Cross-subject EEG linear domain adaption based on batch normalization and depthwise convolutional neural network

Electroencephalogram (EEG)-based emotion recognition has been widely used in affective computing. However, the study on improving recognition accuracy across individuals is insufficient. In this study, a new linear domain adaption approach with experiment-level batch normalization and a single-layer...

Full description

Saved in:
Bibliographic Details
Published inKnowledge-based systems Vol. 280; p. 111011
Main Authors Li, Guofa, Ouyang, Delin, Yang, Liu, Li, Qingkun, Tian, Kai, Wu, Baiheng, Guo, Gang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 25.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electroencephalogram (EEG)-based emotion recognition has been widely used in affective computing. However, the study on improving recognition accuracy across individuals is insufficient. In this study, a new linear domain adaption approach with experiment-level batch normalization and a single-layer depthwise convolutional neural network is proposed. In particular, the experiment-level batch normalization and depthwise convolutional neural network can be integrated as a linear mapping with a scaling parameter and a translation parameter. By linear mapping, difference between subjects in different domain can be effectively diminished, and the mapping parameters can be used to further investigate EEG emotion mechanism. The domain adaption experiments are conducted with SJTU emotion EEG dataset and SJTU emotion EEG dataset-IV, which are divided into source domain and target domain to validate the recognition effect across individuals. Multiple traditional machine learning and deep learning classifiers are used to examine the effectiveness of the proposed approach. By mapping the EEG data from source domain to target domain, the increment of recognition accuracy is up to 61.11% when using the support vector machine classifier. The highest recognition accuracy 97.22% is achieved when using the logistic regression classifier. The scaling and translation parameters in the mapping procedure are then analyzed with statistical methods. It is found that EEG signal waves in the same emotion category are highly similar and EEG data have characteristics including integration of channels and hierarchy of frequency bands. In addition, the experimental results indicate that emotion complexity and emotion sensitiveness of brain cortex regions can affect the correlations between channels.
AbstractList Electroencephalogram (EEG)-based emotion recognition has been widely used in affective computing. However, the study on improving recognition accuracy across individuals is insufficient. In this study, a new linear domain adaption approach with experiment-level batch normalization and a single-layer depthwise convolutional neural network is proposed. In particular, the experiment-level batch normalization and depthwise convolutional neural network can be integrated as a linear mapping with a scaling parameter and a translation parameter. By linear mapping, difference between subjects in different domain can be effectively diminished, and the mapping parameters can be used to further investigate EEG emotion mechanism. The domain adaption experiments are conducted with SJTU emotion EEG dataset and SJTU emotion EEG dataset-IV, which are divided into source domain and target domain to validate the recognition effect across individuals. Multiple traditional machine learning and deep learning classifiers are used to examine the effectiveness of the proposed approach. By mapping the EEG data from source domain to target domain, the increment of recognition accuracy is up to 61.11% when using the support vector machine classifier. The highest recognition accuracy 97.22% is achieved when using the logistic regression classifier. The scaling and translation parameters in the mapping procedure are then analyzed with statistical methods. It is found that EEG signal waves in the same emotion category are highly similar and EEG data have characteristics including integration of channels and hierarchy of frequency bands. In addition, the experimental results indicate that emotion complexity and emotion sensitiveness of brain cortex regions can affect the correlations between channels.
ArticleNumber 111011
Author Tian, Kai
Li, Guofa
Ouyang, Delin
Li, Qingkun
Wu, Baiheng
Guo, Gang
Yang, Liu
Author_xml – sequence: 1
  givenname: Guofa
  orcidid: 0000-0002-7889-4695
  surname: Li
  fullname: Li, Guofa
  email: liguofa@cqu.edu.cn
  organization: College of Mechanical and Vehicle Engineering, Chongqing University, 400044, Chongqing, China
– sequence: 2
  givenname: Delin
  orcidid: 0000-0003-3137-6089
  surname: Ouyang
  fullname: Ouyang, Delin
  email: ouyangdelin2021@email.szu.edu.cn
  organization: Institute of Human Factors and Ergonomics, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China
– sequence: 3
  givenname: Liu
  surname: Yang
  fullname: Yang, Liu
  email: yang.liu@whut.edu.cn
  organization: School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan, 430063, China
– sequence: 4
  givenname: Qingkun
  surname: Li
  fullname: Li, Qingkun
  email: lqk18@mails.tsinghua.edu.cn
  organization: Beijing Key Laboratory of Human-Computer Interaction, Institute of Software, Chinese Academy of Sciences, Beijing, 100190, China
– sequence: 5
  givenname: Kai
  surname: Tian
  fullname: Tian, Kai
  email: tskt@leeds.ac.uk
  organization: Institute for Transport Studies, University of Leeds, Leeds, LS1 9JT, UK
– sequence: 6
  givenname: Baiheng
  orcidid: 0000-0002-1824-6784
  surname: Wu
  fullname: Wu, Baiheng
  email: baiheng.wu@ntnu.no
  organization: Department of ICT and Natural Science, Norwegian University of Science and Technology, Å lesund, 6009, Norway
– sequence: 7
  givenname: Gang
  surname: Guo
  fullname: Guo, Gang
  email: guogang@cqu.edu.cn
  organization: College of Mechanical and Vehicle Engineering, Chongqing University, 400044, Chongqing, China
BookMark eNqFkM1OwzAQhC1UJNrCG3DwCyTY-Q8HJFSVglSJC5wtx96oTlM7st1W5enJDycOcNrVjma08y3QTBsNCN1TElJCs4cm3GvjLi6MSBSHlPZHeoXmtMijIE9IOUNzUqYkyElKb9DCuYYQEkW0mKNuZY1zgTtWDQiP1-sNbpUGbrE0B6405pJ3XhmNK-5A4nHxYoe1sQfeqi8-ilxLLKHzu7NygIXRJ9MeB4W3WMPRjsOfjd3fouuatw7ufuYSfb6sP1avwfZ987Z63gYiJpkP0kTkRZkUguQQ8TwtYhqTBAQXUVwUSVxmWZXyvExlDSURkKWVEEkFdZZClEgaL9HjlCuGghZqJpQfn_WWq5ZRwgZ2rGETOzawYxO73pz8MndWHbi9_Gd7mmzQFzspsMwJBVqAVLany6RRfwd8AyYvj8M
CitedBy_id crossref_primary_10_1088_1748_0221_19_05_P05015
crossref_primary_10_1016_j_knosys_2025_113018
crossref_primary_10_1109_JSEN_2024_3358400
crossref_primary_10_1016_j_knosys_2024_112769
crossref_primary_10_1016_j_knosys_2024_112877
crossref_primary_10_1145_3712259
crossref_primary_10_1016_j_patcog_2024_110726
crossref_primary_10_1109_JSEN_2024_3484413
crossref_primary_10_1007_s11571_024_10193_y
crossref_primary_10_1016_j_scitotenv_2025_178901
crossref_primary_10_1109_TITS_2024_3478212
Cites_doi 10.1016/S1388-2457(00)00527-7
10.20982/tqmp.04.1.p013
10.1109/TCYB.2018.2797176
10.1109/ACCESS.2021.3091487
10.1016/j.knosys.2020.106243
10.1109/JBHI.2022.3210158
10.1109/TASE.2021.3088897
10.1109/TCDS.2018.2868121
10.1016/j.cogr.2021.04.001
10.1007/s40708-017-0069-3
10.1038/s41597-022-01557-2
10.1016/j.pneurobio.2012.06.008
10.1016/j.compbiomed.2022.105519
10.1109/TNSRE.2018.2850308
10.1016/j.knosys.2023.110372
10.1016/j.asoc.2020.106954
10.1109/JSEN.2022.3168572
10.1109/TAMD.2015.2431497
10.1109/TFUZZ.2015.2501438
10.1109/TAFFC.2018.2817622
10.1016/j.neunet.2014.06.012
10.1016/j.neucom.2020.12.098
10.1017/S0140525X11000446
10.3390/e23080984
10.1016/j.bspc.2023.105138
10.1109/TCDS.2019.2949306
10.1016/j.neuroimage.2005.11.027
10.1016/j.bspc.2023.104741
10.1016/j.compbiomed.2021.104428
10.1080/02699939308409183
10.3389/fnins.2021.778488
10.1016/j.tics.2010.11.004
10.1037/0022-3514.54.6.1063
10.1109/TASSP.1978.1163055
10.1007/s00521-022-07292-4
10.3390/s22134939
10.26599/BDMA.2018.9020021
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.knosys.2023.111011
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
ExternalDocumentID 10_1016_j_knosys_2023_111011
S095070512300761X
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 52272421; 72001163
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SSH
UHS
WUQ
ID FETCH-LOGICAL-c306t-54c78948c07e2a75831304ecac238843966b5a795dfe90ce65bcc4bef65e24d13
IEDL.DBID .~1
ISSN 0950-7051
IngestDate Thu Apr 24 23:12:16 EDT 2025
Tue Jul 01 00:20:26 EDT 2025
Fri Feb 23 02:35:47 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Brain–computer control
Emotion recognition
Electroencephalogram (EEG)
Machine learning
Domain adaption
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-54c78948c07e2a75831304ecac238843966b5a795dfe90ce65bcc4bef65e24d13
ORCID 0000-0002-7889-4695
0000-0003-3137-6089
0000-0002-1824-6784
ParticipantIDs crossref_citationtrail_10_1016_j_knosys_2023_111011
crossref_primary_10_1016_j_knosys_2023_111011
elsevier_sciencedirect_doi_10_1016_j_knosys_2023_111011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-25
PublicationDateYYYYMMDD 2023-11-25
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-25
  day: 25
PublicationDecade 2020
PublicationTitle Knowledge-based systems
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Maheshwari, Ghosh, Tripathy, Sharma, Acharya (b10) 2021; 134
Ouyang, Yuan, Li, Guo (b26) 2022; 22
Li, Ouyang, Yuan, Li, Guo, Qu, Green (b8) 2022; 22
Özerdem, Polat (b1) 2017; 4
Li, Li, Pan, Wang (b33) 2021; 15
Cui, Liu, Zhang, Chen, Wang, Chen (b13) 2020; 205
Tan, Šarlija, Kasabov (b15) 2021; 434
Padhmashree, Bhattacharyya (b42) 2022; 238
Zar (b30) 2014
Zheng, Liu, Lu, Lu, Cichocki (b24) 2018; 49
Nachar (b31) 2008; 4
Cao, Ma, Meng, Gao, Meng (b46) 2019
Deng, Xu, Xie, Choi, Wang (b17) 2018; 26
Oostenveld, Praamstra (b40) 2001; 112
Dadebayev, Goh, Tan (b4) 2022; 34
Zheng, Lu (b22) 2015; 7
Li, Tan, Xing, Li, Li, Zeng, Wang, Zhang, Su, Pi (b47) 2022; 9
Ning, Chen, Zhang (b21) 2021
Lotfi, Akbarzadeh-T (b37) 2014; 59
Watson, Clark, Tellegen (b25) 1988; 54
Zhu, Gu, Zhao, Chen, Li, He (b27) 2018; 1
Yang, Deng, Choi, Wang (b16) 2015; 24
Sakoe, Chiba (b28) 1978; 26
Zhou, Zhang, Fu, Zhang, Li, Huang, Dong, Li, Yang, Liang (b19) 2022
Philippot (b23) 1993; 7
Britton, Phan, Taylor, Welsh, Berridge, Liberzon (b38) 2006; 31
Quan, Li, Wang, He, Yang, Guo (b20) 2023; 84
Li, Yan, Li, Qu, Chu, Cao (b48) 2021; 19
Cuturi, Blondel (b29) 2017
Chen, Jin, Li, Fan, Li, He (b32) 2021; 15
Li, Zhu, Jin, Fan, He, Cai, Li (b34) 2022; 26
Etkin, Egner, Kalisch (b39) 2011; 15
Li, Qiu, Shen, Liu, He (b7) 2019; 50
Wang, Wang (b45) 2021; 1
Peng, Liu, Kong, Nie, Lu, Cichocki (b35) 2022
Yin, Zheng, Hu, Zhang, Cui (b12) 2021; 100
Yao, Wang, Lu, Li, Zhang (b14) 2021; 23
Jiménez-Guarneros, Fuentes-Pineda (b36) 2023; 86
Song, Zheng, Song, Cui (b11) 2018; 11
Lachaux, Axmacher, Mormann, Halgren, Crone (b43) 2012; 98
Lindquist, Wager, Kober, Bliss-Moreau, Barrett (b41) 2012; 35
Cui, Liu, Zhang, Chen, Wang, Chen (b3) 2020; 205
Li, Hua, Xu, Shu, Xu, Kuang, Wu (b18) 2022; 145
Liu, Xie, Wu, Cao, Li, Li (b44) 2018; 11
Liu, Wang, An, Zhao, Zhao, Zhang (b2) 2023; 265
Islam, Moni, Islam, Rashed-Al-Mahfuz, Islam, Hasan, Hossain, Ahmad, Uddin, Azad (b6) 2021; 9
Houssein, Hammad, Ali (b5) 2022; 34
Li, Qiu, Du, Wang, He (b9) 2019; 12
Li (10.1016/j.knosys.2023.111011_b7) 2019; 50
Yin (10.1016/j.knosys.2023.111011_b12) 2021; 100
Chen (10.1016/j.knosys.2023.111011_b32) 2021; 15
Song (10.1016/j.knosys.2023.111011_b11) 2018; 11
Zheng (10.1016/j.knosys.2023.111011_b24) 2018; 49
Ouyang (10.1016/j.knosys.2023.111011_b26) 2022; 22
Li (10.1016/j.knosys.2023.111011_b9) 2019; 12
Li (10.1016/j.knosys.2023.111011_b48) 2021; 19
Li (10.1016/j.knosys.2023.111011_b8) 2022; 22
Oostenveld (10.1016/j.knosys.2023.111011_b40) 2001; 112
Ning (10.1016/j.knosys.2023.111011_b21) 2021
Quan (10.1016/j.knosys.2023.111011_b20) 2023; 84
Lachaux (10.1016/j.knosys.2023.111011_b43) 2012; 98
Britton (10.1016/j.knosys.2023.111011_b38) 2006; 31
Li (10.1016/j.knosys.2023.111011_b47) 2022; 9
Dadebayev (10.1016/j.knosys.2023.111011_b4) 2022; 34
Li (10.1016/j.knosys.2023.111011_b34) 2022; 26
Islam (10.1016/j.knosys.2023.111011_b6) 2021; 9
Yao (10.1016/j.knosys.2023.111011_b14) 2021; 23
Zhu (10.1016/j.knosys.2023.111011_b27) 2018; 1
Jiménez-Guarneros (10.1016/j.knosys.2023.111011_b36) 2023; 86
Peng (10.1016/j.knosys.2023.111011_b35) 2022
Watson (10.1016/j.knosys.2023.111011_b25) 1988; 54
Cui (10.1016/j.knosys.2023.111011_b13) 2020; 205
Özerdem (10.1016/j.knosys.2023.111011_b1) 2017; 4
Sakoe (10.1016/j.knosys.2023.111011_b28) 1978; 26
Cao (10.1016/j.knosys.2023.111011_b46) 2019
Houssein (10.1016/j.knosys.2023.111011_b5) 2022; 34
Cui (10.1016/j.knosys.2023.111011_b3) 2020; 205
Li (10.1016/j.knosys.2023.111011_b18) 2022; 145
Liu (10.1016/j.knosys.2023.111011_b2) 2023; 265
Cuturi (10.1016/j.knosys.2023.111011_b29) 2017
Wang (10.1016/j.knosys.2023.111011_b45) 2021; 1
Maheshwari (10.1016/j.knosys.2023.111011_b10) 2021; 134
Nachar (10.1016/j.knosys.2023.111011_b31) 2008; 4
Deng (10.1016/j.knosys.2023.111011_b17) 2018; 26
Yang (10.1016/j.knosys.2023.111011_b16) 2015; 24
Zheng (10.1016/j.knosys.2023.111011_b22) 2015; 7
Zar (10.1016/j.knosys.2023.111011_b30) 2014
Padhmashree (10.1016/j.knosys.2023.111011_b42) 2022; 238
Tan (10.1016/j.knosys.2023.111011_b15) 2021; 434
Zhou (10.1016/j.knosys.2023.111011_b19) 2022
Li (10.1016/j.knosys.2023.111011_b33) 2021; 15
Lindquist (10.1016/j.knosys.2023.111011_b41) 2012; 35
Philippot (10.1016/j.knosys.2023.111011_b23) 1993; 7
Etkin (10.1016/j.knosys.2023.111011_b39) 2011; 15
Liu (10.1016/j.knosys.2023.111011_b44) 2018; 11
Lotfi (10.1016/j.knosys.2023.111011_b37) 2014; 59
References_xml – volume: 24
  start-page: 1079
  year: 2015
  end-page: 1094
  ident: b16
  article-title: Takagi–Sugeno–Kang transfer learning fuzzy logic system for the adaptive recognition of epileptic electroencephalogram signals
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 35
  start-page: 121
  year: 2012
  end-page: 143
  ident: b41
  article-title: The brain basis of emotion: A meta-analytic review
  publication-title: Behav. Brain Sci.
– volume: 31
  start-page: 397
  year: 2006
  end-page: 409
  ident: b38
  article-title: Neural correlates of social and nonsocial emotions: An fMRI study
  publication-title: Neuroimage
– year: 2014
  ident: b30
  article-title: Spearman Rank Correlation: Overview
  publication-title: Wiley StatsRef: Statistics Reference Online
– volume: 98
  start-page: 279
  year: 2012
  end-page: 301
  ident: b43
  article-title: High-frequency neural activity and human cognition: Past, present and possible future of intracranial EEG research
  publication-title: Prog. Neurobiol.
– volume: 26
  start-page: 1481
  year: 2018
  end-page: 1494
  ident: b17
  article-title: Transductive joint-knowledge-transfer TSK FS for recognition of epileptic EEG signals
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 15
  year: 2021
  ident: b32
  article-title: MS-MDA: Multisource marginal distribution adaptation for cross-subject and cross-session EEG emotion recognition
  publication-title: Front. Neurosci.
– volume: 26
  start-page: 43
  year: 1978
  end-page: 49
  ident: b28
  article-title: Dynamic programming algorithm optimization for spoken word recognition
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
– volume: 15
  year: 2021
  ident: b33
  article-title: Cross-subject EEG emotion recognition with self-organized graph neural network
  publication-title: Front. Neurosci.
– volume: 59
  start-page: 61
  year: 2014
  end-page: 72
  ident: b37
  article-title: Practical emotional neural networks
  publication-title: Neural Netw.
– volume: 434
  start-page: 137
  year: 2021
  end-page: 148
  ident: b15
  article-title: NeuroSense: Short-term emotion recognition and understanding based on spiking neural network modelling of spatio-temporal EEG patterns
  publication-title: Neurocomputing
– volume: 34
  start-page: 4385
  year: 2022
  end-page: 4401
  ident: b4
  article-title: EEG-based emotion recognition: Review of commercial EEG devices and machine learning techniques
  publication-title: J. King Saud Univ.-Comput. Inf. Sci.
– start-page: 1468
  year: 2021
  end-page: 1472
  ident: b21
  article-title: Cross-subject EEG emotion recognition using domain adaptive few-shot learning networks
  publication-title: 2021 IEEE International Conference on Bioinformatics and Biomedicine
– volume: 84
  year: 2023
  ident: b20
  article-title: EEG-based cross-subject emotion recognition using multi-source domain transfer learning
  publication-title: Biomed. Signal Process. Control
– volume: 9
  start-page: 481
  year: 2022
  ident: b47
  article-title: A multimodal psychological, physiological and behavioural dataset for human emotions in driving tasks
  publication-title: Sci. Data
– volume: 26
  start-page: 5964
  year: 2022
  end-page: 5973
  ident: b34
  article-title: Dynamic domain adaptation for class-aware cross-subject and cross-session EEG emotion recognition
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 1
  start-page: 29
  year: 2021
  end-page: 40
  ident: b45
  article-title: Review of the emotional feature extraction and classification using eeg signals
  publication-title: Cogn. Robot.
– volume: 265
  year: 2023
  ident: b2
  article-title: EEG emotion recognition based on the attention mechanism and pre-trained convolution capsule network
  publication-title: Knowl.-Based Syst.
– volume: 11
  start-page: 517
  year: 2018
  end-page: 526
  ident: b44
  article-title: Electroencephalogram emotion recognition based on empirical mode decomposition and optimal feature selection
  publication-title: IEEE Trans. Cogn. Dev. Syst.
– volume: 7
  start-page: 162
  year: 2015
  end-page: 175
  ident: b22
  article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks
  publication-title: IEEE Trans. Auton. Ment. Dev.
– volume: 22
  start-page: 4939
  year: 2022
  ident: b26
  article-title: The effect of time window length on EEG-based emotion recognition
  publication-title: Sensors
– year: 2022
  ident: b35
  article-title: Joint EEG feature transfer and semi-supervised cross-subject emotion recognition
  publication-title: IEEE Trans. Ind. Inform.
– volume: 34
  start-page: 12527
  year: 2022
  end-page: 12557
  ident: b5
  article-title: Human emotion recognition from EEG-based brain–computer interface using machine learning: A comprehensive review
  publication-title: Neural Comput. Appl.
– volume: 145
  year: 2022
  ident: b18
  article-title: Cross-subject EEG emotion recognition combined with connectivity features and meta-transfer learning
  publication-title: Comput. Biol. Med.
– volume: 19
  start-page: 2665
  year: 2021
  end-page: 2677
  ident: b48
  article-title: A temporal–spatial deep learning approach for driver distraction detection based on EEG signals
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 12
  start-page: 344
  year: 2019
  end-page: 353
  ident: b9
  article-title: Domain adaptation for EEG emotion recognition based on latent representation similarity
  publication-title: IEEE Trans. Cogn. Dev. Syst.
– start-page: 8627
  year: 2019
  end-page: 8630
  ident: b46
  article-title: Emotion recognition based on CNN
  publication-title: 2019 Chinese Control Conference
– volume: 100
  year: 2021
  ident: b12
  article-title: EEG emotion recognition using fusion model of graph convolutional neural networks and LSTM
  publication-title: Appl. Soft Comput.
– volume: 205
  year: 2020
  ident: b3
  article-title: EEG-based emotion recognition using an end-to-end regional-asymmetric convolutional neural network
  publication-title: Knowl.-Based Syst.
– volume: 134
  year: 2021
  ident: b10
  article-title: Automated accurate emotion recognition system using rhythm-specific deep convolutional neural network technique with multi-channel EEG signals
  publication-title: Comput. Biol. Med.
– volume: 238
  year: 2022
  ident: b42
  article-title: Human emotion recognition based on time–frequency analysis of multivariate EEG signal
  publication-title: Knowl.-Based Syst.
– start-page: 894
  year: 2017
  end-page: 903
  ident: b29
  article-title: Soft-dtw: A differentiable loss function for time-series
  publication-title: International Conference on Machine Learning
– volume: 50
  start-page: 3281
  year: 2019
  end-page: 3293
  ident: b7
  article-title: Multisource transfer learning for cross-subject EEG emotion recognition
  publication-title: IEEE Trans. Cybern.
– volume: 205
  year: 2020
  ident: b13
  article-title: EEG-based emotion recognition using an end-to-end regional-asymmetric convolutional neural network
  publication-title: Knowl.-Based Syst.
– volume: 112
  start-page: 713
  year: 2001
  end-page: 719
  ident: b40
  article-title: The five percent electrode system for high-resolution EEG and ERP measurements
  publication-title: Clin. Neurophysiol.
– volume: 9
  start-page: 94601
  year: 2021
  end-page: 94624
  ident: b6
  article-title: Emotion recognition from EEG signal focusing on deep learning and shallow learning techniques
  publication-title: IEEE Access
– volume: 15
  start-page: 85
  year: 2011
  end-page: 93
  ident: b39
  article-title: Emotional processing in anterior cingulate and medial prefrontal cortex
  publication-title: Trends Cogn. Sci.
– volume: 4
  start-page: 241
  year: 2017
  end-page: 252
  ident: b1
  article-title: Emotion recognition based on EEG features in movie clips with channel selection
  publication-title: Brain Inf.
– volume: 22
  start-page: 10751
  year: 2022
  end-page: 10763
  ident: b8
  article-title: An EEG data processing approach for emotion recognition
  publication-title: IEEE Sens. J.
– volume: 11
  start-page: 532
  year: 2018
  end-page: 541
  ident: b11
  article-title: EEG emotion recognition using dynamical graph convolutional neural networks
  publication-title: IEEE Trans. Affect. Comput.
– volume: 49
  start-page: 1110
  year: 2018
  end-page: 1122
  ident: b24
  article-title: Emotionmeter: A multimodal framework for recognizing human emotions
  publication-title: IEEE Trans. Cybern.
– volume: 54
  start-page: 1063
  year: 1988
  ident: b25
  article-title: Development and validation of brief measures of positive and negative affect: The PANAS scales
  publication-title: J. Personal. Soc. Psychol.
– volume: 23
  start-page: 984
  year: 2021
  ident: b14
  article-title: EEG-based emotion recognition by exploiting fused network entropy measures of complex networks across subjects
  publication-title: Entropy
– volume: 7
  start-page: 171
  year: 1993
  end-page: 193
  ident: b23
  article-title: Inducing and assessing differentiated emotion-feeling states in the laboratory
  publication-title: Cogn. Emot.
– year: 2022
  ident: b19
  article-title: PR-PL: A novel transfer learning framework with prototypical representation based pairwise learning for EEG-based emotion recognition
– volume: 4
  start-page: 13
  year: 2008
  end-page: 20
  ident: b31
  article-title: The Mann-Whitney U: A test for assessing whether two independent samples come from the same distribution
  publication-title: Tutorials Quant. Methods Psychol.
– volume: 86
  year: 2023
  ident: b36
  article-title: Learning a robust unified domain adaptation framework for cross-subject EEG-based emotion recognition
  publication-title: Biomed. Signal Process. Control
– volume: 1
  start-page: 266
  year: 2018
  end-page: 283
  ident: b27
  article-title: Developing a pattern discovery method in time series data and its GPU acceleration
  publication-title: Big Data Min. Anal.
– volume: 112
  start-page: 713
  issue: 4
  year: 2001
  ident: 10.1016/j.knosys.2023.111011_b40
  article-title: The five percent electrode system for high-resolution EEG and ERP measurements
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(00)00527-7
– volume: 4
  start-page: 13
  issue: 1
  year: 2008
  ident: 10.1016/j.knosys.2023.111011_b31
  article-title: The Mann-Whitney U: A test for assessing whether two independent samples come from the same distribution
  publication-title: Tutorials Quant. Methods Psychol.
  doi: 10.20982/tqmp.04.1.p013
– volume: 49
  start-page: 1110
  issue: 3
  year: 2018
  ident: 10.1016/j.knosys.2023.111011_b24
  article-title: Emotionmeter: A multimodal framework for recognizing human emotions
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2797176
– volume: 9
  start-page: 94601
  year: 2021
  ident: 10.1016/j.knosys.2023.111011_b6
  article-title: Emotion recognition from EEG signal focusing on deep learning and shallow learning techniques
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3091487
– volume: 205
  year: 2020
  ident: 10.1016/j.knosys.2023.111011_b13
  article-title: EEG-based emotion recognition using an end-to-end regional-asymmetric convolutional neural network
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.106243
– volume: 26
  start-page: 5964
  issue: 12
  year: 2022
  ident: 10.1016/j.knosys.2023.111011_b34
  article-title: Dynamic domain adaptation for class-aware cross-subject and cross-session EEG emotion recognition
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2022.3210158
– volume: 19
  start-page: 2665
  issue: 4
  year: 2021
  ident: 10.1016/j.knosys.2023.111011_b48
  article-title: A temporal–spatial deep learning approach for driver distraction detection based on EEG signals
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2021.3088897
– volume: 11
  start-page: 517
  issue: 4
  year: 2018
  ident: 10.1016/j.knosys.2023.111011_b44
  article-title: Electroencephalogram emotion recognition based on empirical mode decomposition and optimal feature selection
  publication-title: IEEE Trans. Cogn. Dev. Syst.
  doi: 10.1109/TCDS.2018.2868121
– volume: 1
  start-page: 29
  year: 2021
  ident: 10.1016/j.knosys.2023.111011_b45
  article-title: Review of the emotional feature extraction and classification using eeg signals
  publication-title: Cogn. Robot.
  doi: 10.1016/j.cogr.2021.04.001
– volume: 4
  start-page: 241
  issue: 4
  year: 2017
  ident: 10.1016/j.knosys.2023.111011_b1
  article-title: Emotion recognition based on EEG features in movie clips with channel selection
  publication-title: Brain Inf.
  doi: 10.1007/s40708-017-0069-3
– volume: 9
  start-page: 481
  issue: 1
  year: 2022
  ident: 10.1016/j.knosys.2023.111011_b47
  article-title: A multimodal psychological, physiological and behavioural dataset for human emotions in driving tasks
  publication-title: Sci. Data
  doi: 10.1038/s41597-022-01557-2
– volume: 98
  start-page: 279
  issue: 3
  year: 2012
  ident: 10.1016/j.knosys.2023.111011_b43
  article-title: High-frequency neural activity and human cognition: Past, present and possible future of intracranial EEG research
  publication-title: Prog. Neurobiol.
  doi: 10.1016/j.pneurobio.2012.06.008
– volume: 145
  year: 2022
  ident: 10.1016/j.knosys.2023.111011_b18
  article-title: Cross-subject EEG emotion recognition combined with connectivity features and meta-transfer learning
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105519
– volume: 34
  start-page: 4385
  issue: 7
  year: 2022
  ident: 10.1016/j.knosys.2023.111011_b4
  article-title: EEG-based emotion recognition: Review of commercial EEG devices and machine learning techniques
  publication-title: J. King Saud Univ.-Comput. Inf. Sci.
– volume: 26
  start-page: 1481
  issue: 8
  year: 2018
  ident: 10.1016/j.knosys.2023.111011_b17
  article-title: Transductive joint-knowledge-transfer TSK FS for recognition of epileptic EEG signals
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2018.2850308
– start-page: 894
  year: 2017
  ident: 10.1016/j.knosys.2023.111011_b29
  article-title: Soft-dtw: A differentiable loss function for time-series
– volume: 265
  year: 2023
  ident: 10.1016/j.knosys.2023.111011_b2
  article-title: EEG emotion recognition based on the attention mechanism and pre-trained convolution capsule network
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2023.110372
– volume: 100
  year: 2021
  ident: 10.1016/j.knosys.2023.111011_b12
  article-title: EEG emotion recognition using fusion model of graph convolutional neural networks and LSTM
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106954
– start-page: 8627
  year: 2019
  ident: 10.1016/j.knosys.2023.111011_b46
  article-title: Emotion recognition based on CNN
– year: 2022
  ident: 10.1016/j.knosys.2023.111011_b35
  article-title: Joint EEG feature transfer and semi-supervised cross-subject emotion recognition
  publication-title: IEEE Trans. Ind. Inform.
– volume: 22
  start-page: 10751
  issue: 11
  year: 2022
  ident: 10.1016/j.knosys.2023.111011_b8
  article-title: An EEG data processing approach for emotion recognition
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2022.3168572
– volume: 7
  start-page: 162
  issue: 3
  year: 2015
  ident: 10.1016/j.knosys.2023.111011_b22
  article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks
  publication-title: IEEE Trans. Auton. Ment. Dev.
  doi: 10.1109/TAMD.2015.2431497
– volume: 24
  start-page: 1079
  issue: 5
  year: 2015
  ident: 10.1016/j.knosys.2023.111011_b16
  article-title: Takagi–Sugeno–Kang transfer learning fuzzy logic system for the adaptive recognition of epileptic electroencephalogram signals
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2015.2501438
– volume: 11
  start-page: 532
  issue: 3
  year: 2018
  ident: 10.1016/j.knosys.2023.111011_b11
  article-title: EEG emotion recognition using dynamical graph convolutional neural networks
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2018.2817622
– volume: 205
  year: 2020
  ident: 10.1016/j.knosys.2023.111011_b3
  article-title: EEG-based emotion recognition using an end-to-end regional-asymmetric convolutional neural network
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.106243
– volume: 59
  start-page: 61
  year: 2014
  ident: 10.1016/j.knosys.2023.111011_b37
  article-title: Practical emotional neural networks
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.06.012
– volume: 434
  start-page: 137
  year: 2021
  ident: 10.1016/j.knosys.2023.111011_b15
  article-title: NeuroSense: Short-term emotion recognition and understanding based on spiking neural network modelling of spatio-temporal EEG patterns
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.12.098
– volume: 35
  start-page: 121
  issue: 3
  year: 2012
  ident: 10.1016/j.knosys.2023.111011_b41
  article-title: The brain basis of emotion: A meta-analytic review
  publication-title: Behav. Brain Sci.
  doi: 10.1017/S0140525X11000446
– volume: 23
  start-page: 984
  issue: 8
  year: 2021
  ident: 10.1016/j.knosys.2023.111011_b14
  article-title: EEG-based emotion recognition by exploiting fused network entropy measures of complex networks across subjects
  publication-title: Entropy
  doi: 10.3390/e23080984
– volume: 86
  year: 2023
  ident: 10.1016/j.knosys.2023.111011_b36
  article-title: Learning a robust unified domain adaptation framework for cross-subject EEG-based emotion recognition
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2023.105138
– volume: 12
  start-page: 344
  issue: 2
  year: 2019
  ident: 10.1016/j.knosys.2023.111011_b9
  article-title: Domain adaptation for EEG emotion recognition based on latent representation similarity
  publication-title: IEEE Trans. Cogn. Dev. Syst.
  doi: 10.1109/TCDS.2019.2949306
– volume: 31
  start-page: 397
  issue: 1
  year: 2006
  ident: 10.1016/j.knosys.2023.111011_b38
  article-title: Neural correlates of social and nonsocial emotions: An fMRI study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.11.027
– volume: 84
  year: 2023
  ident: 10.1016/j.knosys.2023.111011_b20
  article-title: EEG-based cross-subject emotion recognition using multi-source domain transfer learning
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2023.104741
– start-page: 1468
  year: 2021
  ident: 10.1016/j.knosys.2023.111011_b21
  article-title: Cross-subject EEG emotion recognition using domain adaptive few-shot learning networks
– volume: 134
  year: 2021
  ident: 10.1016/j.knosys.2023.111011_b10
  article-title: Automated accurate emotion recognition system using rhythm-specific deep convolutional neural network technique with multi-channel EEG signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104428
– volume: 238
  year: 2022
  ident: 10.1016/j.knosys.2023.111011_b42
  article-title: Human emotion recognition based on time–frequency analysis of multivariate EEG signal
  publication-title: Knowl.-Based Syst.
– volume: 7
  start-page: 171
  issue: 2
  year: 1993
  ident: 10.1016/j.knosys.2023.111011_b23
  article-title: Inducing and assessing differentiated emotion-feeling states in the laboratory
  publication-title: Cogn. Emot.
  doi: 10.1080/02699939308409183
– year: 2014
  ident: 10.1016/j.knosys.2023.111011_b30
  article-title: Spearman Rank Correlation: Overview
– volume: 15
  year: 2021
  ident: 10.1016/j.knosys.2023.111011_b32
  article-title: MS-MDA: Multisource marginal distribution adaptation for cross-subject and cross-session EEG emotion recognition
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2021.778488
– volume: 15
  start-page: 85
  issue: 2
  year: 2011
  ident: 10.1016/j.knosys.2023.111011_b39
  article-title: Emotional processing in anterior cingulate and medial prefrontal cortex
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2010.11.004
– volume: 50
  start-page: 3281
  issue: 7
  year: 2019
  ident: 10.1016/j.knosys.2023.111011_b7
  article-title: Multisource transfer learning for cross-subject EEG emotion recognition
  publication-title: IEEE Trans. Cybern.
– volume: 54
  start-page: 1063
  issue: 6
  year: 1988
  ident: 10.1016/j.knosys.2023.111011_b25
  article-title: Development and validation of brief measures of positive and negative affect: The PANAS scales
  publication-title: J. Personal. Soc. Psychol.
  doi: 10.1037/0022-3514.54.6.1063
– volume: 15
  year: 2021
  ident: 10.1016/j.knosys.2023.111011_b33
  article-title: Cross-subject EEG emotion recognition with self-organized graph neural network
  publication-title: Front. Neurosci.
– year: 2022
  ident: 10.1016/j.knosys.2023.111011_b19
– volume: 26
  start-page: 43
  issue: 1
  year: 1978
  ident: 10.1016/j.knosys.2023.111011_b28
  article-title: Dynamic programming algorithm optimization for spoken word recognition
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
  doi: 10.1109/TASSP.1978.1163055
– volume: 34
  start-page: 12527
  issue: 15
  year: 2022
  ident: 10.1016/j.knosys.2023.111011_b5
  article-title: Human emotion recognition from EEG-based brain–computer interface using machine learning: A comprehensive review
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-022-07292-4
– volume: 22
  start-page: 4939
  issue: 13
  year: 2022
  ident: 10.1016/j.knosys.2023.111011_b26
  article-title: The effect of time window length on EEG-based emotion recognition
  publication-title: Sensors
  doi: 10.3390/s22134939
– volume: 1
  start-page: 266
  issue: 4
  year: 2018
  ident: 10.1016/j.knosys.2023.111011_b27
  article-title: Developing a pattern discovery method in time series data and its GPU acceleration
  publication-title: Big Data Min. Anal.
  doi: 10.26599/BDMA.2018.9020021
SSID ssj0002218
Score 2.43713
Snippet Electroencephalogram (EEG)-based emotion recognition has been widely used in affective computing. However, the study on improving recognition accuracy across...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 111011
SubjectTerms Brain–computer control
Domain adaption
Electroencephalogram (EEG)
Emotion recognition
Machine learning
Title Cross-subject EEG linear domain adaption based on batch normalization and depthwise convolutional neural network
URI https://dx.doi.org/10.1016/j.knosys.2023.111011
Volume 280
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4mOPNGPKccuIb1kabtEU0bA8QugLRblafEq5u2ceDCb8dOUx4SAolTqyqpIse1P6efbUJOeGFTV0aWZS6RjKtIMaUhahVOKEC8kVKePH49FqM7fjnJJh3Sb3NhkFYZbH9j0721Dk96QZq92f197wbAAegrOKwUfyfFE8xg5zlq-enbJ80jSfwZHw5mOLpNn_Mcr8d6unjFot1JirYjiuOf3dMXlzPcIGsBK9KzZjmbpGPrLbLe9mGg4bPcJrM-vostXhQeqtDB4JwieJRzaqbPEPlTaaS3DBR9lqH-BnaL1ghYn0ImJpW1ocbOsLv6wlKkowe1hDVg2Ut_8aTxHXI3HNz2Ryx0UmAaQoIly7jOi5IXOsptIiFESMF1caulBo9dACYRQmUyLzPjbBlpKzKlNVfWicwm3MTpLlmpp7XdI1QkzpQAAorYlRw8bGEBo0vuAIlZ7oTdJ2krwEqHMuPY7eKpavlkD1Uj9grFXjVi3yfsY9asKbPxx_i83Zvqm7pU4Al-nXnw75mHGNNHgctyRFaW8xd7DIhkqbpe5bpk9eziajR-BxID4r4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LT_MwDLdgHODC4wPEmxy-a7Q-kqw9omkwXrsA0m5VkiYSr25i48B_j92mCCQEEqdWbV1Fjuvfz6ljA_wXmUt9HjkufaK5MJHhxmLUqrwyyHgjY-rk8euRGt6Ji7EcL0C_3QtDaZXB9zc-vfbW4Uo3aLM7vb_v3iA5QHtFwErpd1I8XoQlqk4lO7B0cn45HH045CSpl_noeU4C7Q66Os3rsZrM3qhud5KS-4ji-HuE-oQ6p-uwGugiO2lGtAELrvoHa20rBha-zE2Y9uldfPZqaF2FDQZnjPijfmHl5BmDf6ZLXTsHRrBVsvoEJ4xVxFmfwmZMpquSlW5KDdZnjlFGerBMHANVvqwPdd74FtydDm77Qx6aKXCLUcGcS2F7WS4yG_VcojFKSBG9hLPaImhnSEuUMlL3cll6l0fWKWmsFcZ5JV0iyjjdhk41qdwOMJX4MkcekMU-FwiymUOaroVHMuaEV24X0laBhQ2VxqnhxVPRppQ9FI3aC1J70ah9F_iH1LSptPHL8712boovFlMgGPwoufdnyWNYHt5eXxVX56PLfVihO7QvMZEH0Jm_vLpDJChzcxQM8B3bv-V7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-subject+EEG+linear+domain+adaption+based+on+batch+normalization+and+depthwise+convolutional+neural+network&rft.jtitle=Knowledge-based+systems&rft.au=Li%2C+Guofa&rft.au=Ouyang%2C+Delin&rft.au=Yang%2C+Liu&rft.au=Li%2C+Qingkun&rft.date=2023-11-25&rft.issn=0950-7051&rft.volume=280&rft.spage=111011&rft_id=info:doi/10.1016%2Fj.knosys.2023.111011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_knosys_2023_111011
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon