016/B978-0-12-819657-1.00002-5
– volume: 265
  year: 2020
  ident: 10.1016/j.seppur.2022.121734_b0280
  article-title: Effects of reburning fuel characteristics on NOx emission during pulverized coal combustion and comparison with air-staged combustion
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.117007
– volume: 24
  start-page: 6475
  year: 1999
  ident: 10.1016/j.seppur.2022.121734_b0375
  article-title: Biogas upgrading and utilisation
  publication-title: Task
– volume: 86
  year: 2012
  ident: 10.1016/j.seppur.2022.121734_b0480
  article-title: Thermodynamic analysis of low-temperature carbon dioxide and sulfur dioxide capture from coal-burning power plants
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.86.016103
– volume: 7
  start-page: 107
  year: 2012
  ident: 10.1016/j.seppur.2022.121734_b0360
  article-title: Design of a cryogenic CO2 capture system based on Stirling coolers
  publication-title: Int. J. Greenhouse Gas Control
  doi: 10.1016/j.ijggc.2012.01.004
– volume: 5
  start-page: eaax9171
  year: 2019
  ident: 10.1016/j.seppur.2022.121734_b0005
  article-title: Trace CO2 capture by an ultramicroporous physisorbent with low water affinity
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aax9171
– year: 2017
  ident: 10.1016/j.seppur.2022.121734_b0030
  article-title: Turning points: trends in countries’ reaching peak greenhouse gas emissions over time
  publication-title: World Resources Institute
– volume: 3
  start-page: 8
  year: 2013
  ident: 10.1016/j.seppur.2022.121734_b0495
  article-title: CO2 capture by antisublimation process and its technical economic analysis
  publication-title: Greenhouse Gases Sci. Technol.
  doi: 10.1002/ghg.1313
– volume: 581
  start-page: 195
  year: 2019
  ident: 10.1016/j.seppur.2022.121734_b0140
  article-title: Post-combustion CO2 capture with membrane process: Practical membrane performance and appropriate pressure
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2019.03.052
– volume: 103
  start-page: 67
  year: 2019
  ident: 10.1016/j.seppur.2022.121734_b0170
  article-title: Simulation and energy analysis of CO2 capture from CO2-EOR extraction gas using cryogenic fractionation
  publication-title: J. Taiwan Inst. Chem. Eng.
  doi: 10.1016/j.jtice.2019.07.008
– volume: 251
  year: 2019
  ident: 10.1016/j.seppur.2022.121734_b0300
  article-title: Recent advances in flue gas desulfurization gypsum processes and applications–A review
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2019.109572
– volume: 48
  start-page: 3320
  year: 2019
  ident: 10.1016/j.seppur.2022.121734_b0235
  article-title: Stability of amine-functionalized CO 2 adsorbents: a multifaceted puzzle
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00877A
– year: 2020
  ident: 10.1016/j.seppur.2022.121734_b0435
  article-title: Experimental study of carbon dioxide desublimation and sublimation process on low temperature surface
  publication-title: IOP Conf. Ser.: Mater. Sci. Eng., IOP Publishing
– start-page: 155
  year: 2003
  ident: 10.1016/j.seppur.2022.121734_b0510
  article-title: A new method for CO2 capture: frosting CO2 at atmospheric pressure
– volume: 60
  start-page: 497
  year: 2005
  ident: 10.1016/j.seppur.2022.121734_b0515
  article-title: Novel capture processes
  publication-title: Oil Gas Sci. Technol.
  doi: 10.2516/ogst:2005031
– ident: 10.1016/j.seppur.2022.121734_b0110
– start-page: 2
  year: 2005
  ident: 10.1016/j.seppur.2022.121734_b0490
  article-title: CO2 capture by anti-sublimation: Thermo-economic process evaluation, 4th annual conference on carbon capture and sequestration
  publication-title: Citeseer
– volume: 95
  start-page: 328
  year: 2018
  ident: 10.1016/j.seppur.2022.121734_b0020
  article-title: The economics of CCS: Why have CCS technologies not had an international breakthrough?
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.07.007
– start-page: 715
  year: 2013
  ident: 10.1016/j.seppur.2022.121734_b0290
– ident: 10.1016/j.seppur.2022.121734_b0520
  doi: 10.1016/B978-008044704-9/50210-X
– volume: 48
  start-page: 312
  year: 2014
  ident: 10.1016/j.seppur.2022.121734_b0450
  article-title: An experimental study of desublimation of carbon dioxide from a gas mixture
  publication-title: Theor. Found. Chem. Eng.
  doi: 10.1134/S0040579514030142
– year: 2009
  ident: 10.1016/j.seppur.2022.121734_b0440
  article-title: Cryogenic CO2 capture as a cost-effective CO2 capture process
  publication-title: International Pittsburgh Coal Conference
– volume: 82
  start-page: 215
  year: 2018
  ident: 10.1016/j.seppur.2022.121734_b0390
  article-title: Alternative pathways for efficient CO2 capture by hybrid processes—a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.09.040
– volume: 415
  start-page: 424
  year: 2012
  ident: 10.1016/j.seppur.2022.121734_b0410
  article-title: Hybrid membrane cryogenic process for post-combustion CO2 capture
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2012.05.029
– volume: 27
  year: 2018
  ident: 10.1016/j.seppur.2022.121734_b0260
  article-title: Desulfurization and Denitrification Technologies of Coal-fired Flue Gas
  publication-title: Polish J. Environ. Stud.
  doi: 10.15244/pjoes/75959
– year: 2019
  ident: 10.1016/j.seppur.2022.121734_b0145
– volume: 23
  start-page: 2506
  year: 2009
  ident: 10.1016/j.seppur.2022.121734_b0320
  article-title: Physicochemical characterizations and desulfurization properties in coal combustion of three calcium and sodium industrial wastes
  publication-title: Energy Fuels
  doi: 10.1021/ef8007568
– volume: 86
  start-page: 202
  year: 2009
  ident: 10.1016/j.seppur.2022.121734_b0250
  article-title: Impurity impacts on the purification process in oxy-fuel combustion based CO2 capture and storage system
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2008.05.006
– volume: 101
  start-page: 265
  year: 2019
  ident: 10.1016/j.seppur.2022.121734_b0185
  article-title: Cryogenic-based CO2 capture technologies: State-of-the-art developments and current challenges
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.11.018
– volume: 66
  start-page: 2861
  year: 2021
  ident: 10.1016/j.seppur.2022.121734_b0230
  article-title: Large-scale applications and challenges of adsorption-based carbon capture technologies
  publication-title: Chin. Sci. Bull.
  doi: 10.1360/TB-2021-0017
– volume: 75
  start-page: 180
  year: 2018
  ident: 10.1016/j.seppur.2022.121734_b0075
  article-title: CO2 emissions, economic and population growth, and renewable energy: Empirical evidence across regions
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2018.08.017
– volume: 487
  start-page: 249
  year: 2015
  ident: 10.1016/j.seppur.2022.121734_b0215
  article-title: Water vapor permeation through cellulose acetate membranes and its impact upon membrane separation performance for natural gas purification
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2015.03.074
– volume: 397
  year: 2020
  ident: 10.1016/j.seppur.2022.121734_b0325
  article-title: A two-stage desalination process for zero liquid discharge of flue gas desulfurization wastewater by chloride precipitation
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.122744
– volume: 230
  start-page: 726
  year: 2018
  ident: 10.1016/j.seppur.2022.121734_b0115
  article-title: Biphasic solvent for CO2 capture: Amine property-performance and heat duty relationship
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.09.005
– volume: 37
  start-page: 725
  year: 2012
  ident: 10.1016/j.seppur.2022.121734_b0285
  article-title: The effect of air staged combustion on NOx emissions in dried lignite combustion
  publication-title: Energy
  doi: 10.1016/j.energy.2011.10.007
– volume: 132
  start-page: 3
  year: 2018
  ident: 10.1016/j.seppur.2022.121734_b0015
  article-title: The CO2 economy: Review of CO2 capture and reuse technologies
  publication-title: J. Supercrit. Fluids
  doi: 10.1016/j.supflu.2017.07.029
– volume: 269
  year: 2020
  ident: 10.1016/j.seppur.2022.121734_b0335
  article-title: Production of high-quality combustible gas: The green and efficient utilization of inferior dust removal ash and high-temperature flue gas in converters
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2020.122265
– volume: 58
  start-page: 20181
  year: 2019
  ident: 10.1016/j.seppur.2022.121734_b0105
  article-title: Advanced amino acid-based technologies for CO2 capture: a review
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.9b01793
– volume: 114
  start-page: 2506
  year: 2017
  ident: 10.1016/j.seppur.2022.121734_b0135
  article-title: RTI's solid sorbent-based CO2 capture process: technical and economic lessons learned for application in coal-fired, NGCC, and cement plants
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.03.1409
– volume: 267
  year: 2020
  ident: 10.1016/j.seppur.2022.121734_b0040
  article-title: High temperature Mn2O3/Mn3O4 and Co3O4/CoO systems for thermo-chemical energy storage
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2020.110582
– volume: 61
  start-page: 1
  year: 2017
  ident: 10.1016/j.seppur.2022.121734_b0265
  article-title: Evolution, challenges and path forward for low temperature combustion engines
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2017.02.001
– volume: 359
  start-page: 115
  year: 2010
  ident: 10.1016/j.seppur.2022.121734_b0445
  article-title: Membrane technologies for CO2 separation
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2009.11.040
– volume: 146
  start-page: 04019041
  year: 2020
  ident: 10.1016/j.seppur.2022.121734_b0275
  article-title: Performance analysis of novel flue gas self-circulated burner based on low-NOx combustion
  publication-title: J. Energy Eng.
  doi: 10.1061/(ASCE)EY.1943-7897.0000645
– volume: 663
  start-page: 738
  year: 2019
  ident: 10.1016/j.seppur.2022.121734_b0575
  article-title: Bringing value to the chemical industry from capture, storage and use of CO2: A dynamic LCA of formic acid production
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.01.395
– volume: 12
  start-page: 559
  year: 2019
  ident: 10.1016/j.seppur.2022.121734_b0200
  article-title: Comparison of technologies for CO2 capture from cement production—Part 1: Technical evaluation
  publication-title: Energies
  doi: 10.3390/en12030559
– volume: 4
  start-page: 1403
  year: 2011
  ident: 10.1016/j.seppur.2022.121734_b0485
  article-title: Feasibility study of CO2 capture by anti-sublimation
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2011.02.005
– volume: 25
  start-page: 1509
  year: 1996
  ident: 10.1016/j.seppur.2022.121734_b0460
  article-title: A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa
  publication-title: J. Phys. Chem. Ref. Data
  doi: 10.1063/1.555991
– volume: 65
  start-page: 114
  year: 2010
  ident: 10.1016/j.seppur.2022.121734_b0525
  article-title: Cryogenic CO2 capture using dynamically operated packed beds
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2009.01.055
– volume: 5
  start-page: 1559
  year: 2011
  ident: 10.1016/j.seppur.2022.121734_b0500
  article-title: Techno-economic evaluation of cryogenic CO2 capture—A comparison with absorption and membrane technology
  publication-title: Int. J. Greenhouse Gas Control
  doi: 10.1016/j.ijggc.2011.08.013
– volume: 133
  start-page: 2
  year: 2015
  ident: 10.1016/j.seppur.2022.121734_b0045
  article-title: Lithium bromide crystallization in water applied to an inter-seasonal heat storage process
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2015.02.039
– volume: 764
  year: 2021
  ident: 10.1016/j.seppur.2022.121734_b0090
  article-title: A brief review for chemical looping combustion as a promising CO2 capture technology: Fundamentals and progress
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.142892
– volume: 124
  start-page: 29
  year: 2017
  ident: 10.1016/j.seppur.2022.121734_b0155
  article-title: Reducing the energy consumption of membrane-cryogenic hybrid CO2 capture by process optimization
  publication-title: Energy
  doi: 10.1016/j.energy.2017.02.054
– year: 2001
  ident: 10.1016/j.seppur.2022.121734_b0380
  article-title: Adding gas from biomass to the gas grid
  publication-title: Final report
– ident: 10.1016/j.seppur.2022.121734_b0400
  doi: 10.1016/j.cherd.2010.08.016
– volume: 82
  start-page: 1969
  year: 2018
  ident: 10.1016/j.seppur.2022.121734_b0305
  article-title: Potential flue gas desulfurization gypsum utilization in agriculture: A comprehensive review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.07.029
– volume: 239
  start-page: 725
  year: 2019
  ident: 10.1016/j.seppur.2022.121734_b0100
  article-title: Nonaqueous amine-based absorbents for energy efficient CO2 capture
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.02.019
– year: 2009
  ident: 10.1016/j.seppur.2022.121734_b0080
  article-title: Cryogenic CO2 capture to control climate change emissions
– year: 2019
  ident: 10.1016/j.seppur.2022.121734_b0255
– volume: 255
  year: 2019
  ident: 10.1016/j.seppur.2022.121734_b0345
  article-title: Multi-field coupling and synergistic removal of fine particles in coal-fired flue gas
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.115746
– volume: 20
  start-page: 820
  year: 2020
  ident: 10.1016/j.seppur.2022.121734_b0415
  article-title: Energy consumption analysis of cryogenic-membrane hybrid process for CO2 capture from CO2-EOR extraction gas
  publication-title: Aerosol Air Qual. Res.
  doi: 10.4209/aaqr.2020.02.0047
– volume: 142
  start-page: 1749
  year: 2017
  ident: 10.1016/j.seppur.2022.121734_b0425
  article-title: Introducing a novel air separation process based on cold energy recovery of LNG integrated with coal gasification, transcritical carbon dioxide power cycle and cryogenic CO2 capture
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2016.11.112
– volume: 259
  year: 2021
  ident: 10.1016/j.seppur.2022.121734_b0330
  article-title: Experiments and simulation of varying parameters in cryogenic flue gas desulfurization process based on Aspen plus
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2020.118223
– volume: 154
  year: 2022
  ident: 10.1016/j.seppur.2022.121734_b0205
  article-title: State-of-the-art assessment of cryogenic technologies for biogas upgrading: Energy, economic, and environmental perspectives
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2021.111826
– volume: 12
  start-page: 4143
  year: 2019
  ident: 10.1016/j.seppur.2022.121734_b0085
  article-title: A critical review of CO2 capture technologies and prospects for clean power generation
  publication-title: Energies
  doi: 10.3390/en12214143
– volume: 255
  year: 2019
  ident: 10.1016/j.seppur.2022.121734_b0315
  article-title: Utilization of low-quality desulfurized ash from semi-dry flue gas desulfurization by mixing with hemihydrate gypsum
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.115783
– volume: 36
  start-page: 1403
  year: 2013
  ident: 10.1016/j.seppur.2022.121734_b0195
  article-title: Low-temperature CO2 capture technologies–Applications and potential
  publication-title: Int. J. Refrig
  doi: 10.1016/j.ijrefrig.2013.03.017
– volume: 534
  start-page: 631
  year: 2016
  ident: 10.1016/j.seppur.2022.121734_b0060
  article-title: Paris Agreement climate proposals need a boost to keep warming well below 2 C
  publication-title: Nature
  doi: 10.1038/nature18307
– volume: 58
  start-page: 6604
  year: 2019
  ident: 10.1016/j.seppur.2022.121734_b0190
  article-title: A techno-economic analysis of a novel solvent-based oxycombustion CO2 capture process
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.9b00305
– ident: 10.1016/j.seppur.2022.121734_b0530
– volume: 98
  start-page: 491
  year: 2012
  ident: 10.1016/j.seppur.2022.121734_b0505
  article-title: Evaluation of Stirling cooler system for cryogenic CO2 capture
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.04.013
– volume: 86
  start-page: 2760
  year: 2009
  ident: 10.1016/j.seppur.2022.121734_b0245
  article-title: Impacts of equations of state (EOS) and impurities on the volume calculation of CO2 mixtures in the applications of CO2 capture and storage (CCS) processes
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2009.04.013
– volume: 8
  start-page: 9495
  year: 2015
  ident: 10.1016/j.seppur.2022.121734_b0550
  article-title: Analysis of a new liquefaction combined with desublimation system for CO2 separation based on N2/CO2 phase equilibrium
  publication-title: Energies
  doi: 10.3390/en8099495
– year: 2006
  ident: 10.1016/j.seppur.2022.121734_b0095
  article-title: international Oxy-combustion Research Network for CO2 capture
  publication-title: Report on Inaugural Workshop
– volume: 156
  start-page: 328
  year: 2018
  ident: 10.1016/j.seppur.2022.121734_b0370
  article-title: New approach for biogas purification using cryogenic separation and distillation process for CO2 capture
  publication-title: Energy
  doi: 10.1016/j.energy.2018.05.106
– volume: 11
  start-page: 34533
  year: 2019
  ident: 10.1016/j.seppur.2022.121734_b0120
  article-title: Trends in solid adsorbent materials development for CO2 capture
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b08487
– volume: 16
  start-page: 71
  year: 2019
  ident: 10.1016/j.seppur.2022.121734_b0010
  article-title: Integrated CO2 capture and utilization: A priority research direction, Current Opinion in Green and Sustainable
  publication-title: Chemistry
– volume: 142
  start-page: 2750
  year: 2020
  ident: 10.1016/j.seppur.2022.121734_b0125
  article-title: Robust metal–triazolate frameworks for CO2 capture from flue gas
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b12879
– volume: 124
  start-page: 75
  year: 2018
  ident: 10.1016/j.seppur.2022.121734_b0395
  article-title: Biogas to liquefied biomethane via cryogenic upgrading technologies
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2017.08.007
– volume: 7
  start-page: 17186
  year: 2019
  ident: 10.1016/j.seppur.2022.121734_b0420
  article-title: Systematic Design and Optimization of a Membrane-Cryogenic Hybrid System for CO2 Capture
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.9b03727
– year: 2008
  ident: 10.1016/j.seppur.2022.121734_b0350
  article-title: Thermodynamic properties of CO2 mixtures and their applications in advanced power cycles with CO2 capture processes
  publication-title: KTH
– volume: 215
  year: 2021
  ident: 10.1016/j.seppur.2022.121734_b0035
  article-title: Reliability assessment and congestion management of power system with energy storage system and uncertain renewable resources
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119134
– volume: 562
  year: 2019
  ident: 10.1016/j.seppur.2022.121734_b0025
– year: 2003
  ident: 10.1016/j.seppur.2022.121734_b0565
– start-page: 25
  year: 2008
  ident: 10.1016/j.seppur.2022.121734_b0240
  article-title: Fluor’s Econamine FG PlusSM technology for CO2 capture at coal-fired power plants
  publication-title: Power Plant Air Pollutant Control Mega Symposium
– volume: 71
  start-page: 112
  year: 2017
  ident: 10.1016/j.seppur.2022.121734_b0070
  article-title: Pollution to solution: Capture and sequestration of carbon dioxide (CO2) and its utilization as a renewable energy source for a sustainable future
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.01.011
– start-page: 1
  year: 2020
  ident: 10.1016/j.seppur.2022.121734_b0165
  article-title: Recent developments in CO2-capture and conversion technologies
  publication-title: Chemo-Biol. Syst. CO2 Utiliz.
– volume: 114
  start-page: 2682
  year: 2017
  ident: 10.1016/j.seppur.2022.121734_b0385
  article-title: Start-up of Port-Jérôme CRYOCAP™ Plant: Optimized Cryogenic CO2 Capture from H2 Plants
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.03.1532
– ident: 10.1016/j.seppur.2022.121734_b0065
– volume: 67
  start-page: 150
  year: 2009
  ident: 10.1016/j.seppur.2022.121734_b0340
  article-title: Novel wet electrostatic precipitator for collection of fine aerosol
  publication-title: J. Electrostat.
  doi: 10.1016/j.elstat.2009.01.059
– volume: 222
  start-page: 31
  year: 2008
  ident: 10.1016/j.seppur.2022.121734_b0365
  article-title: Simultaneous removal of CO2, SO2, and NO x from flue gas by liquid phase dehumidification at cryogenic temperatures and low pressure
  publication-title: Proc. Instit. Mech. Eng. Part A: J. Power Energy
  doi: 10.1243/09576509JPE355
– ident: 10.1016/j.seppur.2022.121734_b0545
  doi: 10.1063/1.4860829
– volume: 50
  start-page: 2547
  year: 2009
  ident: 10.1016/j.seppur.2022.121734_b0310
  article-title: Prediction of SO2 removal efficiency for wet flue gas desulfurization
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2009.06.012
– volume: 147
  start-page: 878
  year: 2021
  ident: 10.1016/j.seppur.2022.121734_b0535
  article-title: Development of a novel switched packed bed process for cryogenic CO2 capture from natural gas
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2021.01.010
– volume: 20
  start-page: 14
  year: 2008
  ident: 10.1016/j.seppur.2022.121734_b0175
  article-title: Progress in carbon dioxide separation and capture: A review
  publication-title: J. Environ. Sci.
  doi: 10.1016/S1001-0742(08)60002-9
– volume: 281
  year: 2021
  ident: 10.1016/j.seppur.2022.121734_b0160
  article-title: CO2 capture and storage monitoring based on remote sensing techniques: A review
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2020.124409
– volume: 101
  start-page: 79
  year: 2019
  ident: 10.1016/j.seppur.2022.121734_b0475
  article-title: Efficient CO2 capture using NH2–MIL–101/CA composite cryogenic packed bed column
  publication-title: Cryogenics
  doi: 10.1016/j.cryogenics.2019.06.001
– volume: 18
  start-page: 822
  year: 2021
  ident: 10.1016/j.seppur.2022.121734_b0560
  article-title: Performance analysis and comparison of cryogenic CO2 capture system
  publication-title: Int. J. Green Energy
  doi: 10.1080/15435075.2021.1880916
– volume: 114
  start-page: 887
  year: 2017
  ident: 10.1016/j.seppur.2022.121734_b0225
  article-title: Advanced cryogenic CO2 capture process based on Stirling coolers by heat integration
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.12.049
– volume: 184
  start-page: 672
  year: 2016
  ident: 10.1016/j.seppur.2022.121734_b0270
  article-title: Combustion and emission characteristics of a lateral swirl combustion system for DI diesel engines under low excess air ratio conditions
  publication-title: Fuel
  doi: 10.1016/j.fuel.2016.07.071
– volume: 158
  start-page: 4141
  year: 2019
  ident: 10.1016/j.seppur.2022.121734_b0570
  article-title: Evaluation of Japanese energy system toward 2050 with TIMES-Japan–deep decarbonization pathways
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2019.01.818
– volume: 2
  start-page: 478
  year: 2008
  ident: 10.1016/j.seppur.2022.121734_b0355
  article-title: Dynamis CO2 quality recommendations
  publication-title: Int. J. Greenhouse Gas Control
  doi: 10.1016/j.ijggc.2008.04.006
SSID ssj0017182
Score 2.66286
Snippet •An overview of cryogenic technology for CO2 capture in flue gas after combustion.•Discussed the cryogenic capture system in terms of constructing structures...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 121734
SubjectTerms CO2 capture
Condensation
Cryogenic
Distillation
Sublimation
Title Cryogenic technology progress for CO2 capture under carbon neutrality goals: A review
URI https://dx.doi.org/10.1016/j.seppur.2022.121734
Volume 299
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB76uOhBfGJ9lBy8xnaT3ezGWymWqlgPWuhtyeYhFdkudXvoxd9uso9SQRQ87CEhA8tk-GYyT4ArpvuBjijF9nWhsa-JwcLePPZd5xblU9EvhvY9Tth46t_PglkDhnUtjEurrLC_xPQCraudXsXNXjaf9549-7gKIsYIKZwpfhPahHIWtKA9uHsYTzbBBAu_RdDTnseOoK6gK9K8PnSWrVxjUEJcp4WQ-j9rqC2tM9qHvcpcRIPyjw6godND2N1qIngE0-FyvbBiMJco3_jJUZF3ZVEMWaMUDZ8IkiJzwQLkisaWdrVMFilK9arwdORr9LqwgniDBqgsZjmG6ej2ZTjG1bAELK3Vn-NAkVAakoSCeSrhRISh4FxGJuCBb7TkgilupDB2V5lE9aniKuT9xLjrikJ6Aq10kepTQFoSolTiScKoLyKeSCM0o0J6zH5UdYDWDIpl1UncDbR4j-uUsbe4ZGvs2BqXbO0A3lBlZSeNP86HNe_jbxIRW7D_lfLs35TnsONWTjd5wQW08uVKX1qjI0-60Lz-9LqVaH0BY73YVQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LS8MwGP_QeVAP4hPf5uA1bE3StPE2hmO6OQ862K2kechEujK7g_-9SR9DQRQ89NA0H5RfPr5HvhfANTed0MSUYuddGMwMsVi6k8fMd27RjMpOObTvYcwHE3Y_Dadr0GtqYXxaZS37K5leSut6pV2j2c5ns_ZT4JyrMOackPIyha3DBgudt9eCje7dcDBeBROc-C2Dnm4_9gRNBV2Z5vVu8nzpG4MS4jstRJT9rKG-aJ3-LuzU5iLqVn-0B2sm24ftL00ED2DSW3zMHRvMFCpW9-SozLtyUgw5oxT1HglSMvfBAuSLxhbubZHOM5SZZXnTUXygl7ljxBvURVUxyyFM-rfPvQGuhyVg5az-AoeaRMqSNJI80KkgMoqkECq2oQiZNUpIroVV0rpVbVPdoVroSHRS648rjugRtLJ5Zo4BGUWI1mmgCKdMxiJVVhpOpQq4e6g-AdoAlKi6k7gfaPGWNCljr0kFa-JhTSpYTwCvqPKqk8Yf-6MG--QbRyRO2P9KefpvyivYHDw_jJLR3Xh4Blv-i9dTQXgOrWKxNBfOACnSy5rBPgGWP9pE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cryogenic+technology+progress+for+CO2+capture+under+carbon+neutrality+goals%3A+A+review&rft.jtitle=Separation+and+purification+technology&rft.au=Shen%2C+Minghai&rft.au=Tong%2C+Lige&rft.au=Yin%2C+Shaowu&rft.au=Liu%2C+Chuanping&rft.date=2022-10-15&rft.issn=1383-5866&rft.volume=299&rft.spage=121734&rft_id=info:doi/10.1016%2Fj.seppur.2022.121734&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_seppur_2022_121734
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1383-5866&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1383-5866&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1383-5866&client=summon