On persistence of a Nicholson-type system with multiple delays and nonlinear harvesting
An N-dimensional generalization of Nicholson’s equation is analyzed. We consider a model including multiple delays, nonlinear coefficients and a nonlinear harvesting term. Inspired by previous results in this subject, we obtain sufficient conditions to guarantee strong and uniform persistence. Furth...
Saved in:
Published in | Nonlinear analysis: real world applications Vol. 67; p. 103609 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An N-dimensional generalization of Nicholson’s equation is analyzed. We consider a model including multiple delays, nonlinear coefficients and a nonlinear harvesting term. Inspired by previous results in this subject, we obtain sufficient conditions to guarantee strong and uniform persistence. Furthermore, under extra suitable hypotheses we prove the existence of T-periodic solutions and, reversing the prior conditions in a convenient manner, we show that the zero is a global attractor. |
---|---|
AbstractList | An N-dimensional generalization of Nicholson’s equation is analyzed. We consider a model including multiple delays, nonlinear coefficients and a nonlinear harvesting term. Inspired by previous results in this subject, we obtain sufficient conditions to guarantee strong and uniform persistence. Furthermore, under extra suitable hypotheses we prove the existence of T-periodic solutions and, reversing the prior conditions in a convenient manner, we show that the zero is a global attractor. |
ArticleNumber | 103609 |
Author | Amster, Pablo Bondorevsky, Melanie |
Author_xml | – sequence: 1 givenname: Pablo orcidid: 0000-0003-2829-7072 surname: Amster fullname: Amster, Pablo email: pamster@dm.uba.ar – sequence: 2 givenname: Melanie surname: Bondorevsky fullname: Bondorevsky, Melanie email: mbondo@dm.uba.ar |
BookMark | eNqFkM9KAzEQh4NUsK2-gYe8wNYkm92kHgQp_oNiL4rHMM3O2pRtdkliy769W-rJg55mmOH7DfNNyMi3Hgm55mzGGS9vtrNhEA4wE0yIYZSXbH5GxlwrnRWKz0dDL0udccH1BZnEuGWMK57zMflYedphiC4m9BZpW1Ogr85u2ia2Pkt9hzT2w3JHDy5t6O6rSa5rkFbYQB8p-IoOxxvnEQLdQNhjTM5_XpLzGpqIVz91St4fH94Wz9ly9fSyuF9mNmdlygphYb5eFwhizUXBWZUzVdYclJTSgtKKAyprGdZWCwlcAuRa17LSVSHyOp8Secq1oY0xYG264HYQesOZOcoxW3OSY45yzEnOgN3-wqxLkFzrUwDX_AffnWAcHts7DCZad7RXuYA2map1fwd8A-Uuhr8 |
CitedBy_id | crossref_primary_10_14232_ejqtde_2023_1_15 crossref_primary_10_1007_s11071_024_10770_0 crossref_primary_10_1002_mma_10559 |
Cites_doi | 10.1016/j.jde.2017.02.042 10.14232/ejqtde.2012.1.73 10.1007/s12591-016-0285-y 10.1016/j.cam.2007.10.049 10.1016/0025-5564(87)90101-5 10.1071/ZO9540009 10.3390/math9030263 10.1016/j.apm.2009.08.027 10.1016/j.aml.2012.02.040 10.1016/j.jde.2016.06.019 10.1016/j.nonrwa.2010.12.009 10.1038/287017a0 10.1007/s10884-017-9572-8 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.nonrwa.2022.103609 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1878-5719 |
ExternalDocumentID | 10_1016_j_nonrwa_2022_103609 S146812182200058X |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 29N 4.4 457 4G. 5VS 6OB 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADGUI ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W J9A JJJVA KOM M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSW SSZ T5K XPP YQT ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-52ca9bb5ea2b12510d3076f1a7444ca7871ae7cc0efc824a14aa388f4d8d523f3 |
IEDL.DBID | .~1 |
ISSN | 1468-1218 |
IngestDate | Thu Apr 24 23:03:27 EDT 2025 Tue Jul 01 04:03:14 EDT 2025 Fri Feb 23 02:38:50 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Guiding functions Uniform persistence Nicholson’s equation Delay differential equations Periodic solutions Topological degree |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-52ca9bb5ea2b12510d3076f1a7444ca7871ae7cc0efc824a14aa388f4d8d523f3 |
ORCID | 0000-0003-2829-7072 |
ParticipantIDs | crossref_primary_10_1016_j_nonrwa_2022_103609 crossref_citationtrail_10_1016_j_nonrwa_2022_103609 elsevier_sciencedirect_doi_10_1016_j_nonrwa_2022_103609 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2022 2022-10-00 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: October 2022 |
PublicationDecade | 2020 |
PublicationTitle | Nonlinear analysis: real world applications |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Faria (b10) 2017; 263 Faria (b11) 2021; 9 Chen (b9) 2012; 2012 Liu, Gong (b12) 2011; 12 Faria, Obaya, Sanz (b15) 2018; 30 Gaines, Mawhin (b18) 1977; vol. 568 Obaya, Sanz (b13) 2016; 261 Smith, Thieme (b14) 2011 Gurney, Blythe, Nisbet (b2) 1980; 287 Amster, Déboli (b4) 2016 Li, Du (b6) 2008; 221 Berezansky, Braverman, Idels (b3) 2010; 34 Berezansky, Braverman (b8) 2016; 279 Gard (b17) 1987; 85 Amster, Bondorevsky (b5) 2021; 403 Ossandon, Sepulveda (b16) 2020 Amster, Déboli (b7) 2012; 25 Nicholson (b1) 1954; 2 Obaya (10.1016/j.nonrwa.2022.103609_b13) 2016; 261 Liu (10.1016/j.nonrwa.2022.103609_b12) 2011; 12 Amster (10.1016/j.nonrwa.2022.103609_b7) 2012; 25 Li (10.1016/j.nonrwa.2022.103609_b6) 2008; 221 Amster (10.1016/j.nonrwa.2022.103609_b4) 2016 Faria (10.1016/j.nonrwa.2022.103609_b11) 2021; 9 Nicholson (10.1016/j.nonrwa.2022.103609_b1) 1954; 2 Berezansky (10.1016/j.nonrwa.2022.103609_b3) 2010; 34 Chen (10.1016/j.nonrwa.2022.103609_b9) 2012; 2012 Amster (10.1016/j.nonrwa.2022.103609_b5) 2021; 403 Gurney (10.1016/j.nonrwa.2022.103609_b2) 1980; 287 Berezansky (10.1016/j.nonrwa.2022.103609_b8) 2016; 279 Gaines (10.1016/j.nonrwa.2022.103609_b18) 1977; vol. 568 Gard (10.1016/j.nonrwa.2022.103609_b17) 1987; 85 Faria (10.1016/j.nonrwa.2022.103609_b10) 2017; 263 Faria (10.1016/j.nonrwa.2022.103609_b15) 2018; 30 Ossandon (10.1016/j.nonrwa.2022.103609_b16) 2020 Smith (10.1016/j.nonrwa.2022.103609_b14) 2011 |
References_xml | – volume: 9 start-page: 263 year: 2021 ident: b11 article-title: Permanence for nonautonomous differential systems with delays in the linear and nonlinear terms publication-title: Mathematics – volume: 287 start-page: 17 year: 1980 end-page: 21 ident: b2 article-title: Nicholson’s blowflies revisited publication-title: Nature – year: 2011 ident: b14 article-title: Dynamical Systems and Population Persistence – start-page: 439 year: 2016 end-page: 447 ident: b4 article-title: Necessary and sufficient conditions for the existence of periodic solutions of a Nicholson type delay system publication-title: Differ. Equ. Dyn. Syst. – volume: 221 start-page: 226 year: 2008 end-page: 233 ident: b6 article-title: Existence of positive periodic solutions for a generalized Nicholson’s blowflies model publication-title: J. Comput. Appl. Math. – volume: 2 start-page: 9 year: 1954 end-page: 65 ident: b1 article-title: An outline of the dynamics of animal populations publication-title: Aust. J. Zool. – volume: 34 start-page: 1405 year: 2010 end-page: 1417 ident: b3 article-title: Nicholson’s blowflies differential equation revisited: main results and open problems publication-title: Appl. Math. Model – volume: 261 start-page: 4135 year: 2016 end-page: 4163 ident: b13 article-title: Uniform and strict persistence in monotone skew-product semiflows with applications to non-autonomous Nicholson systems publication-title: J. Differential Equations – volume: 263 start-page: 509 year: 2017 end-page: 533 ident: b10 article-title: Periodic solutions for a non-monotone family of delayed differential equations with applications to Nicholson systems publication-title: J. Differential Equations – volume: 85 start-page: 93 year: 1987 end-page: 104 ident: b17 article-title: Uniform persistence in multispecies population models publication-title: Math. Biosci. – volume: 2012 start-page: 1 year: 2012 end-page: 14 ident: b9 article-title: Permanence for Nicholson-type delay systems with patch structure and nonlinear density-dependent mortality terms publication-title: Electron. J. Qual. Theory Differ. Equ. – volume: 25 start-page: 1203 year: 2012 end-page: 1207 ident: b7 article-title: Existence of positive T-periodic solutions of a generalized Nicholson’s blowflies model with a nonlinear harvesting term publication-title: Appl. Math. Lett. – volume: 30 start-page: 911 year: 2018 end-page: 935 ident: b15 article-title: Asymptotic behaviour for a class of non-monotone delay differential systems with applications publication-title: J. Dyn. Differ. Equ. – volume: vol. 568 year: 1977 ident: b18 publication-title: Coincidence Degree and Nonlinear Differential Equations – year: 2020 ident: b16 article-title: Existence of periodic solution of Nicholson-type system with nonlinear density-dependent mortality – volume: 12 start-page: 1931 year: 2011 end-page: 1937 ident: b12 article-title: Permanence for Nicholson-type delay systems with nonlinear density-dependent mortality terms publication-title: Nonlinear Anal. RWA – volume: 279 start-page: 154 year: 2016 end-page: 169 ident: b8 article-title: Boundedness and persistence of delay differential equations with mixed nonlinearity publication-title: Appl. Math. Comput. – volume: 403 year: 2021 ident: b5 article-title: Persistence and periodic solutions in systems of delay differential equations publication-title: Appl. Math. Comput. – volume: 263 start-page: 509 issue: 1 year: 2017 ident: 10.1016/j.nonrwa.2022.103609_b10 article-title: Periodic solutions for a non-monotone family of delayed differential equations with applications to Nicholson systems publication-title: J. Differential Equations doi: 10.1016/j.jde.2017.02.042 – volume: 2012 start-page: 1 issue: 73 year: 2012 ident: 10.1016/j.nonrwa.2022.103609_b9 article-title: Permanence for Nicholson-type delay systems with patch structure and nonlinear density-dependent mortality terms publication-title: Electron. J. Qual. Theory Differ. Equ. doi: 10.14232/ejqtde.2012.1.73 – start-page: 439 issue: 4 year: 2016 ident: 10.1016/j.nonrwa.2022.103609_b4 article-title: Necessary and sufficient conditions for the existence of periodic solutions of a Nicholson type delay system publication-title: Differ. Equ. Dyn. Syst. doi: 10.1007/s12591-016-0285-y – volume: 403 year: 2021 ident: 10.1016/j.nonrwa.2022.103609_b5 article-title: Persistence and periodic solutions in systems of delay differential equations publication-title: Appl. Math. Comput. – volume: 221 start-page: 226 issue: 1 year: 2008 ident: 10.1016/j.nonrwa.2022.103609_b6 article-title: Existence of positive periodic solutions for a generalized Nicholson’s blowflies model publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2007.10.049 – volume: 85 start-page: 93 year: 1987 ident: 10.1016/j.nonrwa.2022.103609_b17 article-title: Uniform persistence in multispecies population models publication-title: Math. Biosci. doi: 10.1016/0025-5564(87)90101-5 – volume: 2 start-page: 9 issue: 1 year: 1954 ident: 10.1016/j.nonrwa.2022.103609_b1 article-title: An outline of the dynamics of animal populations publication-title: Aust. J. Zool. doi: 10.1071/ZO9540009 – volume: 9 start-page: 263 issue: 3 year: 2021 ident: 10.1016/j.nonrwa.2022.103609_b11 article-title: Permanence for nonautonomous differential systems with delays in the linear and nonlinear terms publication-title: Mathematics doi: 10.3390/math9030263 – volume: 34 start-page: 1405 year: 2010 ident: 10.1016/j.nonrwa.2022.103609_b3 article-title: Nicholson’s blowflies differential equation revisited: main results and open problems publication-title: Appl. Math. Model doi: 10.1016/j.apm.2009.08.027 – volume: 25 start-page: 1203 issue: 9 year: 2012 ident: 10.1016/j.nonrwa.2022.103609_b7 article-title: Existence of positive T-periodic solutions of a generalized Nicholson’s blowflies model with a nonlinear harvesting term publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2012.02.040 – year: 2011 ident: 10.1016/j.nonrwa.2022.103609_b14 – volume: 261 start-page: 4135 issue: 7 year: 2016 ident: 10.1016/j.nonrwa.2022.103609_b13 article-title: Uniform and strict persistence in monotone skew-product semiflows with applications to non-autonomous Nicholson systems publication-title: J. Differential Equations doi: 10.1016/j.jde.2016.06.019 – year: 2020 ident: 10.1016/j.nonrwa.2022.103609_b16 – volume: vol. 568 year: 1977 ident: 10.1016/j.nonrwa.2022.103609_b18 – volume: 279 start-page: 154 year: 2016 ident: 10.1016/j.nonrwa.2022.103609_b8 article-title: Boundedness and persistence of delay differential equations with mixed nonlinearity publication-title: Appl. Math. Comput. – volume: 12 start-page: 1931 issue: 4 year: 2011 ident: 10.1016/j.nonrwa.2022.103609_b12 article-title: Permanence for Nicholson-type delay systems with nonlinear density-dependent mortality terms publication-title: Nonlinear Anal. RWA doi: 10.1016/j.nonrwa.2010.12.009 – volume: 287 start-page: 17 year: 1980 ident: 10.1016/j.nonrwa.2022.103609_b2 article-title: Nicholson’s blowflies revisited publication-title: Nature doi: 10.1038/287017a0 – volume: 30 start-page: 911 year: 2018 ident: 10.1016/j.nonrwa.2022.103609_b15 article-title: Asymptotic behaviour for a class of non-monotone delay differential systems with applications publication-title: J. Dyn. Differ. Equ. doi: 10.1007/s10884-017-9572-8 |
SSID | ssj0017131 |
Score | 2.352016 |
Snippet | An N-dimensional generalization of Nicholson’s equation is analyzed. We consider a model including multiple delays, nonlinear coefficients and a nonlinear... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 103609 |
SubjectTerms | Delay differential equations Guiding functions Nicholson’s equation Periodic solutions Topological degree Uniform persistence |
Title | On persistence of a Nicholson-type system with multiple delays and nonlinear harvesting |
URI | https://dx.doi.org/10.1016/j.nonrwa.2022.103609 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14je0mm0ePpVjqo1XUYm9hn1qRWNKKePG3O5NNioIoeAoJuyRMdme-2f3mW0KOrYkls2HsRRCdPW6Z9To8tB4gZR0lUhhW7J4PR9FgzM8n4aRGelUtDNIqS9_vfHrhrcsnrdKardl02rrFoiGGAuRYbRImE6xg5zGO8pOPJc2DQRLGqgojbF2VzxUcL8iw8zdUH_J9rD6PkJb4U3j6EnL6G2S9xIq06z5nk9RMtkXWhkuh1fk2ub_K6AyXvOYF9qUvlgoKfxd8GgBpDxdYqRNrprjiSiv-IEVxyPc5FZmmmVPLEDl9FHmhupE97JBx__SuN_DKsxI8BaB_AfmkEh0pQyN8iZilrWHyRpaJmHOuBExLJkysVNtYlfhcMC5EkCSW60RDLmqDXVKH15k9QiGo4ZmZSqpIchtpyDi4CGKubVtqYVSDBJWJUlUKieN5Fs9pxRh7Sp1hUzRs6gzbIN6y18wJafzRPq6sn34bECn4-l977v-75wFZxTvH1Tsk9UX-ao4AcyxksxhUTbLS7d1cXuP17GIw-gQCldml |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qPagH8Yn1uQeva7vJ5tGjFEvVth6s2FvYp1YklrQiXvztzuRRFETBa7JLwmR35pvNN98QcupspLgLIhZCdGbCccfaInAMkLIJYyUtz_-eD4Zh705cjYNxjXSqWhikVZa-v_DpubcurzRLazank0nzFouGOAqQY7VJEI-XyLKA7YttDM4-FjwPDlkYr0qMcHhVP5eTvCDFzt5QfsjzsPw8RF7iT_HpS8zpbpD1EizS8-J9NknNpltkbbBQWp1tk_ublE7xzGuWg1_64qik8HnBqQGSZnjCSgu1ZopHrrQiEFJUh3yfUZkamhZyGTKjjzLLZTfShx1y170YdXqsbJbANKD-OSSUWraVCqz0FIKWloHdGzouIyGElrAvubSR1i3rdOwJyYWUfhw7YWIDyajzd0kdHmf3CIWohk0ztdKhEi40kHII6UfCuJYy0uoG8SsTJbpUEseGFs9JRRl7SgrDJmjYpDBsg7DFrGmhpPHH-KiyfvJtRSTg7H-duf_vmSdkpTca9JP-5fD6gKzinYK4d0jq8-zVHgEAmavjfIF9Ak7N2Z4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+persistence+of+a+Nicholson-type+system+with+multiple+delays+and+nonlinear+harvesting&rft.jtitle=Nonlinear+analysis%3A+real+world+applications&rft.au=Amster%2C+Pablo&rft.au=Bondorevsky%2C+Melanie&rft.date=2022-10-01&rft.issn=1468-1218&rft.volume=67&rft.spage=103609&rft_id=info:doi/10.1016%2Fj.nonrwa.2022.103609&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nonrwa_2022_103609 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1468-1218&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1468-1218&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1468-1218&client=summon |