An efficient distortion cost function design for image steganography in spatial domain using quaternion representation
It is well known that an effective steganographic distortion cost function is essential for spatial image steganography in the framework of minimal distortion embedding. To define the embedding cost by exploiting the texture complexity characterized by the high-pass filtered image residuals has been...
Saved in:
Published in | Signal processing Vol. 219; p. 109370 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | It is well known that an effective steganographic distortion cost function is essential for spatial image steganography in the framework of minimal distortion embedding. To define the embedding cost by exploiting the texture complexity characterized by the high-pass filtered image residuals has been a popular approach. In this paper, by incorporating the quaternion representation of cover images, the image complexity is evaluated in terms of quaternion magnitude and phase, and a quaternion magnitude-based distortion (QMD) and a quaternion phase-based distortion (QPD) can be defined accordingly. With Hadamard product of QMD and QPD, a novel distortion cost function, namely QMP (Quaternion Magnitude-Phase), is obtained, aiming to efficiently allocate embedding modifications in complex regions of cover images with rich texture contents to improve the statistical undetectability (i.e., security). In addition, the generalized QMP (GQMP) in exponential form is further developed to boost the security performance. Experimental results demonstrate that both the proposed QMP and its generalized variant GQMP can outperform the state-of-the-art schemes, e.g., S-UNIWARD, HiLL, and MiPOD, in terms of empirical security performance against steganalysis.
•Define Quaternion Magnitude/Phase-based Distortion (QMD/QPD).•Propose a novel cost function QMP based on the Hadamard product of QMD and QPD.•Generalize QMP (GQMP) to exponential form to boost the security performance.•Demonstrate superior security performance than the current SOTA approaches. |
---|---|
AbstractList | It is well known that an effective steganographic distortion cost function is essential for spatial image steganography in the framework of minimal distortion embedding. To define the embedding cost by exploiting the texture complexity characterized by the high-pass filtered image residuals has been a popular approach. In this paper, by incorporating the quaternion representation of cover images, the image complexity is evaluated in terms of quaternion magnitude and phase, and a quaternion magnitude-based distortion (QMD) and a quaternion phase-based distortion (QPD) can be defined accordingly. With Hadamard product of QMD and QPD, a novel distortion cost function, namely QMP (Quaternion Magnitude-Phase), is obtained, aiming to efficiently allocate embedding modifications in complex regions of cover images with rich texture contents to improve the statistical undetectability (i.e., security). In addition, the generalized QMP (GQMP) in exponential form is further developed to boost the security performance. Experimental results demonstrate that both the proposed QMP and its generalized variant GQMP can outperform the state-of-the-art schemes, e.g., S-UNIWARD, HiLL, and MiPOD, in terms of empirical security performance against steganalysis.
•Define Quaternion Magnitude/Phase-based Distortion (QMD/QPD).•Propose a novel cost function QMP based on the Hadamard product of QMD and QPD.•Generalize QMP (GQMP) to exponential form to boost the security performance.•Demonstrate superior security performance than the current SOTA approaches. |
ArticleNumber | 109370 |
Author | Huang, Jiwu Liu, Qingliang Ni, Jiangqun Hu, Xianglei Su, Wenkang |
Author_xml | – sequence: 1 givenname: Qingliang orcidid: 0000-0001-6737-9498 surname: Liu fullname: Liu, Qingliang email: liuqliang3@mail2.sysu.edu.cn organization: School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China – sequence: 2 givenname: Wenkang surname: Su fullname: Su, Wenkang email: swk1004@gzhu.edu.cn organization: School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou, China – sequence: 3 givenname: Jiangqun orcidid: 0000-0002-7520-9031 surname: Ni fullname: Ni, Jiangqun email: issjqni@mail.sysu.edu.cn organization: School of Cyber Science and Technology, Sun Yat-sen University, Shenzhen, China – sequence: 4 givenname: Xianglei surname: Hu fullname: Hu, Xianglei email: huxianglei@gpnu.edu.cn organization: School of Computer Science, Guangdong Polytechnic Normal University, Guangzhou, China – sequence: 5 givenname: Jiwu surname: Huang fullname: Huang, Jiwu email: jwhuang@szu.edu.cn organization: Guangdong Key Laboratory of Intelligent Information Processing, Shenzhen Key Laboratory of Media Security, Guangdong Laboratory of Artificial Intelligence and Digital Economy, Shenzhen University, Shenzhen, China |
BookMark | eNqFkE1LAzEQhoNUsK3-Aw_5A1vz0U26HoRS_IKCFz2HmEzWlDZZk1Tw37vrevKgp-Ed5n1n5pmhSYgBELqkZEEJFVe7RfZtl-KCEcb7VsMlOUFTupKsknUtJ2jaj9UVFavlGZrlvCOEUC7IFH2sAwbnvPEQCrY-l5iKjwGbmAt2x2C-lYV-Q8AuJuwPugWcC7Q6xDbp7u0T-4Bzp4vXe2zjQffymH1o8ftRF0hhSEjQJcj9Ej0EnqNTp_cZLn7qHL3c3T5vHqrt0_3jZr2tDCeiVDVthJN2aS1bCU0Fk1YSaTgDqHktNOcrTYkVr8Iyw8BZpiVjTSMdb7jTjM_R9ZhrUsw5gVPGjxeUpP1eUaIGgmqnRoJqIKhGgr15-cvcpf779Pmf7Wa0Qf_Yh4ek8kDXgPUJTFE2-r8DvgALuZKI |
CitedBy_id | crossref_primary_10_1016_j_asej_2024_103087 crossref_primary_10_1007_s11042_024_20056_7 crossref_primary_10_4018_IJISP_359893 crossref_primary_10_3390_sym16050575 crossref_primary_10_2478_amns_2024_2504 |
Cites_doi | 10.14429/dsj.64.4503 10.1186/1687-417X-2014-1 10.1109/TIFS.2011.2175919 10.1109/TCSVT.2018.2865537 10.1109/TIFS.2011.2134094 10.1016/j.sigpro.2021.108319 10.1109/TIP.2008.924282 10.1109/TIFS.2014.2326954 10.1016/j.sigpro.2022.108813 10.1109/TIFS.2015.2473815 10.1109/TIFS.2020.3025438 10.1109/TCSVT.2012.2207272 10.1016/j.sigpro.2019.07.005 10.1109/TIFS.2015.2486744 10.1109/TCSVT.2021.3115600 10.1109/TIFS.2010.2045842 10.1109/TCSVT.2020.3001122 10.1109/TIP.2006.884955 10.1016/j.patrec.2011.06.028 10.1016/j.sigpro.2018.10.007 10.1016/j.sigpro.2022.108908 10.1109/LSP.2018.2818674 10.1109/TIFS.2012.2190402 10.1109/TIFS.2018.2871749 10.1109/TIFS.2019.2922229 |
ContentType | Journal Article |
Copyright | 2023 |
Copyright_xml | – notice: 2023 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.sigpro.2023.109370 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-7557 |
ExternalDocumentID | 10_1016_j_sigpro_2023_109370 S0165168423004449 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K TAE TN5 WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-5196f7d4dd286a1627d707c32ee5356a338a10d6b6d2c2efd2a722997f393fa23 |
IEDL.DBID | .~1 |
ISSN | 0165-1684 |
IngestDate | Thu Apr 24 22:53:44 EDT 2025 Tue Jul 01 02:07:37 EDT 2025 Sat Apr 27 15:44:42 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Steganography Spatial image Distortion function Quaternion |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-5196f7d4dd286a1627d707c32ee5356a338a10d6b6d2c2efd2a722997f393fa23 |
ORCID | 0000-0001-6737-9498 0000-0002-7520-9031 |
ParticipantIDs | crossref_citationtrail_10_1016_j_sigpro_2023_109370 crossref_primary_10_1016_j_sigpro_2023_109370 elsevier_sciencedirect_doi_10_1016_j_sigpro_2023_109370 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2024 2024-06-00 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: June 2024 |
PublicationDecade | 2020 |
PublicationTitle | Signal processing |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Gengel, Pikovsky (b22) 2019; 165 Denemark, Sedighi, Holub, Cogranne, Fridrich (b27) 2015 Fridrich, Kodovsky (b26) 2012; 7 Guo, Ni, Su, Tang, Shi (b11) 2015; 10 Li, Wang, Huang, Li (b4) 2014 Yang, Ruan, Huang, Kang, Shi (b6) 2020; 15 Sedighi, Cogranne, Fridrich (b25) 2016; 11 Xie, Ren, Marshall, Zhao, Li (b10) 2023; 203 Tang, Li, Barni, Li, Huang (b14) 2022; 32 Ell, Sangwine (b21) 2007; 16 Soulard, Carré (b18) 2011; 32 Bas, Filler, Pevny (b31) 2011 Holub, Fridrich (b2) 2012 Holub, Fridrich, Denemark (b3) 2014; 2014 Setiadi, Rustad, Andono, Shidik (b9) 2023; 206 Su, Ni, Hu, Fridrich (b5) 2020; 31 Tang, Li, Barni, Li, Huang (b7) 2021; 16 Kodovsky, Fridrich, Holub (b32) 2012; 7 Su, Ni, Hu, Huang (b8) 2022; 190 Pevny, Bas, Fridrich (b17) 2010; 5 Hu, Ni, Shi (b13) 2018; 25 Ker, Böhme (b30) 2008 Wai Lam, Hyeokho, Baraniuk (b20) 2008; 17 Su, Ni, Li, Shi (b12) 2018; 28 Pevny, Bas, Fridrich (b1) 2010; vol. LNC 6387 Filler, Judas, Fridrich (b15) 2011; 6 Boroumand, Chen, Fridrich (b28) 2019; 14 Jin, Zhu, Song, Xu (b23) 2019; 155 Bülow (b29) 1999 Li, Tan, Wang, Huang (b16) 2014; 9 Priyadharshini, Arivazhagan (b19) 2014; 64 Jin, Liu, Xu, Song (b24) 2013; 23 Bas (10.1016/j.sigpro.2023.109370_b31) 2011 Gengel (10.1016/j.sigpro.2023.109370_b22) 2019; 165 Priyadharshini (10.1016/j.sigpro.2023.109370_b19) 2014; 64 Kodovsky (10.1016/j.sigpro.2023.109370_b32) 2012; 7 Su (10.1016/j.sigpro.2023.109370_b5) 2020; 31 Boroumand (10.1016/j.sigpro.2023.109370_b28) 2019; 14 Su (10.1016/j.sigpro.2023.109370_b12) 2018; 28 Fridrich (10.1016/j.sigpro.2023.109370_b26) 2012; 7 Ker (10.1016/j.sigpro.2023.109370_b30) 2008 Guo (10.1016/j.sigpro.2023.109370_b11) 2015; 10 Sedighi (10.1016/j.sigpro.2023.109370_b25) 2016; 11 Setiadi (10.1016/j.sigpro.2023.109370_b9) 2023; 206 Tang (10.1016/j.sigpro.2023.109370_b7) 2021; 16 Soulard (10.1016/j.sigpro.2023.109370_b18) 2011; 32 Holub (10.1016/j.sigpro.2023.109370_b2) 2012 Su (10.1016/j.sigpro.2023.109370_b8) 2022; 190 Wai Lam (10.1016/j.sigpro.2023.109370_b20) 2008; 17 Ell (10.1016/j.sigpro.2023.109370_b21) 2007; 16 Yang (10.1016/j.sigpro.2023.109370_b6) 2020; 15 Jin (10.1016/j.sigpro.2023.109370_b23) 2019; 155 Hu (10.1016/j.sigpro.2023.109370_b13) 2018; 25 Jin (10.1016/j.sigpro.2023.109370_b24) 2013; 23 Pevny (10.1016/j.sigpro.2023.109370_b17) 2010; 5 Filler (10.1016/j.sigpro.2023.109370_b15) 2011; 6 Li (10.1016/j.sigpro.2023.109370_b16) 2014; 9 Pevny (10.1016/j.sigpro.2023.109370_b1) 2010; vol. LNC 6387 Tang (10.1016/j.sigpro.2023.109370_b14) 2022; 32 Holub (10.1016/j.sigpro.2023.109370_b3) 2014; 2014 Denemark (10.1016/j.sigpro.2023.109370_b27) 2015 Li (10.1016/j.sigpro.2023.109370_b4) 2014 Xie (10.1016/j.sigpro.2023.109370_b10) 2023; 203 Bülow (10.1016/j.sigpro.2023.109370_b29) 1999 |
References_xml | – volume: 31 start-page: 1001 year: 2020 end-page: 1015 ident: b5 article-title: Image steganography with symmetric embedding using Gaussian Markov random field model publication-title: IEEE Trans. Circuits Syst. Video Technol. – volume: 5 start-page: 215 year: 2010 end-page: 224 ident: b17 article-title: Steganalysis by subtractive pixel adjacency matrix publication-title: IEEE Trans. Inf. Forensics Secur. – year: 2008 ident: b30 article-title: Revisiting weighted stego-image steganalysis publication-title: Proceedings of SPIE - The International Society for Optical Engineering, Vol. 6819 – volume: 2014 start-page: 1 year: 2014 ident: b3 article-title: Universal distortion function for steganography in an arbitrary domain publication-title: EURASIP J. Inf. Secur. – volume: 32 start-page: 1669 year: 2011 end-page: 1678 ident: b18 article-title: Quaternionic wavelets for texture classification publication-title: Pattern Recognit. Lett. – volume: 25 start-page: 773 year: 2018 end-page: 777 ident: b13 article-title: Efficient JPEG steganography using domain transformation of embedding entropy publication-title: IEEE Signal Process. Lett. – start-page: 4206 year: 2014 end-page: 4210 ident: b4 article-title: A new cost function for spatial image steganography publication-title: 2014 IEEE International Conference on Image Processing – volume: 64 start-page: 350 year: 2014 end-page: 357 ident: b19 article-title: A quaternionic wavelet transform-based approach for object recognition publication-title: Def. Sci. J. – volume: 23 start-page: 741 year: 2013 end-page: 755 ident: b24 article-title: Quaternion-based impulse noise removal from color video sequences publication-title: IEEE Trans. Circuits Syst. Video Technol. – volume: 206 year: 2023 ident: b9 article-title: Digital image steganography survey and investigation (goal, assessment, method, development, and dataset) publication-title: Signal Process. – start-page: 48 year: 2015 end-page: 53 ident: b27 article-title: Selection-channel-aware rich model for steganalysis of digital images publication-title: 2014 IEEE International Workshop on Information Forensics and Security – start-page: 234 year: 2012 end-page: 239 ident: b2 article-title: Designing steganographic distortion using directional filters publication-title: 2012 IEEE International Workshop on Information Forensics and Security – volume: 6 start-page: 920 year: 2011 end-page: 935 ident: b15 article-title: Minimizing additive distortion in steganography using syndrome-trellis codes publication-title: IEEE Trans. Inf. Forensics Secur. – volume: 17 start-page: 1069 year: 2008 end-page: 1082 ident: b20 article-title: Coherent multiscale image processing using dual-tree quaternion wavelets publication-title: IEEE Trans. Image Process. – volume: 16 start-page: 22 year: 2007 end-page: 35 ident: b21 article-title: Hypercomplex Fourier transforms of color images publication-title: IEEE Trans. Image Process. – volume: 10 start-page: 2669 year: 2015 end-page: 2680 ident: b11 article-title: Using statistical image model for JPEG steganography: Uniform embedding revisited publication-title: IEEE Trans. Inf. Forensics Secur. – volume: 28 start-page: 3545 year: 2018 end-page: 3549 ident: b12 article-title: A new distortion function design for JPEG steganography using the generalized uniform embedding strategy publication-title: IEEE Trans. Circuits Syst. Video Technol. – volume: 15 start-page: 839 year: 2020 end-page: 851 ident: b6 article-title: An embedding cost learning framework using GAN publication-title: IEEE Trans. Inf. Forensics Secur. – volume: 9 start-page: 1264 year: 2014 end-page: 1277 ident: b16 article-title: Investigation on cost assignment in spatial image steganography publication-title: IEEE Trans. Inf. Forensics Secur. – year: 1999 ident: b29 article-title: Hypercomplex Spectral Signal Representations for the Processing and Analysis of Images – volume: 7 start-page: 868 year: 2012 end-page: 882 ident: b26 article-title: Rich models for steganalysis of digital images publication-title: IEEE Trans. Inf. Forensics Secur. – volume: 155 start-page: 334 year: 2019 end-page: 345 ident: b23 article-title: An effective vector filter for impulse noise reduction based on adaptive quaternion color distance mechanism publication-title: Signal Process. – volume: 7 start-page: 432 year: 2012 end-page: 444 ident: b32 article-title: Ensemble classifiers for steganalysis of digital media publication-title: IEEE Trans. Inf. Forensics Secur. – volume: vol. LNC 6387 start-page: 161 year: 2010 end-page: 177 ident: b1 article-title: Using high-dimensional image models to perform highly undetectable steganography publication-title: 12th International Workshop on Information Hiding – volume: 32 start-page: 4081 year: 2022 end-page: 4095 ident: b14 article-title: Improving cost learning for JPEG steganography by exploiting JPEG domain knowledge publication-title: IEEE Trans. Circuits Syst. Video Technol. – volume: 16 start-page: 952 year: 2021 end-page: 967 ident: b7 article-title: An automatic cost learning framework for image steganography using deep reinforcement learning publication-title: IEEE Trans. Inf. Forensics Secur. – volume: 165 start-page: 115 year: 2019 end-page: 127 ident: b22 article-title: Phase demodulation with iterative Hilbert transform embeddings publication-title: Signal Process. – start-page: 59 year: 2011 end-page: 70 ident: b31 article-title: Break our steganographic system: The Ins and outs of organizing BOSS publication-title: 2011 IEEE International Workshop on Information Forensics and Security – volume: 190 year: 2022 ident: b8 article-title: New design paradigm of distortion cost function for efficient JPEG steganography publication-title: Signal Process. – volume: 11 start-page: 221 year: 2016 end-page: 234 ident: b25 article-title: Content-adaptive steganography by minimizing statistical detectability publication-title: IEEE Trans. Inf. Forensics Secur. – volume: 203 year: 2023 ident: b10 article-title: A novel gradient-guided post-processing method for adaptive image steganography publication-title: Signal Process. – volume: 14 start-page: 1181 year: 2019 end-page: 1193 ident: b28 article-title: Deep residual network for steganalysis of digital images publication-title: IEEE Trans. Inf. Forensics Secur. – volume: 64 start-page: 350 year: 2014 ident: 10.1016/j.sigpro.2023.109370_b19 article-title: A quaternionic wavelet transform-based approach for object recognition publication-title: Def. Sci. J. doi: 10.14429/dsj.64.4503 – volume: 2014 start-page: 1 issue: 1 year: 2014 ident: 10.1016/j.sigpro.2023.109370_b3 article-title: Universal distortion function for steganography in an arbitrary domain publication-title: EURASIP J. Inf. Secur. doi: 10.1186/1687-417X-2014-1 – volume: 7 start-page: 432 issue: 2 year: 2012 ident: 10.1016/j.sigpro.2023.109370_b32 article-title: Ensemble classifiers for steganalysis of digital media publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2011.2175919 – volume: 28 start-page: 3545 issue: 12 year: 2018 ident: 10.1016/j.sigpro.2023.109370_b12 article-title: A new distortion function design for JPEG steganography using the generalized uniform embedding strategy publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2018.2865537 – volume: 6 start-page: 920 issue: 3 year: 2011 ident: 10.1016/j.sigpro.2023.109370_b15 article-title: Minimizing additive distortion in steganography using syndrome-trellis codes publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2011.2134094 – year: 2008 ident: 10.1016/j.sigpro.2023.109370_b30 article-title: Revisiting weighted stego-image steganalysis – year: 1999 ident: 10.1016/j.sigpro.2023.109370_b29 – volume: 190 year: 2022 ident: 10.1016/j.sigpro.2023.109370_b8 article-title: New design paradigm of distortion cost function for efficient JPEG steganography publication-title: Signal Process. doi: 10.1016/j.sigpro.2021.108319 – volume: 17 start-page: 1069 issue: 7 year: 2008 ident: 10.1016/j.sigpro.2023.109370_b20 article-title: Coherent multiscale image processing using dual-tree quaternion wavelets publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2008.924282 – volume: 9 start-page: 1264 issue: 8 year: 2014 ident: 10.1016/j.sigpro.2023.109370_b16 article-title: Investigation on cost assignment in spatial image steganography publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2014.2326954 – volume: 203 year: 2023 ident: 10.1016/j.sigpro.2023.109370_b10 article-title: A novel gradient-guided post-processing method for adaptive image steganography publication-title: Signal Process. doi: 10.1016/j.sigpro.2022.108813 – volume: 10 start-page: 2669 issue: 12 year: 2015 ident: 10.1016/j.sigpro.2023.109370_b11 article-title: Using statistical image model for JPEG steganography: Uniform embedding revisited publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2015.2473815 – volume: 16 start-page: 952 year: 2021 ident: 10.1016/j.sigpro.2023.109370_b7 article-title: An automatic cost learning framework for image steganography using deep reinforcement learning publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2020.3025438 – volume: vol. LNC 6387 start-page: 161 year: 2010 ident: 10.1016/j.sigpro.2023.109370_b1 article-title: Using high-dimensional image models to perform highly undetectable steganography – start-page: 48 year: 2015 ident: 10.1016/j.sigpro.2023.109370_b27 article-title: Selection-channel-aware rich model for steganalysis of digital images – volume: 23 start-page: 741 issue: 5 year: 2013 ident: 10.1016/j.sigpro.2023.109370_b24 article-title: Quaternion-based impulse noise removal from color video sequences publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2012.2207272 – volume: 165 start-page: 115 year: 2019 ident: 10.1016/j.sigpro.2023.109370_b22 article-title: Phase demodulation with iterative Hilbert transform embeddings publication-title: Signal Process. doi: 10.1016/j.sigpro.2019.07.005 – volume: 11 start-page: 221 issue: 2 year: 2016 ident: 10.1016/j.sigpro.2023.109370_b25 article-title: Content-adaptive steganography by minimizing statistical detectability publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2015.2486744 – start-page: 4206 year: 2014 ident: 10.1016/j.sigpro.2023.109370_b4 article-title: A new cost function for spatial image steganography – volume: 32 start-page: 4081 issue: 6 year: 2022 ident: 10.1016/j.sigpro.2023.109370_b14 article-title: Improving cost learning for JPEG steganography by exploiting JPEG domain knowledge publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2021.3115600 – volume: 5 start-page: 215 issue: 2 year: 2010 ident: 10.1016/j.sigpro.2023.109370_b17 article-title: Steganalysis by subtractive pixel adjacency matrix publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2010.2045842 – volume: 31 start-page: 1001 issue: 3 year: 2020 ident: 10.1016/j.sigpro.2023.109370_b5 article-title: Image steganography with symmetric embedding using Gaussian Markov random field model publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2020.3001122 – start-page: 59 year: 2011 ident: 10.1016/j.sigpro.2023.109370_b31 article-title: Break our steganographic system: The Ins and outs of organizing BOSS – volume: 16 start-page: 22 issue: 1 year: 2007 ident: 10.1016/j.sigpro.2023.109370_b21 article-title: Hypercomplex Fourier transforms of color images publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2006.884955 – volume: 32 start-page: 1669 issue: 13 year: 2011 ident: 10.1016/j.sigpro.2023.109370_b18 article-title: Quaternionic wavelets for texture classification publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2011.06.028 – volume: 155 start-page: 334 year: 2019 ident: 10.1016/j.sigpro.2023.109370_b23 article-title: An effective vector filter for impulse noise reduction based on adaptive quaternion color distance mechanism publication-title: Signal Process. doi: 10.1016/j.sigpro.2018.10.007 – volume: 206 year: 2023 ident: 10.1016/j.sigpro.2023.109370_b9 article-title: Digital image steganography survey and investigation (goal, assessment, method, development, and dataset) publication-title: Signal Process. doi: 10.1016/j.sigpro.2022.108908 – start-page: 234 year: 2012 ident: 10.1016/j.sigpro.2023.109370_b2 article-title: Designing steganographic distortion using directional filters – volume: 25 start-page: 773 issue: 6 year: 2018 ident: 10.1016/j.sigpro.2023.109370_b13 article-title: Efficient JPEG steganography using domain transformation of embedding entropy publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2018.2818674 – volume: 7 start-page: 868 issue: 3 year: 2012 ident: 10.1016/j.sigpro.2023.109370_b26 article-title: Rich models for steganalysis of digital images publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2012.2190402 – volume: 14 start-page: 1181 issue: 5 year: 2019 ident: 10.1016/j.sigpro.2023.109370_b28 article-title: Deep residual network for steganalysis of digital images publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2018.2871749 – volume: 15 start-page: 839 year: 2020 ident: 10.1016/j.sigpro.2023.109370_b6 article-title: An embedding cost learning framework using GAN publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2019.2922229 |
SSID | ssj0001360 |
Score | 2.4401224 |
Snippet | It is well known that an effective steganographic distortion cost function is essential for spatial image steganography in the framework of minimal distortion... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 109370 |
SubjectTerms | Distortion function Quaternion Spatial image Steganography |
Title | An efficient distortion cost function design for image steganography in spatial domain using quaternion representation |
URI | https://dx.doi.org/10.1016/j.sigpro.2023.109370 |
Volume | 219 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELUqWGBAfIpveWA1TWzXTscKURUQXQCJLXJspwqCtNDAyG_nzkmgSAgkRke-JDpb987Ju3eEnGjlIp1nhiVWGQYI1WOJ7yuWZNZHUhopHRY4X4_V6E5e3vfuO-SsrYVBWmUT--uYHqJ1c6XbeLM7K4ruDRbixPgbSQTRMyzik1LjLj99_6J5xCJUCuNkhrPb8rnA8ZoXE4hTp9hCPOgqYcvin-BpAXKG62StyRXpoH6dDdLx5SZZXVAQ3CJvg5L6oAIB4EFd0PxAV1M7nVcUQSuMXOBpUEhQafEEEYTC2k5M2chV06Kkc2RWw8Pc9MnAEOnwE_r8avB7Id4hiF-2hUrlNrkbnt-ejVjTSoFZOBNUDPI0lWsnneOJMrHi2ulIW8G974meMnBQNXHkVKYct9znjhvNAal0LvoiN1zskKVyWvpdQjXEVi593yUSEJDbxObcxkJaWFWXCblHROvB1DY649ju4jFtCWUPae33FP2e1n7fI-zTalbrbPwxX7eLk37bLylAwa-W-_-2PCArMJI1UeyQLFUvr_4IUpIqOw577pgsDy6uRuMPNb_jew |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwELYQewAOaJeHKLDgAxxNG9u10wOHigWV5wWQuAXHdqogSIG2rPbCn-IPMuMkC0gIJCSOeTiP8eibcfLNN4RsaOVaOksNi60yDCJUm8W-o1icWt-S0kjpsMD5-ET1zuXBRftigjzVtTBIq6ywv8T0gNbVnmZlzeZtnjdPsRAnwt9IIoiedSpm5aH_9xfWbcPt_T8wyZuc7-2e7fRY1VqAWciRRwzyFpVpJ53jsTKR4trplraCe98WbWVg4WaillOpctxynzluNAfk1pnoiMyg2gHg_g8JcIFtE7YeX3glkQilyfh0DB-vrtcLpLJh3gdg3MKe5UHICXskvxcPX8W4vZ9ktkpOabd8_19kwhdzZOaVZOE8eegW1AfZCYhW1AWREZxbagfDEcUoGbZcIIZQyIhpfgOQRcGZ-qao9LFpXtAhUrnhZm5wY2AT-fd9ejc2-IESrxDUNuvKqGKBnH-LgRfJZDEo_BKhGsCcS99xsYSQy21sM24jIS24kUuFbBBRWzCxlbA59te4TmoG21VS2j1Buyel3RuE_R91Wwp7fHK-ricneeOgCcSeD0cuf3nkOpnqnR0fJUf7J4crZBqOyJKltkomR_dj_xvyoVG6FvyPksvvdvhnLT8eOA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+distortion+cost+function+design+for+image+steganography+in+spatial+domain+using+quaternion+representation&rft.jtitle=Signal+processing&rft.au=Liu%2C+Qingliang&rft.au=Su%2C+Wenkang&rft.au=Ni%2C+Jiangqun&rft.au=Hu%2C+Xianglei&rft.date=2024-06-01&rft.issn=0165-1684&rft.volume=219&rft.spage=109370&rft_id=info:doi/10.1016%2Fj.sigpro.2023.109370&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sigpro_2023_109370 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon |