Multi-stage image denoising with the wavelet transform
•A dynamic convolution is used into a CNN to address limitations in depth and width of lightweight CNNs for pursuing good denoising performance.•The combination of a signal processing technique and discriminative learning technique is used for image denoising.•Enhanced residual dense architectures a...
Saved in:
Published in | Pattern recognition Vol. 134; p. 109050 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0031-3203 1873-5142 |
DOI | 10.1016/j.patcog.2022.109050 |
Cover
Loading…
Abstract | •A dynamic convolution is used into a CNN to address limitations in depth and width of lightweight CNNs for pursuing good denoising performance.•The combination of a signal processing technique and discriminative learning technique is used for image denoising.•Enhanced residual dense architectures are used to remove redundant information for improving denoising effects.
Deep convolutional neural networks (CNNs) are used for image denoising via automatically mining accurate structure information. However, most of existing CNNs depend on enlarging depth of designed networks to obtain better denoising performance, which may cause training difficulty. In this paper, we propose a multi-stage image denoising CNN with the wavelet transform (MWDCNN) via three stages, i.e., a dynamic convolutional block (DCB), two cascaded wavelet transform and enhancement blocks (WEBs) and a residual block (RB). DCB uses a dynamic convolution to dynamically adjust parameters of several convolutions for making a tradeoff between denoising performance and computational costs. WEB uses a combination of signal processing technique (i.e., wavelet transformation) and discriminative learning to suppress noise for recovering more detailed information in image denoising. To further remove redundant features, RB is used to refine obtained features for improving denoising effects and reconstruct clean images via improved residual dense architectures. Experimental results show that the proposed MWDCNN outperforms some popular denoising methods in terms of quantitative and qualitative analysis. Codes are available at https://github.com/hellloxiaotian/MWDCNN. |
---|---|
AbstractList | •A dynamic convolution is used into a CNN to address limitations in depth and width of lightweight CNNs for pursuing good denoising performance.•The combination of a signal processing technique and discriminative learning technique is used for image denoising.•Enhanced residual dense architectures are used to remove redundant information for improving denoising effects.
Deep convolutional neural networks (CNNs) are used for image denoising via automatically mining accurate structure information. However, most of existing CNNs depend on enlarging depth of designed networks to obtain better denoising performance, which may cause training difficulty. In this paper, we propose a multi-stage image denoising CNN with the wavelet transform (MWDCNN) via three stages, i.e., a dynamic convolutional block (DCB), two cascaded wavelet transform and enhancement blocks (WEBs) and a residual block (RB). DCB uses a dynamic convolution to dynamically adjust parameters of several convolutions for making a tradeoff between denoising performance and computational costs. WEB uses a combination of signal processing technique (i.e., wavelet transformation) and discriminative learning to suppress noise for recovering more detailed information in image denoising. To further remove redundant features, RB is used to refine obtained features for improving denoising effects and reconstruct clean images via improved residual dense architectures. Experimental results show that the proposed MWDCNN outperforms some popular denoising methods in terms of quantitative and qualitative analysis. Codes are available at https://github.com/hellloxiaotian/MWDCNN. |
ArticleNumber | 109050 |
Author | Zhang, Bob Zuo, Wangmeng Zheng, Menghua Zhang, Yanning Zhang, David Tian, Chunwei |
Author_xml | – sequence: 1 givenname: Chunwei orcidid: 0000-0002-5610-8147 surname: Tian fullname: Tian, Chunwei email: chunweitian@nwpu.edu.cn organization: School of Software, Northwestern Polytechnical University, Xi’an, Shaanxi, 710129, China – sequence: 2 givenname: Menghua surname: Zheng fullname: Zheng, Menghua organization: School of Software, Northwestern Polytechnical University, Xi’an, Shaanxi, 710129, China – sequence: 3 givenname: Wangmeng surname: Zuo fullname: Zuo, Wangmeng organization: School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China – sequence: 4 givenname: Bob surname: Zhang fullname: Zhang, Bob organization: Department of Computer and Information Science, University of Macau, Macau, 999078, China – sequence: 5 givenname: Yanning surname: Zhang fullname: Zhang, Yanning email: ynzhang@nwpu.edu.cn organization: National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology, Xi’an, Shaanxi, 710129, China – sequence: 6 givenname: David surname: Zhang fullname: Zhang, David organization: School of Data Science, The Chinese University of Hong Kong (Shenzhen), Shenzhen, 518172, Guangdong, China |
BookMark | eNqFkM9OwzAMhyM0JLbBG3DoC7Q4SdO0HJDQxD9piAucoy5xt0xdMiVhE29Pp3LiABdbsvVZ_n0zMnHeISHXFAoKtLrZFvs2ab8uGDA2jBoQcEamtJY8F7RkEzIF4DTnDPgFmcW4BaByWExJ9frZJ5vH1K4xs7tTNei8jdats6NNmyxtMDu2B-wxZSm0LnY-7C7Jedf2Ea9--px8PD68L57z5dvTy-J-mWsOVcqFZoxiJWFVN0JKU1MmsTOyaWRnoNRIRWsEb0ouma4bU8OKGV4KrUsNHQKfk9vxrg4-xoCd0ja1yXo3vGJ7RUGdDKitGg2okwE1Ghjg8he8D0PE8PUfdjdiOAQ7WAwqaotOo7EBdVLG278PfAONsXkF |
CitedBy_id | crossref_primary_10_1016_j_jfca_2023_105325 crossref_primary_10_3390_electronics13091676 crossref_primary_10_1631_jzus_A2300251 crossref_primary_10_3390_s24010042 crossref_primary_10_1016_j_measurement_2024_115434 crossref_primary_10_1049_ipr2_13264 crossref_primary_10_1109_JIOT_2024_3482453 crossref_primary_10_1007_s11600_024_01339_x crossref_primary_10_1016_j_mri_2025_110336 crossref_primary_10_1080_01431161_2023_2229494 crossref_primary_10_1109_TGRS_2024_3409550 crossref_primary_10_1016_j_pnsc_2023_10_004 crossref_primary_10_1049_ell2_70071 crossref_primary_10_1016_j_aei_2024_102355 crossref_primary_10_3390_electronics12112364 crossref_primary_10_3788_AI_2024_20001 crossref_primary_10_1142_S0218001424520037 crossref_primary_10_1007_s12596_024_02065_9 crossref_primary_10_1109_TIP_2024_3355818 crossref_primary_10_1007_s11760_024_03461_1 crossref_primary_10_1111_coin_12611 crossref_primary_10_1145_3714471 crossref_primary_10_1063_5_0223715 crossref_primary_10_1109_TGRS_2024_3434349 crossref_primary_10_1007_s12145_023_01212_3 crossref_primary_10_3390_s23208574 crossref_primary_10_1016_j_ins_2023_119014 crossref_primary_10_1007_s12530_023_09533_w crossref_primary_10_1016_j_eja_2025_127599 crossref_primary_10_1587_elex_21_20240123 crossref_primary_10_3389_fnins_2024_1516868 crossref_primary_10_3390_math11173678 crossref_primary_10_7717_peerj_cs_1817 crossref_primary_10_1016_j_patcog_2024_110823 crossref_primary_10_3390_app132212268 crossref_primary_10_3390_math11122772 crossref_primary_10_3934_era_2024187 crossref_primary_10_1088_1361_6501_ad087e crossref_primary_10_1016_j_optlastec_2025_112475 crossref_primary_10_1007_s11042_023_17623_9 crossref_primary_10_1007_s00530_024_01508_4 crossref_primary_10_1007_s10489_023_04861_5 crossref_primary_10_1142_S0219467824500578 crossref_primary_10_1016_j_patcog_2024_111196 crossref_primary_10_3934_mbe_2023914 crossref_primary_10_1016_j_ecoinf_2023_102250 crossref_primary_10_3390_jimaging11010014 crossref_primary_10_1016_j_optlaseng_2024_108457 crossref_primary_10_1109_TMM_2023_3263078 crossref_primary_10_1117_1_OE_64_3_037103 crossref_primary_10_1007_s12666_024_03367_z crossref_primary_10_3934_mbe_2023609 crossref_primary_10_1109_TCSVT_2024_3486756 crossref_primary_10_3390_fractalfract7070566 crossref_primary_10_1016_j_engappai_2023_106869 crossref_primary_10_1016_j_dsp_2025_105037 crossref_primary_10_1109_TNNLS_2023_3282953 crossref_primary_10_1007_s11042_023_16583_4 crossref_primary_10_1109_ACCESS_2023_3264604 crossref_primary_10_1109_ACCESS_2024_3375360 crossref_primary_10_1155_acis_8442143 crossref_primary_10_1016_j_imavis_2023_104842 crossref_primary_10_1109_TIFS_2024_3393748 crossref_primary_10_1007_s00371_023_03046_y crossref_primary_10_1049_cit2_12297 crossref_primary_10_1109_ACCESS_2024_3415420 crossref_primary_10_1109_TIM_2025_3541646 crossref_primary_10_1145_3578521 crossref_primary_10_3390_electronics11234041 crossref_primary_10_1007_s11517_023_02972_2 crossref_primary_10_1007_s10489_023_04895_9 crossref_primary_10_1016_j_jvcir_2024_104148 crossref_primary_10_32604_cmc_2024_046443 crossref_primary_10_2478_amns_2023_2_01416 crossref_primary_10_1016_j_neunet_2025_107190 crossref_primary_10_1016_j_engappai_2024_109099 crossref_primary_10_1016_j_apm_2023_10_023 crossref_primary_10_1016_j_engappai_2024_109890 crossref_primary_10_1109_TCSVT_2024_3494239 crossref_primary_10_3934_era_2025055 crossref_primary_10_1088_1361_6501_ad457f crossref_primary_10_1117_1_JEI_33_1_013042 crossref_primary_10_1088_1361_6560_ad7e78 crossref_primary_10_1016_j_neucom_2023_127066 crossref_primary_10_1016_j_jappgeo_2025_105640 crossref_primary_10_1016_j_patcog_2023_110176 crossref_primary_10_3390_jmse13020278 crossref_primary_10_1109_TNNLS_2023_3321076 crossref_primary_10_1088_1361_6501_acea9e crossref_primary_10_1080_13682199_2023_2198350 crossref_primary_10_1016_j_aca_2024_343073 crossref_primary_10_3390_fractalfract8090511 crossref_primary_10_1016_j_ijleo_2025_172306 crossref_primary_10_1016_j_neunet_2024_106218 crossref_primary_10_3390_electronics12245013 crossref_primary_10_1007_s11760_023_02944_x crossref_primary_10_1016_j_eswa_2023_123018 crossref_primary_10_1186_s13662_024_03843_2 crossref_primary_10_1117_1_JMM_24_1_014004 crossref_primary_10_3390_electronics12245019 crossref_primary_10_1016_j_imavis_2024_105073 crossref_primary_10_1016_j_neunet_2024_106853 crossref_primary_10_1016_j_patcog_2024_110291 crossref_primary_10_3390_app131911019 crossref_primary_10_1080_13682199_2024_2449273 crossref_primary_10_1016_j_knosys_2023_110567 crossref_primary_10_1016_j_patcog_2024_111033 crossref_primary_10_1007_s11227_024_06646_0 crossref_primary_10_3390_technologies11040111 crossref_primary_10_1016_j_measurement_2024_115862 crossref_primary_10_1007_s11760_025_03974_3 crossref_primary_10_3390_app14167044 crossref_primary_10_1002_sdtp_17317 crossref_primary_10_1016_j_patcog_2024_110986 crossref_primary_10_1109_TGRS_2023_3272588 crossref_primary_10_1038_s41598_025_86860_9 crossref_primary_10_1016_j_engappai_2025_110275 crossref_primary_10_1016_j_microc_2023_108777 crossref_primary_10_1007_s00530_024_01469_8 crossref_primary_10_1007_s11042_023_16346_1 crossref_primary_10_1109_TCSVT_2023_3348804 crossref_primary_10_1155_2024_9199410 crossref_primary_10_3390_s23094414 crossref_primary_10_1109_JAS_2023_123543 crossref_primary_10_1007_s11280_024_01258_3 crossref_primary_10_3390_min13060760 crossref_primary_10_1063_5_0216493 crossref_primary_10_1088_2058_9565_ad3d7f crossref_primary_10_1007_s11063_023_11359_1 crossref_primary_10_3390_app13095749 crossref_primary_10_1007_s10115_023_01965_9 crossref_primary_10_1109_TCYB_2022_3227044 crossref_primary_10_1109_TCYB_2023_3237635 crossref_primary_10_1016_j_apm_2024_04_001 crossref_primary_10_11834_jig_230254 crossref_primary_10_1142_S0219467825500032 crossref_primary_10_3390_app13127184 crossref_primary_10_1080_13682199_2023_2229040 crossref_primary_10_1109_ACCESS_2022_3222826 crossref_primary_10_3390_app132011560 crossref_primary_10_3390_drones7080486 crossref_primary_10_1016_j_ymssp_2023_111032 crossref_primary_10_3390_electronics13245002 crossref_primary_10_5194_amt_17_4659_2024 crossref_primary_10_1007_s00521_023_09314_1 crossref_primary_10_1016_j_eswa_2024_126300 crossref_primary_10_1088_1402_4896_ad8d8a crossref_primary_10_3390_s23135915 crossref_primary_10_1080_10589759_2024_2387757 crossref_primary_10_1007_s11760_024_03093_5 crossref_primary_10_1016_j_neunet_2023_05_044 crossref_primary_10_3390_electronics12132927 crossref_primary_10_1016_j_patcog_2024_110563 crossref_primary_10_3390_f15091558 crossref_primary_10_1109_TIM_2024_3374294 crossref_primary_10_1007_s00530_024_01284_1 crossref_primary_10_3389_fmars_2023_1306229 crossref_primary_10_3390_e25081176 crossref_primary_10_1016_j_compag_2024_109461 crossref_primary_10_1109_TFUZZ_2024_3489227 crossref_primary_10_1016_j_image_2025_117286 crossref_primary_10_33889_PMSL_2023_2_2_010 crossref_primary_10_1016_j_chaos_2024_115521 crossref_primary_10_1785_0120230304 crossref_primary_10_1016_j_neunet_2023_11_039 crossref_primary_10_1109_TNNLS_2023_3282809 crossref_primary_10_1016_j_ijmecsci_2024_109075 crossref_primary_10_1109_TGRS_2024_3504240 crossref_primary_10_1109_ACCESS_2023_3335372 |
Cites_doi | 10.1109/TIP.2015.2414873 10.1109/TIP.2011.2109730 10.1109/ACCESS.2021.3083577 10.3390/rs13091858 10.1109/TIP.2018.2839891 10.1016/j.neunet.2020.07.025 10.1109/82.749102 10.1109/TIP.2017.2662206 10.1109/TIP.2003.819861 10.1016/j.neunet.2019.12.024 10.1080/00401706.1971.10488811 10.1016/j.image.2004.10.003 10.1016/j.patcog.2015.05.028 10.1016/j.patcog.2021.108506 10.1016/j.patcog.2009.01.005 10.1016/j.knosys.2021.106949 10.1109/TPAMI.2016.2596743 10.1109/TIP.2007.901238 10.1016/j.patcog.2020.107639 |
ContentType | Journal Article |
Copyright | 2022 |
Copyright_xml | – notice: 2022 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.patcog.2022.109050 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-5142 |
ExternalDocumentID | 10_1016_j_patcog_2022_109050 S0031320322005301 |
GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-5c221e670b89577d8127efd7997fd04ce15ad5394372c89d80b2d345cc4c0fe03 |
IEDL.DBID | .~1 |
ISSN | 0031-3203 |
IngestDate | Tue Jul 01 02:36:39 EDT 2025 Thu Apr 24 22:50:43 EDT 2025 Fri Feb 23 02:39:42 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Signal processing Dynamic convolution CNN Wavelet transform Image denoising |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-5c221e670b89577d8127efd7997fd04ce15ad5394372c89d80b2d345cc4c0fe03 |
ORCID | 0000-0002-5610-8147 |
ParticipantIDs | crossref_citationtrail_10_1016_j_patcog_2022_109050 crossref_primary_10_1016_j_patcog_2022_109050 elsevier_sciencedirect_doi_10_1016_j_patcog_2022_109050 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2023 2023-02-00 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: February 2023 |
PublicationDecade | 2020 |
PublicationTitle | Pattern recognition |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Ahn, Kang, Sohn (bib0029) 2018 Wang, Bovik, Sheikh, Simoncelli (bib0038) 2004; 13 Zhang, Tian, Kong, Zhong, Fu (bib0009) 2018 Charbonnier, Blanc-Feraud, Aubert, Barlaud (bib0028) 1994; vol. 2 Zhang, Zuo, Chen, Meng, Zhang (bib0006) 2017; 26 Tian, Fei, Zheng, Xu, Zuo, Lin (bib0001) 2020; 131 Allen (bib0019) 1971; 13 Ayyoubzadeh, Royat (bib0022) 2021 (2021). Liu (bib0016) 2015; 8 Liu, Anwar, Zheng, Tian (bib0035) 2020 (2020). Chen, Pock (bib0031) 2016; 39 Rabbani (bib0003) 2009; 42 Tai, Yang, Liu, Xu (bib0008) 2017 D.P. Kingma, J. Ba, Adam: a method for stochastic optimization Quan, Chen, Shao, Teng, Xu, Ji (bib0032) 2021; 111 Zhang, Zuo, Zhang (bib0010) 2018; 27 Wang, Zhang (bib0002) 1999; 46 Luo, Chan, Nguyen (bib0036) 2015; 24 Cho, Bui (bib0015) 2005; 20 Salimans, Goodfellow, Zaremba, Cheung, Radford, Chen (bib0040) 2016; 29 Y. Li, Y. Chen, X. Dai, M. Liu, D. Chen, Y. Yu, L. Yuan, Z. Liu, M. Chen, N. Vasconcelos, Revisiting dynamic convolution via matrix decomposition Liang, Cao, Sun, Zhang, Van Gool, Timofte (bib0021) 2021 Zhang, Isola, Efros, Shechtman, Wang (bib0039) 2018 Dabov, Foi, Katkovnik, Egiazarian (bib0004) 2007; 16 Yang, Wang (bib0018) 2021; 9 Li, Suen (bib0033) 2016; 49 Feng, Zhang, Su, Xu (bib0023) 2021; 13 Li, Cai, Nguyen, Zheng (bib0024) 2013 (2014). J. Xu, H. Li, Z. Liang, D. Zhang, L. Zhang, Real-world noisy image denoising: a new benchmark Guo, Seyed Mousavi, Huu Vu, Monga (bib0017) 2017 Gu, Zhang, Zuo, Feng (bib0030) 2014 Chen, Dai, Liu, Chen, Yuan, Liu (bib0011) 2020 (2018). Y. Zhang, J. Zhang, Q. Wang, Z. Zhong, Dynet: dynamic convolution for accelerating convolutional neural networks Sun, Chen, Wang, Dong, Zhou, Chen (bib0013) 2021 Tian, Xu, Zuo, Du, Lin, Zhang (bib0034) 2021; 226 Li, Liang, Zhang, Fan, Yu (bib0005) 2022; 125 Zhang, Zhang, Mou, Zhang (bib0037) 2011; 20 Franzen (bib0026) 1999; 4 Nam, Hwang, Matsushita, Kim (bib0027) 2016 Tian, Xu, Li, Zuo, Fei, Liu (bib0007) 2020; 124 Chen (10.1016/j.patcog.2022.109050_bib0031) 2016; 39 Liu (10.1016/j.patcog.2022.109050_bib0035) 2020 Sun (10.1016/j.patcog.2022.109050_bib0013) 2021 Li (10.1016/j.patcog.2022.109050_bib0033) 2016; 49 Feng (10.1016/j.patcog.2022.109050_bib0023) 2021; 13 Ayyoubzadeh (10.1016/j.patcog.2022.109050_bib0022) 2021 Ahn (10.1016/j.patcog.2022.109050_bib0029) 2018 Chen (10.1016/j.patcog.2022.109050_bib0011) 2020 Zhang (10.1016/j.patcog.2022.109050_bib0009) 2018 Li (10.1016/j.patcog.2022.109050_bib0005) 2022; 125 Wang (10.1016/j.patcog.2022.109050_bib0038) 2004; 13 10.1016/j.patcog.2022.109050_bib0025 Charbonnier (10.1016/j.patcog.2022.109050_bib0028) 1994; vol. 2 Allen (10.1016/j.patcog.2022.109050_bib0019) 1971; 13 Zhang (10.1016/j.patcog.2022.109050_bib0037) 2011; 20 Tai (10.1016/j.patcog.2022.109050_bib0008) 2017 Tian (10.1016/j.patcog.2022.109050_bib0034) 2021; 226 Tian (10.1016/j.patcog.2022.109050_bib0001) 2020; 131 10.1016/j.patcog.2022.109050_bib0020 Nam (10.1016/j.patcog.2022.109050_bib0027) 2016 Gu (10.1016/j.patcog.2022.109050_bib0030) 2014 Rabbani (10.1016/j.patcog.2022.109050_bib0003) 2009; 42 Guo (10.1016/j.patcog.2022.109050_bib0017) 2017 Zhang (10.1016/j.patcog.2022.109050_bib0039) 2018 Tian (10.1016/j.patcog.2022.109050_bib0007) 2020; 124 Zhang (10.1016/j.patcog.2022.109050_bib0006) 2017; 26 Zhang (10.1016/j.patcog.2022.109050_bib0010) 2018; 27 Luo (10.1016/j.patcog.2022.109050_bib0036) 2015; 24 Yang (10.1016/j.patcog.2022.109050_bib0018) 2021; 9 Cho (10.1016/j.patcog.2022.109050_bib0015) 2005; 20 10.1016/j.patcog.2022.109050_bib0014 Wang (10.1016/j.patcog.2022.109050_bib0002) 1999; 46 10.1016/j.patcog.2022.109050_bib0012 Liu (10.1016/j.patcog.2022.109050_bib0016) 2015; 8 Liang (10.1016/j.patcog.2022.109050_bib0021) 2021 Salimans (10.1016/j.patcog.2022.109050_bib0040) 2016; 29 Dabov (10.1016/j.patcog.2022.109050_bib0004) 2007; 16 Franzen (10.1016/j.patcog.2022.109050_bib0026) 1999; 4 Quan (10.1016/j.patcog.2022.109050_bib0032) 2021; 111 Li (10.1016/j.patcog.2022.109050_bib0024) 2013 |
References_xml | – reference: Y. Zhang, J. Zhang, Q. Wang, Z. Zhong, Dynet: dynamic convolution for accelerating convolutional neural networks, – volume: 4 year: 1999 ident: bib0026 article-title: Kodak lossless true color image suite publication-title: source: http://r0k. us/graphics/kodak – volume: 8 start-page: 29 year: 2015 end-page: 40 ident: bib0016 article-title: Image denoising method based on threshold, wavelet transform and genetic algorithm publication-title: Int. J. Signal Process. Image Process. Pattern Recognit. – reference: (2018). – volume: 29 year: 2016 ident: bib0040 article-title: Improved techniques for training GANs publication-title: Adv. Neural Inf. Process. Syst. – volume: 49 start-page: 237 year: 2016 end-page: 248 ident: bib0033 article-title: A novel non-local means image denoising method based on grey theory publication-title: Pattern Recognit. – volume: 13 start-page: 469 year: 1971 end-page: 475 ident: bib0019 article-title: Mean square error of prediction as a criterion for selecting variables publication-title: Technometrics – reference: (2014). – reference: Y. Li, Y. Chen, X. Dai, M. Liu, D. Chen, Y. Yu, L. Yuan, Z. Liu, M. Chen, N. Vasconcelos, Revisiting dynamic convolution via matrix decomposition, – reference: J. Xu, H. Li, Z. Liang, D. Zhang, L. Zhang, Real-world noisy image denoising: a new benchmark, – start-page: 791 year: 2018 end-page: 799 ident: bib0029 article-title: Image super-resolution via progressive cascading residual network publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops – volume: vol. 2 start-page: 168 year: 1994 end-page: 172 ident: bib0028 article-title: Two deterministic half-quadratic regularization algorithms for computed imaging publication-title: Proceedings of 1st International Conference on Image Processing – volume: 9 start-page: 98790 year: 2021 end-page: 98799 ident: bib0018 article-title: An effective and comprehensive image super resolution algorithm combined with a novel convolutional neural network and wavelet transform publication-title: IEEE Access – volume: 26 start-page: 3142 year: 2017 end-page: 3155 ident: bib0006 article-title: Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising publication-title: IEEE Trans. Image Process. – volume: 124 start-page: 117 year: 2020 end-page: 129 ident: bib0007 article-title: Attention-guided CNN for image denoising publication-title: Neural Netw. – volume: 226 start-page: 106949 year: 2021 ident: bib0034 article-title: Designing and training of a dual CNN for image denoising publication-title: Knowl. Based Syst. – start-page: 2472 year: 2018 end-page: 2481 ident: bib0009 article-title: Residual dense network for image super-resolution publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 1 year: 2013 end-page: 6 ident: bib0024 article-title: A benchmark for semantic image segmentation publication-title: 2013 IEEE International Conference on Multimedia and Expo (ICME) – volume: 125 start-page: 108506 year: 2022 ident: bib0005 article-title: Joint image denoising with gradient direction and edge-preserving regularization publication-title: Pattern Recognit. – start-page: 508 year: 2020 end-page: 509 ident: bib0035 article-title: GradNet image denoising publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops – year: 2021 ident: bib0013 article-title: Gaussian dynamic convolution for efficient single-image segmentation publication-title: IEEE Trans. Circuits Syst. Video Technol. – reference: (2020). – start-page: 2862 year: 2014 end-page: 2869 ident: bib0030 article-title: Weighted nuclear norm minimization with application to image denoising publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 27 start-page: 4608 year: 2018 end-page: 4622 ident: bib0010 article-title: FFDNet: toward a fast and flexible solution for CNN-based image denoising publication-title: IEEE Trans. Image Process. – volume: 131 start-page: 251 year: 2020 end-page: 275 ident: bib0001 article-title: Deep learning on image denoising: an overview publication-title: Neural Netw. – volume: 111 start-page: 107639 year: 2021 ident: bib0032 article-title: Image denoising using complex-valued deep CNN publication-title: Pattern Recognit. – volume: 39 start-page: 1256 year: 2016 end-page: 1272 ident: bib0031 article-title: Trainable nonlinear reaction diffusion: a flexible framework for fast and effective image restoration publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 16 start-page: 2080 year: 2007 end-page: 2095 ident: bib0004 article-title: Image denoising by sparse 3-D transform-domain collaborative filtering publication-title: IEEE Trans. Image Process. – volume: 13 start-page: 600 year: 2004 end-page: 612 ident: bib0038 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans. Image Process. – start-page: 11030 year: 2020 end-page: 11039 ident: bib0011 article-title: Dynamic convolution: Attention over convolution kernels publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – reference: (2021). – start-page: 1833 year: 2021 end-page: 1844 ident: bib0021 article-title: SwinIR: Image restoration using swin transformer publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision – volume: 24 start-page: 2167 year: 2015 end-page: 2181 ident: bib0036 article-title: Adaptive image denoising by targeted databases publication-title: IEEE Trans. Image Process. – start-page: 1683 year: 2016 end-page: 1691 ident: bib0027 article-title: A holistic approach to cross-channel image noise modeling and its application to image denoising publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 42 start-page: 2181 year: 2009 end-page: 2193 ident: bib0003 article-title: Image denoising in steerable pyramid domain based on a local laplace prior publication-title: Pattern Recognit. – start-page: 104 year: 2017 end-page: 113 ident: bib0017 article-title: Deep wavelet prediction for image super-resolution publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops – start-page: 388 year: 2021 end-page: 397 ident: bib0022 article-title: (ASNA) an attention-based siamese-difference neural network with surrogate ranking loss function for perceptual image quality assessment publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 586 year: 2018 end-page: 595 ident: bib0039 article-title: The unreasonable effectiveness of deep features as a perceptual metric publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 20 start-page: 2378 year: 2011 end-page: 2386 ident: bib0037 article-title: FSIM: a feature similarity index for image quality assessment publication-title: IEEE Trans. Image Process. – start-page: 4539 year: 2017 end-page: 4547 ident: bib0008 article-title: MemNet: a persistent memory network for image restoration publication-title: Proceedings of the IEEE International Conference on Computer Vision – volume: 20 start-page: 77 year: 2005 end-page: 89 ident: bib0015 article-title: Multivariate statistical modeling for image denoising using wavelet transforms publication-title: Signal Process. Image Commun. – volume: 13 start-page: 1858 year: 2021 ident: bib0023 article-title: Optical remote sensing image denoising and super-resolution reconstructing using optimized generative network in wavelet transform domain publication-title: Remote Sens. – reference: D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, – volume: 46 start-page: 78 year: 1999 end-page: 80 ident: bib0002 article-title: Progressive switching median filter for the removal of impulse noise from highly corrupted images publication-title: IEEE Trans. Circuits Syst. IIAnal. Digit. Signal Process. – start-page: 11030 year: 2020 ident: 10.1016/j.patcog.2022.109050_bib0011 article-title: Dynamic convolution: Attention over convolution kernels – volume: 24 start-page: 2167 issue: 7 year: 2015 ident: 10.1016/j.patcog.2022.109050_bib0036 article-title: Adaptive image denoising by targeted databases publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2015.2414873 – volume: 20 start-page: 2378 issue: 8 year: 2011 ident: 10.1016/j.patcog.2022.109050_bib0037 article-title: FSIM: a feature similarity index for image quality assessment publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2011.2109730 – start-page: 4539 year: 2017 ident: 10.1016/j.patcog.2022.109050_bib0008 article-title: MemNet: a persistent memory network for image restoration – volume: 9 start-page: 98790 year: 2021 ident: 10.1016/j.patcog.2022.109050_bib0018 article-title: An effective and comprehensive image super resolution algorithm combined with a novel convolutional neural network and wavelet transform publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3083577 – volume: 13 start-page: 1858 issue: 9 year: 2021 ident: 10.1016/j.patcog.2022.109050_bib0023 article-title: Optical remote sensing image denoising and super-resolution reconstructing using optimized generative network in wavelet transform domain publication-title: Remote Sens. doi: 10.3390/rs13091858 – volume: 27 start-page: 4608 issue: 9 year: 2018 ident: 10.1016/j.patcog.2022.109050_bib0010 article-title: FFDNet: toward a fast and flexible solution for CNN-based image denoising publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2018.2839891 – year: 2021 ident: 10.1016/j.patcog.2022.109050_bib0013 article-title: Gaussian dynamic convolution for efficient single-image segmentation publication-title: IEEE Trans. Circuits Syst. Video Technol. – start-page: 2472 year: 2018 ident: 10.1016/j.patcog.2022.109050_bib0009 article-title: Residual dense network for image super-resolution – volume: 131 start-page: 251 year: 2020 ident: 10.1016/j.patcog.2022.109050_bib0001 article-title: Deep learning on image denoising: an overview publication-title: Neural Netw. doi: 10.1016/j.neunet.2020.07.025 – start-page: 388 year: 2021 ident: 10.1016/j.patcog.2022.109050_bib0022 article-title: (ASNA) an attention-based siamese-difference neural network with surrogate ranking loss function for perceptual image quality assessment – start-page: 104 year: 2017 ident: 10.1016/j.patcog.2022.109050_bib0017 article-title: Deep wavelet prediction for image super-resolution – start-page: 586 year: 2018 ident: 10.1016/j.patcog.2022.109050_bib0039 article-title: The unreasonable effectiveness of deep features as a perceptual metric – start-page: 1683 year: 2016 ident: 10.1016/j.patcog.2022.109050_bib0027 article-title: A holistic approach to cross-channel image noise modeling and its application to image denoising – ident: 10.1016/j.patcog.2022.109050_bib0025 – volume: 46 start-page: 78 issue: 1 year: 1999 ident: 10.1016/j.patcog.2022.109050_bib0002 article-title: Progressive switching median filter for the removal of impulse noise from highly corrupted images publication-title: IEEE Trans. Circuits Syst. IIAnal. Digit. Signal Process. doi: 10.1109/82.749102 – volume: 26 start-page: 3142 issue: 7 year: 2017 ident: 10.1016/j.patcog.2022.109050_bib0006 article-title: Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2662206 – volume: 13 start-page: 600 issue: 4 year: 2004 ident: 10.1016/j.patcog.2022.109050_bib0038 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.819861 – volume: 124 start-page: 117 year: 2020 ident: 10.1016/j.patcog.2022.109050_bib0007 article-title: Attention-guided CNN for image denoising publication-title: Neural Netw. doi: 10.1016/j.neunet.2019.12.024 – start-page: 791 year: 2018 ident: 10.1016/j.patcog.2022.109050_bib0029 article-title: Image super-resolution via progressive cascading residual network – volume: 13 start-page: 469 issue: 3 year: 1971 ident: 10.1016/j.patcog.2022.109050_bib0019 article-title: Mean square error of prediction as a criterion for selecting variables publication-title: Technometrics doi: 10.1080/00401706.1971.10488811 – volume: 29 year: 2016 ident: 10.1016/j.patcog.2022.109050_bib0040 article-title: Improved techniques for training GANs publication-title: Adv. Neural Inf. Process. Syst. – volume: 20 start-page: 77 issue: 1 year: 2005 ident: 10.1016/j.patcog.2022.109050_bib0015 article-title: Multivariate statistical modeling for image denoising using wavelet transforms publication-title: Signal Process. Image Commun. doi: 10.1016/j.image.2004.10.003 – start-page: 1 year: 2013 ident: 10.1016/j.patcog.2022.109050_bib0024 article-title: A benchmark for semantic image segmentation – volume: 49 start-page: 237 year: 2016 ident: 10.1016/j.patcog.2022.109050_bib0033 article-title: A novel non-local means image denoising method based on grey theory publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2015.05.028 – volume: 125 start-page: 108506 year: 2022 ident: 10.1016/j.patcog.2022.109050_bib0005 article-title: Joint image denoising with gradient direction and edge-preserving regularization publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2021.108506 – ident: 10.1016/j.patcog.2022.109050_bib0014 – volume: 8 start-page: 29 issue: 2 year: 2015 ident: 10.1016/j.patcog.2022.109050_bib0016 article-title: Image denoising method based on threshold, wavelet transform and genetic algorithm publication-title: Int. J. Signal Process. Image Process. Pattern Recognit. – ident: 10.1016/j.patcog.2022.109050_bib0012 – ident: 10.1016/j.patcog.2022.109050_bib0020 – volume: vol. 2 start-page: 168 year: 1994 ident: 10.1016/j.patcog.2022.109050_bib0028 article-title: Two deterministic half-quadratic regularization algorithms for computed imaging – start-page: 1833 year: 2021 ident: 10.1016/j.patcog.2022.109050_bib0021 article-title: SwinIR: Image restoration using swin transformer – volume: 42 start-page: 2181 issue: 9 year: 2009 ident: 10.1016/j.patcog.2022.109050_bib0003 article-title: Image denoising in steerable pyramid domain based on a local laplace prior publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2009.01.005 – volume: 226 start-page: 106949 year: 2021 ident: 10.1016/j.patcog.2022.109050_bib0034 article-title: Designing and training of a dual CNN for image denoising publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2021.106949 – volume: 39 start-page: 1256 issue: 6 year: 2016 ident: 10.1016/j.patcog.2022.109050_bib0031 article-title: Trainable nonlinear reaction diffusion: a flexible framework for fast and effective image restoration publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2596743 – volume: 4 issue: 2 year: 1999 ident: 10.1016/j.patcog.2022.109050_bib0026 article-title: Kodak lossless true color image suite publication-title: source: http://r0k. us/graphics/kodak – volume: 16 start-page: 2080 issue: 8 year: 2007 ident: 10.1016/j.patcog.2022.109050_bib0004 article-title: Image denoising by sparse 3-D transform-domain collaborative filtering publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2007.901238 – start-page: 2862 year: 2014 ident: 10.1016/j.patcog.2022.109050_bib0030 article-title: Weighted nuclear norm minimization with application to image denoising – volume: 111 start-page: 107639 year: 2021 ident: 10.1016/j.patcog.2022.109050_bib0032 article-title: Image denoising using complex-valued deep CNN publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107639 – start-page: 508 year: 2020 ident: 10.1016/j.patcog.2022.109050_bib0035 article-title: GradNet image denoising |
SSID | ssj0017142 |
Score | 2.6990511 |
Snippet | •A dynamic convolution is used into a CNN to address limitations in depth and width of lightweight CNNs for pursuing good denoising performance.•The... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 109050 |
SubjectTerms | CNN Dynamic convolution Image denoising Signal processing Wavelet transform |
Title | Multi-stage image denoising with the wavelet transform |
URI | https://dx.doi.org/10.1016/j.patcog.2022.109050 |
Volume | 134 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXrz4Fuuj7MHr2s0-ssmxFEtV7MlCbyHZR6loWyTizd_uTB5FQRS85BB2IHw7OzM7mZmPkCtwcjwXMjApEsdUGhUsNzZmFi7aQYVYS4upgYdJPJ6qu5medciw7YXBssrG9tc2vbLWzZt-g2Z_vVhgjy-OHeSgkahJVQ8XTq8Dnb7-2JR5IL93PTFcRgxXt-1zVY3XGszdag63RCFwrhLH7vuf3NMXlzPaJ7tNrEgH9ecckI5fHpK9loeBNsfyiMRVFy2DOG_u6eIFn2BNVgtMA1BMtFKI8uh7jhwTJS3bUPWYTEc3j8Mxa_gQmIXAvmTaChH52PAiSbUxDnyz8cGZNDXBcWV9pHOnZYq_4mySuoQXwkmlrVWWB8_lCdlarpb-lFATAuyCLbTxToVE5EHoxLg0CBUAqqJLZAtDZpth4chZ8Zy1VWFPWQ1ehuBlNXhdwjZS63pYxh_rTYtw9m3TM7Dnv0qe_VvynOwgY3xdeH1BtsrXN38JcUVZ9CrF6ZHtwe39ePIJbrDLfw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5Ke9CLb7E-c_C6dLOPbHIsRUnt49RCbyHZR4loWyTi33en2RQFUfCSQ8hA-HZ2ZnZ25huE7p2TIzllFjMaa8yTsMC5VBFW7qBtuY0EU5AamEyjdM6fFmLRQoOmFwbKKr3tr2361lr7Nz2PZm9TltDjC7SDxGkkaBL0cHWAnYq3Uac_HKXT3WWCDHlNGs5CDAJNB922zGvjLN566Q6KlAK1EoEG_J881Bev83iEDny4GPTrPzpGLbM6QYfNKIbA78xTFG0babEL9ZYmKF_h6QzKuoRMQAC51sAFesFHDmMmqqBqotUzNH98mA1S7EciYOVi-woLRWloIkmKOBFSaueepbFaJom0mnBlQpFrwRK4jVNxomNSUM24UIorYg1h56i9Wq_MBQqktW4hVCGk0dzGNLdUxFInlnLroCq6iDUwZMrzhcPYipesKQx7zmrwMgAvq8HrIryT2tR8GX98LxuEs2_rnjmT_qvk5b8l79BeOpuMs_FwOrpC-zBAvq7Dvkbt6u3d3LgwoypuvRp9AnyWzjA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-stage+image+denoising+with+the+wavelet+transform&rft.jtitle=Pattern+recognition&rft.au=Tian%2C+Chunwei&rft.au=Zheng%2C+Menghua&rft.au=Zuo%2C+Wangmeng&rft.au=Zhang%2C+Bob&rft.date=2023-02-01&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.eissn=1873-5142&rft.volume=134&rft_id=info:doi/10.1016%2Fj.patcog.2022.109050&rft.externalDocID=S0031320322005301 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |