Predicting the behaviour of finite precision Lanczos and conjugate gradient computations

It is demonstrated that finite precision Lanczos and conjugate gradient computations for solving a symmetric positive definite linear system $Ax = b$ or computing the eigenvalues of $A$ behave very similarly to the exact algorithms applied to any of a certain class of larger matrices. This class con...

Full description

Saved in:
Bibliographic Details
Published inSIAM journal on matrix analysis and applications Vol. 13; no. 1; pp. 121 - 137
Main Authors GREENBAUM, A, STRAKOS, Z
Format Journal Article
LanguageEnglish
Published Philadelphia, PA Society for Industrial and Applied Mathematics 1992
Subjects
Online AccessGet full text

Cover

Loading…
Abstract It is demonstrated that finite precision Lanczos and conjugate gradient computations for solving a symmetric positive definite linear system $Ax = b$ or computing the eigenvalues of $A$ behave very similarly to the exact algorithms applied to any of a certain class of larger matrices. This class consists of matrices $\hat{A} $ which have many eigenvalues spread throughout tiny intervals about the eigenvalues of $A$. The width of these intervals is a modest multiple of the machine precision times the norm of $A$. This analogy appears to hold, provided only that the algorithms are not run for huge numbers of steps. Numerical examples are given to show that many of the phenomena observed in finite precision computations with $A$ can also be observed in the exact algorithms applied to such a matrix $\hat{A} $.
AbstractList It is demonstrated that finite precision Lanczos and conjugate gradient computations for solving a symmetric positive definite linear system $Ax = b$ or computing the eigenvalues of $A$ behave very similarly to the exact algorithms applied to any of a certain class of larger matrices. This class consists of matrices $\hat{A} $ which have many eigenvalues spread throughout tiny intervals about the eigenvalues of $A$. The width of these intervals is a modest multiple of the machine precision times the norm of $A$. This analogy appears to hold, provided only that the algorithms are not run for huge numbers of steps. Numerical examples are given to show that many of the phenomena observed in finite precision computations with $A$ can also be observed in the exact algorithms applied to such a matrix $\hat{A} $.
Author GREENBAUM, A
STRAKOS, Z
Author_xml – sequence: 1
  givenname: A
  surname: GREENBAUM
  fullname: GREENBAUM, A
  organization: Courant inst. mathematical sci., New York NY 10012, United States
– sequence: 2
  givenname: Z
  surname: STRAKOS
  fullname: STRAKOS, Z
  organization: Courant inst. mathematical sci., New York NY 10012, United States
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4551253$$DView record in Pascal Francis
BookMark eNo9kEFLAzEQhYNUsK3iXwgieFqdbJLdzVGKVaGgBwVvSzabtCltsiZZQX-9kRZPM8x8vHnzZmjivNMIXRK4JYTWd1ARCoScoCkBwYuaVOUETaHJPatFc4ZmMW4BSMUEmaKP16B7q5J1a5w2Gnd6I7-sHwP2BhvrbNJ4CFrZaL3DK-nUj49Yuh4r77bjWub9OsjeapfyaD-MSaaMxnN0auQu6otjnaP35cPb4qlYvTw-L-5XhaJQpYJ1PWW8FJ1i2pRVV1NWUS6o0KrrFe0q0AaUYD2UUirDCBVSNcBl1wtTNkDn6OqgOwT_OeqY2m127_LJVpS0bngDdYZuDpAKPsagTTsEu5fhuyXQ_qXWHlPL5PVRTkYldybkj238xxnnpOSU_gKY4W3y
CODEN SJMAEL
CitedBy_id crossref_primary_10_1016_j_jcp_2015_03_013
crossref_primary_10_1137_040608908
crossref_primary_10_1090_qam_1483
crossref_primary_10_1007_BF02142693
crossref_primary_10_1002_nla_1892
crossref_primary_10_1093_imanum_drx037
crossref_primary_10_1007_s10957_014_0600_0
crossref_primary_10_1137_080739987
crossref_primary_10_1007_s11075_021_01078_w
crossref_primary_10_1137_S0895479897323087
crossref_primary_10_1111_rssb_12084
crossref_primary_10_1002_nla_1680010406
crossref_primary_10_1016_S0167_8191_01_00139_9
crossref_primary_10_1137_090761343
crossref_primary_10_1137_S0036144596305582
crossref_primary_10_1016_S0378_4754_02_00097_6
crossref_primary_10_1002_zamm_200410185
crossref_primary_10_1016_j_laa_2024_04_003
crossref_primary_10_1137_16M1103361
crossref_primary_10_1007_s00397_009_0392_6
crossref_primary_10_1016_j_procs_2011_04_251
crossref_primary_10_1137_S106482759834634X
crossref_primary_10_1007_s10543_015_0596_3
crossref_primary_10_1137_S0895479895284944
crossref_primary_10_1090_S0025_5718_1994_1201066_7
crossref_primary_10_1016_S0743_7315_03_00121_7
crossref_primary_10_1137_23M1551973
crossref_primary_10_1016_j_laa_2014_02_009
crossref_primary_10_1007_s11075_013_9713_z
crossref_primary_10_1155_2010_972794
crossref_primary_10_1137_S0895479893246765
crossref_primary_10_1137_S089547989631202X
crossref_primary_10_1137_21M1424408
crossref_primary_10_1093_imanum_drab056
crossref_primary_10_1137_120889848
crossref_primary_10_1137_17M1133725
crossref_primary_10_1016_j_parco_2019_05_002
crossref_primary_10_1016_j_laa_2013_05_009
crossref_primary_10_1007_BF01385754
crossref_primary_10_1137_17M114635X
crossref_primary_10_1007_s10898_023_01361_1
crossref_primary_10_1137_17M1117872
crossref_primary_10_1016_j_laa_2007_02_011
crossref_primary_10_1137_S1064827500381239
crossref_primary_10_1137_S1064827596303661
crossref_primary_10_1006_jcph_2002_7176
crossref_primary_10_1137_18M1212458
crossref_primary_10_1002_nme_2239
crossref_primary_10_1016_j_amc_2012_05_009
crossref_primary_10_1137_S1064827599362314
crossref_primary_10_1137_100796285
crossref_primary_10_1007_s00211_005_0603_8
crossref_primary_10_1098_rsta_2019_0050
crossref_primary_10_1007_s11075_023_01522_z
crossref_primary_10_1007_s00211_011_0434_8
crossref_primary_10_1002_mrm_22330
crossref_primary_10_1007_s10543_005_0032_1
crossref_primary_10_1016_S0377_0427_00_00412_X
crossref_primary_10_1016_j_ecosta_2023_07_003
crossref_primary_10_1016_j_laa_2016_06_041
crossref_primary_10_1109_TPDS_2019_2917663
crossref_primary_10_1137_S0895479897331862
crossref_primary_10_1017_S0962492900002737
crossref_primary_10_1137_20M1346249
crossref_primary_10_1016_S0021_9991_02_00043_8
crossref_primary_10_1007_s10543_005_0017_0
crossref_primary_10_1137_140990735
Cites_doi 10.1090/S0025-5718-1984-0725988-X
10.1090/S0025-5718-1979-0514820-3
10.1093/imamat/18.3.341
10.6028/jres.045.026
10.1007/BF01399553
10.1016/B978-0-12-141050-6.50023-4
10.1007/978-3-0348-7224-9
10.1007/BFb0090905
10.1016/0024-3795(89)90285-1
10.1147/rd.164.0431
10.1016/0024-3795(91)90393-B
10.1016/0024-3795(80)90259-1
10.6028/jres.049.044
ContentType Journal Article
Copyright 1993 INIST-CNRS
[Copyright] © 1992 © Society for Industrial and Applied Mathematics
Copyright_xml – notice: 1993 INIST-CNRS
– notice: [Copyright] © 1992 © Society for Industrial and Applied Mathematics
DBID IQODW
AAYXX
CITATION
3V.
7WY
7WZ
7X2
7XB
87Z
88A
88F
88I
88K
8AL
8FE
8FG
8FH
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
KB.
L.-
L6V
LK8
M0C
M0K
M0N
M1Q
M2O
M2P
M2T
M7P
M7S
MBDVC
P5Z
P62
PATMY
PDBOC
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
DOI 10.1137/0613011
DatabaseName Pascal-Francis
CrossRef
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Agricultural Science Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Biology Database (Alumni Edition)
Military Database (Alumni Edition)
Science Database (Alumni Edition)
Telecommunications (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Business Premium Collection
Technology Collection
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
Materials Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Biological Sciences
ABI/INFORM Global (ProQuest)
Agricultural Science Database
Computing Database
Military Database
ProQuest research library
ProQuest Science Journals
Telecommunications Database
Biological Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Materials Science Collection
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Agricultural Science Database
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Military Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Telecommunications
Natural Science Collection
Biological Science Collection
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Technology Collection
ProQuest Telecommunications (Alumni Edition)
Biological Science Database
ProQuest Business Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Materials Science Collection
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Materials Science Database
ProQuest Research Library
ABI/INFORM Complete (Alumni Edition)
ProQuest Materials Science Collection
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest Military Collection (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList Agricultural Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1095-7162
EndPage 137
ExternalDocumentID 2596784781
10_1137_0613011
4551253
GroupedDBID -~X
.4S
.DC
123
186
3V.
4.4
7WY
7X2
7XC
88A
88I
8CJ
8FE
8FG
8FH
8FL
8G5
8V8
AAJWA
AALVN
AASXH
ABDBF
ABJCF
ABKAD
ABMZU
ABPTK
ABTAH
ABUWG
ACGFO
ACGOD
ACIWK
ACPRK
ADAJV
ADBBV
AEMOZ
AENEX
AFFNX
AFKRA
AFRAH
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ANXRF
ARAPS
ARCSS
ATCPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
BPHCQ
CCPQU
CS3
CZ9
D0L
D1I
D1J
D1K
DQ2
DU5
DWQXO
EAP
EBR
EBS
EBU
ECS
EDO
EJD
EMK
EST
ESX
FA8
FRNLG
G8K
GNUQQ
GROUPED_ABI_INFORM_COMPLETE
GUQSH
H13
HCIFZ
H~9
I-F
IQODW
K1G
K6-
K60
K6V
K6~
K7-
KB.
KC.
L6V
LK5
LK8
M0C
M0K
M0L
M0N
M1Q
M2O
M2P
M7P
M7R
M7S
P1Q
P2P
P62
PATMY
PDBOC
PQBIZ
PQQKQ
PROAC
PTHSS
PYCSY
RJG
RNS
RSI
TH9
TN5
TUS
VOH
XFK
YNT
ZKB
ZY4
AAYXX
CITATION
PQBZA
7XB
88K
8AL
8FK
JQ2
L.-
M2T
MBDVC
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c306t-4bd34529bc4ef26b734635939ecbdc3b60ef0c94d02aacf4139ac805abd9f2803
IEDL.DBID BENPR
ISSN 0895-4798
IngestDate Thu Oct 10 22:14:24 EDT 2024
Fri Aug 23 00:59:10 EDT 2024
Sun Oct 29 17:07:13 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Conjugate gradient method
Computers arithmetic
Equation system solving
Symmetric matrix
Positive definite matrix
Eigenvalue
Lanczos method
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-4bd34529bc4ef26b734635939ecbdc3b60ef0c94d02aacf4139ac805abd9f2803
PQID 923785807
PQPubID 666305
PageCount 17
ParticipantIDs proquest_journals_923785807
crossref_primary_10_1137_0613011
pascalfrancis_primary_4551253
PublicationCentury 1900
PublicationDate 1992
1992-01-00
19920101
PublicationDateYYYYMMDD 1992-01-01
PublicationDate_xml – year: 1992
  text: 1992
PublicationDecade 1990
PublicationPlace Philadelphia, PA
PublicationPlace_xml – name: Philadelphia, PA
– name: Philadelphia
PublicationTitle SIAM journal on matrix analysis and applications
PublicationYear 1992
Publisher Society for Industrial and Applied Mathematics
Publisher_xml – name: Society for Industrial and Applied Mathematics
References R2
R4
R5
Chihara T. (R1) 1978
R9
R10
Cullum J. (R3) 1985
R20
R12
R11
R14
Golub Gene H. (R7) 1989
R15
R18
R17
R19
Reid J. K. (R16) 1971
Favard J. (R6) 1935; 200
References_xml – volume-title: Matrix computations
  year: 1989
  ident: R7
  contributor:
    fullname: Golub Gene H.
– start-page: 231
  volume-title: Large sparse sets of linear equations (Proc. Conf., St. Catherine's Coll., Oxford, 1970)
  year: 1971
  ident: R16
  contributor:
    fullname: Reid J. K.
– ident: R17
  doi: 10.1090/S0025-5718-1984-0725988-X
– ident: R15
  doi: 10.1090/S0025-5718-1979-0514820-3
– ident: R14
  doi: 10.1093/imamat/18.3.341
– ident: R12
  doi: 10.6028/jres.045.026
– ident: R9
  doi: 10.1007/BF01399553
– volume: 200
  start-page: 2052
  year: 1935
  ident: R6
  publication-title: C.R. Acad. Sci. Paris
  contributor:
    fullname: Favard J.
– volume-title: Lánczos algorithms for large symmetric eigenvalue computations. Vol. I
  year: 1985
  ident: R3
  contributor:
    fullname: Cullum J.
– ident: R4
  doi: 10.1016/B978-0-12-141050-6.50023-4
– ident: R5
  doi: 10.1007/978-3-0348-7224-9
– ident: R19
  doi: 10.1007/BFb0090905
– volume-title: An introduction to orthogonal polynomials
  year: 1978
  ident: R1
  contributor:
    fullname: Chihara T.
– ident: R10
  doi: 10.1016/0024-3795(89)90285-1
– ident: R2
  doi: 10.1147/rd.164.0431
– ident: R18
  doi: 10.1016/0024-3795(91)90393-B
– ident: R20
  doi: 10.1016/0024-3795(80)90259-1
– ident: R11
  doi: 10.6028/jres.049.044
SSID ssj0016491
Score 1.6194596
Snippet It is demonstrated that finite precision Lanczos and conjugate gradient computations for solving a symmetric positive definite linear system $Ax = b$ or...
SourceID proquest
crossref
pascalfrancis
SourceType Aggregation Database
Index Database
StartPage 121
SubjectTerms Algorithms
Eigenvalues
Error analysis
Exact sciences and technology
Mathematics
Nonlinear equations
Numerical analysis
Numerical analysis. Scientific computation
Numerical linear algebra
Sciences and techniques of general use
Title Predicting the behaviour of finite precision Lanczos and conjugate gradient computations
URI https://www.proquest.com/docview/923785807
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LSgMxFL3YdqOI-MRaW7JwO5jOZCbJSlT6QLAUsdjdkNeALmbqTLvx601m0kIR3M5jc5LcnNx7cg_AXUJNRjTDgcFKB4RQHHAiaSCYimRC3SSq1RazZLogL8t46bU5lZdVbmNiHah1oVyO_N4SEcpihunD6jtwplGuuOodNFrQCe1BIWxD52k0m7_tyggJaSzzGI9dCok1t2aHQ9fUxxHn4XBvOzpeicoikzWWFn-ic73ljE_hxHNF9NgM7hkcmPwcjl53jVarC_iYl67S4rTLyD5Gvt1hiYoMjT8dn0Tz0tvoIHff-aeokMg1ei7yr41LoaFJWau-1qgxeGgyeJewGI_en6eB90oIlCX964BIHbkaqlTEZGEiaUQsleARN0pqBzs2GVacaBwKoTK7dXGhGI6F1DxzDlVX0M6L3FwDspxKCh2pjMecUCmF_ZNjHYbYiCQxrAtoC1m6alpipPVRIqKpR7UL_T0od98RS9DCOOpCbwtt6tdMle5G-Obftz04bCSzLg1yC-11uTF9SwzWcgAtNp4M_CT4BQSmuhs
link.rule.ids 315,783,787,4033,12779,21402,27937,27938,27939,33387,33758,43614,43819
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwELWgDIAQ4lOUUvDAGuEmThxPCFW0BdqqQyu6Rf6KBENSknTh1-NL3EoIiTUfy7Pje7l7dw-h-4iZlOqYeIYo7VHKiMepZJ6IVSAjBpuoVltMo9GCvi7DpdPmlE5WuTkT64Na5wpy5A-WiLA4jAl7XH15YBoFxVXnoLGL9mhg4ww0ig-G2yJCRBvDvJiHkECKm57ZXg9G-gBt7vV-BaOjlSgtLmljaPHnbK4DzuAEHTumiJ-apT1FOyY7Q4eT7ZjV8hy9zwqos4ByGdvL2A07LHCe4sEHsEk8K5yJDoZu5--8xCLTuJ9nn2tIoOFhUWu-KtzYOzT5uwu0GDzP-yPPOSV4ylL-yqNSB1BBlYqa1I8kC6glEjzgRkkNoBOTEsWpJr4QKrWBiwsVk1BIzVPwp7pErSzPzBXCllFJoQOV8pBTJqWwb3KifZ8YEUUmbiO8gSxZNQMxkvpHImCJQ7WNur-g3D5HLT3zw6CNOhtoE_fFlMl2fa__vXuH9kfzyTgZv0zfOuigEc9CQuQGtapibbqWIlTytt4IP12rusA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+the+behaviour+of+finite+precision+Lanczos+and+conjugate+gradient+computations&rft.jtitle=SIAM+journal+on+matrix+analysis+and+applications&rft.au=GREENBAUM%2C+A&rft.au=STRAKOS%2C+Z&rft.date=1992&rft.pub=Society+for+Industrial+and+Applied+Mathematics&rft.issn=0895-4798&rft.eissn=1095-7162&rft.volume=13&rft.issue=1&rft.spage=121&rft.epage=137&rft_id=info:doi/10.1137%2F0613011&rft.externalDBID=n%2Fa&rft.externalDocID=4551253
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0895-4798&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0895-4798&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0895-4798&client=summon