Multi-stage image denoising with the wavelet transform

•A dynamic convolution is used into a CNN to address limitations in depth and width of lightweight CNNs for pursuing good denoising performance.•The combination of a signal processing technique and discriminative learning technique is used for image denoising.•Enhanced residual dense architectures a...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition Vol. 134; p. 109050
Main Authors Tian, Chunwei, Zheng, Menghua, Zuo, Wangmeng, Zhang, Bob, Zhang, Yanning, Zhang, David
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2023
Subjects
Online AccessGet full text
ISSN0031-3203
1873-5142
DOI10.1016/j.patcog.2022.109050

Cover

Loading…
Abstract •A dynamic convolution is used into a CNN to address limitations in depth and width of lightweight CNNs for pursuing good denoising performance.•The combination of a signal processing technique and discriminative learning technique is used for image denoising.•Enhanced residual dense architectures are used to remove redundant information for improving denoising effects. Deep convolutional neural networks (CNNs) are used for image denoising via automatically mining accurate structure information. However, most of existing CNNs depend on enlarging depth of designed networks to obtain better denoising performance, which may cause training difficulty. In this paper, we propose a multi-stage image denoising CNN with the wavelet transform (MWDCNN) via three stages, i.e., a dynamic convolutional block (DCB), two cascaded wavelet transform and enhancement blocks (WEBs) and a residual block (RB). DCB uses a dynamic convolution to dynamically adjust parameters of several convolutions for making a tradeoff between denoising performance and computational costs. WEB uses a combination of signal processing technique (i.e., wavelet transformation) and discriminative learning to suppress noise for recovering more detailed information in image denoising. To further remove redundant features, RB is used to refine obtained features for improving denoising effects and reconstruct clean images via improved residual dense architectures. Experimental results show that the proposed MWDCNN outperforms some popular denoising methods in terms of quantitative and qualitative analysis. Codes are available at https://github.com/hellloxiaotian/MWDCNN.
AbstractList •A dynamic convolution is used into a CNN to address limitations in depth and width of lightweight CNNs for pursuing good denoising performance.•The combination of a signal processing technique and discriminative learning technique is used for image denoising.•Enhanced residual dense architectures are used to remove redundant information for improving denoising effects. Deep convolutional neural networks (CNNs) are used for image denoising via automatically mining accurate structure information. However, most of existing CNNs depend on enlarging depth of designed networks to obtain better denoising performance, which may cause training difficulty. In this paper, we propose a multi-stage image denoising CNN with the wavelet transform (MWDCNN) via three stages, i.e., a dynamic convolutional block (DCB), two cascaded wavelet transform and enhancement blocks (WEBs) and a residual block (RB). DCB uses a dynamic convolution to dynamically adjust parameters of several convolutions for making a tradeoff between denoising performance and computational costs. WEB uses a combination of signal processing technique (i.e., wavelet transformation) and discriminative learning to suppress noise for recovering more detailed information in image denoising. To further remove redundant features, RB is used to refine obtained features for improving denoising effects and reconstruct clean images via improved residual dense architectures. Experimental results show that the proposed MWDCNN outperforms some popular denoising methods in terms of quantitative and qualitative analysis. Codes are available at https://github.com/hellloxiaotian/MWDCNN.
ArticleNumber 109050
Author Zhang, Bob
Zuo, Wangmeng
Zheng, Menghua
Zhang, Yanning
Zhang, David
Tian, Chunwei
Author_xml – sequence: 1
  givenname: Chunwei
  orcidid: 0000-0002-5610-8147
  surname: Tian
  fullname: Tian, Chunwei
  email: chunweitian@nwpu.edu.cn
  organization: School of Software, Northwestern Polytechnical University, Xi’an, Shaanxi, 710129, China
– sequence: 2
  givenname: Menghua
  surname: Zheng
  fullname: Zheng, Menghua
  organization: School of Software, Northwestern Polytechnical University, Xi’an, Shaanxi, 710129, China
– sequence: 3
  givenname: Wangmeng
  surname: Zuo
  fullname: Zuo, Wangmeng
  organization: School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
– sequence: 4
  givenname: Bob
  surname: Zhang
  fullname: Zhang, Bob
  organization: Department of Computer and Information Science, University of Macau, Macau, 999078, China
– sequence: 5
  givenname: Yanning
  surname: Zhang
  fullname: Zhang, Yanning
  email: ynzhang@nwpu.edu.cn
  organization: National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology, Xi’an, Shaanxi, 710129, China
– sequence: 6
  givenname: David
  surname: Zhang
  fullname: Zhang, David
  organization: School of Data Science, The Chinese University of Hong Kong (Shenzhen), Shenzhen, 518172, Guangdong, China
BookMark eNqFkM9OwzAMhyM0JLbBG3DoC7Q4SdO0HJDQxD9piAucoy5xt0xdMiVhE29Pp3LiABdbsvVZ_n0zMnHeISHXFAoKtLrZFvs2ab8uGDA2jBoQcEamtJY8F7RkEzIF4DTnDPgFmcW4BaByWExJ9frZJ5vH1K4xs7tTNei8jdats6NNmyxtMDu2B-wxZSm0LnY-7C7Jedf2Ea9--px8PD68L57z5dvTy-J-mWsOVcqFZoxiJWFVN0JKU1MmsTOyaWRnoNRIRWsEb0ouma4bU8OKGV4KrUsNHQKfk9vxrg4-xoCd0ja1yXo3vGJ7RUGdDKitGg2okwE1Ghjg8he8D0PE8PUfdjdiOAQ7WAwqaotOo7EBdVLG278PfAONsXkF
CitedBy_id crossref_primary_10_1016_j_jfca_2023_105325
crossref_primary_10_3390_electronics13091676
crossref_primary_10_1631_jzus_A2300251
crossref_primary_10_3390_s24010042
crossref_primary_10_1016_j_measurement_2024_115434
crossref_primary_10_1049_ipr2_13264
crossref_primary_10_1109_JIOT_2024_3482453
crossref_primary_10_1007_s11600_024_01339_x
crossref_primary_10_1016_j_mri_2025_110336
crossref_primary_10_1080_01431161_2023_2229494
crossref_primary_10_1109_TGRS_2024_3409550
crossref_primary_10_1016_j_pnsc_2023_10_004
crossref_primary_10_1049_ell2_70071
crossref_primary_10_1016_j_aei_2024_102355
crossref_primary_10_3390_electronics12112364
crossref_primary_10_3788_AI_2024_20001
crossref_primary_10_1142_S0218001424520037
crossref_primary_10_1007_s12596_024_02065_9
crossref_primary_10_1109_TIP_2024_3355818
crossref_primary_10_1007_s11760_024_03461_1
crossref_primary_10_1111_coin_12611
crossref_primary_10_1145_3714471
crossref_primary_10_1063_5_0223715
crossref_primary_10_1109_TGRS_2024_3434349
crossref_primary_10_1007_s12145_023_01212_3
crossref_primary_10_3390_s23208574
crossref_primary_10_1016_j_ins_2023_119014
crossref_primary_10_1007_s12530_023_09533_w
crossref_primary_10_1016_j_eja_2025_127599
crossref_primary_10_1587_elex_21_20240123
crossref_primary_10_3389_fnins_2024_1516868
crossref_primary_10_3390_math11173678
crossref_primary_10_7717_peerj_cs_1817
crossref_primary_10_1016_j_patcog_2024_110823
crossref_primary_10_3390_app132212268
crossref_primary_10_3390_math11122772
crossref_primary_10_3934_era_2024187
crossref_primary_10_1088_1361_6501_ad087e
crossref_primary_10_1016_j_optlastec_2025_112475
crossref_primary_10_1007_s11042_023_17623_9
crossref_primary_10_1007_s00530_024_01508_4
crossref_primary_10_1007_s10489_023_04861_5
crossref_primary_10_1142_S0219467824500578
crossref_primary_10_1016_j_patcog_2024_111196
crossref_primary_10_3934_mbe_2023914
crossref_primary_10_1016_j_ecoinf_2023_102250
crossref_primary_10_3390_jimaging11010014
crossref_primary_10_1016_j_optlaseng_2024_108457
crossref_primary_10_1109_TMM_2023_3263078
crossref_primary_10_1117_1_OE_64_3_037103
crossref_primary_10_1007_s12666_024_03367_z
crossref_primary_10_3934_mbe_2023609
crossref_primary_10_1109_TCSVT_2024_3486756
crossref_primary_10_3390_fractalfract7070566
crossref_primary_10_1016_j_engappai_2023_106869
crossref_primary_10_1016_j_dsp_2025_105037
crossref_primary_10_1109_TNNLS_2023_3282953
crossref_primary_10_1007_s11042_023_16583_4
crossref_primary_10_1109_ACCESS_2023_3264604
crossref_primary_10_1109_ACCESS_2024_3375360
crossref_primary_10_1155_acis_8442143
crossref_primary_10_1016_j_imavis_2023_104842
crossref_primary_10_1109_TIFS_2024_3393748
crossref_primary_10_1007_s00371_023_03046_y
crossref_primary_10_1049_cit2_12297
crossref_primary_10_1109_ACCESS_2024_3415420
crossref_primary_10_1109_TIM_2025_3541646
crossref_primary_10_1145_3578521
crossref_primary_10_3390_electronics11234041
crossref_primary_10_1007_s11517_023_02972_2
crossref_primary_10_1007_s10489_023_04895_9
crossref_primary_10_1016_j_jvcir_2024_104148
crossref_primary_10_32604_cmc_2024_046443
crossref_primary_10_2478_amns_2023_2_01416
crossref_primary_10_1016_j_neunet_2025_107190
crossref_primary_10_1016_j_engappai_2024_109099
crossref_primary_10_1016_j_apm_2023_10_023
crossref_primary_10_1016_j_engappai_2024_109890
crossref_primary_10_1109_TCSVT_2024_3494239
crossref_primary_10_3934_era_2025055
crossref_primary_10_1088_1361_6501_ad457f
crossref_primary_10_1117_1_JEI_33_1_013042
crossref_primary_10_1088_1361_6560_ad7e78
crossref_primary_10_1016_j_neucom_2023_127066
crossref_primary_10_1016_j_jappgeo_2025_105640
crossref_primary_10_1016_j_patcog_2023_110176
crossref_primary_10_3390_jmse13020278
crossref_primary_10_1109_TNNLS_2023_3321076
crossref_primary_10_1088_1361_6501_acea9e
crossref_primary_10_1080_13682199_2023_2198350
crossref_primary_10_1016_j_aca_2024_343073
crossref_primary_10_3390_fractalfract8090511
crossref_primary_10_1016_j_ijleo_2025_172306
crossref_primary_10_1016_j_neunet_2024_106218
crossref_primary_10_3390_electronics12245013
crossref_primary_10_1007_s11760_023_02944_x
crossref_primary_10_1016_j_eswa_2023_123018
crossref_primary_10_1186_s13662_024_03843_2
crossref_primary_10_1117_1_JMM_24_1_014004
crossref_primary_10_3390_electronics12245019
crossref_primary_10_1016_j_imavis_2024_105073
crossref_primary_10_1016_j_neunet_2024_106853
crossref_primary_10_1016_j_patcog_2024_110291
crossref_primary_10_3390_app131911019
crossref_primary_10_1080_13682199_2024_2449273
crossref_primary_10_1016_j_knosys_2023_110567
crossref_primary_10_1016_j_patcog_2024_111033
crossref_primary_10_1007_s11227_024_06646_0
crossref_primary_10_3390_technologies11040111
crossref_primary_10_1016_j_measurement_2024_115862
crossref_primary_10_1007_s11760_025_03974_3
crossref_primary_10_3390_app14167044
crossref_primary_10_1002_sdtp_17317
crossref_primary_10_1016_j_patcog_2024_110986
crossref_primary_10_1109_TGRS_2023_3272588
crossref_primary_10_1038_s41598_025_86860_9
crossref_primary_10_1016_j_engappai_2025_110275
crossref_primary_10_1016_j_microc_2023_108777
crossref_primary_10_1007_s00530_024_01469_8
crossref_primary_10_1007_s11042_023_16346_1
crossref_primary_10_1109_TCSVT_2023_3348804
crossref_primary_10_1155_2024_9199410
crossref_primary_10_3390_s23094414
crossref_primary_10_1109_JAS_2023_123543
crossref_primary_10_1007_s11280_024_01258_3
crossref_primary_10_3390_min13060760
crossref_primary_10_1063_5_0216493
crossref_primary_10_1088_2058_9565_ad3d7f
crossref_primary_10_1007_s11063_023_11359_1
crossref_primary_10_3390_app13095749
crossref_primary_10_1007_s10115_023_01965_9
crossref_primary_10_1109_TCYB_2022_3227044
crossref_primary_10_1109_TCYB_2023_3237635
crossref_primary_10_1016_j_apm_2024_04_001
crossref_primary_10_11834_jig_230254
crossref_primary_10_1142_S0219467825500032
crossref_primary_10_3390_app13127184
crossref_primary_10_1080_13682199_2023_2229040
crossref_primary_10_1109_ACCESS_2022_3222826
crossref_primary_10_3390_app132011560
crossref_primary_10_3390_drones7080486
crossref_primary_10_1016_j_ymssp_2023_111032
crossref_primary_10_3390_electronics13245002
crossref_primary_10_5194_amt_17_4659_2024
crossref_primary_10_1007_s00521_023_09314_1
crossref_primary_10_1016_j_eswa_2024_126300
crossref_primary_10_1088_1402_4896_ad8d8a
crossref_primary_10_3390_s23135915
crossref_primary_10_1080_10589759_2024_2387757
crossref_primary_10_1007_s11760_024_03093_5
crossref_primary_10_1016_j_neunet_2023_05_044
crossref_primary_10_3390_electronics12132927
crossref_primary_10_1016_j_patcog_2024_110563
crossref_primary_10_3390_f15091558
crossref_primary_10_1109_TIM_2024_3374294
crossref_primary_10_1007_s00530_024_01284_1
crossref_primary_10_3389_fmars_2023_1306229
crossref_primary_10_3390_e25081176
crossref_primary_10_1016_j_compag_2024_109461
crossref_primary_10_1109_TFUZZ_2024_3489227
crossref_primary_10_1016_j_image_2025_117286
crossref_primary_10_33889_PMSL_2023_2_2_010
crossref_primary_10_1016_j_chaos_2024_115521
crossref_primary_10_1785_0120230304
crossref_primary_10_1016_j_neunet_2023_11_039
crossref_primary_10_1109_TNNLS_2023_3282809
crossref_primary_10_1016_j_ijmecsci_2024_109075
crossref_primary_10_1109_TGRS_2024_3504240
crossref_primary_10_1109_ACCESS_2023_3335372
Cites_doi 10.1109/TIP.2015.2414873
10.1109/TIP.2011.2109730
10.1109/ACCESS.2021.3083577
10.3390/rs13091858
10.1109/TIP.2018.2839891
10.1016/j.neunet.2020.07.025
10.1109/82.749102
10.1109/TIP.2017.2662206
10.1109/TIP.2003.819861
10.1016/j.neunet.2019.12.024
10.1080/00401706.1971.10488811
10.1016/j.image.2004.10.003
10.1016/j.patcog.2015.05.028
10.1016/j.patcog.2021.108506
10.1016/j.patcog.2009.01.005
10.1016/j.knosys.2021.106949
10.1109/TPAMI.2016.2596743
10.1109/TIP.2007.901238
10.1016/j.patcog.2020.107639
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2022.109050
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
ExternalDocumentID 10_1016_j_patcog_2022_109050
S0031320322005301
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-5c221e670b89577d8127efd7997fd04ce15ad5394372c89d80b2d345cc4c0fe03
IEDL.DBID .~1
ISSN 0031-3203
IngestDate Tue Jul 01 02:36:39 EDT 2025
Thu Apr 24 22:50:43 EDT 2025
Fri Feb 23 02:39:42 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Signal processing
Dynamic convolution
CNN
Wavelet transform
Image denoising
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-5c221e670b89577d8127efd7997fd04ce15ad5394372c89d80b2d345cc4c0fe03
ORCID 0000-0002-5610-8147
ParticipantIDs crossref_citationtrail_10_1016_j_patcog_2022_109050
crossref_primary_10_1016_j_patcog_2022_109050
elsevier_sciencedirect_doi_10_1016_j_patcog_2022_109050
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2023
2023-02-00
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: February 2023
PublicationDecade 2020
PublicationTitle Pattern recognition
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ahn, Kang, Sohn (bib0029) 2018
Wang, Bovik, Sheikh, Simoncelli (bib0038) 2004; 13
Zhang, Tian, Kong, Zhong, Fu (bib0009) 2018
Charbonnier, Blanc-Feraud, Aubert, Barlaud (bib0028) 1994; vol. 2
Zhang, Zuo, Chen, Meng, Zhang (bib0006) 2017; 26
Tian, Fei, Zheng, Xu, Zuo, Lin (bib0001) 2020; 131
Allen (bib0019) 1971; 13
Ayyoubzadeh, Royat (bib0022) 2021
(2021).
Liu (bib0016) 2015; 8
Liu, Anwar, Zheng, Tian (bib0035) 2020
(2020).
Chen, Pock (bib0031) 2016; 39
Rabbani (bib0003) 2009; 42
Tai, Yang, Liu, Xu (bib0008) 2017
D.P. Kingma, J. Ba, Adam: a method for stochastic optimization
Quan, Chen, Shao, Teng, Xu, Ji (bib0032) 2021; 111
Zhang, Zuo, Zhang (bib0010) 2018; 27
Wang, Zhang (bib0002) 1999; 46
Luo, Chan, Nguyen (bib0036) 2015; 24
Cho, Bui (bib0015) 2005; 20
Salimans, Goodfellow, Zaremba, Cheung, Radford, Chen (bib0040) 2016; 29
Y. Li, Y. Chen, X. Dai, M. Liu, D. Chen, Y. Yu, L. Yuan, Z. Liu, M. Chen, N. Vasconcelos, Revisiting dynamic convolution via matrix decomposition
Liang, Cao, Sun, Zhang, Van Gool, Timofte (bib0021) 2021
Zhang, Isola, Efros, Shechtman, Wang (bib0039) 2018
Dabov, Foi, Katkovnik, Egiazarian (bib0004) 2007; 16
Yang, Wang (bib0018) 2021; 9
Li, Suen (bib0033) 2016; 49
Feng, Zhang, Su, Xu (bib0023) 2021; 13
Li, Cai, Nguyen, Zheng (bib0024) 2013
(2014).
J. Xu, H. Li, Z. Liang, D. Zhang, L. Zhang, Real-world noisy image denoising: a new benchmark
Guo, Seyed Mousavi, Huu Vu, Monga (bib0017) 2017
Gu, Zhang, Zuo, Feng (bib0030) 2014
Chen, Dai, Liu, Chen, Yuan, Liu (bib0011) 2020
(2018).
Y. Zhang, J. Zhang, Q. Wang, Z. Zhong, Dynet: dynamic convolution for accelerating convolutional neural networks
Sun, Chen, Wang, Dong, Zhou, Chen (bib0013) 2021
Tian, Xu, Zuo, Du, Lin, Zhang (bib0034) 2021; 226
Li, Liang, Zhang, Fan, Yu (bib0005) 2022; 125
Zhang, Zhang, Mou, Zhang (bib0037) 2011; 20
Franzen (bib0026) 1999; 4
Nam, Hwang, Matsushita, Kim (bib0027) 2016
Tian, Xu, Li, Zuo, Fei, Liu (bib0007) 2020; 124
Chen (10.1016/j.patcog.2022.109050_bib0031) 2016; 39
Liu (10.1016/j.patcog.2022.109050_bib0035) 2020
Sun (10.1016/j.patcog.2022.109050_bib0013) 2021
Li (10.1016/j.patcog.2022.109050_bib0033) 2016; 49
Feng (10.1016/j.patcog.2022.109050_bib0023) 2021; 13
Ayyoubzadeh (10.1016/j.patcog.2022.109050_bib0022) 2021
Ahn (10.1016/j.patcog.2022.109050_bib0029) 2018
Chen (10.1016/j.patcog.2022.109050_bib0011) 2020
Zhang (10.1016/j.patcog.2022.109050_bib0009) 2018
Li (10.1016/j.patcog.2022.109050_bib0005) 2022; 125
Wang (10.1016/j.patcog.2022.109050_bib0038) 2004; 13
10.1016/j.patcog.2022.109050_bib0025
Charbonnier (10.1016/j.patcog.2022.109050_bib0028) 1994; vol. 2
Allen (10.1016/j.patcog.2022.109050_bib0019) 1971; 13
Zhang (10.1016/j.patcog.2022.109050_bib0037) 2011; 20
Tai (10.1016/j.patcog.2022.109050_bib0008) 2017
Tian (10.1016/j.patcog.2022.109050_bib0034) 2021; 226
Tian (10.1016/j.patcog.2022.109050_bib0001) 2020; 131
10.1016/j.patcog.2022.109050_bib0020
Nam (10.1016/j.patcog.2022.109050_bib0027) 2016
Gu (10.1016/j.patcog.2022.109050_bib0030) 2014
Rabbani (10.1016/j.patcog.2022.109050_bib0003) 2009; 42
Guo (10.1016/j.patcog.2022.109050_bib0017) 2017
Zhang (10.1016/j.patcog.2022.109050_bib0039) 2018
Tian (10.1016/j.patcog.2022.109050_bib0007) 2020; 124
Zhang (10.1016/j.patcog.2022.109050_bib0006) 2017; 26
Zhang (10.1016/j.patcog.2022.109050_bib0010) 2018; 27
Luo (10.1016/j.patcog.2022.109050_bib0036) 2015; 24
Yang (10.1016/j.patcog.2022.109050_bib0018) 2021; 9
Cho (10.1016/j.patcog.2022.109050_bib0015) 2005; 20
10.1016/j.patcog.2022.109050_bib0014
Wang (10.1016/j.patcog.2022.109050_bib0002) 1999; 46
10.1016/j.patcog.2022.109050_bib0012
Liu (10.1016/j.patcog.2022.109050_bib0016) 2015; 8
Liang (10.1016/j.patcog.2022.109050_bib0021) 2021
Salimans (10.1016/j.patcog.2022.109050_bib0040) 2016; 29
Dabov (10.1016/j.patcog.2022.109050_bib0004) 2007; 16
Franzen (10.1016/j.patcog.2022.109050_bib0026) 1999; 4
Quan (10.1016/j.patcog.2022.109050_bib0032) 2021; 111
Li (10.1016/j.patcog.2022.109050_bib0024) 2013
References_xml – reference: Y. Zhang, J. Zhang, Q. Wang, Z. Zhong, Dynet: dynamic convolution for accelerating convolutional neural networks,
– volume: 4
  year: 1999
  ident: bib0026
  article-title: Kodak lossless true color image suite
  publication-title: source: http://r0k. us/graphics/kodak
– volume: 8
  start-page: 29
  year: 2015
  end-page: 40
  ident: bib0016
  article-title: Image denoising method based on threshold, wavelet transform and genetic algorithm
  publication-title: Int. J. Signal Process. Image Process. Pattern Recognit.
– reference: (2018).
– volume: 29
  year: 2016
  ident: bib0040
  article-title: Improved techniques for training GANs
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 49
  start-page: 237
  year: 2016
  end-page: 248
  ident: bib0033
  article-title: A novel non-local means image denoising method based on grey theory
  publication-title: Pattern Recognit.
– volume: 13
  start-page: 469
  year: 1971
  end-page: 475
  ident: bib0019
  article-title: Mean square error of prediction as a criterion for selecting variables
  publication-title: Technometrics
– reference: (2014).
– reference: Y. Li, Y. Chen, X. Dai, M. Liu, D. Chen, Y. Yu, L. Yuan, Z. Liu, M. Chen, N. Vasconcelos, Revisiting dynamic convolution via matrix decomposition,
– reference: J. Xu, H. Li, Z. Liang, D. Zhang, L. Zhang, Real-world noisy image denoising: a new benchmark,
– start-page: 791
  year: 2018
  end-page: 799
  ident: bib0029
  article-title: Image super-resolution via progressive cascading residual network
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops
– volume: vol. 2
  start-page: 168
  year: 1994
  end-page: 172
  ident: bib0028
  article-title: Two deterministic half-quadratic regularization algorithms for computed imaging
  publication-title: Proceedings of 1st International Conference on Image Processing
– volume: 9
  start-page: 98790
  year: 2021
  end-page: 98799
  ident: bib0018
  article-title: An effective and comprehensive image super resolution algorithm combined with a novel convolutional neural network and wavelet transform
  publication-title: IEEE Access
– volume: 26
  start-page: 3142
  year: 2017
  end-page: 3155
  ident: bib0006
  article-title: Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising
  publication-title: IEEE Trans. Image Process.
– volume: 124
  start-page: 117
  year: 2020
  end-page: 129
  ident: bib0007
  article-title: Attention-guided CNN for image denoising
  publication-title: Neural Netw.
– volume: 226
  start-page: 106949
  year: 2021
  ident: bib0034
  article-title: Designing and training of a dual CNN for image denoising
  publication-title: Knowl. Based Syst.
– start-page: 2472
  year: 2018
  end-page: 2481
  ident: bib0009
  article-title: Residual dense network for image super-resolution
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 1
  year: 2013
  end-page: 6
  ident: bib0024
  article-title: A benchmark for semantic image segmentation
  publication-title: 2013 IEEE International Conference on Multimedia and Expo (ICME)
– volume: 125
  start-page: 108506
  year: 2022
  ident: bib0005
  article-title: Joint image denoising with gradient direction and edge-preserving regularization
  publication-title: Pattern Recognit.
– start-page: 508
  year: 2020
  end-page: 509
  ident: bib0035
  article-title: GradNet image denoising
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
– year: 2021
  ident: bib0013
  article-title: Gaussian dynamic convolution for efficient single-image segmentation
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– reference: (2020).
– start-page: 2862
  year: 2014
  end-page: 2869
  ident: bib0030
  article-title: Weighted nuclear norm minimization with application to image denoising
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 27
  start-page: 4608
  year: 2018
  end-page: 4622
  ident: bib0010
  article-title: FFDNet: toward a fast and flexible solution for CNN-based image denoising
  publication-title: IEEE Trans. Image Process.
– volume: 131
  start-page: 251
  year: 2020
  end-page: 275
  ident: bib0001
  article-title: Deep learning on image denoising: an overview
  publication-title: Neural Netw.
– volume: 111
  start-page: 107639
  year: 2021
  ident: bib0032
  article-title: Image denoising using complex-valued deep CNN
  publication-title: Pattern Recognit.
– volume: 39
  start-page: 1256
  year: 2016
  end-page: 1272
  ident: bib0031
  article-title: Trainable nonlinear reaction diffusion: a flexible framework for fast and effective image restoration
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 16
  start-page: 2080
  year: 2007
  end-page: 2095
  ident: bib0004
  article-title: Image denoising by sparse 3-D transform-domain collaborative filtering
  publication-title: IEEE Trans. Image Process.
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  ident: bib0038
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
– start-page: 11030
  year: 2020
  end-page: 11039
  ident: bib0011
  article-title: Dynamic convolution: Attention over convolution kernels
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– reference: (2021).
– start-page: 1833
  year: 2021
  end-page: 1844
  ident: bib0021
  article-title: SwinIR: Image restoration using swin transformer
  publication-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
– volume: 24
  start-page: 2167
  year: 2015
  end-page: 2181
  ident: bib0036
  article-title: Adaptive image denoising by targeted databases
  publication-title: IEEE Trans. Image Process.
– start-page: 1683
  year: 2016
  end-page: 1691
  ident: bib0027
  article-title: A holistic approach to cross-channel image noise modeling and its application to image denoising
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 42
  start-page: 2181
  year: 2009
  end-page: 2193
  ident: bib0003
  article-title: Image denoising in steerable pyramid domain based on a local laplace prior
  publication-title: Pattern Recognit.
– start-page: 104
  year: 2017
  end-page: 113
  ident: bib0017
  article-title: Deep wavelet prediction for image super-resolution
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops
– start-page: 388
  year: 2021
  end-page: 397
  ident: bib0022
  article-title: (ASNA) an attention-based siamese-difference neural network with surrogate ranking loss function for perceptual image quality assessment
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 586
  year: 2018
  end-page: 595
  ident: bib0039
  article-title: The unreasonable effectiveness of deep features as a perceptual metric
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 20
  start-page: 2378
  year: 2011
  end-page: 2386
  ident: bib0037
  article-title: FSIM: a feature similarity index for image quality assessment
  publication-title: IEEE Trans. Image Process.
– start-page: 4539
  year: 2017
  end-page: 4547
  ident: bib0008
  article-title: MemNet: a persistent memory network for image restoration
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 20
  start-page: 77
  year: 2005
  end-page: 89
  ident: bib0015
  article-title: Multivariate statistical modeling for image denoising using wavelet transforms
  publication-title: Signal Process. Image Commun.
– volume: 13
  start-page: 1858
  year: 2021
  ident: bib0023
  article-title: Optical remote sensing image denoising and super-resolution reconstructing using optimized generative network in wavelet transform domain
  publication-title: Remote Sens.
– reference: D.P. Kingma, J. Ba, Adam: a method for stochastic optimization,
– volume: 46
  start-page: 78
  year: 1999
  end-page: 80
  ident: bib0002
  article-title: Progressive switching median filter for the removal of impulse noise from highly corrupted images
  publication-title: IEEE Trans. Circuits Syst. IIAnal. Digit. Signal Process.
– start-page: 11030
  year: 2020
  ident: 10.1016/j.patcog.2022.109050_bib0011
  article-title: Dynamic convolution: Attention over convolution kernels
– volume: 24
  start-page: 2167
  issue: 7
  year: 2015
  ident: 10.1016/j.patcog.2022.109050_bib0036
  article-title: Adaptive image denoising by targeted databases
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2414873
– volume: 20
  start-page: 2378
  issue: 8
  year: 2011
  ident: 10.1016/j.patcog.2022.109050_bib0037
  article-title: FSIM: a feature similarity index for image quality assessment
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2011.2109730
– start-page: 4539
  year: 2017
  ident: 10.1016/j.patcog.2022.109050_bib0008
  article-title: MemNet: a persistent memory network for image restoration
– volume: 9
  start-page: 98790
  year: 2021
  ident: 10.1016/j.patcog.2022.109050_bib0018
  article-title: An effective and comprehensive image super resolution algorithm combined with a novel convolutional neural network and wavelet transform
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3083577
– volume: 13
  start-page: 1858
  issue: 9
  year: 2021
  ident: 10.1016/j.patcog.2022.109050_bib0023
  article-title: Optical remote sensing image denoising and super-resolution reconstructing using optimized generative network in wavelet transform domain
  publication-title: Remote Sens.
  doi: 10.3390/rs13091858
– volume: 27
  start-page: 4608
  issue: 9
  year: 2018
  ident: 10.1016/j.patcog.2022.109050_bib0010
  article-title: FFDNet: toward a fast and flexible solution for CNN-based image denoising
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2839891
– year: 2021
  ident: 10.1016/j.patcog.2022.109050_bib0013
  article-title: Gaussian dynamic convolution for efficient single-image segmentation
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– start-page: 2472
  year: 2018
  ident: 10.1016/j.patcog.2022.109050_bib0009
  article-title: Residual dense network for image super-resolution
– volume: 131
  start-page: 251
  year: 2020
  ident: 10.1016/j.patcog.2022.109050_bib0001
  article-title: Deep learning on image denoising: an overview
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2020.07.025
– start-page: 388
  year: 2021
  ident: 10.1016/j.patcog.2022.109050_bib0022
  article-title: (ASNA) an attention-based siamese-difference neural network with surrogate ranking loss function for perceptual image quality assessment
– start-page: 104
  year: 2017
  ident: 10.1016/j.patcog.2022.109050_bib0017
  article-title: Deep wavelet prediction for image super-resolution
– start-page: 586
  year: 2018
  ident: 10.1016/j.patcog.2022.109050_bib0039
  article-title: The unreasonable effectiveness of deep features as a perceptual metric
– start-page: 1683
  year: 2016
  ident: 10.1016/j.patcog.2022.109050_bib0027
  article-title: A holistic approach to cross-channel image noise modeling and its application to image denoising
– ident: 10.1016/j.patcog.2022.109050_bib0025
– volume: 46
  start-page: 78
  issue: 1
  year: 1999
  ident: 10.1016/j.patcog.2022.109050_bib0002
  article-title: Progressive switching median filter for the removal of impulse noise from highly corrupted images
  publication-title: IEEE Trans. Circuits Syst. IIAnal. Digit. Signal Process.
  doi: 10.1109/82.749102
– volume: 26
  start-page: 3142
  issue: 7
  year: 2017
  ident: 10.1016/j.patcog.2022.109050_bib0006
  article-title: Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2662206
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  ident: 10.1016/j.patcog.2022.109050_bib0038
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– volume: 124
  start-page: 117
  year: 2020
  ident: 10.1016/j.patcog.2022.109050_bib0007
  article-title: Attention-guided CNN for image denoising
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2019.12.024
– start-page: 791
  year: 2018
  ident: 10.1016/j.patcog.2022.109050_bib0029
  article-title: Image super-resolution via progressive cascading residual network
– volume: 13
  start-page: 469
  issue: 3
  year: 1971
  ident: 10.1016/j.patcog.2022.109050_bib0019
  article-title: Mean square error of prediction as a criterion for selecting variables
  publication-title: Technometrics
  doi: 10.1080/00401706.1971.10488811
– volume: 29
  year: 2016
  ident: 10.1016/j.patcog.2022.109050_bib0040
  article-title: Improved techniques for training GANs
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 20
  start-page: 77
  issue: 1
  year: 2005
  ident: 10.1016/j.patcog.2022.109050_bib0015
  article-title: Multivariate statistical modeling for image denoising using wavelet transforms
  publication-title: Signal Process. Image Commun.
  doi: 10.1016/j.image.2004.10.003
– start-page: 1
  year: 2013
  ident: 10.1016/j.patcog.2022.109050_bib0024
  article-title: A benchmark for semantic image segmentation
– volume: 49
  start-page: 237
  year: 2016
  ident: 10.1016/j.patcog.2022.109050_bib0033
  article-title: A novel non-local means image denoising method based on grey theory
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2015.05.028
– volume: 125
  start-page: 108506
  year: 2022
  ident: 10.1016/j.patcog.2022.109050_bib0005
  article-title: Joint image denoising with gradient direction and edge-preserving regularization
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.108506
– ident: 10.1016/j.patcog.2022.109050_bib0014
– volume: 8
  start-page: 29
  issue: 2
  year: 2015
  ident: 10.1016/j.patcog.2022.109050_bib0016
  article-title: Image denoising method based on threshold, wavelet transform and genetic algorithm
  publication-title: Int. J. Signal Process. Image Process. Pattern Recognit.
– ident: 10.1016/j.patcog.2022.109050_bib0012
– ident: 10.1016/j.patcog.2022.109050_bib0020
– volume: vol. 2
  start-page: 168
  year: 1994
  ident: 10.1016/j.patcog.2022.109050_bib0028
  article-title: Two deterministic half-quadratic regularization algorithms for computed imaging
– start-page: 1833
  year: 2021
  ident: 10.1016/j.patcog.2022.109050_bib0021
  article-title: SwinIR: Image restoration using swin transformer
– volume: 42
  start-page: 2181
  issue: 9
  year: 2009
  ident: 10.1016/j.patcog.2022.109050_bib0003
  article-title: Image denoising in steerable pyramid domain based on a local laplace prior
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2009.01.005
– volume: 226
  start-page: 106949
  year: 2021
  ident: 10.1016/j.patcog.2022.109050_bib0034
  article-title: Designing and training of a dual CNN for image denoising
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2021.106949
– volume: 39
  start-page: 1256
  issue: 6
  year: 2016
  ident: 10.1016/j.patcog.2022.109050_bib0031
  article-title: Trainable nonlinear reaction diffusion: a flexible framework for fast and effective image restoration
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2596743
– volume: 4
  issue: 2
  year: 1999
  ident: 10.1016/j.patcog.2022.109050_bib0026
  article-title: Kodak lossless true color image suite
  publication-title: source: http://r0k. us/graphics/kodak
– volume: 16
  start-page: 2080
  issue: 8
  year: 2007
  ident: 10.1016/j.patcog.2022.109050_bib0004
  article-title: Image denoising by sparse 3-D transform-domain collaborative filtering
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2007.901238
– start-page: 2862
  year: 2014
  ident: 10.1016/j.patcog.2022.109050_bib0030
  article-title: Weighted nuclear norm minimization with application to image denoising
– volume: 111
  start-page: 107639
  year: 2021
  ident: 10.1016/j.patcog.2022.109050_bib0032
  article-title: Image denoising using complex-valued deep CNN
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107639
– start-page: 508
  year: 2020
  ident: 10.1016/j.patcog.2022.109050_bib0035
  article-title: GradNet image denoising
SSID ssj0017142
Score 2.6990511
Snippet •A dynamic convolution is used into a CNN to address limitations in depth and width of lightweight CNNs for pursuing good denoising performance.•The...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109050
SubjectTerms CNN
Dynamic convolution
Image denoising
Signal processing
Wavelet transform
Title Multi-stage image denoising with the wavelet transform
URI https://dx.doi.org/10.1016/j.patcog.2022.109050
Volume 134
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXrz4Fuuj7MHr2s0-ssmxFEtV7MlCbyHZR6loWyTizd_uTB5FQRS85BB2IHw7OzM7mZmPkCtwcjwXMjApEsdUGhUsNzZmFi7aQYVYS4upgYdJPJ6qu5medciw7YXBssrG9tc2vbLWzZt-g2Z_vVhgjy-OHeSgkahJVQ8XTq8Dnb7-2JR5IL93PTFcRgxXt-1zVY3XGszdag63RCFwrhLH7vuf3NMXlzPaJ7tNrEgH9ecckI5fHpK9loeBNsfyiMRVFy2DOG_u6eIFn2BNVgtMA1BMtFKI8uh7jhwTJS3bUPWYTEc3j8Mxa_gQmIXAvmTaChH52PAiSbUxDnyz8cGZNDXBcWV9pHOnZYq_4mySuoQXwkmlrVWWB8_lCdlarpb-lFATAuyCLbTxToVE5EHoxLg0CBUAqqJLZAtDZpth4chZ8Zy1VWFPWQ1ehuBlNXhdwjZS63pYxh_rTYtw9m3TM7Dnv0qe_VvynOwgY3xdeH1BtsrXN38JcUVZ9CrF6ZHtwe39ePIJbrDLfw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5Ke9CLb7E-c_C6dLOPbHIsRUnt49RCbyHZR4loWyTi33en2RQFUfCSQ8hA-HZ2ZnZ25huE7p2TIzllFjMaa8yTsMC5VBFW7qBtuY0EU5AamEyjdM6fFmLRQoOmFwbKKr3tr2361lr7Nz2PZm9TltDjC7SDxGkkaBL0cHWAnYq3Uac_HKXT3WWCDHlNGs5CDAJNB922zGvjLN566Q6KlAK1EoEG_J881Bev83iEDny4GPTrPzpGLbM6QYfNKIbA78xTFG0babEL9ZYmKF_h6QzKuoRMQAC51sAFesFHDmMmqqBqotUzNH98mA1S7EciYOVi-woLRWloIkmKOBFSaueepbFaJom0mnBlQpFrwRK4jVNxomNSUM24UIorYg1h56i9Wq_MBQqktW4hVCGk0dzGNLdUxFInlnLroCq6iDUwZMrzhcPYipesKQx7zmrwMgAvq8HrIryT2tR8GX98LxuEs2_rnjmT_qvk5b8l79BeOpuMs_FwOrpC-zBAvq7Dvkbt6u3d3LgwoypuvRp9AnyWzjA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-stage+image+denoising+with+the+wavelet+transform&rft.jtitle=Pattern+recognition&rft.au=Tian%2C+Chunwei&rft.au=Zheng%2C+Menghua&rft.au=Zuo%2C+Wangmeng&rft.au=Zhang%2C+Bob&rft.date=2023-02-01&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.eissn=1873-5142&rft.volume=134&rft_id=info:doi/10.1016%2Fj.patcog.2022.109050&rft.externalDocID=S0031320322005301
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon