Performance evaluation of analog circuit using improved LSSVR subject to data information uncertainty
This paper demystifies the proposed analog circuit performance evaluation methods based on improved LSSVR (ILSSVR) by examining the arithmetic speed and the evaluation reliability online. The ILSSVR performance evaluation scheme has the robustness for the signal information uncertainty, which may be...
Saved in:
Published in | Neurocomputing (Amsterdam) Vol. 151; pp. 461 - 470 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
03.03.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0925-2312 1872-8286 |
DOI | 10.1016/j.neucom.2014.09.020 |
Cover
Loading…
Abstract | This paper demystifies the proposed analog circuit performance evaluation methods based on improved LSSVR (ILSSVR) by examining the arithmetic speed and the evaluation reliability online. The ILSSVR performance evaluation scheme has the robustness for the signal information uncertainty, which may be deduced by nonlinear feature, time varying feature and contain faults value about industrial field data information. More specially, the self-update via incremental and reduced interaction is employed to detect the interests both on history data information and the updated data information, and the features extraction nonlinear independent component analysis (NICA) is proposed, then the number of the feature data is controlled and desired time consumed is guaranteed. In addition, the multi-kernel and weighted idea have also been employed to interfuse quite flexibility to the bandwidths of kernel online. The proposed analog circuit performance evaluation scheme ILSSVR is evaluated for two filter circuit: leapfrog filter circuit and self-adapting filter circuit. And the effectiveness is illustrated through a numerical example. |
---|---|
AbstractList | This paper demystifies the proposed analog circuit performance evaluation methods based on improved LSSVR (ILSSVR) by examining the arithmetic speed and the evaluation reliability online. The ILSSVR performance evaluation scheme has the robustness for the signal information uncertainty, which may be deduced by nonlinear feature, time varying feature and contain faults value about industrial field data information. More specially, the self-update via incremental and reduced interaction is employed to detect the interests both on history data information and the updated data information, and the features extraction nonlinear independent component analysis (NICA) is proposed, then the number of the feature data is controlled and desired time consumed is guaranteed. In addition, the multi-kernel and weighted idea have also been employed to interfuse quite flexibility to the bandwidths of kernel online. The proposed analog circuit performance evaluation scheme ILSSVR is evaluated for two filter circuit: leapfrog filter circuit and self-adapting filter circuit. And the effectiveness is illustrated through a numerical example. |
Author | Zhang, Zhiqiang Zhang, Aihua Wang, Yongchao |
Author_xml | – sequence: 1 givenname: Aihua surname: Zhang fullname: Zhang, Aihua email: Aihuazhangbhu@gmail.com – sequence: 2 givenname: Yongchao surname: Wang fullname: Wang, Yongchao email: 985287986@qq.com – sequence: 3 givenname: Zhiqiang surname: Zhang fullname: Zhang, Zhiqiang email: Jsxinxi_zzq@163.com |
BookMark | eNqFkMtOwzAQAC1UJNrCH3DwDyTYjvPigIQqXlIlEAWu1sbZVI5Su3KcSv170pYTBzjtZWe0OzMysc4iIdecxZzx7KaNLQ7abWLBuIxZGTPBzsiUF7mIClFkEzJlpUgjkXBxQWZ93zLGcy7KKcE39I3zG7AaKe6gGyAYZ6lrKFjo3Jpq4_VgAh16Y9fUbLbe7bCmy9Xq6532Q9WiDjQ4WkMAauxRdlQMo9IHMDbsL8l5A12PVz9zTj4fHz4Wz9Hy9ellcb-MdMKyEKVJWkOeNrzImlLmvMwBZApNBiIdN0SRZ1UtBZRcC4Z1A2klsCokZlLLFMtkTm5PXu1d33tslDbheE3wYDrFmToEU606BVOHYIqVagw2wvIXvPVmA37_H3Z3wnB8bGfQq14bHH-vjR_TqNqZvwXfbC-L-g |
CitedBy_id | crossref_primary_10_1016_j_neucom_2020_04_113 crossref_primary_10_1039_C6CP01531J crossref_primary_10_1109_ACCESS_2020_2968744 crossref_primary_10_1016_j_neucom_2015_08_002 |
Cites_doi | 10.1023/A:1012487302797 10.1016/j.engfracmech.2012.11.014 10.1016/j.sigpro.2009.03.032 10.1088/0954-898X/11/3/302 10.1016/j.measurement.2013.08.021 10.1007/s00034-010-9160-1 10.1109/72.286917 10.1109/TIE.2013.2286568 10.1109/TIM.2007.904549 10.1109/TII.2012.2214394 10.1162/089976699300016629 10.1109/TIE.2014.2301773 10.1155/2012/832836 10.1109/AUTEST.2011.6058746 10.1145/1273496.1273624 10.1007/s11771-012-1025-2 10.1109/ASSPCC.2000.882457 10.1016/S0963-8695(02)00069-5 10.1016/S0925-2312(03)00433-8 10.1109/ICCCAS.2008.4657943 10.1016/j.patcog.2008.09.028 10.1016/j.patrec.2009.12.027 10.1109/TFUZZ.2012.2191790 10.1109/TII.2012.2214390 10.1109/TIE.2014.2308133 10.1016/j.ymssp.2006.06.006 10.1080/0740817X.2010.504688 10.1109/ICICTA.2011.47 10.1109/TIM.2009.2025068 10.1109/TIM.2013.2239892 10.1016/j.neucom.2013.11.012 |
ContentType | Journal Article |
Copyright | 2014 Elsevier B.V. |
Copyright_xml | – notice: 2014 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.neucom.2014.09.020 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-8286 |
EndPage | 470 |
ExternalDocumentID | 10_1016_j_neucom_2014_09_020 S0925231214011783 |
GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EFKBS FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW WUQ XPP |
ID | FETCH-LOGICAL-c306t-535da75f186f947197aa45af6a25c302876bd42a91c20edfa5b2eb84e64c45e93 |
IEDL.DBID | .~1 |
ISSN | 0925-2312 |
IngestDate | Tue Aug 05 11:59:44 EDT 2025 Thu Apr 24 23:07:37 EDT 2025 Fri Feb 23 02:28:29 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Multi-kernel ILSSVR Features extraction Incremental and reduced interaction Analog circuit performance evaluation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-535da75f186f947197aa45af6a25c302876bd42a91c20edfa5b2eb84e64c45e93 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1016_j_neucom_2014_09_020 crossref_primary_10_1016_j_neucom_2014_09_020 elsevier_sciencedirect_doi_10_1016_j_neucom_2014_09_020 |
PublicationCentury | 2000 |
PublicationDate | 2015-03-03 |
PublicationDateYYYYMMDD | 2015-03-03 |
PublicationDate_xml | – month: 03 year: 2015 text: 2015-03-03 day: 03 |
PublicationDecade | 2010 |
PublicationTitle | Neurocomputing (Amsterdam) |
PublicationYear | 2015 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | X. Zhao, L. Zhang, P. Shi, H. Karimi, Robust Control of Continuous-Time Systems with State-Dependent Uncertainties and Its Application to Electronic Circuits, 2013. Qiu, Feng, Gao (bib12) 2012; 20 Hoyer, Hyvärinen (bib18) 2000; 11 Yin, Wang, Karimi (bib10) 2013 Yuvaraj, Ramachandra Murthy, Iyer, Sekar, Samui (bib13) 2013; 98 M. Pan, Y. He, G. Tian, D. Chen, F. Luo, PEC Frequency Band Selection for Locating Defects in Two-layer Aircraft Structures with Air Gap Variations, 2013. Aminian, Aminian (bib1) 2007; 56 B. Long, S. Tian, Q. Miao, M. Pecht, Research on features for diagnostics of filtered analog circuits based on LS-SVM, in: IEEE AUTOTESTCON, 2011, pp. 360–366. J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, V. Vapnik, Feature selection for SVMs, in: NIPS, 2000, pp. 668–674. X. Zhao, H. Liu, J. Zhang, H. Li, Multiple-mode Observer Design for a Class of Switched Linear Systems, 2013. Yin, Ding, Xie, Luo (bib5) 2014; 61 Long, Xian, Li, Wang (bib31) 2014; 133 Aihua, Zhongdang (bib20) 2008; 29 Zhao, Sun (bib23) 2009; 42 Gao, Huang, Sun, Diao (bib33) 2012; 19 Hochreiter, Schmidhuber (bib39) 1999; 11 Chen, Jain (bib24) 1994; 5 Sophian, Tian, Taylor, Rudlin (bib36) 2003; 36 Z. Hongyan, L. Hongbo, Z. Fanjing, L. Tiefeng, Improvement and application of a real-timing analog circuit fault diagnosis method, in: International Conference on Intelligent Computation Technology and Automation (ICICTA), 2011, pp. 155–158. Xu, Huang, Wang, Long (bib3) 2010; 29 S. Ding, S. Yin, K. Peng, H. Hao, B. Shen, A Novel Scheme for Key Performance Indicator Prediction and Diagnosis with Application to an Industrial Hot Strip Mill, 2012. Yuan, Chu (bib28) 2007; 21 Hyvärinen, Karhunen, Oja (bib38) 2004; vol. 46 L.B. Almeida, Linear and nonlinear ICA based on mutual information, in: Proceedings of IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium AS-SPCC, 2000, pp. 117–122. Yin, Yang, Karimi (bib6) 2012; 2012 Shu-ninga, Fu-lia, Fu-qianga, Run-daa (bib26) 2010; 8 Tafazzoli, Wilson (bib32) 2010; 43 Ding, Zhang, Yin, Ding (bib8) 2013; 9 B. Long, J. Huang, S. Tian, Least squares support vector machine based analog-circuit fault diagnosis using wavelet transform as preprocessor, in: International Conference on Communications, Circuits and Systems, ICCCAS 2008, 1026-1029. Guyon, Weston, Barnhill, Vapnik (bib16) 2002; 46 Zhang, Wang, He, Jia (bib25) 2011; 28 Gönen, Alpaydın (bib27) 2010; 31 Chen, Tang, Song, Li (bib29) 2014; 47 Cao, Chua, Chong, Lee, Gu (bib15) 2003; 55 S. Yin, X. Li, H. Gao, O. Kaynak, Data-Based Techniques Focused on Modern Industry: An Overview, 2014. G. Gordon, R. Tibshirani, Karush-Kuhn-Tucker conditions, Optimization, 10, p. 725. Yuan, He, Huang, Sun (bib2) 2010; 59 Acevedo-Rodríguez, Maldonado-Bascón, Lafuente-Arroyo, Siegmann, López-Ferreras (bib14) 2009; 89 A. Wilson, A. Fern, S. Ray, P. Tadepalli, Multi-task reinforcement learning: a hierarchical Bayesian approach, in: Proceedings of the 24th international conference on Machine learning, 2007, pp. 1015–1022. Long (10.1016/j.neucom.2014.09.020_bib31) 2014; 133 Yuvaraj (10.1016/j.neucom.2014.09.020_bib13) 2013; 98 Tafazzoli (10.1016/j.neucom.2014.09.020_bib32) 2010; 43 Hochreiter (10.1016/j.neucom.2014.09.020_bib39) 1999; 11 10.1016/j.neucom.2014.09.020_bib35 10.1016/j.neucom.2014.09.020_bib34 Acevedo-Rodríguez (10.1016/j.neucom.2014.09.020_bib14) 2009; 89 Sophian (10.1016/j.neucom.2014.09.020_bib36) 2003; 36 10.1016/j.neucom.2014.09.020_bib37 10.1016/j.neucom.2014.09.020_bib17 10.1016/j.neucom.2014.09.020_bib19 Zhang (10.1016/j.neucom.2014.09.020_bib25) 2011; 28 Chen (10.1016/j.neucom.2014.09.020_bib29) 2014; 47 Xu (10.1016/j.neucom.2014.09.020_bib3) 2010; 29 Yuan (10.1016/j.neucom.2014.09.020_bib28) 2007; 21 Aminian (10.1016/j.neucom.2014.09.020_bib1) 2007; 56 Yin (10.1016/j.neucom.2014.09.020_bib10) 2013 Yin (10.1016/j.neucom.2014.09.020_bib5) 2014; 61 10.1016/j.neucom.2014.09.020_bib30 10.1016/j.neucom.2014.09.020_bib11 Aihua (10.1016/j.neucom.2014.09.020_bib20) 2008; 29 Qiu (10.1016/j.neucom.2014.09.020_bib12) 2012; 20 Chen (10.1016/j.neucom.2014.09.020_bib24) 1994; 5 10.1016/j.neucom.2014.09.020_bib9 10.1016/j.neucom.2014.09.020_bib7 Shu-ninga (10.1016/j.neucom.2014.09.020_bib26) 2010; 8 Hoyer (10.1016/j.neucom.2014.09.020_bib18) 2000; 11 Gönen (10.1016/j.neucom.2014.09.020_bib27) 2010; 31 Cao (10.1016/j.neucom.2014.09.020_bib15) 2003; 55 Yuan (10.1016/j.neucom.2014.09.020_bib2) 2010; 59 Hyvärinen (10.1016/j.neucom.2014.09.020_bib38) 2004; vol. 46 Ding (10.1016/j.neucom.2014.09.020_bib8) 2013; 9 Zhao (10.1016/j.neucom.2014.09.020_bib23) 2009; 42 Yin (10.1016/j.neucom.2014.09.020_bib6) 2012; 2012 10.1016/j.neucom.2014.09.020_bib4 Guyon (10.1016/j.neucom.2014.09.020_bib16) 2002; 46 10.1016/j.neucom.2014.09.020_bib22 10.1016/j.neucom.2014.09.020_bib21 Gao (10.1016/j.neucom.2014.09.020_bib33) 2012; 19 |
References_xml | – reference: L.B. Almeida, Linear and nonlinear ICA based on mutual information, in: Proceedings of IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium AS-SPCC, 2000, pp. 117–122. – reference: X. Zhao, L. Zhang, P. Shi, H. Karimi, Robust Control of Continuous-Time Systems with State-Dependent Uncertainties and Its Application to Electronic Circuits, 2013. – volume: 31 start-page: 959 year: 2010 end-page: 965 ident: bib27 article-title: Cost-conscious multiple kernel learning publication-title: Pattern Recognit. Lett. – reference: B. Long, S. Tian, Q. Miao, M. Pecht, Research on features for diagnostics of filtered analog circuits based on LS-SVM, in: IEEE AUTOTESTCON, 2011, pp. 360–366. – volume: 28 start-page: 1601 year: 2011 end-page: 1606 ident: bib25 article-title: Modeling method of online robust least-squares-support-vector regression publication-title: Control Theory Appl. – volume: 20 start-page: 1046 year: 2012 end-page: 1062 ident: bib12 article-title: Observer-based piecewise affine output feedback controller synthesis of continuous-time T–S fuzzy affine dynamic systems using quantized measurements publication-title: IEEE Trans. Fuzzy Syst. – volume: 19 start-page: 459 year: 2012 end-page: 464 ident: bib33 article-title: Particle swarm optimization based RVM classifier for non-linear circuit fault diagnosis publication-title: J. Cent. South Univ. – volume: 98 start-page: 29 year: 2013 end-page: 43 ident: bib13 article-title: Support vector regression based models to predict fracture characteristics of high strength and ultra high strength concrete beams publication-title: Eng. Fract. Mech. – reference: J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, V. Vapnik, Feature selection for SVMs, in: NIPS, 2000, pp. 668–674. – volume: 8 start-page: 011 year: 2010 ident: bib26 article-title: Robust least squares support vector machine based on robust learning algorithm and its application publication-title: Control Decis. – reference: Z. Hongyan, L. Hongbo, Z. Fanjing, L. Tiefeng, Improvement and application of a real-timing analog circuit fault diagnosis method, in: International Conference on Intelligent Computation Technology and Automation (ICICTA), 2011, pp. 155–158. – reference: X. Zhao, H. Liu, J. Zhang, H. Li, Multiple-mode Observer Design for a Class of Switched Linear Systems, 2013. – volume: 89 start-page: 2066 year: 2009 end-page: 2071 ident: bib14 article-title: Computational load reduction in decision functions using support vector machines publication-title: Signal Process. – volume: 59 start-page: 586 year: 2010 end-page: 595 ident: bib2 article-title: A new neural-network-based fault diagnosis approach for analog circuits by using kurtosis and entropy as a preprocessor publication-title: IEEE Trans. Instrum. Meas. – volume: 133 start-page: 237 year: 2014 end-page: 248 ident: bib31 article-title: Improved diagnostics for the incipient faults in analog circuits using LSSVM based on PSO algorithm with Mahalanobis distance publication-title: Neurocomputing – volume: 9 start-page: 462 year: 2013 end-page: 471 ident: bib8 article-title: An integrated design framework of fault-tolerant wireless networked control systems for industrial automatic control applications publication-title: IEEE Trans. Ind. Inf. – reference: S. Yin, X. Li, H. Gao, O. Kaynak, Data-Based Techniques Focused on Modern Industry: An Overview, 2014. – volume: 36 start-page: 37 year: 2003 end-page: 41 ident: bib36 article-title: A feature extraction technique based on principal component analysis for pulsed Eddy current NDT publication-title: NDT & E Int. – reference: S. Ding, S. Yin, K. Peng, H. Hao, B. Shen, A Novel Scheme for Key Performance Indicator Prediction and Diagnosis with Application to an Industrial Hot Strip Mill, 2012. – year: 2013 ident: bib10 article-title: Data-driven design of robust fault detection system for wind turbines publication-title: Mechatronics – reference: A. Wilson, A. Fern, S. Ray, P. Tadepalli, Multi-task reinforcement learning: a hierarchical Bayesian approach, in: Proceedings of the 24th international conference on Machine learning, 2007, pp. 1015–1022. – volume: 2012 year: 2012 ident: bib6 article-title: Data-driven adaptive observer for fault diagnosis publication-title: Math. Prob. Eng. – volume: vol. 46 year: 2004 ident: bib38 publication-title: Independent Component Analysis – volume: 47 start-page: 576 year: 2014 end-page: 590 ident: bib29 article-title: Multi-fault diagnosis study on roller bearing based on multi-kernel support vector machine with chaotic particle swarm optimization publication-title: Measurement – volume: 43 start-page: 110 year: 2010 end-page: 128 ident: bib32 article-title: Skart: a skewness-and autoregression-adjusted batch-means procedure for simulation analysis publication-title: IIE Trans. – volume: 11 start-page: 191 year: 2000 end-page: 210 ident: bib18 article-title: Independent component analysis applied to feature extraction from colour and stereo images publication-title: Netw.: Comput. Neural Syst. – volume: 11 start-page: 679 year: 1999 end-page: 714 ident: bib39 article-title: Feature extraction through LOCOCODE publication-title: Neural Comput. – volume: 46 start-page: 389 year: 2002 end-page: 422 ident: bib16 article-title: Gene selection for cancer classification using support vector machines publication-title: Mach. Learn. – reference: G. Gordon, R. Tibshirani, Karush-Kuhn-Tucker conditions, Optimization, 10, p. 725. – reference: M. Pan, Y. He, G. Tian, D. Chen, F. Luo, PEC Frequency Band Selection for Locating Defects in Two-layer Aircraft Structures with Air Gap Variations, 2013. – volume: 21 start-page: 1318 year: 2007 end-page: 1330 ident: bib28 article-title: Fault diagnosis based on support vector machines with parameter optimisation by artificial immunisation algorithm publication-title: Mech. Syst. Signal Process. – volume: 61 start-page: 6418 year: 2014 end-page: 6428 ident: bib5 article-title: A review on basic data-driven approaches for industrial process monitoring publication-title: IEEE Trans. Ind. Electron. – volume: 29 start-page: 618 year: 2008 ident: bib20 article-title: Research on amplifier performance evaluation based on support vector regression machine publication-title: Chin. J. Sci. Instrum. – volume: 42 start-page: 837 year: 2009 end-page: 842 ident: bib23 article-title: Recursive reduced least squares support vector regression publication-title: Pattern Recognit. – volume: 56 start-page: 1546 year: 2007 end-page: 1554 ident: bib1 article-title: A modular fault-diagnostic system for analog electronic circuits using neural networks with wavelet transform as a preprocessor publication-title: IEEE Trans. Instrum. Meas. – volume: 5 start-page: 467 year: 1994 end-page: 479 ident: bib24 article-title: A robust backpropagation learning algorithm for function approximation publication-title: IEEE Trans. Neural Netw. – reference: B. Long, J. Huang, S. Tian, Least squares support vector machine based analog-circuit fault diagnosis using wavelet transform as preprocessor, in: International Conference on Communications, Circuits and Systems, ICCCAS 2008, 1026-1029. – volume: 29 start-page: 577 year: 2010 end-page: 600 ident: bib3 article-title: A novel method for the diagnosis of the incipient faults in analog circuits based on LDA and HMM publication-title: Circuits, Syst. Signal Process. – volume: 55 start-page: 321 year: 2003 end-page: 336 ident: bib15 article-title: A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine publication-title: Neurocomputing – volume: 46 start-page: 389 year: 2002 ident: 10.1016/j.neucom.2014.09.020_bib16 article-title: Gene selection for cancer classification using support vector machines publication-title: Mach. Learn. doi: 10.1023/A:1012487302797 – volume: 98 start-page: 29 year: 2013 ident: 10.1016/j.neucom.2014.09.020_bib13 article-title: Support vector regression based models to predict fracture characteristics of high strength and ultra high strength concrete beams publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2012.11.014 – volume: 89 start-page: 2066 year: 2009 ident: 10.1016/j.neucom.2014.09.020_bib14 article-title: Computational load reduction in decision functions using support vector machines publication-title: Signal Process. doi: 10.1016/j.sigpro.2009.03.032 – volume: 29 start-page: 618 year: 2008 ident: 10.1016/j.neucom.2014.09.020_bib20 article-title: Research on amplifier performance evaluation based on support vector regression machine publication-title: Chin. J. Sci. Instrum. – volume: 11 start-page: 191 year: 2000 ident: 10.1016/j.neucom.2014.09.020_bib18 article-title: Independent component analysis applied to feature extraction from colour and stereo images publication-title: Netw.: Comput. Neural Syst. doi: 10.1088/0954-898X/11/3/302 – volume: 47 start-page: 576 year: 2014 ident: 10.1016/j.neucom.2014.09.020_bib29 article-title: Multi-fault diagnosis study on roller bearing based on multi-kernel support vector machine with chaotic particle swarm optimization publication-title: Measurement doi: 10.1016/j.measurement.2013.08.021 – volume: 29 start-page: 577 year: 2010 ident: 10.1016/j.neucom.2014.09.020_bib3 article-title: A novel method for the diagnosis of the incipient faults in analog circuits based on LDA and HMM publication-title: Circuits, Syst. Signal Process. doi: 10.1007/s00034-010-9160-1 – volume: 5 start-page: 467 year: 1994 ident: 10.1016/j.neucom.2014.09.020_bib24 article-title: A robust backpropagation learning algorithm for function approximation publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.286917 – ident: 10.1016/j.neucom.2014.09.020_bib9 doi: 10.1109/TIE.2013.2286568 – ident: 10.1016/j.neucom.2014.09.020_bib11 – ident: 10.1016/j.neucom.2014.09.020_bib17 – volume: 56 start-page: 1546 year: 2007 ident: 10.1016/j.neucom.2014.09.020_bib1 article-title: A modular fault-diagnostic system for analog electronic circuits using neural networks with wavelet transform as a preprocessor publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2007.904549 – ident: 10.1016/j.neucom.2014.09.020_bib7 doi: 10.1109/TII.2012.2214394 – volume: 11 start-page: 679 year: 1999 ident: 10.1016/j.neucom.2014.09.020_bib39 article-title: Feature extraction through LOCOCODE publication-title: Neural Comput. doi: 10.1162/089976699300016629 – volume: 8 start-page: 011 year: 2010 ident: 10.1016/j.neucom.2014.09.020_bib26 article-title: Robust least squares support vector machine based on robust learning algorithm and its application publication-title: Control Decis. – volume: vol. 46 year: 2004 ident: 10.1016/j.neucom.2014.09.020_bib38 – volume: 61 start-page: 6418 year: 2014 ident: 10.1016/j.neucom.2014.09.020_bib5 article-title: A review on basic data-driven approaches for industrial process monitoring publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2014.2301773 – volume: 2012 year: 2012 ident: 10.1016/j.neucom.2014.09.020_bib6 article-title: Data-driven adaptive observer for fault diagnosis publication-title: Math. Prob. Eng. doi: 10.1155/2012/832836 – ident: 10.1016/j.neucom.2014.09.020_bib34 doi: 10.1109/AUTEST.2011.6058746 – ident: 10.1016/j.neucom.2014.09.020_bib22 doi: 10.1145/1273496.1273624 – ident: 10.1016/j.neucom.2014.09.020_bib21 – volume: 19 start-page: 459 year: 2012 ident: 10.1016/j.neucom.2014.09.020_bib33 article-title: Particle swarm optimization based RVM classifier for non-linear circuit fault diagnosis publication-title: J. Cent. South Univ. doi: 10.1007/s11771-012-1025-2 – ident: 10.1016/j.neucom.2014.09.020_bib19 doi: 10.1109/ASSPCC.2000.882457 – volume: 36 start-page: 37 year: 2003 ident: 10.1016/j.neucom.2014.09.020_bib36 article-title: A feature extraction technique based on principal component analysis for pulsed Eddy current NDT publication-title: NDT & E Int. doi: 10.1016/S0963-8695(02)00069-5 – volume: 55 start-page: 321 year: 2003 ident: 10.1016/j.neucom.2014.09.020_bib15 article-title: A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine publication-title: Neurocomputing doi: 10.1016/S0925-2312(03)00433-8 – ident: 10.1016/j.neucom.2014.09.020_bib35 doi: 10.1109/ICCCAS.2008.4657943 – volume: 42 start-page: 837 year: 2009 ident: 10.1016/j.neucom.2014.09.020_bib23 article-title: Recursive reduced least squares support vector regression publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2008.09.028 – volume: 31 start-page: 959 year: 2010 ident: 10.1016/j.neucom.2014.09.020_bib27 article-title: Cost-conscious multiple kernel learning publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2009.12.027 – volume: 20 start-page: 1046 year: 2012 ident: 10.1016/j.neucom.2014.09.020_bib12 article-title: Observer-based piecewise affine output feedback controller synthesis of continuous-time T–S fuzzy affine dynamic systems using quantized measurements publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2012.2191790 – volume: 28 start-page: 1601 year: 2011 ident: 10.1016/j.neucom.2014.09.020_bib25 article-title: Modeling method of online robust least-squares-support-vector regression publication-title: Control Theory Appl. – volume: 9 start-page: 462 year: 2013 ident: 10.1016/j.neucom.2014.09.020_bib8 article-title: An integrated design framework of fault-tolerant wireless networked control systems for industrial automatic control applications publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2012.2214390 – ident: 10.1016/j.neucom.2014.09.020_bib4 doi: 10.1109/TIE.2014.2308133 – volume: 21 start-page: 1318 year: 2007 ident: 10.1016/j.neucom.2014.09.020_bib28 article-title: Fault diagnosis based on support vector machines with parameter optimisation by artificial immunisation algorithm publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2006.06.006 – volume: 43 start-page: 110 year: 2010 ident: 10.1016/j.neucom.2014.09.020_bib32 article-title: Skart: a skewness-and autoregression-adjusted batch-means procedure for simulation analysis publication-title: IIE Trans. doi: 10.1080/0740817X.2010.504688 – ident: 10.1016/j.neucom.2014.09.020_bib30 doi: 10.1109/ICICTA.2011.47 – volume: 59 start-page: 586 year: 2010 ident: 10.1016/j.neucom.2014.09.020_bib2 article-title: A new neural-network-based fault diagnosis approach for analog circuits by using kurtosis and entropy as a preprocessor publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2009.2025068 – ident: 10.1016/j.neucom.2014.09.020_bib37 doi: 10.1109/TIM.2013.2239892 – volume: 133 start-page: 237 year: 2014 ident: 10.1016/j.neucom.2014.09.020_bib31 article-title: Improved diagnostics for the incipient faults in analog circuits using LSSVM based on PSO algorithm with Mahalanobis distance publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.11.012 – year: 2013 ident: 10.1016/j.neucom.2014.09.020_bib10 article-title: Data-driven design of robust fault detection system for wind turbines publication-title: Mechatronics |
SSID | ssj0017129 |
Score | 2.1299067 |
Snippet | This paper demystifies the proposed analog circuit performance evaluation methods based on improved LSSVR (ILSSVR) by examining the arithmetic speed and the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 461 |
SubjectTerms | Analog circuit performance evaluation Features extraction ILSSVR Incremental and reduced interaction Multi-kernel |
Title | Performance evaluation of analog circuit using improved LSSVR subject to data information uncertainty |
URI | https://dx.doi.org/10.1016/j.neucom.2014.09.020 |
Volume | 151 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLdZH2YPX2Gaf3WMplvoqYq30tuwmG4lIWmpy8OJvdzfZtAqi4DFhJ4TJZma-4dtvADgXTvOKCGZhicUmRDEdaIR5oFCccCWModr1Ie_GbDQl1zM6a4BBfRbG0Sp97K9iehmt_Z2O92ZnkaadSVcgi6JC5CBCyHtO8ZMQ7vTzLz5WNI-Qh6jS20M0cKvr43MlxyszheOM2CRYqZ26qd8_pacvKWe4A7Z8rQj71evsgobJ9sB2PYcB-t9yH5j7NfsfruW74TyBKnPNGRily6hIc-hY7s8wLRsJJoa3k8nTA3wrtGvGwHwOHV8Uei3V8hE261Wcgfz9AEyHl4-DUeDHJwSRxQF5QDGNFadJ2GOJsDlIcKUIVQlTiNoVFioxHROkRBihrokTRTUyukcMIxGhRuBD0MzmmTkCUDt2NSNC48gQrLlQHBPTE6G29YWtAloA116TkdcWdyMuXmVNInuRla-l87XsCml93QLBympRaWv8sZ7XH0R-2yPShv9fLY__bXkCNu0VLVln-BQ082VhzmwZkut2uc_aYKN_dTMafwIu_d31 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4gHvTi24jPPXit0H2yR0MkqECMgOG22W23psYUgu3Bi7_d3T5AE6OJ13amaabTeeXbbwC4FI7zighm2xLbmxDFtKcR5p5CYcSVMIZqN4ccDFlvQu6mdFoDneosjINVlrG_iOl5tC6vNEtrNudx3By1BLJdlI9ci-DzNl4D64Ri7lz76mOJ8_C5jwrCPUQ9J16dn8tBXonJHGjEZsGC7tSt_f4pP33JOd0dsFUWi_C6eJ9dUDPJHtiuFjHA8r_cB-ZhBf-HK_5uOIugStx0BgbxIsjiFDqY-zOM80mCCWF_NHp6hG-ZdtMYmM6gA4zCkkw1f4RNewVoIH0_AJPuzbjT88r9CV5gG4HUo5iGitPIb7NI2CQkuFKEqogpRK2E7ZWYDglSwg9Qy4SRohoZ3SaGkYBQI_AhqCezxBwBqB28mhGhcWAI1lwojolpC1_bAsOWAQ2AK6vJoCQXdzsuXmWFInuRha2ls7VsCWlt3QDeUmtekGv8Ic-rDyK_OYm08f9XzeN_a16Ajd540Jf92-H9Cdi0d2gOQcOnoJ4uMnNma5JUn-c-9wlv8N-L |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+evaluation+of+analog+circuit+using+improved+LSSVR+subject+to+data+information+uncertainty&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Zhang%2C+Aihua&rft.au=Wang%2C+Yongchao&rft.au=Zhang%2C+Zhiqiang&rft.date=2015-03-03&rft.issn=0925-2312&rft.volume=151&rft.spage=461&rft.epage=470&rft_id=info:doi/10.1016%2Fj.neucom.2014.09.020&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2014_09_020 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |