Cross-subject EEG linear domain adaption based on batch normalization and depthwise convolutional neural network
Electroencephalogram (EEG)-based emotion recognition has been widely used in affective computing. However, the study on improving recognition accuracy across individuals is insufficient. In this study, a new linear domain adaption approach with experiment-level batch normalization and a single-layer...
Saved in:
Published in | Knowledge-based systems Vol. 280; p. 111011 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
25.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electroencephalogram (EEG)-based emotion recognition has been widely used in affective computing. However, the study on improving recognition accuracy across individuals is insufficient. In this study, a new linear domain adaption approach with experiment-level batch normalization and a single-layer depthwise convolutional neural network is proposed. In particular, the experiment-level batch normalization and depthwise convolutional neural network can be integrated as a linear mapping with a scaling parameter and a translation parameter. By linear mapping, difference between subjects in different domain can be effectively diminished, and the mapping parameters can be used to further investigate EEG emotion mechanism. The domain adaption experiments are conducted with SJTU emotion EEG dataset and SJTU emotion EEG dataset-IV, which are divided into source domain and target domain to validate the recognition effect across individuals. Multiple traditional machine learning and deep learning classifiers are used to examine the effectiveness of the proposed approach. By mapping the EEG data from source domain to target domain, the increment of recognition accuracy is up to 61.11% when using the support vector machine classifier. The highest recognition accuracy 97.22% is achieved when using the logistic regression classifier. The scaling and translation parameters in the mapping procedure are then analyzed with statistical methods. It is found that EEG signal waves in the same emotion category are highly similar and EEG data have characteristics including integration of channels and hierarchy of frequency bands. In addition, the experimental results indicate that emotion complexity and emotion sensitiveness of brain cortex regions can affect the correlations between channels. |
---|---|
AbstractList | Electroencephalogram (EEG)-based emotion recognition has been widely used in affective computing. However, the study on improving recognition accuracy across individuals is insufficient. In this study, a new linear domain adaption approach with experiment-level batch normalization and a single-layer depthwise convolutional neural network is proposed. In particular, the experiment-level batch normalization and depthwise convolutional neural network can be integrated as a linear mapping with a scaling parameter and a translation parameter. By linear mapping, difference between subjects in different domain can be effectively diminished, and the mapping parameters can be used to further investigate EEG emotion mechanism. The domain adaption experiments are conducted with SJTU emotion EEG dataset and SJTU emotion EEG dataset-IV, which are divided into source domain and target domain to validate the recognition effect across individuals. Multiple traditional machine learning and deep learning classifiers are used to examine the effectiveness of the proposed approach. By mapping the EEG data from source domain to target domain, the increment of recognition accuracy is up to 61.11% when using the support vector machine classifier. The highest recognition accuracy 97.22% is achieved when using the logistic regression classifier. The scaling and translation parameters in the mapping procedure are then analyzed with statistical methods. It is found that EEG signal waves in the same emotion category are highly similar and EEG data have characteristics including integration of channels and hierarchy of frequency bands. In addition, the experimental results indicate that emotion complexity and emotion sensitiveness of brain cortex regions can affect the correlations between channels. |
ArticleNumber | 111011 |
Author | Tian, Kai Li, Guofa Ouyang, Delin Li, Qingkun Wu, Baiheng Guo, Gang Yang, Liu |
Author_xml | – sequence: 1 givenname: Guofa orcidid: 0000-0002-7889-4695 surname: Li fullname: Li, Guofa email: liguofa@cqu.edu.cn organization: College of Mechanical and Vehicle Engineering, Chongqing University, 400044, Chongqing, China – sequence: 2 givenname: Delin orcidid: 0000-0003-3137-6089 surname: Ouyang fullname: Ouyang, Delin email: ouyangdelin2021@email.szu.edu.cn organization: Institute of Human Factors and Ergonomics, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China – sequence: 3 givenname: Liu surname: Yang fullname: Yang, Liu email: yang.liu@whut.edu.cn organization: School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan, 430063, China – sequence: 4 givenname: Qingkun surname: Li fullname: Li, Qingkun email: lqk18@mails.tsinghua.edu.cn organization: Beijing Key Laboratory of Human-Computer Interaction, Institute of Software, Chinese Academy of Sciences, Beijing, 100190, China – sequence: 5 givenname: Kai surname: Tian fullname: Tian, Kai email: tskt@leeds.ac.uk organization: Institute for Transport Studies, University of Leeds, Leeds, LS1 9JT, UK – sequence: 6 givenname: Baiheng orcidid: 0000-0002-1824-6784 surname: Wu fullname: Wu, Baiheng email: baiheng.wu@ntnu.no organization: Department of ICT and Natural Science, Norwegian University of Science and Technology, Å lesund, 6009, Norway – sequence: 7 givenname: Gang surname: Guo fullname: Guo, Gang email: guogang@cqu.edu.cn organization: College of Mechanical and Vehicle Engineering, Chongqing University, 400044, Chongqing, China |
BookMark | eNqFkM1OwzAQhC1UJNrCG3DwCyTY-Q8HJFSVglSJC5wtx96oTlM7st1W5enJDycOcNrVjma08y3QTBsNCN1TElJCs4cm3GvjLi6MSBSHlPZHeoXmtMijIE9IOUNzUqYkyElKb9DCuYYQEkW0mKNuZY1zgTtWDQiP1-sNbpUGbrE0B6405pJ3XhmNK-5A4nHxYoe1sQfeqi8-ilxLLKHzu7NygIXRJ9MeB4W3WMPRjsOfjd3fouuatw7ufuYSfb6sP1avwfZ987Z63gYiJpkP0kTkRZkUguQQ8TwtYhqTBAQXUVwUSVxmWZXyvExlDSURkKWVEEkFdZZClEgaL9HjlCuGghZqJpQfn_WWq5ZRwgZ2rGETOzawYxO73pz8MndWHbi9_Gd7mmzQFzspsMwJBVqAVLany6RRfwd8AyYvj8M |
CitedBy_id | crossref_primary_10_1088_1748_0221_19_05_P05015 crossref_primary_10_1016_j_knosys_2025_113018 crossref_primary_10_1109_JSEN_2024_3358400 crossref_primary_10_1016_j_knosys_2024_112769 crossref_primary_10_1016_j_knosys_2024_112877 crossref_primary_10_1145_3712259 crossref_primary_10_1016_j_patcog_2024_110726 crossref_primary_10_1109_JSEN_2024_3484413 crossref_primary_10_1007_s11571_024_10193_y crossref_primary_10_1016_j_scitotenv_2025_178901 crossref_primary_10_1109_TITS_2024_3478212 |
Cites_doi | 10.1016/S1388-2457(00)00527-7 10.20982/tqmp.04.1.p013 10.1109/TCYB.2018.2797176 10.1109/ACCESS.2021.3091487 10.1016/j.knosys.2020.106243 10.1109/JBHI.2022.3210158 10.1109/TASE.2021.3088897 10.1109/TCDS.2018.2868121 10.1016/j.cogr.2021.04.001 10.1007/s40708-017-0069-3 10.1038/s41597-022-01557-2 10.1016/j.pneurobio.2012.06.008 10.1016/j.compbiomed.2022.105519 10.1109/TNSRE.2018.2850308 10.1016/j.knosys.2023.110372 10.1016/j.asoc.2020.106954 10.1109/JSEN.2022.3168572 10.1109/TAMD.2015.2431497 10.1109/TFUZZ.2015.2501438 10.1109/TAFFC.2018.2817622 10.1016/j.neunet.2014.06.012 10.1016/j.neucom.2020.12.098 10.1017/S0140525X11000446 10.3390/e23080984 10.1016/j.bspc.2023.105138 10.1109/TCDS.2019.2949306 10.1016/j.neuroimage.2005.11.027 10.1016/j.bspc.2023.104741 10.1016/j.compbiomed.2021.104428 10.1080/02699939308409183 10.3389/fnins.2021.778488 10.1016/j.tics.2010.11.004 10.1037/0022-3514.54.6.1063 10.1109/TASSP.1978.1163055 10.1007/s00521-022-07292-4 10.3390/s22134939 10.26599/BDMA.2018.9020021 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. |
Copyright_xml | – notice: 2023 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.knosys.2023.111011 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-7409 |
ExternalDocumentID | 10_1016_j_knosys_2023_111011 S095070512300761X |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 52272421; 72001163 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABIVO ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSV SSW SSZ T5K WH7 XPP ZMT ~02 ~G- 29L AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SSH UHS WUQ |
ID | FETCH-LOGICAL-c306t-54c78948c07e2a75831304ecac238843966b5a795dfe90ce65bcc4bef65e24d13 |
IEDL.DBID | .~1 |
ISSN | 0950-7051 |
IngestDate | Thu Apr 24 23:12:16 EDT 2025 Tue Jul 01 00:20:26 EDT 2025 Fri Feb 23 02:35:47 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Brain–computer control Emotion recognition Electroencephalogram (EEG) Machine learning Domain adaption |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-54c78948c07e2a75831304ecac238843966b5a795dfe90ce65bcc4bef65e24d13 |
ORCID | 0000-0002-7889-4695 0000-0003-3137-6089 0000-0002-1824-6784 |
ParticipantIDs | crossref_citationtrail_10_1016_j_knosys_2023_111011 crossref_primary_10_1016_j_knosys_2023_111011 elsevier_sciencedirect_doi_10_1016_j_knosys_2023_111011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-25 |
PublicationDateYYYYMMDD | 2023-11-25 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-25 day: 25 |
PublicationDecade | 2020 |
PublicationTitle | Knowledge-based systems |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Maheshwari, Ghosh, Tripathy, Sharma, Acharya (b10) 2021; 134 Ouyang, Yuan, Li, Guo (b26) 2022; 22 Li, Ouyang, Yuan, Li, Guo, Qu, Green (b8) 2022; 22 Özerdem, Polat (b1) 2017; 4 Li, Li, Pan, Wang (b33) 2021; 15 Cui, Liu, Zhang, Chen, Wang, Chen (b13) 2020; 205 Tan, Šarlija, Kasabov (b15) 2021; 434 Padhmashree, Bhattacharyya (b42) 2022; 238 Zar (b30) 2014 Zheng, Liu, Lu, Lu, Cichocki (b24) 2018; 49 Nachar (b31) 2008; 4 Cao, Ma, Meng, Gao, Meng (b46) 2019 Deng, Xu, Xie, Choi, Wang (b17) 2018; 26 Oostenveld, Praamstra (b40) 2001; 112 Dadebayev, Goh, Tan (b4) 2022; 34 Zheng, Lu (b22) 2015; 7 Li, Tan, Xing, Li, Li, Zeng, Wang, Zhang, Su, Pi (b47) 2022; 9 Ning, Chen, Zhang (b21) 2021 Lotfi, Akbarzadeh-T (b37) 2014; 59 Watson, Clark, Tellegen (b25) 1988; 54 Zhu, Gu, Zhao, Chen, Li, He (b27) 2018; 1 Yang, Deng, Choi, Wang (b16) 2015; 24 Sakoe, Chiba (b28) 1978; 26 Zhou, Zhang, Fu, Zhang, Li, Huang, Dong, Li, Yang, Liang (b19) 2022 Philippot (b23) 1993; 7 Britton, Phan, Taylor, Welsh, Berridge, Liberzon (b38) 2006; 31 Quan, Li, Wang, He, Yang, Guo (b20) 2023; 84 Li, Yan, Li, Qu, Chu, Cao (b48) 2021; 19 Cuturi, Blondel (b29) 2017 Chen, Jin, Li, Fan, Li, He (b32) 2021; 15 Li, Zhu, Jin, Fan, He, Cai, Li (b34) 2022; 26 Etkin, Egner, Kalisch (b39) 2011; 15 Li, Qiu, Shen, Liu, He (b7) 2019; 50 Wang, Wang (b45) 2021; 1 Peng, Liu, Kong, Nie, Lu, Cichocki (b35) 2022 Yin, Zheng, Hu, Zhang, Cui (b12) 2021; 100 Yao, Wang, Lu, Li, Zhang (b14) 2021; 23 Jiménez-Guarneros, Fuentes-Pineda (b36) 2023; 86 Song, Zheng, Song, Cui (b11) 2018; 11 Lachaux, Axmacher, Mormann, Halgren, Crone (b43) 2012; 98 Lindquist, Wager, Kober, Bliss-Moreau, Barrett (b41) 2012; 35 Cui, Liu, Zhang, Chen, Wang, Chen (b3) 2020; 205 Li, Hua, Xu, Shu, Xu, Kuang, Wu (b18) 2022; 145 Liu, Xie, Wu, Cao, Li, Li (b44) 2018; 11 Liu, Wang, An, Zhao, Zhao, Zhang (b2) 2023; 265 Islam, Moni, Islam, Rashed-Al-Mahfuz, Islam, Hasan, Hossain, Ahmad, Uddin, Azad (b6) 2021; 9 Houssein, Hammad, Ali (b5) 2022; 34 Li, Qiu, Du, Wang, He (b9) 2019; 12 Li (10.1016/j.knosys.2023.111011_b7) 2019; 50 Yin (10.1016/j.knosys.2023.111011_b12) 2021; 100 Chen (10.1016/j.knosys.2023.111011_b32) 2021; 15 Song (10.1016/j.knosys.2023.111011_b11) 2018; 11 Zheng (10.1016/j.knosys.2023.111011_b24) 2018; 49 Ouyang (10.1016/j.knosys.2023.111011_b26) 2022; 22 Li (10.1016/j.knosys.2023.111011_b9) 2019; 12 Li (10.1016/j.knosys.2023.111011_b48) 2021; 19 Li (10.1016/j.knosys.2023.111011_b8) 2022; 22 Oostenveld (10.1016/j.knosys.2023.111011_b40) 2001; 112 Ning (10.1016/j.knosys.2023.111011_b21) 2021 Quan (10.1016/j.knosys.2023.111011_b20) 2023; 84 Lachaux (10.1016/j.knosys.2023.111011_b43) 2012; 98 Britton (10.1016/j.knosys.2023.111011_b38) 2006; 31 Li (10.1016/j.knosys.2023.111011_b47) 2022; 9 Dadebayev (10.1016/j.knosys.2023.111011_b4) 2022; 34 Li (10.1016/j.knosys.2023.111011_b34) 2022; 26 Islam (10.1016/j.knosys.2023.111011_b6) 2021; 9 Yao (10.1016/j.knosys.2023.111011_b14) 2021; 23 Zhu (10.1016/j.knosys.2023.111011_b27) 2018; 1 Jiménez-Guarneros (10.1016/j.knosys.2023.111011_b36) 2023; 86 Peng (10.1016/j.knosys.2023.111011_b35) 2022 Watson (10.1016/j.knosys.2023.111011_b25) 1988; 54 Cui (10.1016/j.knosys.2023.111011_b13) 2020; 205 Özerdem (10.1016/j.knosys.2023.111011_b1) 2017; 4 Sakoe (10.1016/j.knosys.2023.111011_b28) 1978; 26 Cao (10.1016/j.knosys.2023.111011_b46) 2019 Houssein (10.1016/j.knosys.2023.111011_b5) 2022; 34 Cui (10.1016/j.knosys.2023.111011_b3) 2020; 205 Li (10.1016/j.knosys.2023.111011_b18) 2022; 145 Liu (10.1016/j.knosys.2023.111011_b2) 2023; 265 Cuturi (10.1016/j.knosys.2023.111011_b29) 2017 Wang (10.1016/j.knosys.2023.111011_b45) 2021; 1 Maheshwari (10.1016/j.knosys.2023.111011_b10) 2021; 134 Nachar (10.1016/j.knosys.2023.111011_b31) 2008; 4 Deng (10.1016/j.knosys.2023.111011_b17) 2018; 26 Yang (10.1016/j.knosys.2023.111011_b16) 2015; 24 Zheng (10.1016/j.knosys.2023.111011_b22) 2015; 7 Zar (10.1016/j.knosys.2023.111011_b30) 2014 Padhmashree (10.1016/j.knosys.2023.111011_b42) 2022; 238 Tan (10.1016/j.knosys.2023.111011_b15) 2021; 434 Zhou (10.1016/j.knosys.2023.111011_b19) 2022 Li (10.1016/j.knosys.2023.111011_b33) 2021; 15 Lindquist (10.1016/j.knosys.2023.111011_b41) 2012; 35 Philippot (10.1016/j.knosys.2023.111011_b23) 1993; 7 Etkin (10.1016/j.knosys.2023.111011_b39) 2011; 15 Liu (10.1016/j.knosys.2023.111011_b44) 2018; 11 Lotfi (10.1016/j.knosys.2023.111011_b37) 2014; 59 |
References_xml | – volume: 24 start-page: 1079 year: 2015 end-page: 1094 ident: b16 article-title: Takagi–Sugeno–Kang transfer learning fuzzy logic system for the adaptive recognition of epileptic electroencephalogram signals publication-title: IEEE Trans. Fuzzy Syst. – volume: 35 start-page: 121 year: 2012 end-page: 143 ident: b41 article-title: The brain basis of emotion: A meta-analytic review publication-title: Behav. Brain Sci. – volume: 31 start-page: 397 year: 2006 end-page: 409 ident: b38 article-title: Neural correlates of social and nonsocial emotions: An fMRI study publication-title: Neuroimage – year: 2014 ident: b30 article-title: Spearman Rank Correlation: Overview publication-title: Wiley StatsRef: Statistics Reference Online – volume: 98 start-page: 279 year: 2012 end-page: 301 ident: b43 article-title: High-frequency neural activity and human cognition: Past, present and possible future of intracranial EEG research publication-title: Prog. Neurobiol. – volume: 26 start-page: 1481 year: 2018 end-page: 1494 ident: b17 article-title: Transductive joint-knowledge-transfer TSK FS for recognition of epileptic EEG signals publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 15 year: 2021 ident: b32 article-title: MS-MDA: Multisource marginal distribution adaptation for cross-subject and cross-session EEG emotion recognition publication-title: Front. Neurosci. – volume: 26 start-page: 43 year: 1978 end-page: 49 ident: b28 article-title: Dynamic programming algorithm optimization for spoken word recognition publication-title: IEEE Trans. Acoust. Speech Signal Process. – volume: 15 year: 2021 ident: b33 article-title: Cross-subject EEG emotion recognition with self-organized graph neural network publication-title: Front. Neurosci. – volume: 59 start-page: 61 year: 2014 end-page: 72 ident: b37 article-title: Practical emotional neural networks publication-title: Neural Netw. – volume: 434 start-page: 137 year: 2021 end-page: 148 ident: b15 article-title: NeuroSense: Short-term emotion recognition and understanding based on spiking neural network modelling of spatio-temporal EEG patterns publication-title: Neurocomputing – volume: 34 start-page: 4385 year: 2022 end-page: 4401 ident: b4 article-title: EEG-based emotion recognition: Review of commercial EEG devices and machine learning techniques publication-title: J. King Saud Univ.-Comput. Inf. Sci. – start-page: 1468 year: 2021 end-page: 1472 ident: b21 article-title: Cross-subject EEG emotion recognition using domain adaptive few-shot learning networks publication-title: 2021 IEEE International Conference on Bioinformatics and Biomedicine – volume: 84 year: 2023 ident: b20 article-title: EEG-based cross-subject emotion recognition using multi-source domain transfer learning publication-title: Biomed. Signal Process. Control – volume: 9 start-page: 481 year: 2022 ident: b47 article-title: A multimodal psychological, physiological and behavioural dataset for human emotions in driving tasks publication-title: Sci. Data – volume: 26 start-page: 5964 year: 2022 end-page: 5973 ident: b34 article-title: Dynamic domain adaptation for class-aware cross-subject and cross-session EEG emotion recognition publication-title: IEEE J. Biomed. Health Inf. – volume: 1 start-page: 29 year: 2021 end-page: 40 ident: b45 article-title: Review of the emotional feature extraction and classification using eeg signals publication-title: Cogn. Robot. – volume: 265 year: 2023 ident: b2 article-title: EEG emotion recognition based on the attention mechanism and pre-trained convolution capsule network publication-title: Knowl.-Based Syst. – volume: 11 start-page: 517 year: 2018 end-page: 526 ident: b44 article-title: Electroencephalogram emotion recognition based on empirical mode decomposition and optimal feature selection publication-title: IEEE Trans. Cogn. Dev. Syst. – volume: 7 start-page: 162 year: 2015 end-page: 175 ident: b22 article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks publication-title: IEEE Trans. Auton. Ment. Dev. – volume: 22 start-page: 4939 year: 2022 ident: b26 article-title: The effect of time window length on EEG-based emotion recognition publication-title: Sensors – year: 2022 ident: b35 article-title: Joint EEG feature transfer and semi-supervised cross-subject emotion recognition publication-title: IEEE Trans. Ind. Inform. – volume: 34 start-page: 12527 year: 2022 end-page: 12557 ident: b5 article-title: Human emotion recognition from EEG-based brain–computer interface using machine learning: A comprehensive review publication-title: Neural Comput. Appl. – volume: 145 year: 2022 ident: b18 article-title: Cross-subject EEG emotion recognition combined with connectivity features and meta-transfer learning publication-title: Comput. Biol. Med. – volume: 19 start-page: 2665 year: 2021 end-page: 2677 ident: b48 article-title: A temporal–spatial deep learning approach for driver distraction detection based on EEG signals publication-title: IEEE Trans. Autom. Sci. Eng. – volume: 12 start-page: 344 year: 2019 end-page: 353 ident: b9 article-title: Domain adaptation for EEG emotion recognition based on latent representation similarity publication-title: IEEE Trans. Cogn. Dev. Syst. – start-page: 8627 year: 2019 end-page: 8630 ident: b46 article-title: Emotion recognition based on CNN publication-title: 2019 Chinese Control Conference – volume: 100 year: 2021 ident: b12 article-title: EEG emotion recognition using fusion model of graph convolutional neural networks and LSTM publication-title: Appl. Soft Comput. – volume: 205 year: 2020 ident: b3 article-title: EEG-based emotion recognition using an end-to-end regional-asymmetric convolutional neural network publication-title: Knowl.-Based Syst. – volume: 134 year: 2021 ident: b10 article-title: Automated accurate emotion recognition system using rhythm-specific deep convolutional neural network technique with multi-channel EEG signals publication-title: Comput. Biol. Med. – volume: 238 year: 2022 ident: b42 article-title: Human emotion recognition based on time–frequency analysis of multivariate EEG signal publication-title: Knowl.-Based Syst. – start-page: 894 year: 2017 end-page: 903 ident: b29 article-title: Soft-dtw: A differentiable loss function for time-series publication-title: International Conference on Machine Learning – volume: 50 start-page: 3281 year: 2019 end-page: 3293 ident: b7 article-title: Multisource transfer learning for cross-subject EEG emotion recognition publication-title: IEEE Trans. Cybern. – volume: 205 year: 2020 ident: b13 article-title: EEG-based emotion recognition using an end-to-end regional-asymmetric convolutional neural network publication-title: Knowl.-Based Syst. – volume: 112 start-page: 713 year: 2001 end-page: 719 ident: b40 article-title: The five percent electrode system for high-resolution EEG and ERP measurements publication-title: Clin. Neurophysiol. – volume: 9 start-page: 94601 year: 2021 end-page: 94624 ident: b6 article-title: Emotion recognition from EEG signal focusing on deep learning and shallow learning techniques publication-title: IEEE Access – volume: 15 start-page: 85 year: 2011 end-page: 93 ident: b39 article-title: Emotional processing in anterior cingulate and medial prefrontal cortex publication-title: Trends Cogn. Sci. – volume: 4 start-page: 241 year: 2017 end-page: 252 ident: b1 article-title: Emotion recognition based on EEG features in movie clips with channel selection publication-title: Brain Inf. – volume: 22 start-page: 10751 year: 2022 end-page: 10763 ident: b8 article-title: An EEG data processing approach for emotion recognition publication-title: IEEE Sens. J. – volume: 11 start-page: 532 year: 2018 end-page: 541 ident: b11 article-title: EEG emotion recognition using dynamical graph convolutional neural networks publication-title: IEEE Trans. Affect. Comput. – volume: 49 start-page: 1110 year: 2018 end-page: 1122 ident: b24 article-title: Emotionmeter: A multimodal framework for recognizing human emotions publication-title: IEEE Trans. Cybern. – volume: 54 start-page: 1063 year: 1988 ident: b25 article-title: Development and validation of brief measures of positive and negative affect: The PANAS scales publication-title: J. Personal. Soc. Psychol. – volume: 23 start-page: 984 year: 2021 ident: b14 article-title: EEG-based emotion recognition by exploiting fused network entropy measures of complex networks across subjects publication-title: Entropy – volume: 7 start-page: 171 year: 1993 end-page: 193 ident: b23 article-title: Inducing and assessing differentiated emotion-feeling states in the laboratory publication-title: Cogn. Emot. – year: 2022 ident: b19 article-title: PR-PL: A novel transfer learning framework with prototypical representation based pairwise learning for EEG-based emotion recognition – volume: 4 start-page: 13 year: 2008 end-page: 20 ident: b31 article-title: The Mann-Whitney U: A test for assessing whether two independent samples come from the same distribution publication-title: Tutorials Quant. Methods Psychol. – volume: 86 year: 2023 ident: b36 article-title: Learning a robust unified domain adaptation framework for cross-subject EEG-based emotion recognition publication-title: Biomed. Signal Process. Control – volume: 1 start-page: 266 year: 2018 end-page: 283 ident: b27 article-title: Developing a pattern discovery method in time series data and its GPU acceleration publication-title: Big Data Min. Anal. – volume: 112 start-page: 713 issue: 4 year: 2001 ident: 10.1016/j.knosys.2023.111011_b40 article-title: The five percent electrode system for high-resolution EEG and ERP measurements publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(00)00527-7 – volume: 4 start-page: 13 issue: 1 year: 2008 ident: 10.1016/j.knosys.2023.111011_b31 article-title: The Mann-Whitney U: A test for assessing whether two independent samples come from the same distribution publication-title: Tutorials Quant. Methods Psychol. doi: 10.20982/tqmp.04.1.p013 – volume: 49 start-page: 1110 issue: 3 year: 2018 ident: 10.1016/j.knosys.2023.111011_b24 article-title: Emotionmeter: A multimodal framework for recognizing human emotions publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2797176 – volume: 9 start-page: 94601 year: 2021 ident: 10.1016/j.knosys.2023.111011_b6 article-title: Emotion recognition from EEG signal focusing on deep learning and shallow learning techniques publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3091487 – volume: 205 year: 2020 ident: 10.1016/j.knosys.2023.111011_b13 article-title: EEG-based emotion recognition using an end-to-end regional-asymmetric convolutional neural network publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.106243 – volume: 26 start-page: 5964 issue: 12 year: 2022 ident: 10.1016/j.knosys.2023.111011_b34 article-title: Dynamic domain adaptation for class-aware cross-subject and cross-session EEG emotion recognition publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2022.3210158 – volume: 19 start-page: 2665 issue: 4 year: 2021 ident: 10.1016/j.knosys.2023.111011_b48 article-title: A temporal–spatial deep learning approach for driver distraction detection based on EEG signals publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2021.3088897 – volume: 11 start-page: 517 issue: 4 year: 2018 ident: 10.1016/j.knosys.2023.111011_b44 article-title: Electroencephalogram emotion recognition based on empirical mode decomposition and optimal feature selection publication-title: IEEE Trans. Cogn. Dev. Syst. doi: 10.1109/TCDS.2018.2868121 – volume: 1 start-page: 29 year: 2021 ident: 10.1016/j.knosys.2023.111011_b45 article-title: Review of the emotional feature extraction and classification using eeg signals publication-title: Cogn. Robot. doi: 10.1016/j.cogr.2021.04.001 – volume: 4 start-page: 241 issue: 4 year: 2017 ident: 10.1016/j.knosys.2023.111011_b1 article-title: Emotion recognition based on EEG features in movie clips with channel selection publication-title: Brain Inf. doi: 10.1007/s40708-017-0069-3 – volume: 9 start-page: 481 issue: 1 year: 2022 ident: 10.1016/j.knosys.2023.111011_b47 article-title: A multimodal psychological, physiological and behavioural dataset for human emotions in driving tasks publication-title: Sci. Data doi: 10.1038/s41597-022-01557-2 – volume: 98 start-page: 279 issue: 3 year: 2012 ident: 10.1016/j.knosys.2023.111011_b43 article-title: High-frequency neural activity and human cognition: Past, present and possible future of intracranial EEG research publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2012.06.008 – volume: 145 year: 2022 ident: 10.1016/j.knosys.2023.111011_b18 article-title: Cross-subject EEG emotion recognition combined with connectivity features and meta-transfer learning publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.105519 – volume: 34 start-page: 4385 issue: 7 year: 2022 ident: 10.1016/j.knosys.2023.111011_b4 article-title: EEG-based emotion recognition: Review of commercial EEG devices and machine learning techniques publication-title: J. King Saud Univ.-Comput. Inf. Sci. – volume: 26 start-page: 1481 issue: 8 year: 2018 ident: 10.1016/j.knosys.2023.111011_b17 article-title: Transductive joint-knowledge-transfer TSK FS for recognition of epileptic EEG signals publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2018.2850308 – start-page: 894 year: 2017 ident: 10.1016/j.knosys.2023.111011_b29 article-title: Soft-dtw: A differentiable loss function for time-series – volume: 265 year: 2023 ident: 10.1016/j.knosys.2023.111011_b2 article-title: EEG emotion recognition based on the attention mechanism and pre-trained convolution capsule network publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2023.110372 – volume: 100 year: 2021 ident: 10.1016/j.knosys.2023.111011_b12 article-title: EEG emotion recognition using fusion model of graph convolutional neural networks and LSTM publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106954 – start-page: 8627 year: 2019 ident: 10.1016/j.knosys.2023.111011_b46 article-title: Emotion recognition based on CNN – year: 2022 ident: 10.1016/j.knosys.2023.111011_b35 article-title: Joint EEG feature transfer and semi-supervised cross-subject emotion recognition publication-title: IEEE Trans. Ind. Inform. – volume: 22 start-page: 10751 issue: 11 year: 2022 ident: 10.1016/j.knosys.2023.111011_b8 article-title: An EEG data processing approach for emotion recognition publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2022.3168572 – volume: 7 start-page: 162 issue: 3 year: 2015 ident: 10.1016/j.knosys.2023.111011_b22 article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks publication-title: IEEE Trans. Auton. Ment. Dev. doi: 10.1109/TAMD.2015.2431497 – volume: 24 start-page: 1079 issue: 5 year: 2015 ident: 10.1016/j.knosys.2023.111011_b16 article-title: Takagi–Sugeno–Kang transfer learning fuzzy logic system for the adaptive recognition of epileptic electroencephalogram signals publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2015.2501438 – volume: 11 start-page: 532 issue: 3 year: 2018 ident: 10.1016/j.knosys.2023.111011_b11 article-title: EEG emotion recognition using dynamical graph convolutional neural networks publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2018.2817622 – volume: 205 year: 2020 ident: 10.1016/j.knosys.2023.111011_b3 article-title: EEG-based emotion recognition using an end-to-end regional-asymmetric convolutional neural network publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.106243 – volume: 59 start-page: 61 year: 2014 ident: 10.1016/j.knosys.2023.111011_b37 article-title: Practical emotional neural networks publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.06.012 – volume: 434 start-page: 137 year: 2021 ident: 10.1016/j.knosys.2023.111011_b15 article-title: NeuroSense: Short-term emotion recognition and understanding based on spiking neural network modelling of spatio-temporal EEG patterns publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.12.098 – volume: 35 start-page: 121 issue: 3 year: 2012 ident: 10.1016/j.knosys.2023.111011_b41 article-title: The brain basis of emotion: A meta-analytic review publication-title: Behav. Brain Sci. doi: 10.1017/S0140525X11000446 – volume: 23 start-page: 984 issue: 8 year: 2021 ident: 10.1016/j.knosys.2023.111011_b14 article-title: EEG-based emotion recognition by exploiting fused network entropy measures of complex networks across subjects publication-title: Entropy doi: 10.3390/e23080984 – volume: 86 year: 2023 ident: 10.1016/j.knosys.2023.111011_b36 article-title: Learning a robust unified domain adaptation framework for cross-subject EEG-based emotion recognition publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2023.105138 – volume: 12 start-page: 344 issue: 2 year: 2019 ident: 10.1016/j.knosys.2023.111011_b9 article-title: Domain adaptation for EEG emotion recognition based on latent representation similarity publication-title: IEEE Trans. Cogn. Dev. Syst. doi: 10.1109/TCDS.2019.2949306 – volume: 31 start-page: 397 issue: 1 year: 2006 ident: 10.1016/j.knosys.2023.111011_b38 article-title: Neural correlates of social and nonsocial emotions: An fMRI study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.11.027 – volume: 84 year: 2023 ident: 10.1016/j.knosys.2023.111011_b20 article-title: EEG-based cross-subject emotion recognition using multi-source domain transfer learning publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2023.104741 – start-page: 1468 year: 2021 ident: 10.1016/j.knosys.2023.111011_b21 article-title: Cross-subject EEG emotion recognition using domain adaptive few-shot learning networks – volume: 134 year: 2021 ident: 10.1016/j.knosys.2023.111011_b10 article-title: Automated accurate emotion recognition system using rhythm-specific deep convolutional neural network technique with multi-channel EEG signals publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104428 – volume: 238 year: 2022 ident: 10.1016/j.knosys.2023.111011_b42 article-title: Human emotion recognition based on time–frequency analysis of multivariate EEG signal publication-title: Knowl.-Based Syst. – volume: 7 start-page: 171 issue: 2 year: 1993 ident: 10.1016/j.knosys.2023.111011_b23 article-title: Inducing and assessing differentiated emotion-feeling states in the laboratory publication-title: Cogn. Emot. doi: 10.1080/02699939308409183 – year: 2014 ident: 10.1016/j.knosys.2023.111011_b30 article-title: Spearman Rank Correlation: Overview – volume: 15 year: 2021 ident: 10.1016/j.knosys.2023.111011_b32 article-title: MS-MDA: Multisource marginal distribution adaptation for cross-subject and cross-session EEG emotion recognition publication-title: Front. Neurosci. doi: 10.3389/fnins.2021.778488 – volume: 15 start-page: 85 issue: 2 year: 2011 ident: 10.1016/j.knosys.2023.111011_b39 article-title: Emotional processing in anterior cingulate and medial prefrontal cortex publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2010.11.004 – volume: 50 start-page: 3281 issue: 7 year: 2019 ident: 10.1016/j.knosys.2023.111011_b7 article-title: Multisource transfer learning for cross-subject EEG emotion recognition publication-title: IEEE Trans. Cybern. – volume: 54 start-page: 1063 issue: 6 year: 1988 ident: 10.1016/j.knosys.2023.111011_b25 article-title: Development and validation of brief measures of positive and negative affect: The PANAS scales publication-title: J. Personal. Soc. Psychol. doi: 10.1037/0022-3514.54.6.1063 – volume: 15 year: 2021 ident: 10.1016/j.knosys.2023.111011_b33 article-title: Cross-subject EEG emotion recognition with self-organized graph neural network publication-title: Front. Neurosci. – year: 2022 ident: 10.1016/j.knosys.2023.111011_b19 – volume: 26 start-page: 43 issue: 1 year: 1978 ident: 10.1016/j.knosys.2023.111011_b28 article-title: Dynamic programming algorithm optimization for spoken word recognition publication-title: IEEE Trans. Acoust. Speech Signal Process. doi: 10.1109/TASSP.1978.1163055 – volume: 34 start-page: 12527 issue: 15 year: 2022 ident: 10.1016/j.knosys.2023.111011_b5 article-title: Human emotion recognition from EEG-based brain–computer interface using machine learning: A comprehensive review publication-title: Neural Comput. Appl. doi: 10.1007/s00521-022-07292-4 – volume: 22 start-page: 4939 issue: 13 year: 2022 ident: 10.1016/j.knosys.2023.111011_b26 article-title: The effect of time window length on EEG-based emotion recognition publication-title: Sensors doi: 10.3390/s22134939 – volume: 1 start-page: 266 issue: 4 year: 2018 ident: 10.1016/j.knosys.2023.111011_b27 article-title: Developing a pattern discovery method in time series data and its GPU acceleration publication-title: Big Data Min. Anal. doi: 10.26599/BDMA.2018.9020021 |
SSID | ssj0002218 |
Score | 2.43713 |
Snippet | Electroencephalogram (EEG)-based emotion recognition has been widely used in affective computing. However, the study on improving recognition accuracy across... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 111011 |
SubjectTerms | Brain–computer control Domain adaption Electroencephalogram (EEG) Emotion recognition Machine learning |
Title | Cross-subject EEG linear domain adaption based on batch normalization and depthwise convolutional neural network |
URI | https://dx.doi.org/10.1016/j.knosys.2023.111011 |
Volume | 280 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4mOPNGPKccuIb1kabtEU0bA8QugLRblafEq5u2ceDCb8dOUx4SAolTqyqpIse1P6efbUJOeGFTV0aWZS6RjKtIMaUhahVOKEC8kVKePH49FqM7fjnJJh3Sb3NhkFYZbH9j0721Dk96QZq92f197wbAAegrOKwUfyfFE8xg5zlq-enbJ80jSfwZHw5mOLpNn_Mcr8d6unjFot1JirYjiuOf3dMXlzPcIGsBK9KzZjmbpGPrLbLe9mGg4bPcJrM-vostXhQeqtDB4JwieJRzaqbPEPlTaaS3DBR9lqH-BnaL1ghYn0ImJpW1ocbOsLv6wlKkowe1hDVg2Ut_8aTxHXI3HNz2Ryx0UmAaQoIly7jOi5IXOsptIiFESMF1caulBo9dACYRQmUyLzPjbBlpKzKlNVfWicwm3MTpLlmpp7XdI1QkzpQAAorYlRw8bGEBo0vuAIlZ7oTdJ2krwEqHMuPY7eKpavlkD1Uj9grFXjVi3yfsY9asKbPxx_i83Zvqm7pU4Al-nXnw75mHGNNHgctyRFaW8xd7DIhkqbpe5bpk9eziajR-BxID4r4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LT_MwDLdgHODC4wPEmxy-a7Q-kqw9omkwXrsA0m5VkiYSr25i48B_j92mCCQEEqdWbV1Fjuvfz6ljA_wXmUt9HjkufaK5MJHhxmLUqrwyyHgjY-rk8euRGt6Ji7EcL0C_3QtDaZXB9zc-vfbW4Uo3aLM7vb_v3iA5QHtFwErpd1I8XoQlqk4lO7B0cn45HH045CSpl_noeU4C7Q66Os3rsZrM3qhud5KS-4ji-HuE-oQ6p-uwGugiO2lGtAELrvoHa20rBha-zE2Y9uldfPZqaF2FDQZnjPijfmHl5BmDf6ZLXTsHRrBVsvoEJ4xVxFmfwmZMpquSlW5KDdZnjlFGerBMHANVvqwPdd74FtydDm77Qx6aKXCLUcGcS2F7WS4yG_VcojFKSBG9hLPaImhnSEuUMlL3cll6l0fWKWmsFcZ5JV0iyjjdhk41qdwOMJX4MkcekMU-FwiymUOaroVHMuaEV24X0laBhQ2VxqnhxVPRppQ9FI3aC1J70ah9F_iH1LSptPHL8712boovFlMgGPwoufdnyWNYHt5eXxVX56PLfVihO7QvMZEH0Jm_vLpDJChzcxQM8B3bv-V7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-subject+EEG+linear+domain+adaption+based+on+batch+normalization+and+depthwise+convolutional+neural+network&rft.jtitle=Knowledge-based+systems&rft.au=Li%2C+Guofa&rft.au=Ouyang%2C+Delin&rft.au=Yang%2C+Liu&rft.au=Li%2C+Qingkun&rft.date=2023-11-25&rft.issn=0950-7051&rft.volume=280&rft.spage=111011&rft_id=info:doi/10.1016%2Fj.knosys.2023.111011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_knosys_2023_111011 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |