Performance evaluation of analog circuit using improved LSSVR subject to data information uncertainty

This paper demystifies the proposed analog circuit performance evaluation methods based on improved LSSVR (ILSSVR) by examining the arithmetic speed and the evaluation reliability online. The ILSSVR performance evaluation scheme has the robustness for the signal information uncertainty, which may be...

Full description

Saved in:
Bibliographic Details
Published inNeurocomputing (Amsterdam) Vol. 151; pp. 461 - 470
Main Authors Zhang, Aihua, Wang, Yongchao, Zhang, Zhiqiang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 03.03.2015
Subjects
Online AccessGet full text
ISSN0925-2312
1872-8286
DOI10.1016/j.neucom.2014.09.020

Cover

Loading…
Abstract This paper demystifies the proposed analog circuit performance evaluation methods based on improved LSSVR (ILSSVR) by examining the arithmetic speed and the evaluation reliability online. The ILSSVR performance evaluation scheme has the robustness for the signal information uncertainty, which may be deduced by nonlinear feature, time varying feature and contain faults value about industrial field data information. More specially, the self-update via incremental and reduced interaction is employed to detect the interests both on history data information and the updated data information, and the features extraction nonlinear independent component analysis (NICA) is proposed, then the number of the feature data is controlled and desired time consumed is guaranteed. In addition, the multi-kernel and weighted idea have also been employed to interfuse quite flexibility to the bandwidths of kernel online. The proposed analog circuit performance evaluation scheme ILSSVR is evaluated for two filter circuit: leapfrog filter circuit and self-adapting filter circuit. And the effectiveness is illustrated through a numerical example.
AbstractList This paper demystifies the proposed analog circuit performance evaluation methods based on improved LSSVR (ILSSVR) by examining the arithmetic speed and the evaluation reliability online. The ILSSVR performance evaluation scheme has the robustness for the signal information uncertainty, which may be deduced by nonlinear feature, time varying feature and contain faults value about industrial field data information. More specially, the self-update via incremental and reduced interaction is employed to detect the interests both on history data information and the updated data information, and the features extraction nonlinear independent component analysis (NICA) is proposed, then the number of the feature data is controlled and desired time consumed is guaranteed. In addition, the multi-kernel and weighted idea have also been employed to interfuse quite flexibility to the bandwidths of kernel online. The proposed analog circuit performance evaluation scheme ILSSVR is evaluated for two filter circuit: leapfrog filter circuit and self-adapting filter circuit. And the effectiveness is illustrated through a numerical example.
Author Zhang, Zhiqiang
Zhang, Aihua
Wang, Yongchao
Author_xml – sequence: 1
  givenname: Aihua
  surname: Zhang
  fullname: Zhang, Aihua
  email: Aihuazhangbhu@gmail.com
– sequence: 2
  givenname: Yongchao
  surname: Wang
  fullname: Wang, Yongchao
  email: 985287986@qq.com
– sequence: 3
  givenname: Zhiqiang
  surname: Zhang
  fullname: Zhang, Zhiqiang
  email: Jsxinxi_zzq@163.com
BookMark eNqFkMtOwzAQAC1UJNrCH3DwDyTYjvPigIQqXlIlEAWu1sbZVI5Su3KcSv170pYTBzjtZWe0OzMysc4iIdecxZzx7KaNLQ7abWLBuIxZGTPBzsiUF7mIClFkEzJlpUgjkXBxQWZ93zLGcy7KKcE39I3zG7AaKe6gGyAYZ6lrKFjo3Jpq4_VgAh16Y9fUbLbe7bCmy9Xq6532Q9WiDjQ4WkMAauxRdlQMo9IHMDbsL8l5A12PVz9zTj4fHz4Wz9Hy9ellcb-MdMKyEKVJWkOeNrzImlLmvMwBZApNBiIdN0SRZ1UtBZRcC4Z1A2klsCokZlLLFMtkTm5PXu1d33tslDbheE3wYDrFmToEU606BVOHYIqVagw2wvIXvPVmA37_H3Z3wnB8bGfQq14bHH-vjR_TqNqZvwXfbC-L-g
CitedBy_id crossref_primary_10_1016_j_neucom_2020_04_113
crossref_primary_10_1039_C6CP01531J
crossref_primary_10_1109_ACCESS_2020_2968744
crossref_primary_10_1016_j_neucom_2015_08_002
Cites_doi 10.1023/A:1012487302797
10.1016/j.engfracmech.2012.11.014
10.1016/j.sigpro.2009.03.032
10.1088/0954-898X/11/3/302
10.1016/j.measurement.2013.08.021
10.1007/s00034-010-9160-1
10.1109/72.286917
10.1109/TIE.2013.2286568
10.1109/TIM.2007.904549
10.1109/TII.2012.2214394
10.1162/089976699300016629
10.1109/TIE.2014.2301773
10.1155/2012/832836
10.1109/AUTEST.2011.6058746
10.1145/1273496.1273624
10.1007/s11771-012-1025-2
10.1109/ASSPCC.2000.882457
10.1016/S0963-8695(02)00069-5
10.1016/S0925-2312(03)00433-8
10.1109/ICCCAS.2008.4657943
10.1016/j.patcog.2008.09.028
10.1016/j.patrec.2009.12.027
10.1109/TFUZZ.2012.2191790
10.1109/TII.2012.2214390
10.1109/TIE.2014.2308133
10.1016/j.ymssp.2006.06.006
10.1080/0740817X.2010.504688
10.1109/ICICTA.2011.47
10.1109/TIM.2009.2025068
10.1109/TIM.2013.2239892
10.1016/j.neucom.2013.11.012
ContentType Journal Article
Copyright 2014 Elsevier B.V.
Copyright_xml – notice: 2014 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2014.09.020
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 470
ExternalDocumentID 10_1016_j_neucom_2014_09_020
S0925231214011783
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EFKBS
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
ID FETCH-LOGICAL-c306t-535da75f186f947197aa45af6a25c302876bd42a91c20edfa5b2eb84e64c45e93
IEDL.DBID .~1
ISSN 0925-2312
IngestDate Tue Aug 05 11:59:44 EDT 2025
Thu Apr 24 23:07:37 EDT 2025
Fri Feb 23 02:28:29 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multi-kernel
ILSSVR
Features extraction
Incremental and reduced interaction
Analog circuit performance evaluation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-535da75f186f947197aa45af6a25c302876bd42a91c20edfa5b2eb84e64c45e93
PageCount 10
ParticipantIDs crossref_citationtrail_10_1016_j_neucom_2014_09_020
crossref_primary_10_1016_j_neucom_2014_09_020
elsevier_sciencedirect_doi_10_1016_j_neucom_2014_09_020
PublicationCentury 2000
PublicationDate 2015-03-03
PublicationDateYYYYMMDD 2015-03-03
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-03-03
  day: 03
PublicationDecade 2010
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References X. Zhao, L. Zhang, P. Shi, H. Karimi, Robust Control of Continuous-Time Systems with State-Dependent Uncertainties and Its Application to Electronic Circuits, 2013.
Qiu, Feng, Gao (bib12) 2012; 20
Hoyer, Hyvärinen (bib18) 2000; 11
Yin, Wang, Karimi (bib10) 2013
Yuvaraj, Ramachandra Murthy, Iyer, Sekar, Samui (bib13) 2013; 98
M. Pan, Y. He, G. Tian, D. Chen, F. Luo, PEC Frequency Band Selection for Locating Defects in Two-layer Aircraft Structures with Air Gap Variations, 2013.
Aminian, Aminian (bib1) 2007; 56
B. Long, S. Tian, Q. Miao, M. Pecht, Research on features for diagnostics of filtered analog circuits based on LS-SVM, in: IEEE AUTOTESTCON, 2011, pp. 360–366.
J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, V. Vapnik, Feature selection for SVMs, in: NIPS, 2000, pp. 668–674.
X. Zhao, H. Liu, J. Zhang, H. Li, Multiple-mode Observer Design for a Class of Switched Linear Systems, 2013.
Yin, Ding, Xie, Luo (bib5) 2014; 61
Long, Xian, Li, Wang (bib31) 2014; 133
Aihua, Zhongdang (bib20) 2008; 29
Zhao, Sun (bib23) 2009; 42
Gao, Huang, Sun, Diao (bib33) 2012; 19
Hochreiter, Schmidhuber (bib39) 1999; 11
Chen, Jain (bib24) 1994; 5
Sophian, Tian, Taylor, Rudlin (bib36) 2003; 36
Z. Hongyan, L. Hongbo, Z. Fanjing, L. Tiefeng, Improvement and application of a real-timing analog circuit fault diagnosis method, in: International Conference on Intelligent Computation Technology and Automation (ICICTA), 2011, pp. 155–158.
Xu, Huang, Wang, Long (bib3) 2010; 29
S. Ding, S. Yin, K. Peng, H. Hao, B. Shen, A Novel Scheme for Key Performance Indicator Prediction and Diagnosis with Application to an Industrial Hot Strip Mill, 2012.
Yuan, Chu (bib28) 2007; 21
Hyvärinen, Karhunen, Oja (bib38) 2004; vol. 46
L.B. Almeida, Linear and nonlinear ICA based on mutual information, in: Proceedings of IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium AS-SPCC, 2000, pp. 117–122.
Yin, Yang, Karimi (bib6) 2012; 2012
Shu-ninga, Fu-lia, Fu-qianga, Run-daa (bib26) 2010; 8
Tafazzoli, Wilson (bib32) 2010; 43
Ding, Zhang, Yin, Ding (bib8) 2013; 9
B. Long, J. Huang, S. Tian, Least squares support vector machine based analog-circuit fault diagnosis using wavelet transform as preprocessor, in: International Conference on Communications, Circuits and Systems, ICCCAS 2008, 1026-1029.
Guyon, Weston, Barnhill, Vapnik (bib16) 2002; 46
Zhang, Wang, He, Jia (bib25) 2011; 28
Gönen, Alpaydın (bib27) 2010; 31
Chen, Tang, Song, Li (bib29) 2014; 47
Cao, Chua, Chong, Lee, Gu (bib15) 2003; 55
S. Yin, X. Li, H. Gao, O. Kaynak, Data-Based Techniques Focused on Modern Industry: An Overview, 2014.
G. Gordon, R. Tibshirani, Karush-Kuhn-Tucker conditions, Optimization, 10, p. 725.
Yuan, He, Huang, Sun (bib2) 2010; 59
Acevedo-Rodríguez, Maldonado-Bascón, Lafuente-Arroyo, Siegmann, López-Ferreras (bib14) 2009; 89
A. Wilson, A. Fern, S. Ray, P. Tadepalli, Multi-task reinforcement learning: a hierarchical Bayesian approach, in: Proceedings of the 24th international conference on Machine learning, 2007, pp. 1015–1022.
Long (10.1016/j.neucom.2014.09.020_bib31) 2014; 133
Yuvaraj (10.1016/j.neucom.2014.09.020_bib13) 2013; 98
Tafazzoli (10.1016/j.neucom.2014.09.020_bib32) 2010; 43
Hochreiter (10.1016/j.neucom.2014.09.020_bib39) 1999; 11
10.1016/j.neucom.2014.09.020_bib35
10.1016/j.neucom.2014.09.020_bib34
Acevedo-Rodríguez (10.1016/j.neucom.2014.09.020_bib14) 2009; 89
Sophian (10.1016/j.neucom.2014.09.020_bib36) 2003; 36
10.1016/j.neucom.2014.09.020_bib37
10.1016/j.neucom.2014.09.020_bib17
10.1016/j.neucom.2014.09.020_bib19
Zhang (10.1016/j.neucom.2014.09.020_bib25) 2011; 28
Chen (10.1016/j.neucom.2014.09.020_bib29) 2014; 47
Xu (10.1016/j.neucom.2014.09.020_bib3) 2010; 29
Yuan (10.1016/j.neucom.2014.09.020_bib28) 2007; 21
Aminian (10.1016/j.neucom.2014.09.020_bib1) 2007; 56
Yin (10.1016/j.neucom.2014.09.020_bib10) 2013
Yin (10.1016/j.neucom.2014.09.020_bib5) 2014; 61
10.1016/j.neucom.2014.09.020_bib30
10.1016/j.neucom.2014.09.020_bib11
Aihua (10.1016/j.neucom.2014.09.020_bib20) 2008; 29
Qiu (10.1016/j.neucom.2014.09.020_bib12) 2012; 20
Chen (10.1016/j.neucom.2014.09.020_bib24) 1994; 5
10.1016/j.neucom.2014.09.020_bib9
10.1016/j.neucom.2014.09.020_bib7
Shu-ninga (10.1016/j.neucom.2014.09.020_bib26) 2010; 8
Hoyer (10.1016/j.neucom.2014.09.020_bib18) 2000; 11
Gönen (10.1016/j.neucom.2014.09.020_bib27) 2010; 31
Cao (10.1016/j.neucom.2014.09.020_bib15) 2003; 55
Yuan (10.1016/j.neucom.2014.09.020_bib2) 2010; 59
Hyvärinen (10.1016/j.neucom.2014.09.020_bib38) 2004; vol. 46
Ding (10.1016/j.neucom.2014.09.020_bib8) 2013; 9
Zhao (10.1016/j.neucom.2014.09.020_bib23) 2009; 42
Yin (10.1016/j.neucom.2014.09.020_bib6) 2012; 2012
10.1016/j.neucom.2014.09.020_bib4
Guyon (10.1016/j.neucom.2014.09.020_bib16) 2002; 46
10.1016/j.neucom.2014.09.020_bib22
10.1016/j.neucom.2014.09.020_bib21
Gao (10.1016/j.neucom.2014.09.020_bib33) 2012; 19
References_xml – reference: L.B. Almeida, Linear and nonlinear ICA based on mutual information, in: Proceedings of IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium AS-SPCC, 2000, pp. 117–122.
– reference: X. Zhao, L. Zhang, P. Shi, H. Karimi, Robust Control of Continuous-Time Systems with State-Dependent Uncertainties and Its Application to Electronic Circuits, 2013.
– volume: 31
  start-page: 959
  year: 2010
  end-page: 965
  ident: bib27
  article-title: Cost-conscious multiple kernel learning
  publication-title: Pattern Recognit. Lett.
– reference: B. Long, S. Tian, Q. Miao, M. Pecht, Research on features for diagnostics of filtered analog circuits based on LS-SVM, in: IEEE AUTOTESTCON, 2011, pp. 360–366.
– volume: 28
  start-page: 1601
  year: 2011
  end-page: 1606
  ident: bib25
  article-title: Modeling method of online robust least-squares-support-vector regression
  publication-title: Control Theory Appl.
– volume: 20
  start-page: 1046
  year: 2012
  end-page: 1062
  ident: bib12
  article-title: Observer-based piecewise affine output feedback controller synthesis of continuous-time T–S fuzzy affine dynamic systems using quantized measurements
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 19
  start-page: 459
  year: 2012
  end-page: 464
  ident: bib33
  article-title: Particle swarm optimization based RVM classifier for non-linear circuit fault diagnosis
  publication-title: J. Cent. South Univ.
– volume: 98
  start-page: 29
  year: 2013
  end-page: 43
  ident: bib13
  article-title: Support vector regression based models to predict fracture characteristics of high strength and ultra high strength concrete beams
  publication-title: Eng. Fract. Mech.
– reference: J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, V. Vapnik, Feature selection for SVMs, in: NIPS, 2000, pp. 668–674.
– volume: 8
  start-page: 011
  year: 2010
  ident: bib26
  article-title: Robust least squares support vector machine based on robust learning algorithm and its application
  publication-title: Control Decis.
– reference: Z. Hongyan, L. Hongbo, Z. Fanjing, L. Tiefeng, Improvement and application of a real-timing analog circuit fault diagnosis method, in: International Conference on Intelligent Computation Technology and Automation (ICICTA), 2011, pp. 155–158.
– reference: X. Zhao, H. Liu, J. Zhang, H. Li, Multiple-mode Observer Design for a Class of Switched Linear Systems, 2013.
– volume: 89
  start-page: 2066
  year: 2009
  end-page: 2071
  ident: bib14
  article-title: Computational load reduction in decision functions using support vector machines
  publication-title: Signal Process.
– volume: 59
  start-page: 586
  year: 2010
  end-page: 595
  ident: bib2
  article-title: A new neural-network-based fault diagnosis approach for analog circuits by using kurtosis and entropy as a preprocessor
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 133
  start-page: 237
  year: 2014
  end-page: 248
  ident: bib31
  article-title: Improved diagnostics for the incipient faults in analog circuits using LSSVM based on PSO algorithm with Mahalanobis distance
  publication-title: Neurocomputing
– volume: 9
  start-page: 462
  year: 2013
  end-page: 471
  ident: bib8
  article-title: An integrated design framework of fault-tolerant wireless networked control systems for industrial automatic control applications
  publication-title: IEEE Trans. Ind. Inf.
– reference: S. Yin, X. Li, H. Gao, O. Kaynak, Data-Based Techniques Focused on Modern Industry: An Overview, 2014.
– volume: 36
  start-page: 37
  year: 2003
  end-page: 41
  ident: bib36
  article-title: A feature extraction technique based on principal component analysis for pulsed Eddy current NDT
  publication-title: NDT & E Int.
– reference: S. Ding, S. Yin, K. Peng, H. Hao, B. Shen, A Novel Scheme for Key Performance Indicator Prediction and Diagnosis with Application to an Industrial Hot Strip Mill, 2012.
– year: 2013
  ident: bib10
  article-title: Data-driven design of robust fault detection system for wind turbines
  publication-title: Mechatronics
– reference: A. Wilson, A. Fern, S. Ray, P. Tadepalli, Multi-task reinforcement learning: a hierarchical Bayesian approach, in: Proceedings of the 24th international conference on Machine learning, 2007, pp. 1015–1022.
– volume: 2012
  year: 2012
  ident: bib6
  article-title: Data-driven adaptive observer for fault diagnosis
  publication-title: Math. Prob. Eng.
– volume: vol. 46
  year: 2004
  ident: bib38
  publication-title: Independent Component Analysis
– volume: 47
  start-page: 576
  year: 2014
  end-page: 590
  ident: bib29
  article-title: Multi-fault diagnosis study on roller bearing based on multi-kernel support vector machine with chaotic particle swarm optimization
  publication-title: Measurement
– volume: 43
  start-page: 110
  year: 2010
  end-page: 128
  ident: bib32
  article-title: Skart: a skewness-and autoregression-adjusted batch-means procedure for simulation analysis
  publication-title: IIE Trans.
– volume: 11
  start-page: 191
  year: 2000
  end-page: 210
  ident: bib18
  article-title: Independent component analysis applied to feature extraction from colour and stereo images
  publication-title: Netw.: Comput. Neural Syst.
– volume: 11
  start-page: 679
  year: 1999
  end-page: 714
  ident: bib39
  article-title: Feature extraction through LOCOCODE
  publication-title: Neural Comput.
– volume: 46
  start-page: 389
  year: 2002
  end-page: 422
  ident: bib16
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Mach. Learn.
– reference: G. Gordon, R. Tibshirani, Karush-Kuhn-Tucker conditions, Optimization, 10, p. 725.
– reference: M. Pan, Y. He, G. Tian, D. Chen, F. Luo, PEC Frequency Band Selection for Locating Defects in Two-layer Aircraft Structures with Air Gap Variations, 2013.
– volume: 21
  start-page: 1318
  year: 2007
  end-page: 1330
  ident: bib28
  article-title: Fault diagnosis based on support vector machines with parameter optimisation by artificial immunisation algorithm
  publication-title: Mech. Syst. Signal Process.
– volume: 61
  start-page: 6418
  year: 2014
  end-page: 6428
  ident: bib5
  article-title: A review on basic data-driven approaches for industrial process monitoring
  publication-title: IEEE Trans. Ind. Electron.
– volume: 29
  start-page: 618
  year: 2008
  ident: bib20
  article-title: Research on amplifier performance evaluation based on support vector regression machine
  publication-title: Chin. J. Sci. Instrum.
– volume: 42
  start-page: 837
  year: 2009
  end-page: 842
  ident: bib23
  article-title: Recursive reduced least squares support vector regression
  publication-title: Pattern Recognit.
– volume: 56
  start-page: 1546
  year: 2007
  end-page: 1554
  ident: bib1
  article-title: A modular fault-diagnostic system for analog electronic circuits using neural networks with wavelet transform as a preprocessor
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 5
  start-page: 467
  year: 1994
  end-page: 479
  ident: bib24
  article-title: A robust backpropagation learning algorithm for function approximation
  publication-title: IEEE Trans. Neural Netw.
– reference: B. Long, J. Huang, S. Tian, Least squares support vector machine based analog-circuit fault diagnosis using wavelet transform as preprocessor, in: International Conference on Communications, Circuits and Systems, ICCCAS 2008, 1026-1029.
– volume: 29
  start-page: 577
  year: 2010
  end-page: 600
  ident: bib3
  article-title: A novel method for the diagnosis of the incipient faults in analog circuits based on LDA and HMM
  publication-title: Circuits, Syst. Signal Process.
– volume: 55
  start-page: 321
  year: 2003
  end-page: 336
  ident: bib15
  article-title: A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine
  publication-title: Neurocomputing
– volume: 46
  start-page: 389
  year: 2002
  ident: 10.1016/j.neucom.2014.09.020_bib16
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Mach. Learn.
  doi: 10.1023/A:1012487302797
– volume: 98
  start-page: 29
  year: 2013
  ident: 10.1016/j.neucom.2014.09.020_bib13
  article-title: Support vector regression based models to predict fracture characteristics of high strength and ultra high strength concrete beams
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2012.11.014
– volume: 89
  start-page: 2066
  year: 2009
  ident: 10.1016/j.neucom.2014.09.020_bib14
  article-title: Computational load reduction in decision functions using support vector machines
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2009.03.032
– volume: 29
  start-page: 618
  year: 2008
  ident: 10.1016/j.neucom.2014.09.020_bib20
  article-title: Research on amplifier performance evaluation based on support vector regression machine
  publication-title: Chin. J. Sci. Instrum.
– volume: 11
  start-page: 191
  year: 2000
  ident: 10.1016/j.neucom.2014.09.020_bib18
  article-title: Independent component analysis applied to feature extraction from colour and stereo images
  publication-title: Netw.: Comput. Neural Syst.
  doi: 10.1088/0954-898X/11/3/302
– volume: 47
  start-page: 576
  year: 2014
  ident: 10.1016/j.neucom.2014.09.020_bib29
  article-title: Multi-fault diagnosis study on roller bearing based on multi-kernel support vector machine with chaotic particle swarm optimization
  publication-title: Measurement
  doi: 10.1016/j.measurement.2013.08.021
– volume: 29
  start-page: 577
  year: 2010
  ident: 10.1016/j.neucom.2014.09.020_bib3
  article-title: A novel method for the diagnosis of the incipient faults in analog circuits based on LDA and HMM
  publication-title: Circuits, Syst. Signal Process.
  doi: 10.1007/s00034-010-9160-1
– volume: 5
  start-page: 467
  year: 1994
  ident: 10.1016/j.neucom.2014.09.020_bib24
  article-title: A robust backpropagation learning algorithm for function approximation
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.286917
– ident: 10.1016/j.neucom.2014.09.020_bib9
  doi: 10.1109/TIE.2013.2286568
– ident: 10.1016/j.neucom.2014.09.020_bib11
– ident: 10.1016/j.neucom.2014.09.020_bib17
– volume: 56
  start-page: 1546
  year: 2007
  ident: 10.1016/j.neucom.2014.09.020_bib1
  article-title: A modular fault-diagnostic system for analog electronic circuits using neural networks with wavelet transform as a preprocessor
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2007.904549
– ident: 10.1016/j.neucom.2014.09.020_bib7
  doi: 10.1109/TII.2012.2214394
– volume: 11
  start-page: 679
  year: 1999
  ident: 10.1016/j.neucom.2014.09.020_bib39
  article-title: Feature extraction through LOCOCODE
  publication-title: Neural Comput.
  doi: 10.1162/089976699300016629
– volume: 8
  start-page: 011
  year: 2010
  ident: 10.1016/j.neucom.2014.09.020_bib26
  article-title: Robust least squares support vector machine based on robust learning algorithm and its application
  publication-title: Control Decis.
– volume: vol. 46
  year: 2004
  ident: 10.1016/j.neucom.2014.09.020_bib38
– volume: 61
  start-page: 6418
  year: 2014
  ident: 10.1016/j.neucom.2014.09.020_bib5
  article-title: A review on basic data-driven approaches for industrial process monitoring
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2014.2301773
– volume: 2012
  year: 2012
  ident: 10.1016/j.neucom.2014.09.020_bib6
  article-title: Data-driven adaptive observer for fault diagnosis
  publication-title: Math. Prob. Eng.
  doi: 10.1155/2012/832836
– ident: 10.1016/j.neucom.2014.09.020_bib34
  doi: 10.1109/AUTEST.2011.6058746
– ident: 10.1016/j.neucom.2014.09.020_bib22
  doi: 10.1145/1273496.1273624
– ident: 10.1016/j.neucom.2014.09.020_bib21
– volume: 19
  start-page: 459
  year: 2012
  ident: 10.1016/j.neucom.2014.09.020_bib33
  article-title: Particle swarm optimization based RVM classifier for non-linear circuit fault diagnosis
  publication-title: J. Cent. South Univ.
  doi: 10.1007/s11771-012-1025-2
– ident: 10.1016/j.neucom.2014.09.020_bib19
  doi: 10.1109/ASSPCC.2000.882457
– volume: 36
  start-page: 37
  year: 2003
  ident: 10.1016/j.neucom.2014.09.020_bib36
  article-title: A feature extraction technique based on principal component analysis for pulsed Eddy current NDT
  publication-title: NDT & E Int.
  doi: 10.1016/S0963-8695(02)00069-5
– volume: 55
  start-page: 321
  year: 2003
  ident: 10.1016/j.neucom.2014.09.020_bib15
  article-title: A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(03)00433-8
– ident: 10.1016/j.neucom.2014.09.020_bib35
  doi: 10.1109/ICCCAS.2008.4657943
– volume: 42
  start-page: 837
  year: 2009
  ident: 10.1016/j.neucom.2014.09.020_bib23
  article-title: Recursive reduced least squares support vector regression
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2008.09.028
– volume: 31
  start-page: 959
  year: 2010
  ident: 10.1016/j.neucom.2014.09.020_bib27
  article-title: Cost-conscious multiple kernel learning
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2009.12.027
– volume: 20
  start-page: 1046
  year: 2012
  ident: 10.1016/j.neucom.2014.09.020_bib12
  article-title: Observer-based piecewise affine output feedback controller synthesis of continuous-time T–S fuzzy affine dynamic systems using quantized measurements
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2012.2191790
– volume: 28
  start-page: 1601
  year: 2011
  ident: 10.1016/j.neucom.2014.09.020_bib25
  article-title: Modeling method of online robust least-squares-support-vector regression
  publication-title: Control Theory Appl.
– volume: 9
  start-page: 462
  year: 2013
  ident: 10.1016/j.neucom.2014.09.020_bib8
  article-title: An integrated design framework of fault-tolerant wireless networked control systems for industrial automatic control applications
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2012.2214390
– ident: 10.1016/j.neucom.2014.09.020_bib4
  doi: 10.1109/TIE.2014.2308133
– volume: 21
  start-page: 1318
  year: 2007
  ident: 10.1016/j.neucom.2014.09.020_bib28
  article-title: Fault diagnosis based on support vector machines with parameter optimisation by artificial immunisation algorithm
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2006.06.006
– volume: 43
  start-page: 110
  year: 2010
  ident: 10.1016/j.neucom.2014.09.020_bib32
  article-title: Skart: a skewness-and autoregression-adjusted batch-means procedure for simulation analysis
  publication-title: IIE Trans.
  doi: 10.1080/0740817X.2010.504688
– ident: 10.1016/j.neucom.2014.09.020_bib30
  doi: 10.1109/ICICTA.2011.47
– volume: 59
  start-page: 586
  year: 2010
  ident: 10.1016/j.neucom.2014.09.020_bib2
  article-title: A new neural-network-based fault diagnosis approach for analog circuits by using kurtosis and entropy as a preprocessor
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2009.2025068
– ident: 10.1016/j.neucom.2014.09.020_bib37
  doi: 10.1109/TIM.2013.2239892
– volume: 133
  start-page: 237
  year: 2014
  ident: 10.1016/j.neucom.2014.09.020_bib31
  article-title: Improved diagnostics for the incipient faults in analog circuits using LSSVM based on PSO algorithm with Mahalanobis distance
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.11.012
– year: 2013
  ident: 10.1016/j.neucom.2014.09.020_bib10
  article-title: Data-driven design of robust fault detection system for wind turbines
  publication-title: Mechatronics
SSID ssj0017129
Score 2.1299067
Snippet This paper demystifies the proposed analog circuit performance evaluation methods based on improved LSSVR (ILSSVR) by examining the arithmetic speed and the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 461
SubjectTerms Analog circuit performance evaluation
Features extraction
ILSSVR
Incremental and reduced interaction
Multi-kernel
Title Performance evaluation of analog circuit using improved LSSVR subject to data information uncertainty
URI https://dx.doi.org/10.1016/j.neucom.2014.09.020
Volume 151
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLdZH2YPX2Gaf3WMplvoqYq30tuwmG4lIWmpy8OJvdzfZtAqi4DFhJ4TJZma-4dtvADgXTvOKCGZhicUmRDEdaIR5oFCccCWModr1Ie_GbDQl1zM6a4BBfRbG0Sp97K9iehmt_Z2O92ZnkaadSVcgi6JC5CBCyHtO8ZMQ7vTzLz5WNI-Qh6jS20M0cKvr43MlxyszheOM2CRYqZ26qd8_pacvKWe4A7Z8rQj71evsgobJ9sB2PYcB-t9yH5j7NfsfruW74TyBKnPNGRily6hIc-hY7s8wLRsJJoa3k8nTA3wrtGvGwHwOHV8Uei3V8hE261Wcgfz9AEyHl4-DUeDHJwSRxQF5QDGNFadJ2GOJsDlIcKUIVQlTiNoVFioxHROkRBihrokTRTUyukcMIxGhRuBD0MzmmTkCUDt2NSNC48gQrLlQHBPTE6G29YWtAloA116TkdcWdyMuXmVNInuRla-l87XsCml93QLBympRaWv8sZ7XH0R-2yPShv9fLY__bXkCNu0VLVln-BQ082VhzmwZkut2uc_aYKN_dTMafwIu_d31
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4gHvTi24jPPXit0H2yR0MkqECMgOG22W23psYUgu3Bi7_d3T5AE6OJ13amaabTeeXbbwC4FI7zighm2xLbmxDFtKcR5p5CYcSVMIZqN4ccDFlvQu6mdFoDneosjINVlrG_iOl5tC6vNEtrNudx3By1BLJdlI9ci-DzNl4D64Ri7lz76mOJ8_C5jwrCPUQ9J16dn8tBXonJHGjEZsGC7tSt_f4pP33JOd0dsFUWi_C6eJ9dUDPJHtiuFjHA8r_cB-ZhBf-HK_5uOIugStx0BgbxIsjiFDqY-zOM80mCCWF_NHp6hG-ZdtMYmM6gA4zCkkw1f4RNewVoIH0_AJPuzbjT88r9CV5gG4HUo5iGitPIb7NI2CQkuFKEqogpRK2E7ZWYDglSwg9Qy4SRohoZ3SaGkYBQI_AhqCezxBwBqB28mhGhcWAI1lwojolpC1_bAsOWAQ2AK6vJoCQXdzsuXmWFInuRha2ls7VsCWlt3QDeUmtekGv8Ic-rDyK_OYm08f9XzeN_a16Ajd540Jf92-H9Cdi0d2gOQcOnoJ4uMnNma5JUn-c-9wlv8N-L
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+evaluation+of+analog+circuit+using+improved+LSSVR+subject+to+data+information+uncertainty&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Zhang%2C+Aihua&rft.au=Wang%2C+Yongchao&rft.au=Zhang%2C+Zhiqiang&rft.date=2015-03-03&rft.issn=0925-2312&rft.volume=151&rft.spage=461&rft.epage=470&rft_id=info:doi/10.1016%2Fj.neucom.2014.09.020&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2014_09_020
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon