A multi-source domain information fusion network for rotating machinery fault diagnosis under variable operating conditions

In practical industrial scenarios, the variations of operating conditions such as load and rotational speed make mechanical systems subject to complex and variable environmental stresses, resulting in the distribution discrepancies of sample data. With the advantages of integrating the feature infor...

Full description

Saved in:
Bibliographic Details
Published inInformation fusion Vol. 106; p. 102278
Main Authors Gao, Tianyu, Yang, Jingli, Tang, Qing
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2024
Subjects
Online AccessGet full text
ISSN1566-2535
1872-6305
DOI10.1016/j.inffus.2024.102278

Cover

Loading…
Abstract In practical industrial scenarios, the variations of operating conditions such as load and rotational speed make mechanical systems subject to complex and variable environmental stresses, resulting in the distribution discrepancies of sample data. With the advantages of integrating the feature information and diagnosis knowledge, the transfer learning technique based on multiple source domains has become a stable and efficient solution to address the fault diagnosis challenge under variable operating conditions in the modern intelligent operation and maintenance. For the above discussions, a multi-source domain information fusion network (MDIFN) is proposed in this paper to obtain generalized knowledge with abundant feature information by combining the adversarial transfer learning technique with fine-grained information fusion of multiple source domains. First, an adversarial transfer network architecture is constructed in accordance with the complex feature transformation and the boundary equilibrium domain discrimination to implement feature learning and knowledge transfer of source and target domains. Then, a joint distribution domain adaptation mechanism is proposed to further facilitate the acquisition of domain invariant features. Finally, a class-related decision fusion (CDF) strategy is designed to realize the information fusion within the decision space. The fault diagnosis of rotating machinery under unknown operating conditions can be achieved by employing data under known multiple operating conditions for MDIFN training. The public Paderborn University (PU) bearing dataset and the actual mechanical comprehensive diagnosis simulation platform (MCDSP) bearing dataset from different testing rigs are considered to evaluate the cross-domain fault diagnosis performance of this method. The experimental results indicate that the method achieves an average accuracy of 95.97% on the PU dataset and 98.31% on the MCDSP dataset, which is superior to other state-of-the-art cross-domain fault diagnosis algorithms. •A model is developed to diagnose faults under variable operating conditions.•A network architecture is constructed to perform feature learning and knowledge transfer.•A mechanism is proposed to reduce the feature distribution discrepancies.•A fusion strategy is designed to integrate multi-source domain information.
AbstractList In practical industrial scenarios, the variations of operating conditions such as load and rotational speed make mechanical systems subject to complex and variable environmental stresses, resulting in the distribution discrepancies of sample data. With the advantages of integrating the feature information and diagnosis knowledge, the transfer learning technique based on multiple source domains has become a stable and efficient solution to address the fault diagnosis challenge under variable operating conditions in the modern intelligent operation and maintenance. For the above discussions, a multi-source domain information fusion network (MDIFN) is proposed in this paper to obtain generalized knowledge with abundant feature information by combining the adversarial transfer learning technique with fine-grained information fusion of multiple source domains. First, an adversarial transfer network architecture is constructed in accordance with the complex feature transformation and the boundary equilibrium domain discrimination to implement feature learning and knowledge transfer of source and target domains. Then, a joint distribution domain adaptation mechanism is proposed to further facilitate the acquisition of domain invariant features. Finally, a class-related decision fusion (CDF) strategy is designed to realize the information fusion within the decision space. The fault diagnosis of rotating machinery under unknown operating conditions can be achieved by employing data under known multiple operating conditions for MDIFN training. The public Paderborn University (PU) bearing dataset and the actual mechanical comprehensive diagnosis simulation platform (MCDSP) bearing dataset from different testing rigs are considered to evaluate the cross-domain fault diagnosis performance of this method. The experimental results indicate that the method achieves an average accuracy of 95.97% on the PU dataset and 98.31% on the MCDSP dataset, which is superior to other state-of-the-art cross-domain fault diagnosis algorithms. •A model is developed to diagnose faults under variable operating conditions.•A network architecture is constructed to perform feature learning and knowledge transfer.•A mechanism is proposed to reduce the feature distribution discrepancies.•A fusion strategy is designed to integrate multi-source domain information.
ArticleNumber 102278
Author Yang, Jingli
Gao, Tianyu
Tang, Qing
Author_xml – sequence: 1
  givenname: Tianyu
  orcidid: 0000-0002-5722-9231
  surname: Gao
  fullname: Gao, Tianyu
  email: gaotianyu0714@hit.edu.cn
  organization: Harbin Institute of Technology, No. 2 Yi-Kuang Street, Nangang District, Harbin, 150080, Heilongjiang Province, China
– sequence: 2
  givenname: Jingli
  orcidid: 0000-0003-4865-0339
  surname: Yang
  fullname: Yang, Jingli
  email: jinglidg@hit.edu.cn
  organization: Harbin Institute of Technology, No. 2 Yi-Kuang Street, Nangang District, Harbin, 150080, Heilongjiang Province, China
– sequence: 3
  givenname: Qing
  surname: Tang
  fullname: Tang, Qing
  email: tangqing@cimtec.net.cn
  organization: China Institute of Marine Technology and Economy, No. 70 Xueyuan South Road, Haidian District, 100081, Beijing, China
BookMark eNqFkE1OwzAQRi1UJNrCDVj4Aim2EycuC6Sq4k9CYgNry7EnxSWxKzstqrg8DmHFAryZGY--J82boYnzDhC6pGRBCS2vtgvrmmYfF4ywIn0xVokTNKWiYlmZEz5JPS_LjPGcn6FZjFtCaEVyOkWfK9zt295m0e-DBmx8p6zDiedDp3rrHU7goTjoP3x4x2mBg-_Tzm1wp_SbdRCOuFEJg41VG-ejjXjvDAR8UMGqugXsdxDGiPbO2AEcz9Fpo9oIFz91jl7vbl_WD9nT8_3jevWU6ZyUfcYFobwxVNRQaGDpEp5GsiTGMC0Eb5iGZUkrUadHRU40rYVOXSOK3DCTz1ExcnXwMQZo5C7YToWjpEQOAuVWjgLlIFCOAlPs-ldM2_5bSR-Ubf8L34xhSIcdLAQZtQWnwdgAupfG278BX7IWlOI
CitedBy_id crossref_primary_10_1177_10775463241280426
crossref_primary_10_3390_electronics13204125
crossref_primary_10_1016_j_inffus_2024_102710
crossref_primary_10_1016_j_inffus_2024_102875
crossref_primary_10_1016_j_aei_2024_102715
crossref_primary_10_1038_s41598_024_75088_8
crossref_primary_10_1016_j_aei_2024_102878
crossref_primary_10_1007_s00202_025_02963_6
crossref_primary_10_1088_1361_6501_ad9045
crossref_primary_10_3390_app142210531
crossref_primary_10_1016_j_ress_2024_110409
crossref_primary_10_1016_j_inffus_2024_102909
crossref_primary_10_1016_j_measurement_2025_117060
crossref_primary_10_1016_j_ymssp_2025_112624
crossref_primary_10_1016_j_renene_2024_121965
crossref_primary_10_1016_j_ress_2024_110449
crossref_primary_10_1016_j_ress_2025_110848
crossref_primary_10_1109_TIM_2025_3527612
crossref_primary_10_1016_j_ress_2024_110769
crossref_primary_10_1109_TIM_2024_3522663
crossref_primary_10_3390_electronics14010011
crossref_primary_10_1016_j_ymssp_2024_112180
crossref_primary_10_1016_j_aei_2024_102605
crossref_primary_10_1016_j_aei_2024_103048
crossref_primary_10_1016_j_dsp_2024_104796
crossref_primary_10_1016_j_isatra_2024_08_012
crossref_primary_10_1186_s40537_024_01006_4
crossref_primary_10_3390_app14125310
crossref_primary_10_3390_electronics13224535
crossref_primary_10_1088_1361_6501_ad67f6
crossref_primary_10_1109_JSEN_2024_3415713
crossref_primary_10_1088_1361_6501_ad6c74
crossref_primary_10_3390_s24134244
crossref_primary_10_1016_j_measurement_2024_115975
crossref_primary_10_1016_j_measurement_2025_116989
crossref_primary_10_1109_ACCESS_2024_3515479
crossref_primary_10_1016_j_measurement_2024_116344
crossref_primary_10_1088_1361_6501_ad9e1d
crossref_primary_10_1016_j_aei_2025_103156
crossref_primary_10_1016_j_aei_2025_103233
crossref_primary_10_1038_s41598_025_93133_y
crossref_primary_10_3390_s24185914
crossref_primary_10_1016_j_neunet_2024_106518
crossref_primary_10_1016_j_aei_2024_102573
crossref_primary_10_3390_machines12080509
crossref_primary_10_1016_j_ymssp_2024_112246
crossref_primary_10_32604_cmc_2024_058785
crossref_primary_10_1016_j_inffus_2024_102583
crossref_primary_10_1016_j_inffus_2024_102862
crossref_primary_10_3390_electronics13234589
crossref_primary_10_1088_1361_6501_ad9ca6
crossref_primary_10_1088_1361_6501_ad9bd0
crossref_primary_10_1016_j_ress_2025_110898
crossref_primary_10_1016_j_ymssp_2025_112458
Cites_doi 10.1016/j.ress.2022.108981
10.1016/j.ymssp.2022.109884
10.1016/j.ymssp.2021.108095
10.1016/j.aei.2021.101480
10.1016/j.knosys.2022.108466
10.1016/j.isatra.2020.08.010
10.1016/j.knosys.2022.110199
10.1109/TII.2022.3152540
10.1109/CVPR.2018.00392
10.1016/j.engappai.2022.105522
10.1016/j.ymssp.2022.109597
10.1016/j.ymssp.2023.110098
10.1016/j.measurement.2021.109359
10.1109/TII.2021.3138558
10.1016/j.renene.2022.10.018
10.1109/TCYB.2022.3195355
10.1016/j.measurement.2022.112350
10.1016/j.asoc.2023.110489
10.1016/j.eswa.2022.118918
10.1109/JIOT.2022.3178873
10.1109/TII.2022.3174715
10.1016/j.ress.2022.109036
10.1016/j.measurement.2022.112346
10.1016/j.eswa.2022.118802
10.1016/j.isatra.2022.03.014
10.1016/j.psep.2022.12.004
10.1016/j.knosys.2022.109952
10.1016/j.knosys.2022.110203
10.1016/j.inffus.2023.02.012
10.1109/IJCNN.2009.5178754
10.1109/TIM.2022.3216593
10.1016/j.inffus.2021.03.008
10.1016/j.measurement.2022.111986
10.1109/TII.2022.3149906
10.1016/j.aei.2022.101818
10.1016/j.eswa.2022.119057
10.1016/j.isatra.2022.03.008
10.1016/j.psep.2022.12.070
10.1016/j.ymssp.2022.109569
10.1609/aaai.v33i01.33015989
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.inffus.2024.102278
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1872-6305
ExternalDocumentID 10_1016_j_inffus_2024_102278
S1566253524000563
GrantInformation_xml – fundername: Technical Basic Research Plan
  grantid: JSJT2022206A001
– fundername: Natural Science Foundation of Heilongjiang Province of China
  grantid: LH2021F021
  funderid: http://dx.doi.org/10.13039/501100005046
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABMYL
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-58015fd18be4ce215655fd090dd2c885f2ce96178bbbb1830c1b8cb18f843d2d3
IEDL.DBID .~1
ISSN 1566-2535
IngestDate Tue Jul 01 04:14:44 EDT 2025
Thu Apr 24 22:50:28 EDT 2025
Sat Mar 16 16:14:13 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Fault diagnosis
Adversarial transfer learning
Variable operating conditions
Joint distribution domain adaptation
Feature similarity metric
Information fusion
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-58015fd18be4ce215655fd090dd2c885f2ce96178bbbb1830c1b8cb18f843d2d3
ORCID 0000-0003-4865-0339
0000-0002-5722-9231
ParticipantIDs crossref_primary_10_1016_j_inffus_2024_102278
crossref_citationtrail_10_1016_j_inffus_2024_102278
elsevier_sciencedirect_doi_10_1016_j_inffus_2024_102278
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2024
2024-06-00
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationTitle Information fusion
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Deng, Deng, Shi, Xu (b34) 2022; 18
Zhao, Jia, Shao (b44) 2023; 262
Wang, Sun, Cheng, Cui (b27) 2023; 118
Kuang, Xu, Tao, Zhang (b28) 2022; 130
Zhao, Li, Wu, Sun (b50) 2020; 107
Wu, Jiang, Zhu, Wang (b43) 2023; 189
Chen, Liao, Li, Huang, Xu, Jin, Li (b36) 2023; 53
Tang, Zhang, Xuan, Shi, Li (b16) 2022; 257
Yosinski, Clune, Bengio, Lipson (b48) 2014
Ganin, Ustinova, Ajakan (b31) 2016; 17
Wang, Zhang, Tang, Shi, Xuan (b12) 2023; 55
Zhu, Huang, Shen, Shen (b23) 2022; 18
Zhang, Wang, Li (b33) 2023; 229
Li, Jiang, Xie, Wang, Wang, Wu (b39) 2022; 51
Rezaeianjouybari, Shang (b41) 2021; 178
Gao, Yang, Jiang (b7) 2023; 19
Xu, Wang, Liu, Peng, He (b22) 2022; 203
Xie, Yang (b19) 2022; 9
M. Long, Y. Cao, J. Wang, M. Jordan, F. Bach, D. Blei, Learning Transferable Features with Deep Adaptation Networks, in: 32nd International Conference on Machine Learning, 2015, pp. 97–105.
Yang, Xu, Lei, Lee, Stewart, Roberts (b38) 2022; 162
Xu, Feng, Yan, Yan (b1) 2023; 95
Shao, Lin, Zhang, Galar, Kumar (b14) 2021; 74
Liu, Hou, Shao, Chen (b8) 2023; 170
Zhu, Lei, Qi, Chai, Mazur, An, Huang (b4) 2023; 206
Chakrapani, Sugumaran (b11) 2023; 117
Tian, Han, Li, Shi (b45) 2022; 243
Yang, Gao, Jiang (b9) 2022; 71
Lu, Cui, Hu, Yin (b26) 2023; 213
Wang, Xu, Yang, Chang, Zhang, Kong (b37) 2023
K. Saito, K. Watanabe, Y. Ushiku, T. Harada, Maximum Classifier Discrepancy for Unsupervised Domain Adaptation, in: IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 3723–3732.
Xiang, Zhang, Zhang, Hu, Bing (b25) 2023; 207
Ganaie, Tanveer (b6) 2022; 86–87
Jia, Liu, Vong, Wang, Cai (b21) 2023; 213
Qin, Wu, Huang, Zhang (b17) 2022; 18
Xu, Dong, Bashir, Zhang, Yang, Wang (b5) 2022; 245
Qian, Qin, Luo, Wang, Wu (b2) 2023; 186
Liu, Jiang, Wu, Yi, Wang (b42) 2023; 231
An, Zhang, Chai, Liu, Huang (b24) 2023; 212
Long, Qin, Yang, Huang, Li (b15) 2023; 182
Ding, Jia, Cao, Ding, Zhang (b13) 2023; 261
Tan, Xie, Ma, Yang, Zheng (b35) 2023; 231
Trabelsi, Bilaniuk, Zhang, Serdyuk, Subramanian, Santos, Mehri, Rostamzadeh, Bengio, Pal (b47) 2018
Zhu, Zhu, Tan, Song, Chen, Zheng (b32) 2022; 200
Y. Zhu, F. Zhuang, D. Wang, Aligning Domain-Specific Distribution and Classifier for Cross-Domain Classification from Multiple Sources, in: 33rd AAAI Conference on Artificial Intelligence, 2019, pp. 5989–5996.
Wang, Chen, Feng, Yu, Huang, Yang (b49) 2020; 11
Liu, Xu, Xie, Fu, Chen, Liu, Zhang (b10) 2023; 170
Yin, Lu, Guo, Lei, Wang, Guan (b20) 2023; 182
Yang, Gao, Yan, Yang, Li (b3) 2023; 144
K. Hirose, Complex-valued neural networks: The merits and their origins, in: IEEE International Joint Conference on Neural Networks, 2009, pp. 1209–1216.
Zhao, Liu, Shen (b18) 2022; 130
Ganin (10.1016/j.inffus.2024.102278_b31) 2016; 17
Wang (10.1016/j.inffus.2024.102278_b37) 2023
Trabelsi (10.1016/j.inffus.2024.102278_b47) 2018
Yang (10.1016/j.inffus.2024.102278_b9) 2022; 71
Yang (10.1016/j.inffus.2024.102278_b38) 2022; 162
Deng (10.1016/j.inffus.2024.102278_b34) 2022; 18
Yosinski (10.1016/j.inffus.2024.102278_b48) 2014
Zhu (10.1016/j.inffus.2024.102278_b32) 2022; 200
Chen (10.1016/j.inffus.2024.102278_b36) 2023; 53
Shao (10.1016/j.inffus.2024.102278_b14) 2021; 74
Rezaeianjouybari (10.1016/j.inffus.2024.102278_b41) 2021; 178
Li (10.1016/j.inffus.2024.102278_b39) 2022; 51
Wu (10.1016/j.inffus.2024.102278_b43) 2023; 189
Xiang (10.1016/j.inffus.2024.102278_b25) 2023; 207
10.1016/j.inffus.2024.102278_b40
Tang (10.1016/j.inffus.2024.102278_b16) 2022; 257
Ganaie (10.1016/j.inffus.2024.102278_b6) 2022; 86–87
Xie (10.1016/j.inffus.2024.102278_b19) 2022; 9
Qin (10.1016/j.inffus.2024.102278_b17) 2022; 18
Qian (10.1016/j.inffus.2024.102278_b2) 2023; 186
Liu (10.1016/j.inffus.2024.102278_b8) 2023; 170
Liu (10.1016/j.inffus.2024.102278_b42) 2023; 231
Xu (10.1016/j.inffus.2024.102278_b22) 2022; 203
10.1016/j.inffus.2024.102278_b46
Zhao (10.1016/j.inffus.2024.102278_b50) 2020; 107
Jia (10.1016/j.inffus.2024.102278_b21) 2023; 213
Long (10.1016/j.inffus.2024.102278_b15) 2023; 182
Tan (10.1016/j.inffus.2024.102278_b35) 2023; 231
Xu (10.1016/j.inffus.2024.102278_b1) 2023; 95
Liu (10.1016/j.inffus.2024.102278_b10) 2023; 170
Xu (10.1016/j.inffus.2024.102278_b5) 2022; 245
Lu (10.1016/j.inffus.2024.102278_b26) 2023; 213
Wang (10.1016/j.inffus.2024.102278_b12) 2023; 55
An (10.1016/j.inffus.2024.102278_b24) 2023; 212
10.1016/j.inffus.2024.102278_b30
Zhao (10.1016/j.inffus.2024.102278_b44) 2023; 262
Ding (10.1016/j.inffus.2024.102278_b13) 2023; 261
Zhu (10.1016/j.inffus.2024.102278_b23) 2022; 18
Gao (10.1016/j.inffus.2024.102278_b7) 2023; 19
Zhang (10.1016/j.inffus.2024.102278_b33) 2023; 229
Zhao (10.1016/j.inffus.2024.102278_b18) 2022; 130
Wang (10.1016/j.inffus.2024.102278_b49) 2020; 11
Chakrapani (10.1016/j.inffus.2024.102278_b11) 2023; 117
Yin (10.1016/j.inffus.2024.102278_b20) 2023; 182
Zhu (10.1016/j.inffus.2024.102278_b4) 2023; 206
Tian (10.1016/j.inffus.2024.102278_b45) 2022; 243
Yang (10.1016/j.inffus.2024.102278_b3) 2023; 144
10.1016/j.inffus.2024.102278_b29
Wang (10.1016/j.inffus.2024.102278_b27) 2023; 118
Kuang (10.1016/j.inffus.2024.102278_b28) 2022; 130
References_xml – volume: 213
  year: 2023
  ident: b26
  article-title: Multi-view and multi-level network for fault diagnosis accommodating feature transferability
  publication-title: Expert Syst. Appl.
– reference: Y. Zhu, F. Zhuang, D. Wang, Aligning Domain-Specific Distribution and Classifier for Cross-Domain Classification from Multiple Sources, in: 33rd AAAI Conference on Artificial Intelligence, 2019, pp. 5989–5996.
– year: 2018
  ident: b47
  article-title: Deep complex networks
– volume: 18
  start-page: 8389
  year: 2022
  end-page: 8398
  ident: b17
  article-title: Stepwise adaptive convolutional network for fault diagnosis of high-speed train bogie under variant running speeds
  publication-title: IEEE Trans. Industr. Inform.
– volume: 118
  year: 2023
  ident: b27
  article-title: Unsupervised fault diagnosis of wind turbine bearing via a deep residual deformable convolution network based on subdomain adaptation
  publication-title: Eng Appl. Artif. Intel.
– volume: 213
  year: 2023
  ident: b21
  article-title: DC-DC buck circuit fault diagnosis with insufficient state data based on deep model and transfer strategy
  publication-title: Expert Syst. Appl.
– volume: 55
  year: 2023
  ident: b12
  article-title: Transfer reinforcement learning method with multi-label learning for compound fault recognition
  publication-title: Adv. Eng. Inform.
– volume: 71
  year: 2022
  ident: b9
  article-title: Energy-based adversarial transfer network for cross-domain fault diagnosis of electro-mechanical systems
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 9
  start-page: 20778
  year: 2022
  end-page: 20787
  ident: b19
  article-title: Domain adaptive log anomaly prediction for Hadoop system
  publication-title: IEEE Internet Things
– volume: 262
  year: 2023
  ident: b44
  article-title: A novel conditional weighting transfer Wasserstein auto-encoder for rolling bearing fault diagnosis with multi-source domains
  publication-title: Knowl. Based Syst.
– volume: 229
  year: 2023
  ident: b33
  article-title: Blockchain-based decentralized federated transfer learning methodology for collaborative machinery fault diagnosis
  publication-title: Reliab. Eng. Sys. Safe.
– volume: 19
  start-page: 2693
  year: 2023
  end-page: 2704
  ident: b7
  article-title: A novel fault detection model based on vector quantization sparse autoencoder for nonlinear complex systems
  publication-title: IEEE Trans. Industr. Inform.
– volume: 170
  start-page: 670
  year: 2023
  end-page: 684
  ident: b8
  article-title: A supervised functional Bayesian inference model with transfer-learning for performance enhancement of monitoring target batches with limited data
  publication-title: Process Saf. Environ.
– volume: 86–87
  start-page: 17
  year: 2022
  end-page: 29
  ident: b6
  article-title: An intelligent fault diagnosis for machine maintenance using weighted soft-voting rule based multi-attention module with multi-scale information fusion
  publication-title: Inform. Fusion
– volume: 207
  year: 2023
  ident: b25
  article-title: A novel method for rotor fault diagnosis based on deep transfer learning with simulated samples
  publication-title: Measurement
– reference: M. Long, Y. Cao, J. Wang, M. Jordan, F. Bach, D. Blei, Learning Transferable Features with Deep Adaptation Networks, in: 32nd International Conference on Machine Learning, 2015, pp. 97–105.
– start-page: 3320
  year: 2014
  end-page: 3328
  ident: b48
  article-title: How transferable are features in deep neural networks?
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 53
  start-page: 1982
  year: 2023
  end-page: 1993
  ident: b36
  article-title: A multi-source weighted deep transfer network for open-set fault diagnosis of rotary machinery
  publication-title: IEEE T. Cybern.
– volume: 257
  year: 2022
  ident: b16
  article-title: Multitarget domain adaptation with transferable hyperbolic prototypes for intelligent fault diagnosis
  publication-title: Knowl. Based Syst.
– volume: 107
  start-page: 224
  year: 2020
  end-page: 255
  ident: b50
  article-title: Deep learning algorithms for rotating machinery intelligent diagnosis: An open source benchmark study
  publication-title: ISA Trans.
– volume: 203
  year: 2022
  ident: b22
  article-title: A novel joint distinct subspace learning and dynamic distribution adaptation method for fault transfer diagnosis
  publication-title: Measurement
– volume: 261
  year: 2023
  ident: b13
  article-title: Domain generalization via adversarial out-domain augmentation for remaining useful life prediction of bearings under unseen conditions
  publication-title: Knowl. Based Syst.
– volume: 170
  start-page: 1161
  year: 2023
  end-page: 1172
  ident: b10
  article-title: A CNN-based transfer learning method for leakage detection of pipeline under multiple working conditions with AE signals
  publication-title: Process Saf. Environ.
– volume: 189
  year: 2023
  ident: b43
  article-title: A knowledge dynamic matching unit-guided multi-source domain adaptation network with attention mechanism for rolling bearing fault diagnosis
  publication-title: Mech. Syst. Signal Process.
– volume: 178
  year: 2021
  ident: b41
  article-title: A novel deep multi-source domain adaptation framework for bearing fault diagnosis based on feature-level and task-specific distribution alignment
  publication-title: Measurement
– volume: 117
  year: 2023
  ident: b11
  article-title: Transfer learning based fault diagnosis of automobile dry clutch system
  publication-title: Eng. Appl. Artif. Intel.
– year: 2023
  ident: b37
  article-title: A domain adaptation method for bearing fault diagnosis using multiple incomplete source data
  publication-title: J. Intell. Manuf.
– volume: 130
  start-page: 433
  year: 2022
  end-page: 448
  ident: b28
  article-title: Self-supervised bi-classifier adversarial transfer network for cross-domain fault diagnosis of rotating machinery
  publication-title: ISA Trans.
– volume: 243
  year: 2022
  ident: b45
  article-title: A multi-source information transfer learning method with subdomain adaptation for cross-domain fault diagnosis
  publication-title: Knowl. Based Syst.
– volume: 231
  year: 2023
  ident: b35
  article-title: Correlation feature distribution matching for fault diagnosis of machines
  publication-title: Reliab. Eng. Syst. Safe.
– volume: 18
  start-page: 8692
  year: 2022
  end-page: 8702
  ident: b34
  article-title: Correlation regularized conditional adversarial adaptation for multi-target-domain fault diagnosis
  publication-title: IEEE Trans. Industr. Inform.
– volume: 130
  start-page: 449
  year: 2022
  end-page: 462
  ident: b18
  article-title: A balanced and weighted alignment network for partial transfer fault diagnosis
  publication-title: ISA Trans.
– volume: 212
  year: 2023
  ident: b24
  article-title: Domain adaptation network base on contrastive learning for bearings fault diagnosis under variable working conditions
  publication-title: Expert Syst. Appl.
– volume: 51
  year: 2022
  ident: b39
  article-title: A reinforcement ensemble deep transfer learning network for rolling bearing fault diagnosis with multi-source domains
  publication-title: Adv. Eng. Inform.
– volume: 231
  year: 2023
  ident: b42
  article-title: Intelligent fault diagnosis of rotating machinery using a multi-source domain adaptation network with adversarial discrepancy matching
  publication-title: Reliab. Eng. Syst. Safe.
– volume: 11
  start-page: 1
  year: 2020
  end-page: 25
  ident: b49
  article-title: Transfer learning with dynamic distribution adaptation
  publication-title: ACM Trans. Intell. Syst. Technol.
– volume: 182
  year: 2023
  ident: b15
  article-title: Discriminative feature learning using a multiscale convolutional capsule network from attitude data for fault diagnosis of industrial robots
  publication-title: Mech. Syst. Signal Process.
– volume: 182
  year: 2023
  ident: b20
  article-title: Knowledge and data dual-driven transfer network for industrial robot fault diagnosis
  publication-title: Mech. Syst. Signal Process.
– volume: 200
  start-page: 1023
  year: 2022
  end-page: 1036
  ident: b32
  article-title: Fault detection of offshore wind turbine gearboxes based on deep adaptive networks via considering spatio-temporal fusion
  publication-title: Renew. Energ.
– volume: 186
  year: 2023
  ident: b2
  article-title: Deep discriminative transfer learning network for cross-machine fault diagnosis
  publication-title: Mech. Syst. Signal Process.
– volume: 206
  year: 2023
  ident: b4
  article-title: A review of the application of deep learning in intelligent fault diagnosis of rotating machinery
  publication-title: Measurement
– volume: 17
  start-page: 59
  year: 2016
  ident: b31
  article-title: Domain-adversarial training of neural networks
  publication-title: J. Mach. Learn. Res.
– volume: 245
  year: 2022
  ident: b5
  article-title: An intelligent fault diagnosis scheme for rotating machinery based on supervised domain adaptation with manifold embedding
  publication-title: IEEE Internet Things
– volume: 162
  year: 2022
  ident: b38
  article-title: Multi-source transfer learning network to complement knowledge for intelligent diagnosis of machines with unseen faults
  publication-title: Mech. Syst. Signal Process.
– volume: 74
  start-page: 65
  year: 2021
  end-page: 76
  ident: b14
  article-title: A novel approach of multisensory fusion to collaborative fault diagnosis in maintenance
  publication-title: Inform. Fusion
– reference: K. Saito, K. Watanabe, Y. Ushiku, T. Harada, Maximum Classifier Discrepancy for Unsupervised Domain Adaptation, in: IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 3723–3732.
– volume: 144
  year: 2023
  ident: b3
  article-title: A fault location method based on ensemble complex spatio-temporal attention network for complex systems under fluctuating operating condition
  publication-title: Appl. Soft. Comput.
– reference: K. Hirose, Complex-valued neural networks: The merits and their origins, in: IEEE International Joint Conference on Neural Networks, 2009, pp. 1209–1216.
– volume: 18
  start-page: 8077
  year: 2022
  end-page: 8086
  ident: b23
  article-title: Cross-domain open-set machinery fault diagnosis based on adversarial network with multiple auxiliary classifiers
  publication-title: IEEE Trans. Industr. Inform.
– volume: 95
  start-page: 1
  year: 2023
  end-page: 16
  ident: b1
  article-title: CFCNN: A novel convolutional fusion framework for collaborative fault identification of rotating machinery
  publication-title: Inform. Fusion
– volume: 231
  year: 2023
  ident: 10.1016/j.inffus.2024.102278_b35
  article-title: Correlation feature distribution matching for fault diagnosis of machines
  publication-title: Reliab. Eng. Syst. Safe.
  doi: 10.1016/j.ress.2022.108981
– year: 2023
  ident: 10.1016/j.inffus.2024.102278_b37
  article-title: A domain adaptation method for bearing fault diagnosis using multiple incomplete source data
  publication-title: J. Intell. Manuf.
– volume: 186
  year: 2023
  ident: 10.1016/j.inffus.2024.102278_b2
  article-title: Deep discriminative transfer learning network for cross-machine fault diagnosis
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2022.109884
– volume: 162
  year: 2022
  ident: 10.1016/j.inffus.2024.102278_b38
  article-title: Multi-source transfer learning network to complement knowledge for intelligent diagnosis of machines with unseen faults
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2021.108095
– volume: 51
  year: 2022
  ident: 10.1016/j.inffus.2024.102278_b39
  article-title: A reinforcement ensemble deep transfer learning network for rolling bearing fault diagnosis with multi-source domains
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2021.101480
– volume: 243
  year: 2022
  ident: 10.1016/j.inffus.2024.102278_b45
  article-title: A multi-source information transfer learning method with subdomain adaptation for cross-domain fault diagnosis
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2022.108466
– volume: 245
  year: 2022
  ident: 10.1016/j.inffus.2024.102278_b5
  article-title: An intelligent fault diagnosis scheme for rotating machinery based on supervised domain adaptation with manifold embedding
  publication-title: IEEE Internet Things
– volume: 11
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.inffus.2024.102278_b49
  article-title: Transfer learning with dynamic distribution adaptation
  publication-title: ACM Trans. Intell. Syst. Technol.
– volume: 107
  start-page: 224
  year: 2020
  ident: 10.1016/j.inffus.2024.102278_b50
  article-title: Deep learning algorithms for rotating machinery intelligent diagnosis: An open source benchmark study
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2020.08.010
– volume: 261
  year: 2023
  ident: 10.1016/j.inffus.2024.102278_b13
  article-title: Domain generalization via adversarial out-domain augmentation for remaining useful life prediction of bearings under unseen conditions
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2022.110199
– volume: 118
  year: 2023
  ident: 10.1016/j.inffus.2024.102278_b27
  article-title: Unsupervised fault diagnosis of wind turbine bearing via a deep residual deformable convolution network based on subdomain adaptation
  publication-title: Eng Appl. Artif. Intel.
– volume: 18
  start-page: 8389
  issue: 12
  year: 2022
  ident: 10.1016/j.inffus.2024.102278_b17
  article-title: Stepwise adaptive convolutional network for fault diagnosis of high-speed train bogie under variant running speeds
  publication-title: IEEE Trans. Industr. Inform.
  doi: 10.1109/TII.2022.3152540
– ident: 10.1016/j.inffus.2024.102278_b29
  doi: 10.1109/CVPR.2018.00392
– volume: 117
  year: 2023
  ident: 10.1016/j.inffus.2024.102278_b11
  article-title: Transfer learning based fault diagnosis of automobile dry clutch system
  publication-title: Eng. Appl. Artif. Intel.
  doi: 10.1016/j.engappai.2022.105522
– volume: 182
  year: 2023
  ident: 10.1016/j.inffus.2024.102278_b20
  article-title: Knowledge and data dual-driven transfer network for industrial robot fault diagnosis
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2022.109597
– volume: 189
  year: 2023
  ident: 10.1016/j.inffus.2024.102278_b43
  article-title: A knowledge dynamic matching unit-guided multi-source domain adaptation network with attention mechanism for rolling bearing fault diagnosis
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2023.110098
– volume: 178
  year: 2021
  ident: 10.1016/j.inffus.2024.102278_b41
  article-title: A novel deep multi-source domain adaptation framework for bearing fault diagnosis based on feature-level and task-specific distribution alignment
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109359
– volume: 17
  start-page: 59
  year: 2016
  ident: 10.1016/j.inffus.2024.102278_b31
  article-title: Domain-adversarial training of neural networks
  publication-title: J. Mach. Learn. Res.
– volume: 18
  start-page: 8077
  issue: 11
  year: 2022
  ident: 10.1016/j.inffus.2024.102278_b23
  article-title: Cross-domain open-set machinery fault diagnosis based on adversarial network with multiple auxiliary classifiers
  publication-title: IEEE Trans. Industr. Inform.
  doi: 10.1109/TII.2021.3138558
– volume: 200
  start-page: 1023
  year: 2022
  ident: 10.1016/j.inffus.2024.102278_b32
  article-title: Fault detection of offshore wind turbine gearboxes based on deep adaptive networks via considering spatio-temporal fusion
  publication-title: Renew. Energ.
  doi: 10.1016/j.renene.2022.10.018
– volume: 53
  start-page: 1982
  issue: 3
  year: 2023
  ident: 10.1016/j.inffus.2024.102278_b36
  article-title: A multi-source weighted deep transfer network for open-set fault diagnosis of rotary machinery
  publication-title: IEEE T. Cybern.
  doi: 10.1109/TCYB.2022.3195355
– volume: 86–87
  start-page: 17
  year: 2022
  ident: 10.1016/j.inffus.2024.102278_b6
  article-title: An intelligent fault diagnosis for machine maintenance using weighted soft-voting rule based multi-attention module with multi-scale information fusion
  publication-title: Inform. Fusion
– volume: 207
  year: 2023
  ident: 10.1016/j.inffus.2024.102278_b25
  article-title: A novel method for rotor fault diagnosis based on deep transfer learning with simulated samples
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.112350
– volume: 144
  year: 2023
  ident: 10.1016/j.inffus.2024.102278_b3
  article-title: A fault location method based on ensemble complex spatio-temporal attention network for complex systems under fluctuating operating condition
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2023.110489
– volume: 213
  year: 2023
  ident: 10.1016/j.inffus.2024.102278_b21
  article-title: DC-DC buck circuit fault diagnosis with insufficient state data based on deep model and transfer strategy
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.118918
– volume: 9
  start-page: 20778
  issue: 20
  year: 2022
  ident: 10.1016/j.inffus.2024.102278_b19
  article-title: Domain adaptive log anomaly prediction for Hadoop system
  publication-title: IEEE Internet Things
  doi: 10.1109/JIOT.2022.3178873
– ident: 10.1016/j.inffus.2024.102278_b30
– volume: 19
  start-page: 2693
  issue: 3
  year: 2023
  ident: 10.1016/j.inffus.2024.102278_b7
  article-title: A novel fault detection model based on vector quantization sparse autoencoder for nonlinear complex systems
  publication-title: IEEE Trans. Industr. Inform.
  doi: 10.1109/TII.2022.3174715
– volume: 231
  year: 2023
  ident: 10.1016/j.inffus.2024.102278_b42
  article-title: Intelligent fault diagnosis of rotating machinery using a multi-source domain adaptation network with adversarial discrepancy matching
  publication-title: Reliab. Eng. Syst. Safe.
  doi: 10.1016/j.ress.2022.109036
– volume: 206
  year: 2023
  ident: 10.1016/j.inffus.2024.102278_b4
  article-title: A review of the application of deep learning in intelligent fault diagnosis of rotating machinery
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.112346
– volume: 212
  year: 2023
  ident: 10.1016/j.inffus.2024.102278_b24
  article-title: Domain adaptation network base on contrastive learning for bearings fault diagnosis under variable working conditions
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.118802
– volume: 130
  start-page: 449
  year: 2022
  ident: 10.1016/j.inffus.2024.102278_b18
  article-title: A balanced and weighted alignment network for partial transfer fault diagnosis
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2022.03.014
– volume: 170
  start-page: 670
  year: 2023
  ident: 10.1016/j.inffus.2024.102278_b8
  article-title: A supervised functional Bayesian inference model with transfer-learning for performance enhancement of monitoring target batches with limited data
  publication-title: Process Saf. Environ.
  doi: 10.1016/j.psep.2022.12.004
– volume: 257
  year: 2022
  ident: 10.1016/j.inffus.2024.102278_b16
  article-title: Multitarget domain adaptation with transferable hyperbolic prototypes for intelligent fault diagnosis
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2022.109952
– volume: 262
  year: 2023
  ident: 10.1016/j.inffus.2024.102278_b44
  article-title: A novel conditional weighting transfer Wasserstein auto-encoder for rolling bearing fault diagnosis with multi-source domains
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2022.110203
– volume: 95
  start-page: 1
  year: 2023
  ident: 10.1016/j.inffus.2024.102278_b1
  article-title: CFCNN: A novel convolutional fusion framework for collaborative fault identification of rotating machinery
  publication-title: Inform. Fusion
  doi: 10.1016/j.inffus.2023.02.012
– ident: 10.1016/j.inffus.2024.102278_b46
  doi: 10.1109/IJCNN.2009.5178754
– volume: 71
  year: 2022
  ident: 10.1016/j.inffus.2024.102278_b9
  article-title: Energy-based adversarial transfer network for cross-domain fault diagnosis of electro-mechanical systems
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2022.3216593
– volume: 74
  start-page: 65
  year: 2021
  ident: 10.1016/j.inffus.2024.102278_b14
  article-title: A novel approach of multisensory fusion to collaborative fault diagnosis in maintenance
  publication-title: Inform. Fusion
  doi: 10.1016/j.inffus.2021.03.008
– volume: 203
  year: 2022
  ident: 10.1016/j.inffus.2024.102278_b22
  article-title: A novel joint distinct subspace learning and dynamic distribution adaptation method for fault transfer diagnosis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.111986
– volume: 18
  start-page: 8692
  issue: 12
  year: 2022
  ident: 10.1016/j.inffus.2024.102278_b34
  article-title: Correlation regularized conditional adversarial adaptation for multi-target-domain fault diagnosis
  publication-title: IEEE Trans. Industr. Inform.
  doi: 10.1109/TII.2022.3149906
– volume: 55
  year: 2023
  ident: 10.1016/j.inffus.2024.102278_b12
  article-title: Transfer reinforcement learning method with multi-label learning for compound fault recognition
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2022.101818
– year: 2018
  ident: 10.1016/j.inffus.2024.102278_b47
– volume: 213
  year: 2023
  ident: 10.1016/j.inffus.2024.102278_b26
  article-title: Multi-view and multi-level network for fault diagnosis accommodating feature transferability
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.119057
– volume: 130
  start-page: 433
  year: 2022
  ident: 10.1016/j.inffus.2024.102278_b28
  article-title: Self-supervised bi-classifier adversarial transfer network for cross-domain fault diagnosis of rotating machinery
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2022.03.008
– volume: 229
  year: 2023
  ident: 10.1016/j.inffus.2024.102278_b33
  article-title: Blockchain-based decentralized federated transfer learning methodology for collaborative machinery fault diagnosis
  publication-title: Reliab. Eng. Sys. Safe.
– start-page: 3320
  year: 2014
  ident: 10.1016/j.inffus.2024.102278_b48
  article-title: How transferable are features in deep neural networks?
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 170
  start-page: 1161
  year: 2023
  ident: 10.1016/j.inffus.2024.102278_b10
  article-title: A CNN-based transfer learning method for leakage detection of pipeline under multiple working conditions with AE signals
  publication-title: Process Saf. Environ.
  doi: 10.1016/j.psep.2022.12.070
– volume: 182
  year: 2023
  ident: 10.1016/j.inffus.2024.102278_b15
  article-title: Discriminative feature learning using a multiscale convolutional capsule network from attitude data for fault diagnosis of industrial robots
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2022.109569
– ident: 10.1016/j.inffus.2024.102278_b40
  doi: 10.1609/aaai.v33i01.33015989
SSID ssj0017031
Score 2.6175237
Snippet In practical industrial scenarios, the variations of operating conditions such as load and rotational speed make mechanical systems subject to complex and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102278
SubjectTerms Adversarial transfer learning
Fault diagnosis
Feature similarity metric
Information fusion
Joint distribution domain adaptation
Variable operating conditions
Title A multi-source domain information fusion network for rotating machinery fault diagnosis under variable operating conditions
URI https://dx.doi.org/10.1016/j.inffus.2024.102278
Volume 106
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14Xduku2lyLMVSHy2iFnoL2ZdUbFrSVhDB3-5MNikKomAum00ySZjd7MxsvvmWkHNh_aQtBXhutqkZV9yyMIgSJqVpC08nSuTzHYNh0B_x67EYV0i3zIVBWGUx9rsxPR-tiyONQpuN-WTSeMDIw0d2Eo6OR4CMn8heB3364mMN8_CQnz3nTA0ChleX6XM5xgsa0a6QtNvnyGHg42JrP5mnLyant0O2C1-Rdtzr7JKKSffI1mBNtLrYJ-8dmkMCmZuEp3o2hVCfFnSoqHQKj8YidXhvCidoNsMf8OkTneZQSpO9UZvAbah2wLvJgmJuWUZfIZLG3Co6myP5MopA_KwdzOuAjHqXj90-K9ZTYAoCgyUTYI2E1V4oDVcGbH0goNqMmlr7Kgyh2ZSJMGVQwgafelN5MlSwZ0Pe0r5uHZJqOkvNEaHKyjZXUaClkVx6EJ5HIlEW3DkLIY6MaqRVqjFWBdk4rnnxEpeosufYKT9G5cdO-TXC1lJzR7bxx_XtsoXib50mBnvwq-TxvyVPyCbWHFrslFSX2cqcgV-ylPW849XJRqd7f3uH5dVNf_gJ5c_okA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60PagH8Ylv9-B1aZvupsmxiKXax8UWvIXsSyo2LbUK4p93JpsUBVEwlzw2k4TZzc7M7jffAlxJF6QtJdFzc3XDhRaOR2GccqVsSzZMqmU-3jEYht2xuHuQD2twXebCEKyy6Pt9n5731sWVWqHN2nwyqd1T5BEQO4kgxyNsrkOV2KlEBart2153uJpMIIr2nDY1DDkJlBl0OcwL69G9Em93IIjGIKD11n6yUF-sTmcHtgt3kbX9F-3Cms32YGuw4lp92YePNstRgdyPwzMzm2K0zwpGVNI7w1fTLvOQb4YFbDGjOfjskU1zNKVdvDOX4mOY8di7yQuj9LIFe8NgmtKr2GxO_MskgiG08UivAxh3bkbXXV4sqcA1xgZLLtEgSWcakbJCWzT3ocTTelw3JtBRhDWnbUxZgwo3_NvruqEijUcuEk0TmOYhVLJZZo-AaadaQsehUVYJ1cAIPZapdujROYxyVHwMzVKNiS74xmnZi-ekBJY9JV75CSk_8co_Br6Smnu-jT_ub5U1lHxrNwmahF8lT_4teQkb3dGgn_Rvh71T2KQSDx47g8py8WrP0U1ZqouiGX4CjrLprA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-source+domain+information+fusion+network+for+rotating+machinery+fault+diagnosis+under+variable+operating+conditions&rft.jtitle=Information+fusion&rft.au=Gao%2C+Tianyu&rft.au=Yang%2C+Jingli&rft.au=Tang%2C+Qing&rft.date=2024-06-01&rft.pub=Elsevier+B.V&rft.issn=1566-2535&rft.eissn=1872-6305&rft.volume=106&rft_id=info:doi/10.1016%2Fj.inffus.2024.102278&rft.externalDocID=S1566253524000563
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1566-2535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1566-2535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1566-2535&client=summon