On persistence of a Nicholson-type system with multiple delays and nonlinear harvesting

An N-dimensional generalization of Nicholson’s equation is analyzed. We consider a model including multiple delays, nonlinear coefficients and a nonlinear harvesting term. Inspired by previous results in this subject, we obtain sufficient conditions to guarantee strong and uniform persistence. Furth...

Full description

Saved in:
Bibliographic Details
Published inNonlinear analysis: real world applications Vol. 67; p. 103609
Main Authors Amster, Pablo, Bondorevsky, Melanie
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An N-dimensional generalization of Nicholson’s equation is analyzed. We consider a model including multiple delays, nonlinear coefficients and a nonlinear harvesting term. Inspired by previous results in this subject, we obtain sufficient conditions to guarantee strong and uniform persistence. Furthermore, under extra suitable hypotheses we prove the existence of T-periodic solutions and, reversing the prior conditions in a convenient manner, we show that the zero is a global attractor.
AbstractList An N-dimensional generalization of Nicholson’s equation is analyzed. We consider a model including multiple delays, nonlinear coefficients and a nonlinear harvesting term. Inspired by previous results in this subject, we obtain sufficient conditions to guarantee strong and uniform persistence. Furthermore, under extra suitable hypotheses we prove the existence of T-periodic solutions and, reversing the prior conditions in a convenient manner, we show that the zero is a global attractor.
ArticleNumber 103609
Author Amster, Pablo
Bondorevsky, Melanie
Author_xml – sequence: 1
  givenname: Pablo
  orcidid: 0000-0003-2829-7072
  surname: Amster
  fullname: Amster, Pablo
  email: pamster@dm.uba.ar
– sequence: 2
  givenname: Melanie
  surname: Bondorevsky
  fullname: Bondorevsky, Melanie
  email: mbondo@dm.uba.ar
BookMark eNqFkM9KAzEQh4NUsK2-gYe8wNYkm92kHgQp_oNiL4rHMM3O2pRtdkliy769W-rJg55mmOH7DfNNyMi3Hgm55mzGGS9vtrNhEA4wE0yIYZSXbH5GxlwrnRWKz0dDL0udccH1BZnEuGWMK57zMflYedphiC4m9BZpW1Ogr85u2ia2Pkt9hzT2w3JHDy5t6O6rSa5rkFbYQB8p-IoOxxvnEQLdQNhjTM5_XpLzGpqIVz91St4fH94Wz9ly9fSyuF9mNmdlygphYb5eFwhizUXBWZUzVdYclJTSgtKKAyprGdZWCwlcAuRa17LSVSHyOp8Secq1oY0xYG264HYQesOZOcoxW3OSY45yzEnOgN3-wqxLkFzrUwDX_AffnWAcHts7DCZad7RXuYA2map1fwd8A-Uuhr8
CitedBy_id crossref_primary_10_14232_ejqtde_2023_1_15
crossref_primary_10_1007_s11071_024_10770_0
crossref_primary_10_1002_mma_10559
Cites_doi 10.1016/j.jde.2017.02.042
10.14232/ejqtde.2012.1.73
10.1007/s12591-016-0285-y
10.1016/j.cam.2007.10.049
10.1016/0025-5564(87)90101-5
10.1071/ZO9540009
10.3390/math9030263
10.1016/j.apm.2009.08.027
10.1016/j.aml.2012.02.040
10.1016/j.jde.2016.06.019
10.1016/j.nonrwa.2010.12.009
10.1038/287017a0
10.1007/s10884-017-9572-8
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.nonrwa.2022.103609
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1878-5719
ExternalDocumentID 10_1016_j_nonrwa_2022_103609
S146812182200058X
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
29N
4.4
457
4G.
5VS
6OB
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
J9A
JJJVA
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSW
SSZ
T5K
XPP
YQT
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-52ca9bb5ea2b12510d3076f1a7444ca7871ae7cc0efc824a14aa388f4d8d523f3
IEDL.DBID .~1
ISSN 1468-1218
IngestDate Thu Apr 24 23:03:27 EDT 2025
Tue Jul 01 04:03:14 EDT 2025
Fri Feb 23 02:38:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Guiding functions
Uniform persistence
Nicholson’s equation
Delay differential equations
Periodic solutions
Topological degree
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-52ca9bb5ea2b12510d3076f1a7444ca7871ae7cc0efc824a14aa388f4d8d523f3
ORCID 0000-0003-2829-7072
ParticipantIDs crossref_primary_10_1016_j_nonrwa_2022_103609
crossref_citationtrail_10_1016_j_nonrwa_2022_103609
elsevier_sciencedirect_doi_10_1016_j_nonrwa_2022_103609
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2022
2022-10-00
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationTitle Nonlinear analysis: real world applications
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Faria (b10) 2017; 263
Faria (b11) 2021; 9
Chen (b9) 2012; 2012
Liu, Gong (b12) 2011; 12
Faria, Obaya, Sanz (b15) 2018; 30
Gaines, Mawhin (b18) 1977; vol. 568
Obaya, Sanz (b13) 2016; 261
Smith, Thieme (b14) 2011
Gurney, Blythe, Nisbet (b2) 1980; 287
Amster, Déboli (b4) 2016
Li, Du (b6) 2008; 221
Berezansky, Braverman, Idels (b3) 2010; 34
Berezansky, Braverman (b8) 2016; 279
Gard (b17) 1987; 85
Amster, Bondorevsky (b5) 2021; 403
Ossandon, Sepulveda (b16) 2020
Amster, Déboli (b7) 2012; 25
Nicholson (b1) 1954; 2
Obaya (10.1016/j.nonrwa.2022.103609_b13) 2016; 261
Liu (10.1016/j.nonrwa.2022.103609_b12) 2011; 12
Amster (10.1016/j.nonrwa.2022.103609_b7) 2012; 25
Li (10.1016/j.nonrwa.2022.103609_b6) 2008; 221
Amster (10.1016/j.nonrwa.2022.103609_b4) 2016
Faria (10.1016/j.nonrwa.2022.103609_b11) 2021; 9
Nicholson (10.1016/j.nonrwa.2022.103609_b1) 1954; 2
Berezansky (10.1016/j.nonrwa.2022.103609_b3) 2010; 34
Chen (10.1016/j.nonrwa.2022.103609_b9) 2012; 2012
Amster (10.1016/j.nonrwa.2022.103609_b5) 2021; 403
Gurney (10.1016/j.nonrwa.2022.103609_b2) 1980; 287
Berezansky (10.1016/j.nonrwa.2022.103609_b8) 2016; 279
Gaines (10.1016/j.nonrwa.2022.103609_b18) 1977; vol. 568
Gard (10.1016/j.nonrwa.2022.103609_b17) 1987; 85
Faria (10.1016/j.nonrwa.2022.103609_b10) 2017; 263
Faria (10.1016/j.nonrwa.2022.103609_b15) 2018; 30
Ossandon (10.1016/j.nonrwa.2022.103609_b16) 2020
Smith (10.1016/j.nonrwa.2022.103609_b14) 2011
References_xml – volume: 9
  start-page: 263
  year: 2021
  ident: b11
  article-title: Permanence for nonautonomous differential systems with delays in the linear and nonlinear terms
  publication-title: Mathematics
– volume: 287
  start-page: 17
  year: 1980
  end-page: 21
  ident: b2
  article-title: Nicholson’s blowflies revisited
  publication-title: Nature
– year: 2011
  ident: b14
  article-title: Dynamical Systems and Population Persistence
– start-page: 439
  year: 2016
  end-page: 447
  ident: b4
  article-title: Necessary and sufficient conditions for the existence of periodic solutions of a Nicholson type delay system
  publication-title: Differ. Equ. Dyn. Syst.
– volume: 221
  start-page: 226
  year: 2008
  end-page: 233
  ident: b6
  article-title: Existence of positive periodic solutions for a generalized Nicholson’s blowflies model
  publication-title: J. Comput. Appl. Math.
– volume: 2
  start-page: 9
  year: 1954
  end-page: 65
  ident: b1
  article-title: An outline of the dynamics of animal populations
  publication-title: Aust. J. Zool.
– volume: 34
  start-page: 1405
  year: 2010
  end-page: 1417
  ident: b3
  article-title: Nicholson’s blowflies differential equation revisited: main results and open problems
  publication-title: Appl. Math. Model
– volume: 261
  start-page: 4135
  year: 2016
  end-page: 4163
  ident: b13
  article-title: Uniform and strict persistence in monotone skew-product semiflows with applications to non-autonomous Nicholson systems
  publication-title: J. Differential Equations
– volume: 263
  start-page: 509
  year: 2017
  end-page: 533
  ident: b10
  article-title: Periodic solutions for a non-monotone family of delayed differential equations with applications to Nicholson systems
  publication-title: J. Differential Equations
– volume: 85
  start-page: 93
  year: 1987
  end-page: 104
  ident: b17
  article-title: Uniform persistence in multispecies population models
  publication-title: Math. Biosci.
– volume: 2012
  start-page: 1
  year: 2012
  end-page: 14
  ident: b9
  article-title: Permanence for Nicholson-type delay systems with patch structure and nonlinear density-dependent mortality terms
  publication-title: Electron. J. Qual. Theory Differ. Equ.
– volume: 25
  start-page: 1203
  year: 2012
  end-page: 1207
  ident: b7
  article-title: Existence of positive T-periodic solutions of a generalized Nicholson’s blowflies model with a nonlinear harvesting term
  publication-title: Appl. Math. Lett.
– volume: 30
  start-page: 911
  year: 2018
  end-page: 935
  ident: b15
  article-title: Asymptotic behaviour for a class of non-monotone delay differential systems with applications
  publication-title: J. Dyn. Differ. Equ.
– volume: vol. 568
  year: 1977
  ident: b18
  publication-title: Coincidence Degree and Nonlinear Differential Equations
– year: 2020
  ident: b16
  article-title: Existence of periodic solution of Nicholson-type system with nonlinear density-dependent mortality
– volume: 12
  start-page: 1931
  year: 2011
  end-page: 1937
  ident: b12
  article-title: Permanence for Nicholson-type delay systems with nonlinear density-dependent mortality terms
  publication-title: Nonlinear Anal. RWA
– volume: 279
  start-page: 154
  year: 2016
  end-page: 169
  ident: b8
  article-title: Boundedness and persistence of delay differential equations with mixed nonlinearity
  publication-title: Appl. Math. Comput.
– volume: 403
  year: 2021
  ident: b5
  article-title: Persistence and periodic solutions in systems of delay differential equations
  publication-title: Appl. Math. Comput.
– volume: 263
  start-page: 509
  issue: 1
  year: 2017
  ident: 10.1016/j.nonrwa.2022.103609_b10
  article-title: Periodic solutions for a non-monotone family of delayed differential equations with applications to Nicholson systems
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2017.02.042
– volume: 2012
  start-page: 1
  issue: 73
  year: 2012
  ident: 10.1016/j.nonrwa.2022.103609_b9
  article-title: Permanence for Nicholson-type delay systems with patch structure and nonlinear density-dependent mortality terms
  publication-title: Electron. J. Qual. Theory Differ. Equ.
  doi: 10.14232/ejqtde.2012.1.73
– start-page: 439
  issue: 4
  year: 2016
  ident: 10.1016/j.nonrwa.2022.103609_b4
  article-title: Necessary and sufficient conditions for the existence of periodic solutions of a Nicholson type delay system
  publication-title: Differ. Equ. Dyn. Syst.
  doi: 10.1007/s12591-016-0285-y
– volume: 403
  year: 2021
  ident: 10.1016/j.nonrwa.2022.103609_b5
  article-title: Persistence and periodic solutions in systems of delay differential equations
  publication-title: Appl. Math. Comput.
– volume: 221
  start-page: 226
  issue: 1
  year: 2008
  ident: 10.1016/j.nonrwa.2022.103609_b6
  article-title: Existence of positive periodic solutions for a generalized Nicholson’s blowflies model
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2007.10.049
– volume: 85
  start-page: 93
  year: 1987
  ident: 10.1016/j.nonrwa.2022.103609_b17
  article-title: Uniform persistence in multispecies population models
  publication-title: Math. Biosci.
  doi: 10.1016/0025-5564(87)90101-5
– volume: 2
  start-page: 9
  issue: 1
  year: 1954
  ident: 10.1016/j.nonrwa.2022.103609_b1
  article-title: An outline of the dynamics of animal populations
  publication-title: Aust. J. Zool.
  doi: 10.1071/ZO9540009
– volume: 9
  start-page: 263
  issue: 3
  year: 2021
  ident: 10.1016/j.nonrwa.2022.103609_b11
  article-title: Permanence for nonautonomous differential systems with delays in the linear and nonlinear terms
  publication-title: Mathematics
  doi: 10.3390/math9030263
– volume: 34
  start-page: 1405
  year: 2010
  ident: 10.1016/j.nonrwa.2022.103609_b3
  article-title: Nicholson’s blowflies differential equation revisited: main results and open problems
  publication-title: Appl. Math. Model
  doi: 10.1016/j.apm.2009.08.027
– volume: 25
  start-page: 1203
  issue: 9
  year: 2012
  ident: 10.1016/j.nonrwa.2022.103609_b7
  article-title: Existence of positive T-periodic solutions of a generalized Nicholson’s blowflies model with a nonlinear harvesting term
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2012.02.040
– year: 2011
  ident: 10.1016/j.nonrwa.2022.103609_b14
– volume: 261
  start-page: 4135
  issue: 7
  year: 2016
  ident: 10.1016/j.nonrwa.2022.103609_b13
  article-title: Uniform and strict persistence in monotone skew-product semiflows with applications to non-autonomous Nicholson systems
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2016.06.019
– year: 2020
  ident: 10.1016/j.nonrwa.2022.103609_b16
– volume: vol. 568
  year: 1977
  ident: 10.1016/j.nonrwa.2022.103609_b18
– volume: 279
  start-page: 154
  year: 2016
  ident: 10.1016/j.nonrwa.2022.103609_b8
  article-title: Boundedness and persistence of delay differential equations with mixed nonlinearity
  publication-title: Appl. Math. Comput.
– volume: 12
  start-page: 1931
  issue: 4
  year: 2011
  ident: 10.1016/j.nonrwa.2022.103609_b12
  article-title: Permanence for Nicholson-type delay systems with nonlinear density-dependent mortality terms
  publication-title: Nonlinear Anal. RWA
  doi: 10.1016/j.nonrwa.2010.12.009
– volume: 287
  start-page: 17
  year: 1980
  ident: 10.1016/j.nonrwa.2022.103609_b2
  article-title: Nicholson’s blowflies revisited
  publication-title: Nature
  doi: 10.1038/287017a0
– volume: 30
  start-page: 911
  year: 2018
  ident: 10.1016/j.nonrwa.2022.103609_b15
  article-title: Asymptotic behaviour for a class of non-monotone delay differential systems with applications
  publication-title: J. Dyn. Differ. Equ.
  doi: 10.1007/s10884-017-9572-8
SSID ssj0017131
Score 2.352016
Snippet An N-dimensional generalization of Nicholson’s equation is analyzed. We consider a model including multiple delays, nonlinear coefficients and a nonlinear...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103609
SubjectTerms Delay differential equations
Guiding functions
Nicholson’s equation
Periodic solutions
Topological degree
Uniform persistence
Title On persistence of a Nicholson-type system with multiple delays and nonlinear harvesting
URI https://dx.doi.org/10.1016/j.nonrwa.2022.103609
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14je0mm0ePpVjqo1XUYm9hn1qRWNKKePG3O5NNioIoeAoJuyRMdme-2f3mW0KOrYkls2HsRRCdPW6Z9To8tB4gZR0lUhhW7J4PR9FgzM8n4aRGelUtDNIqS9_vfHrhrcsnrdKardl02rrFoiGGAuRYbRImE6xg5zGO8pOPJc2DQRLGqgojbF2VzxUcL8iw8zdUH_J9rD6PkJb4U3j6EnL6G2S9xIq06z5nk9RMtkXWhkuh1fk2ub_K6AyXvOYF9qUvlgoKfxd8GgBpDxdYqRNrprjiSiv-IEVxyPc5FZmmmVPLEDl9FHmhupE97JBx__SuN_DKsxI8BaB_AfmkEh0pQyN8iZilrWHyRpaJmHOuBExLJkysVNtYlfhcMC5EkCSW60RDLmqDXVKH15k9QiGo4ZmZSqpIchtpyDi4CGKubVtqYVSDBJWJUlUKieN5Fs9pxRh7Sp1hUzRs6gzbIN6y18wJafzRPq6sn34bECn4-l977v-75wFZxTvH1Tsk9UX-ao4AcyxksxhUTbLS7d1cXuP17GIw-gQCldml
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qPagH8Yn1uQeva7vJ5tGjFEvVth6s2FvYp1YklrQiXvztzuRRFETBa7JLwmR35pvNN98QcupspLgLIhZCdGbCccfaInAMkLIJYyUtz_-eD4Zh705cjYNxjXSqWhikVZa-v_DpubcurzRLazank0nzFouGOAqQY7VJEI-XyLKA7YttDM4-FjwPDlkYr0qMcHhVP5eTvCDFzt5QfsjzsPw8RF7iT_HpS8zpbpD1EizS8-J9NknNpltkbbBQWp1tk_ublE7xzGuWg1_64qik8HnBqQGSZnjCSgu1ZopHrrQiEFJUh3yfUZkamhZyGTKjjzLLZTfShx1y170YdXqsbJbANKD-OSSUWraVCqz0FIKWloHdGzouIyGElrAvubSR1i3rdOwJyYWUfhw7YWIDyajzd0kdHmf3CIWohk0ztdKhEi40kHII6UfCuJYy0uoG8SsTJbpUEseGFs9JRRl7SgrDJmjYpDBsg7DFrGmhpPHH-KiyfvJtRSTg7H-duf_vmSdkpTca9JP-5fD6gKzinYK4d0jq8-zVHgEAmavjfIF9Ak7N2Z4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+persistence+of+a+Nicholson-type+system+with+multiple+delays+and+nonlinear+harvesting&rft.jtitle=Nonlinear+analysis%3A+real+world+applications&rft.au=Amster%2C+Pablo&rft.au=Bondorevsky%2C+Melanie&rft.date=2022-10-01&rft.issn=1468-1218&rft.volume=67&rft.spage=103609&rft_id=info:doi/10.1016%2Fj.nonrwa.2022.103609&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nonrwa_2022_103609
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1468-1218&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1468-1218&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1468-1218&client=summon