A multi-source domain information fusion network for rotating machinery fault diagnosis under variable operating conditions
In practical industrial scenarios, the variations of operating conditions such as load and rotational speed make mechanical systems subject to complex and variable environmental stresses, resulting in the distribution discrepancies of sample data. With the advantages of integrating the feature infor...
Saved in:
Published in | Information fusion Vol. 106; p. 102278 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1566-2535 1872-6305 |
DOI | 10.1016/j.inffus.2024.102278 |
Cover
Loading…
Abstract | In practical industrial scenarios, the variations of operating conditions such as load and rotational speed make mechanical systems subject to complex and variable environmental stresses, resulting in the distribution discrepancies of sample data. With the advantages of integrating the feature information and diagnosis knowledge, the transfer learning technique based on multiple source domains has become a stable and efficient solution to address the fault diagnosis challenge under variable operating conditions in the modern intelligent operation and maintenance. For the above discussions, a multi-source domain information fusion network (MDIFN) is proposed in this paper to obtain generalized knowledge with abundant feature information by combining the adversarial transfer learning technique with fine-grained information fusion of multiple source domains. First, an adversarial transfer network architecture is constructed in accordance with the complex feature transformation and the boundary equilibrium domain discrimination to implement feature learning and knowledge transfer of source and target domains. Then, a joint distribution domain adaptation mechanism is proposed to further facilitate the acquisition of domain invariant features. Finally, a class-related decision fusion (CDF) strategy is designed to realize the information fusion within the decision space. The fault diagnosis of rotating machinery under unknown operating conditions can be achieved by employing data under known multiple operating conditions for MDIFN training. The public Paderborn University (PU) bearing dataset and the actual mechanical comprehensive diagnosis simulation platform (MCDSP) bearing dataset from different testing rigs are considered to evaluate the cross-domain fault diagnosis performance of this method. The experimental results indicate that the method achieves an average accuracy of 95.97% on the PU dataset and 98.31% on the MCDSP dataset, which is superior to other state-of-the-art cross-domain fault diagnosis algorithms.
•A model is developed to diagnose faults under variable operating conditions.•A network architecture is constructed to perform feature learning and knowledge transfer.•A mechanism is proposed to reduce the feature distribution discrepancies.•A fusion strategy is designed to integrate multi-source domain information. |
---|---|
AbstractList | In practical industrial scenarios, the variations of operating conditions such as load and rotational speed make mechanical systems subject to complex and variable environmental stresses, resulting in the distribution discrepancies of sample data. With the advantages of integrating the feature information and diagnosis knowledge, the transfer learning technique based on multiple source domains has become a stable and efficient solution to address the fault diagnosis challenge under variable operating conditions in the modern intelligent operation and maintenance. For the above discussions, a multi-source domain information fusion network (MDIFN) is proposed in this paper to obtain generalized knowledge with abundant feature information by combining the adversarial transfer learning technique with fine-grained information fusion of multiple source domains. First, an adversarial transfer network architecture is constructed in accordance with the complex feature transformation and the boundary equilibrium domain discrimination to implement feature learning and knowledge transfer of source and target domains. Then, a joint distribution domain adaptation mechanism is proposed to further facilitate the acquisition of domain invariant features. Finally, a class-related decision fusion (CDF) strategy is designed to realize the information fusion within the decision space. The fault diagnosis of rotating machinery under unknown operating conditions can be achieved by employing data under known multiple operating conditions for MDIFN training. The public Paderborn University (PU) bearing dataset and the actual mechanical comprehensive diagnosis simulation platform (MCDSP) bearing dataset from different testing rigs are considered to evaluate the cross-domain fault diagnosis performance of this method. The experimental results indicate that the method achieves an average accuracy of 95.97% on the PU dataset and 98.31% on the MCDSP dataset, which is superior to other state-of-the-art cross-domain fault diagnosis algorithms.
•A model is developed to diagnose faults under variable operating conditions.•A network architecture is constructed to perform feature learning and knowledge transfer.•A mechanism is proposed to reduce the feature distribution discrepancies.•A fusion strategy is designed to integrate multi-source domain information. |
ArticleNumber | 102278 |
Author | Yang, Jingli Gao, Tianyu Tang, Qing |
Author_xml | – sequence: 1 givenname: Tianyu orcidid: 0000-0002-5722-9231 surname: Gao fullname: Gao, Tianyu email: gaotianyu0714@hit.edu.cn organization: Harbin Institute of Technology, No. 2 Yi-Kuang Street, Nangang District, Harbin, 150080, Heilongjiang Province, China – sequence: 2 givenname: Jingli orcidid: 0000-0003-4865-0339 surname: Yang fullname: Yang, Jingli email: jinglidg@hit.edu.cn organization: Harbin Institute of Technology, No. 2 Yi-Kuang Street, Nangang District, Harbin, 150080, Heilongjiang Province, China – sequence: 3 givenname: Qing surname: Tang fullname: Tang, Qing email: tangqing@cimtec.net.cn organization: China Institute of Marine Technology and Economy, No. 70 Xueyuan South Road, Haidian District, 100081, Beijing, China |
BookMark | eNqFkE1OwzAQRi1UJNrCDVj4Aim2EycuC6Sq4k9CYgNry7EnxSWxKzstqrg8DmHFAryZGY--J82boYnzDhC6pGRBCS2vtgvrmmYfF4ywIn0xVokTNKWiYlmZEz5JPS_LjPGcn6FZjFtCaEVyOkWfK9zt295m0e-DBmx8p6zDiedDp3rrHU7goTjoP3x4x2mBg-_Tzm1wp_SbdRCOuFEJg41VG-ejjXjvDAR8UMGqugXsdxDGiPbO2AEcz9Fpo9oIFz91jl7vbl_WD9nT8_3jevWU6ZyUfcYFobwxVNRQaGDpEp5GsiTGMC0Eb5iGZUkrUadHRU40rYVOXSOK3DCTz1ExcnXwMQZo5C7YToWjpEQOAuVWjgLlIFCOAlPs-ldM2_5bSR-Ubf8L34xhSIcdLAQZtQWnwdgAupfG278BX7IWlOI |
CitedBy_id | crossref_primary_10_1177_10775463241280426 crossref_primary_10_3390_electronics13204125 crossref_primary_10_1016_j_inffus_2024_102710 crossref_primary_10_1016_j_inffus_2024_102875 crossref_primary_10_1016_j_aei_2024_102715 crossref_primary_10_1038_s41598_024_75088_8 crossref_primary_10_1016_j_aei_2024_102878 crossref_primary_10_1007_s00202_025_02963_6 crossref_primary_10_1088_1361_6501_ad9045 crossref_primary_10_3390_app142210531 crossref_primary_10_1016_j_ress_2024_110409 crossref_primary_10_1016_j_inffus_2024_102909 crossref_primary_10_1016_j_measurement_2025_117060 crossref_primary_10_1016_j_ymssp_2025_112624 crossref_primary_10_1016_j_renene_2024_121965 crossref_primary_10_1016_j_ress_2024_110449 crossref_primary_10_1016_j_ress_2025_110848 crossref_primary_10_1109_TIM_2025_3527612 crossref_primary_10_1016_j_ress_2024_110769 crossref_primary_10_1109_TIM_2024_3522663 crossref_primary_10_3390_electronics14010011 crossref_primary_10_1016_j_ymssp_2024_112180 crossref_primary_10_1016_j_aei_2024_102605 crossref_primary_10_1016_j_aei_2024_103048 crossref_primary_10_1016_j_dsp_2024_104796 crossref_primary_10_1016_j_isatra_2024_08_012 crossref_primary_10_1186_s40537_024_01006_4 crossref_primary_10_3390_app14125310 crossref_primary_10_3390_electronics13224535 crossref_primary_10_1088_1361_6501_ad67f6 crossref_primary_10_1109_JSEN_2024_3415713 crossref_primary_10_1088_1361_6501_ad6c74 crossref_primary_10_3390_s24134244 crossref_primary_10_1016_j_measurement_2024_115975 crossref_primary_10_1016_j_measurement_2025_116989 crossref_primary_10_1109_ACCESS_2024_3515479 crossref_primary_10_1016_j_measurement_2024_116344 crossref_primary_10_1088_1361_6501_ad9e1d crossref_primary_10_1016_j_aei_2025_103156 crossref_primary_10_1016_j_aei_2025_103233 crossref_primary_10_1038_s41598_025_93133_y crossref_primary_10_3390_s24185914 crossref_primary_10_1016_j_neunet_2024_106518 crossref_primary_10_1016_j_aei_2024_102573 crossref_primary_10_3390_machines12080509 crossref_primary_10_1016_j_ymssp_2024_112246 crossref_primary_10_32604_cmc_2024_058785 crossref_primary_10_1016_j_inffus_2024_102583 crossref_primary_10_1016_j_inffus_2024_102862 crossref_primary_10_3390_electronics13234589 crossref_primary_10_1088_1361_6501_ad9ca6 crossref_primary_10_1088_1361_6501_ad9bd0 crossref_primary_10_1016_j_ress_2025_110898 crossref_primary_10_1016_j_ymssp_2025_112458 |
Cites_doi | 10.1016/j.ress.2022.108981 10.1016/j.ymssp.2022.109884 10.1016/j.ymssp.2021.108095 10.1016/j.aei.2021.101480 10.1016/j.knosys.2022.108466 10.1016/j.isatra.2020.08.010 10.1016/j.knosys.2022.110199 10.1109/TII.2022.3152540 10.1109/CVPR.2018.00392 10.1016/j.engappai.2022.105522 10.1016/j.ymssp.2022.109597 10.1016/j.ymssp.2023.110098 10.1016/j.measurement.2021.109359 10.1109/TII.2021.3138558 10.1016/j.renene.2022.10.018 10.1109/TCYB.2022.3195355 10.1016/j.measurement.2022.112350 10.1016/j.asoc.2023.110489 10.1016/j.eswa.2022.118918 10.1109/JIOT.2022.3178873 10.1109/TII.2022.3174715 10.1016/j.ress.2022.109036 10.1016/j.measurement.2022.112346 10.1016/j.eswa.2022.118802 10.1016/j.isatra.2022.03.014 10.1016/j.psep.2022.12.004 10.1016/j.knosys.2022.109952 10.1016/j.knosys.2022.110203 10.1016/j.inffus.2023.02.012 10.1109/IJCNN.2009.5178754 10.1109/TIM.2022.3216593 10.1016/j.inffus.2021.03.008 10.1016/j.measurement.2022.111986 10.1109/TII.2022.3149906 10.1016/j.aei.2022.101818 10.1016/j.eswa.2022.119057 10.1016/j.isatra.2022.03.008 10.1016/j.psep.2022.12.070 10.1016/j.ymssp.2022.109569 10.1609/aaai.v33i01.33015989 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.inffus.2024.102278 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1872-6305 |
ExternalDocumentID | 10_1016_j_inffus_2024_102278 S1566253524000563 |
GrantInformation_xml | – fundername: Technical Basic Research Plan grantid: JSJT2022206A001 – fundername: Natural Science Foundation of Heilongjiang Province of China grantid: LH2021F021 funderid: http://dx.doi.org/10.13039/501100005046 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABMYL ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K UHS ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-58015fd18be4ce215655fd090dd2c885f2ce96178bbbb1830c1b8cb18f843d2d3 |
IEDL.DBID | .~1 |
ISSN | 1566-2535 |
IngestDate | Tue Jul 01 04:14:44 EDT 2025 Thu Apr 24 22:50:28 EDT 2025 Sat Mar 16 16:14:13 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fault diagnosis Adversarial transfer learning Variable operating conditions Joint distribution domain adaptation Feature similarity metric Information fusion |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-58015fd18be4ce215655fd090dd2c885f2ce96178bbbb1830c1b8cb18f843d2d3 |
ORCID | 0000-0003-4865-0339 0000-0002-5722-9231 |
ParticipantIDs | crossref_primary_10_1016_j_inffus_2024_102278 crossref_citationtrail_10_1016_j_inffus_2024_102278 elsevier_sciencedirect_doi_10_1016_j_inffus_2024_102278 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2024 2024-06-00 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: June 2024 |
PublicationDecade | 2020 |
PublicationTitle | Information fusion |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Deng, Deng, Shi, Xu (b34) 2022; 18 Zhao, Jia, Shao (b44) 2023; 262 Wang, Sun, Cheng, Cui (b27) 2023; 118 Kuang, Xu, Tao, Zhang (b28) 2022; 130 Zhao, Li, Wu, Sun (b50) 2020; 107 Wu, Jiang, Zhu, Wang (b43) 2023; 189 Chen, Liao, Li, Huang, Xu, Jin, Li (b36) 2023; 53 Tang, Zhang, Xuan, Shi, Li (b16) 2022; 257 Yosinski, Clune, Bengio, Lipson (b48) 2014 Ganin, Ustinova, Ajakan (b31) 2016; 17 Wang, Zhang, Tang, Shi, Xuan (b12) 2023; 55 Zhu, Huang, Shen, Shen (b23) 2022; 18 Zhang, Wang, Li (b33) 2023; 229 Li, Jiang, Xie, Wang, Wang, Wu (b39) 2022; 51 Rezaeianjouybari, Shang (b41) 2021; 178 Gao, Yang, Jiang (b7) 2023; 19 Xu, Wang, Liu, Peng, He (b22) 2022; 203 Xie, Yang (b19) 2022; 9 M. Long, Y. Cao, J. Wang, M. Jordan, F. Bach, D. Blei, Learning Transferable Features with Deep Adaptation Networks, in: 32nd International Conference on Machine Learning, 2015, pp. 97–105. Yang, Xu, Lei, Lee, Stewart, Roberts (b38) 2022; 162 Xu, Feng, Yan, Yan (b1) 2023; 95 Shao, Lin, Zhang, Galar, Kumar (b14) 2021; 74 Liu, Hou, Shao, Chen (b8) 2023; 170 Zhu, Lei, Qi, Chai, Mazur, An, Huang (b4) 2023; 206 Chakrapani, Sugumaran (b11) 2023; 117 Tian, Han, Li, Shi (b45) 2022; 243 Yang, Gao, Jiang (b9) 2022; 71 Lu, Cui, Hu, Yin (b26) 2023; 213 Wang, Xu, Yang, Chang, Zhang, Kong (b37) 2023 K. Saito, K. Watanabe, Y. Ushiku, T. Harada, Maximum Classifier Discrepancy for Unsupervised Domain Adaptation, in: IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 3723–3732. Xiang, Zhang, Zhang, Hu, Bing (b25) 2023; 207 Ganaie, Tanveer (b6) 2022; 86–87 Jia, Liu, Vong, Wang, Cai (b21) 2023; 213 Qin, Wu, Huang, Zhang (b17) 2022; 18 Xu, Dong, Bashir, Zhang, Yang, Wang (b5) 2022; 245 Qian, Qin, Luo, Wang, Wu (b2) 2023; 186 Liu, Jiang, Wu, Yi, Wang (b42) 2023; 231 An, Zhang, Chai, Liu, Huang (b24) 2023; 212 Long, Qin, Yang, Huang, Li (b15) 2023; 182 Ding, Jia, Cao, Ding, Zhang (b13) 2023; 261 Tan, Xie, Ma, Yang, Zheng (b35) 2023; 231 Trabelsi, Bilaniuk, Zhang, Serdyuk, Subramanian, Santos, Mehri, Rostamzadeh, Bengio, Pal (b47) 2018 Zhu, Zhu, Tan, Song, Chen, Zheng (b32) 2022; 200 Y. Zhu, F. Zhuang, D. Wang, Aligning Domain-Specific Distribution and Classifier for Cross-Domain Classification from Multiple Sources, in: 33rd AAAI Conference on Artificial Intelligence, 2019, pp. 5989–5996. Wang, Chen, Feng, Yu, Huang, Yang (b49) 2020; 11 Liu, Xu, Xie, Fu, Chen, Liu, Zhang (b10) 2023; 170 Yin, Lu, Guo, Lei, Wang, Guan (b20) 2023; 182 Yang, Gao, Yan, Yang, Li (b3) 2023; 144 K. Hirose, Complex-valued neural networks: The merits and their origins, in: IEEE International Joint Conference on Neural Networks, 2009, pp. 1209–1216. Zhao, Liu, Shen (b18) 2022; 130 Ganin (10.1016/j.inffus.2024.102278_b31) 2016; 17 Wang (10.1016/j.inffus.2024.102278_b37) 2023 Trabelsi (10.1016/j.inffus.2024.102278_b47) 2018 Yang (10.1016/j.inffus.2024.102278_b9) 2022; 71 Yang (10.1016/j.inffus.2024.102278_b38) 2022; 162 Deng (10.1016/j.inffus.2024.102278_b34) 2022; 18 Yosinski (10.1016/j.inffus.2024.102278_b48) 2014 Zhu (10.1016/j.inffus.2024.102278_b32) 2022; 200 Chen (10.1016/j.inffus.2024.102278_b36) 2023; 53 Shao (10.1016/j.inffus.2024.102278_b14) 2021; 74 Rezaeianjouybari (10.1016/j.inffus.2024.102278_b41) 2021; 178 Li (10.1016/j.inffus.2024.102278_b39) 2022; 51 Wu (10.1016/j.inffus.2024.102278_b43) 2023; 189 Xiang (10.1016/j.inffus.2024.102278_b25) 2023; 207 10.1016/j.inffus.2024.102278_b40 Tang (10.1016/j.inffus.2024.102278_b16) 2022; 257 Ganaie (10.1016/j.inffus.2024.102278_b6) 2022; 86–87 Xie (10.1016/j.inffus.2024.102278_b19) 2022; 9 Qin (10.1016/j.inffus.2024.102278_b17) 2022; 18 Qian (10.1016/j.inffus.2024.102278_b2) 2023; 186 Liu (10.1016/j.inffus.2024.102278_b8) 2023; 170 Liu (10.1016/j.inffus.2024.102278_b42) 2023; 231 Xu (10.1016/j.inffus.2024.102278_b22) 2022; 203 10.1016/j.inffus.2024.102278_b46 Zhao (10.1016/j.inffus.2024.102278_b50) 2020; 107 Jia (10.1016/j.inffus.2024.102278_b21) 2023; 213 Long (10.1016/j.inffus.2024.102278_b15) 2023; 182 Tan (10.1016/j.inffus.2024.102278_b35) 2023; 231 Xu (10.1016/j.inffus.2024.102278_b1) 2023; 95 Liu (10.1016/j.inffus.2024.102278_b10) 2023; 170 Xu (10.1016/j.inffus.2024.102278_b5) 2022; 245 Lu (10.1016/j.inffus.2024.102278_b26) 2023; 213 Wang (10.1016/j.inffus.2024.102278_b12) 2023; 55 An (10.1016/j.inffus.2024.102278_b24) 2023; 212 10.1016/j.inffus.2024.102278_b30 Zhao (10.1016/j.inffus.2024.102278_b44) 2023; 262 Ding (10.1016/j.inffus.2024.102278_b13) 2023; 261 Zhu (10.1016/j.inffus.2024.102278_b23) 2022; 18 Gao (10.1016/j.inffus.2024.102278_b7) 2023; 19 Zhang (10.1016/j.inffus.2024.102278_b33) 2023; 229 Zhao (10.1016/j.inffus.2024.102278_b18) 2022; 130 Wang (10.1016/j.inffus.2024.102278_b49) 2020; 11 Chakrapani (10.1016/j.inffus.2024.102278_b11) 2023; 117 Yin (10.1016/j.inffus.2024.102278_b20) 2023; 182 Zhu (10.1016/j.inffus.2024.102278_b4) 2023; 206 Tian (10.1016/j.inffus.2024.102278_b45) 2022; 243 Yang (10.1016/j.inffus.2024.102278_b3) 2023; 144 10.1016/j.inffus.2024.102278_b29 Wang (10.1016/j.inffus.2024.102278_b27) 2023; 118 Kuang (10.1016/j.inffus.2024.102278_b28) 2022; 130 |
References_xml | – volume: 213 year: 2023 ident: b26 article-title: Multi-view and multi-level network for fault diagnosis accommodating feature transferability publication-title: Expert Syst. Appl. – reference: Y. Zhu, F. Zhuang, D. Wang, Aligning Domain-Specific Distribution and Classifier for Cross-Domain Classification from Multiple Sources, in: 33rd AAAI Conference on Artificial Intelligence, 2019, pp. 5989–5996. – year: 2018 ident: b47 article-title: Deep complex networks – volume: 18 start-page: 8389 year: 2022 end-page: 8398 ident: b17 article-title: Stepwise adaptive convolutional network for fault diagnosis of high-speed train bogie under variant running speeds publication-title: IEEE Trans. Industr. Inform. – volume: 118 year: 2023 ident: b27 article-title: Unsupervised fault diagnosis of wind turbine bearing via a deep residual deformable convolution network based on subdomain adaptation publication-title: Eng Appl. Artif. Intel. – volume: 213 year: 2023 ident: b21 article-title: DC-DC buck circuit fault diagnosis with insufficient state data based on deep model and transfer strategy publication-title: Expert Syst. Appl. – volume: 55 year: 2023 ident: b12 article-title: Transfer reinforcement learning method with multi-label learning for compound fault recognition publication-title: Adv. Eng. Inform. – volume: 71 year: 2022 ident: b9 article-title: Energy-based adversarial transfer network for cross-domain fault diagnosis of electro-mechanical systems publication-title: IEEE Trans. Instrum. Meas. – volume: 9 start-page: 20778 year: 2022 end-page: 20787 ident: b19 article-title: Domain adaptive log anomaly prediction for Hadoop system publication-title: IEEE Internet Things – volume: 262 year: 2023 ident: b44 article-title: A novel conditional weighting transfer Wasserstein auto-encoder for rolling bearing fault diagnosis with multi-source domains publication-title: Knowl. Based Syst. – volume: 229 year: 2023 ident: b33 article-title: Blockchain-based decentralized federated transfer learning methodology for collaborative machinery fault diagnosis publication-title: Reliab. Eng. Sys. Safe. – volume: 19 start-page: 2693 year: 2023 end-page: 2704 ident: b7 article-title: A novel fault detection model based on vector quantization sparse autoencoder for nonlinear complex systems publication-title: IEEE Trans. Industr. Inform. – volume: 170 start-page: 670 year: 2023 end-page: 684 ident: b8 article-title: A supervised functional Bayesian inference model with transfer-learning for performance enhancement of monitoring target batches with limited data publication-title: Process Saf. Environ. – volume: 86–87 start-page: 17 year: 2022 end-page: 29 ident: b6 article-title: An intelligent fault diagnosis for machine maintenance using weighted soft-voting rule based multi-attention module with multi-scale information fusion publication-title: Inform. Fusion – volume: 207 year: 2023 ident: b25 article-title: A novel method for rotor fault diagnosis based on deep transfer learning with simulated samples publication-title: Measurement – reference: M. Long, Y. Cao, J. Wang, M. Jordan, F. Bach, D. Blei, Learning Transferable Features with Deep Adaptation Networks, in: 32nd International Conference on Machine Learning, 2015, pp. 97–105. – start-page: 3320 year: 2014 end-page: 3328 ident: b48 article-title: How transferable are features in deep neural networks? publication-title: Adv. Neural Inf. Process. Syst. – volume: 53 start-page: 1982 year: 2023 end-page: 1993 ident: b36 article-title: A multi-source weighted deep transfer network for open-set fault diagnosis of rotary machinery publication-title: IEEE T. Cybern. – volume: 257 year: 2022 ident: b16 article-title: Multitarget domain adaptation with transferable hyperbolic prototypes for intelligent fault diagnosis publication-title: Knowl. Based Syst. – volume: 107 start-page: 224 year: 2020 end-page: 255 ident: b50 article-title: Deep learning algorithms for rotating machinery intelligent diagnosis: An open source benchmark study publication-title: ISA Trans. – volume: 203 year: 2022 ident: b22 article-title: A novel joint distinct subspace learning and dynamic distribution adaptation method for fault transfer diagnosis publication-title: Measurement – volume: 261 year: 2023 ident: b13 article-title: Domain generalization via adversarial out-domain augmentation for remaining useful life prediction of bearings under unseen conditions publication-title: Knowl. Based Syst. – volume: 170 start-page: 1161 year: 2023 end-page: 1172 ident: b10 article-title: A CNN-based transfer learning method for leakage detection of pipeline under multiple working conditions with AE signals publication-title: Process Saf. Environ. – volume: 189 year: 2023 ident: b43 article-title: A knowledge dynamic matching unit-guided multi-source domain adaptation network with attention mechanism for rolling bearing fault diagnosis publication-title: Mech. Syst. Signal Process. – volume: 178 year: 2021 ident: b41 article-title: A novel deep multi-source domain adaptation framework for bearing fault diagnosis based on feature-level and task-specific distribution alignment publication-title: Measurement – volume: 117 year: 2023 ident: b11 article-title: Transfer learning based fault diagnosis of automobile dry clutch system publication-title: Eng. Appl. Artif. Intel. – year: 2023 ident: b37 article-title: A domain adaptation method for bearing fault diagnosis using multiple incomplete source data publication-title: J. Intell. Manuf. – volume: 130 start-page: 433 year: 2022 end-page: 448 ident: b28 article-title: Self-supervised bi-classifier adversarial transfer network for cross-domain fault diagnosis of rotating machinery publication-title: ISA Trans. – volume: 243 year: 2022 ident: b45 article-title: A multi-source information transfer learning method with subdomain adaptation for cross-domain fault diagnosis publication-title: Knowl. Based Syst. – volume: 231 year: 2023 ident: b35 article-title: Correlation feature distribution matching for fault diagnosis of machines publication-title: Reliab. Eng. Syst. Safe. – volume: 18 start-page: 8692 year: 2022 end-page: 8702 ident: b34 article-title: Correlation regularized conditional adversarial adaptation for multi-target-domain fault diagnosis publication-title: IEEE Trans. Industr. Inform. – volume: 130 start-page: 449 year: 2022 end-page: 462 ident: b18 article-title: A balanced and weighted alignment network for partial transfer fault diagnosis publication-title: ISA Trans. – volume: 212 year: 2023 ident: b24 article-title: Domain adaptation network base on contrastive learning for bearings fault diagnosis under variable working conditions publication-title: Expert Syst. Appl. – volume: 51 year: 2022 ident: b39 article-title: A reinforcement ensemble deep transfer learning network for rolling bearing fault diagnosis with multi-source domains publication-title: Adv. Eng. Inform. – volume: 231 year: 2023 ident: b42 article-title: Intelligent fault diagnosis of rotating machinery using a multi-source domain adaptation network with adversarial discrepancy matching publication-title: Reliab. Eng. Syst. Safe. – volume: 11 start-page: 1 year: 2020 end-page: 25 ident: b49 article-title: Transfer learning with dynamic distribution adaptation publication-title: ACM Trans. Intell. Syst. Technol. – volume: 182 year: 2023 ident: b15 article-title: Discriminative feature learning using a multiscale convolutional capsule network from attitude data for fault diagnosis of industrial robots publication-title: Mech. Syst. Signal Process. – volume: 182 year: 2023 ident: b20 article-title: Knowledge and data dual-driven transfer network for industrial robot fault diagnosis publication-title: Mech. Syst. Signal Process. – volume: 200 start-page: 1023 year: 2022 end-page: 1036 ident: b32 article-title: Fault detection of offshore wind turbine gearboxes based on deep adaptive networks via considering spatio-temporal fusion publication-title: Renew. Energ. – volume: 186 year: 2023 ident: b2 article-title: Deep discriminative transfer learning network for cross-machine fault diagnosis publication-title: Mech. Syst. Signal Process. – volume: 206 year: 2023 ident: b4 article-title: A review of the application of deep learning in intelligent fault diagnosis of rotating machinery publication-title: Measurement – volume: 17 start-page: 59 year: 2016 ident: b31 article-title: Domain-adversarial training of neural networks publication-title: J. Mach. Learn. Res. – volume: 245 year: 2022 ident: b5 article-title: An intelligent fault diagnosis scheme for rotating machinery based on supervised domain adaptation with manifold embedding publication-title: IEEE Internet Things – volume: 162 year: 2022 ident: b38 article-title: Multi-source transfer learning network to complement knowledge for intelligent diagnosis of machines with unseen faults publication-title: Mech. Syst. Signal Process. – volume: 74 start-page: 65 year: 2021 end-page: 76 ident: b14 article-title: A novel approach of multisensory fusion to collaborative fault diagnosis in maintenance publication-title: Inform. Fusion – reference: K. Saito, K. Watanabe, Y. Ushiku, T. Harada, Maximum Classifier Discrepancy for Unsupervised Domain Adaptation, in: IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 3723–3732. – volume: 144 year: 2023 ident: b3 article-title: A fault location method based on ensemble complex spatio-temporal attention network for complex systems under fluctuating operating condition publication-title: Appl. Soft. Comput. – reference: K. Hirose, Complex-valued neural networks: The merits and their origins, in: IEEE International Joint Conference on Neural Networks, 2009, pp. 1209–1216. – volume: 18 start-page: 8077 year: 2022 end-page: 8086 ident: b23 article-title: Cross-domain open-set machinery fault diagnosis based on adversarial network with multiple auxiliary classifiers publication-title: IEEE Trans. Industr. Inform. – volume: 95 start-page: 1 year: 2023 end-page: 16 ident: b1 article-title: CFCNN: A novel convolutional fusion framework for collaborative fault identification of rotating machinery publication-title: Inform. Fusion – volume: 231 year: 2023 ident: 10.1016/j.inffus.2024.102278_b35 article-title: Correlation feature distribution matching for fault diagnosis of machines publication-title: Reliab. Eng. Syst. Safe. doi: 10.1016/j.ress.2022.108981 – year: 2023 ident: 10.1016/j.inffus.2024.102278_b37 article-title: A domain adaptation method for bearing fault diagnosis using multiple incomplete source data publication-title: J. Intell. Manuf. – volume: 186 year: 2023 ident: 10.1016/j.inffus.2024.102278_b2 article-title: Deep discriminative transfer learning network for cross-machine fault diagnosis publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2022.109884 – volume: 162 year: 2022 ident: 10.1016/j.inffus.2024.102278_b38 article-title: Multi-source transfer learning network to complement knowledge for intelligent diagnosis of machines with unseen faults publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2021.108095 – volume: 51 year: 2022 ident: 10.1016/j.inffus.2024.102278_b39 article-title: A reinforcement ensemble deep transfer learning network for rolling bearing fault diagnosis with multi-source domains publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2021.101480 – volume: 243 year: 2022 ident: 10.1016/j.inffus.2024.102278_b45 article-title: A multi-source information transfer learning method with subdomain adaptation for cross-domain fault diagnosis publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2022.108466 – volume: 245 year: 2022 ident: 10.1016/j.inffus.2024.102278_b5 article-title: An intelligent fault diagnosis scheme for rotating machinery based on supervised domain adaptation with manifold embedding publication-title: IEEE Internet Things – volume: 11 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.inffus.2024.102278_b49 article-title: Transfer learning with dynamic distribution adaptation publication-title: ACM Trans. Intell. Syst. Technol. – volume: 107 start-page: 224 year: 2020 ident: 10.1016/j.inffus.2024.102278_b50 article-title: Deep learning algorithms for rotating machinery intelligent diagnosis: An open source benchmark study publication-title: ISA Trans. doi: 10.1016/j.isatra.2020.08.010 – volume: 261 year: 2023 ident: 10.1016/j.inffus.2024.102278_b13 article-title: Domain generalization via adversarial out-domain augmentation for remaining useful life prediction of bearings under unseen conditions publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2022.110199 – volume: 118 year: 2023 ident: 10.1016/j.inffus.2024.102278_b27 article-title: Unsupervised fault diagnosis of wind turbine bearing via a deep residual deformable convolution network based on subdomain adaptation publication-title: Eng Appl. Artif. Intel. – volume: 18 start-page: 8389 issue: 12 year: 2022 ident: 10.1016/j.inffus.2024.102278_b17 article-title: Stepwise adaptive convolutional network for fault diagnosis of high-speed train bogie under variant running speeds publication-title: IEEE Trans. Industr. Inform. doi: 10.1109/TII.2022.3152540 – ident: 10.1016/j.inffus.2024.102278_b29 doi: 10.1109/CVPR.2018.00392 – volume: 117 year: 2023 ident: 10.1016/j.inffus.2024.102278_b11 article-title: Transfer learning based fault diagnosis of automobile dry clutch system publication-title: Eng. Appl. Artif. Intel. doi: 10.1016/j.engappai.2022.105522 – volume: 182 year: 2023 ident: 10.1016/j.inffus.2024.102278_b20 article-title: Knowledge and data dual-driven transfer network for industrial robot fault diagnosis publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2022.109597 – volume: 189 year: 2023 ident: 10.1016/j.inffus.2024.102278_b43 article-title: A knowledge dynamic matching unit-guided multi-source domain adaptation network with attention mechanism for rolling bearing fault diagnosis publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2023.110098 – volume: 178 year: 2021 ident: 10.1016/j.inffus.2024.102278_b41 article-title: A novel deep multi-source domain adaptation framework for bearing fault diagnosis based on feature-level and task-specific distribution alignment publication-title: Measurement doi: 10.1016/j.measurement.2021.109359 – volume: 17 start-page: 59 year: 2016 ident: 10.1016/j.inffus.2024.102278_b31 article-title: Domain-adversarial training of neural networks publication-title: J. Mach. Learn. Res. – volume: 18 start-page: 8077 issue: 11 year: 2022 ident: 10.1016/j.inffus.2024.102278_b23 article-title: Cross-domain open-set machinery fault diagnosis based on adversarial network with multiple auxiliary classifiers publication-title: IEEE Trans. Industr. Inform. doi: 10.1109/TII.2021.3138558 – volume: 200 start-page: 1023 year: 2022 ident: 10.1016/j.inffus.2024.102278_b32 article-title: Fault detection of offshore wind turbine gearboxes based on deep adaptive networks via considering spatio-temporal fusion publication-title: Renew. Energ. doi: 10.1016/j.renene.2022.10.018 – volume: 53 start-page: 1982 issue: 3 year: 2023 ident: 10.1016/j.inffus.2024.102278_b36 article-title: A multi-source weighted deep transfer network for open-set fault diagnosis of rotary machinery publication-title: IEEE T. Cybern. doi: 10.1109/TCYB.2022.3195355 – volume: 86–87 start-page: 17 year: 2022 ident: 10.1016/j.inffus.2024.102278_b6 article-title: An intelligent fault diagnosis for machine maintenance using weighted soft-voting rule based multi-attention module with multi-scale information fusion publication-title: Inform. Fusion – volume: 207 year: 2023 ident: 10.1016/j.inffus.2024.102278_b25 article-title: A novel method for rotor fault diagnosis based on deep transfer learning with simulated samples publication-title: Measurement doi: 10.1016/j.measurement.2022.112350 – volume: 144 year: 2023 ident: 10.1016/j.inffus.2024.102278_b3 article-title: A fault location method based on ensemble complex spatio-temporal attention network for complex systems under fluctuating operating condition publication-title: Appl. Soft. Comput. doi: 10.1016/j.asoc.2023.110489 – volume: 213 year: 2023 ident: 10.1016/j.inffus.2024.102278_b21 article-title: DC-DC buck circuit fault diagnosis with insufficient state data based on deep model and transfer strategy publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.118918 – volume: 9 start-page: 20778 issue: 20 year: 2022 ident: 10.1016/j.inffus.2024.102278_b19 article-title: Domain adaptive log anomaly prediction for Hadoop system publication-title: IEEE Internet Things doi: 10.1109/JIOT.2022.3178873 – ident: 10.1016/j.inffus.2024.102278_b30 – volume: 19 start-page: 2693 issue: 3 year: 2023 ident: 10.1016/j.inffus.2024.102278_b7 article-title: A novel fault detection model based on vector quantization sparse autoencoder for nonlinear complex systems publication-title: IEEE Trans. Industr. Inform. doi: 10.1109/TII.2022.3174715 – volume: 231 year: 2023 ident: 10.1016/j.inffus.2024.102278_b42 article-title: Intelligent fault diagnosis of rotating machinery using a multi-source domain adaptation network with adversarial discrepancy matching publication-title: Reliab. Eng. Syst. Safe. doi: 10.1016/j.ress.2022.109036 – volume: 206 year: 2023 ident: 10.1016/j.inffus.2024.102278_b4 article-title: A review of the application of deep learning in intelligent fault diagnosis of rotating machinery publication-title: Measurement doi: 10.1016/j.measurement.2022.112346 – volume: 212 year: 2023 ident: 10.1016/j.inffus.2024.102278_b24 article-title: Domain adaptation network base on contrastive learning for bearings fault diagnosis under variable working conditions publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.118802 – volume: 130 start-page: 449 year: 2022 ident: 10.1016/j.inffus.2024.102278_b18 article-title: A balanced and weighted alignment network for partial transfer fault diagnosis publication-title: ISA Trans. doi: 10.1016/j.isatra.2022.03.014 – volume: 170 start-page: 670 year: 2023 ident: 10.1016/j.inffus.2024.102278_b8 article-title: A supervised functional Bayesian inference model with transfer-learning for performance enhancement of monitoring target batches with limited data publication-title: Process Saf. Environ. doi: 10.1016/j.psep.2022.12.004 – volume: 257 year: 2022 ident: 10.1016/j.inffus.2024.102278_b16 article-title: Multitarget domain adaptation with transferable hyperbolic prototypes for intelligent fault diagnosis publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2022.109952 – volume: 262 year: 2023 ident: 10.1016/j.inffus.2024.102278_b44 article-title: A novel conditional weighting transfer Wasserstein auto-encoder for rolling bearing fault diagnosis with multi-source domains publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2022.110203 – volume: 95 start-page: 1 year: 2023 ident: 10.1016/j.inffus.2024.102278_b1 article-title: CFCNN: A novel convolutional fusion framework for collaborative fault identification of rotating machinery publication-title: Inform. Fusion doi: 10.1016/j.inffus.2023.02.012 – ident: 10.1016/j.inffus.2024.102278_b46 doi: 10.1109/IJCNN.2009.5178754 – volume: 71 year: 2022 ident: 10.1016/j.inffus.2024.102278_b9 article-title: Energy-based adversarial transfer network for cross-domain fault diagnosis of electro-mechanical systems publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2022.3216593 – volume: 74 start-page: 65 year: 2021 ident: 10.1016/j.inffus.2024.102278_b14 article-title: A novel approach of multisensory fusion to collaborative fault diagnosis in maintenance publication-title: Inform. Fusion doi: 10.1016/j.inffus.2021.03.008 – volume: 203 year: 2022 ident: 10.1016/j.inffus.2024.102278_b22 article-title: A novel joint distinct subspace learning and dynamic distribution adaptation method for fault transfer diagnosis publication-title: Measurement doi: 10.1016/j.measurement.2022.111986 – volume: 18 start-page: 8692 issue: 12 year: 2022 ident: 10.1016/j.inffus.2024.102278_b34 article-title: Correlation regularized conditional adversarial adaptation for multi-target-domain fault diagnosis publication-title: IEEE Trans. Industr. Inform. doi: 10.1109/TII.2022.3149906 – volume: 55 year: 2023 ident: 10.1016/j.inffus.2024.102278_b12 article-title: Transfer reinforcement learning method with multi-label learning for compound fault recognition publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2022.101818 – year: 2018 ident: 10.1016/j.inffus.2024.102278_b47 – volume: 213 year: 2023 ident: 10.1016/j.inffus.2024.102278_b26 article-title: Multi-view and multi-level network for fault diagnosis accommodating feature transferability publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.119057 – volume: 130 start-page: 433 year: 2022 ident: 10.1016/j.inffus.2024.102278_b28 article-title: Self-supervised bi-classifier adversarial transfer network for cross-domain fault diagnosis of rotating machinery publication-title: ISA Trans. doi: 10.1016/j.isatra.2022.03.008 – volume: 229 year: 2023 ident: 10.1016/j.inffus.2024.102278_b33 article-title: Blockchain-based decentralized federated transfer learning methodology for collaborative machinery fault diagnosis publication-title: Reliab. Eng. Sys. Safe. – start-page: 3320 year: 2014 ident: 10.1016/j.inffus.2024.102278_b48 article-title: How transferable are features in deep neural networks? publication-title: Adv. Neural Inf. Process. Syst. – volume: 170 start-page: 1161 year: 2023 ident: 10.1016/j.inffus.2024.102278_b10 article-title: A CNN-based transfer learning method for leakage detection of pipeline under multiple working conditions with AE signals publication-title: Process Saf. Environ. doi: 10.1016/j.psep.2022.12.070 – volume: 182 year: 2023 ident: 10.1016/j.inffus.2024.102278_b15 article-title: Discriminative feature learning using a multiscale convolutional capsule network from attitude data for fault diagnosis of industrial robots publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2022.109569 – ident: 10.1016/j.inffus.2024.102278_b40 doi: 10.1609/aaai.v33i01.33015989 |
SSID | ssj0017031 |
Score | 2.6175237 |
Snippet | In practical industrial scenarios, the variations of operating conditions such as load and rotational speed make mechanical systems subject to complex and... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 102278 |
SubjectTerms | Adversarial transfer learning Fault diagnosis Feature similarity metric Information fusion Joint distribution domain adaptation Variable operating conditions |
Title | A multi-source domain information fusion network for rotating machinery fault diagnosis under variable operating conditions |
URI | https://dx.doi.org/10.1016/j.inffus.2024.102278 |
Volume | 106 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14Xduku2lyLMVSHy2iFnoL2ZdUbFrSVhDB3-5MNikKomAum00ySZjd7MxsvvmWkHNh_aQtBXhutqkZV9yyMIgSJqVpC08nSuTzHYNh0B_x67EYV0i3zIVBWGUx9rsxPR-tiyONQpuN-WTSeMDIw0d2Eo6OR4CMn8heB3364mMN8_CQnz3nTA0ChleX6XM5xgsa0a6QtNvnyGHg42JrP5mnLyant0O2C1-Rdtzr7JKKSffI1mBNtLrYJ-8dmkMCmZuEp3o2hVCfFnSoqHQKj8YidXhvCidoNsMf8OkTneZQSpO9UZvAbah2wLvJgmJuWUZfIZLG3Co6myP5MopA_KwdzOuAjHqXj90-K9ZTYAoCgyUTYI2E1V4oDVcGbH0goNqMmlr7Kgyh2ZSJMGVQwgafelN5MlSwZ0Pe0r5uHZJqOkvNEaHKyjZXUaClkVx6EJ5HIlEW3DkLIY6MaqRVqjFWBdk4rnnxEpeosufYKT9G5cdO-TXC1lJzR7bxx_XtsoXib50mBnvwq-TxvyVPyCbWHFrslFSX2cqcgV-ylPW849XJRqd7f3uH5dVNf_gJ5c_okA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60PagH8Ylv9-B1aZvupsmxiKXax8UWvIXsSyo2LbUK4p93JpsUBVEwlzw2k4TZzc7M7jffAlxJF6QtJdFzc3XDhRaOR2GccqVsSzZMqmU-3jEYht2xuHuQD2twXebCEKyy6Pt9n5731sWVWqHN2nwyqd1T5BEQO4kgxyNsrkOV2KlEBart2153uJpMIIr2nDY1DDkJlBl0OcwL69G9Em93IIjGIKD11n6yUF-sTmcHtgt3kbX9F-3Cms32YGuw4lp92YePNstRgdyPwzMzm2K0zwpGVNI7w1fTLvOQb4YFbDGjOfjskU1zNKVdvDOX4mOY8di7yQuj9LIFe8NgmtKr2GxO_MskgiG08UivAxh3bkbXXV4sqcA1xgZLLtEgSWcakbJCWzT3ocTTelw3JtBRhDWnbUxZgwo3_NvruqEijUcuEk0TmOYhVLJZZo-AaadaQsehUVYJ1cAIPZapdujROYxyVHwMzVKNiS74xmnZi-ekBJY9JV75CSk_8co_Br6Smnu-jT_ub5U1lHxrNwmahF8lT_4teQkb3dGgn_Rvh71T2KQSDx47g8py8WrP0U1ZqouiGX4CjrLprA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-source+domain+information+fusion+network+for+rotating+machinery+fault+diagnosis+under+variable+operating+conditions&rft.jtitle=Information+fusion&rft.au=Gao%2C+Tianyu&rft.au=Yang%2C+Jingli&rft.au=Tang%2C+Qing&rft.date=2024-06-01&rft.pub=Elsevier+B.V&rft.issn=1566-2535&rft.eissn=1872-6305&rft.volume=106&rft_id=info:doi/10.1016%2Fj.inffus.2024.102278&rft.externalDocID=S1566253524000563 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1566-2535&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1566-2535&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1566-2535&client=summon |