Predicting the behaviour of finite precision Lanczos and conjugate gradient computations
It is demonstrated that finite precision Lanczos and conjugate gradient computations for solving a symmetric positive definite linear system $Ax = b$ or computing the eigenvalues of $A$ behave very similarly to the exact algorithms applied to any of a certain class of larger matrices. This class con...
Saved in:
Published in | SIAM journal on matrix analysis and applications Vol. 13; no. 1; pp. 121 - 137 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Philadelphia, PA
Society for Industrial and Applied Mathematics
1992
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | It is demonstrated that finite precision Lanczos and conjugate gradient computations for solving a symmetric positive definite linear system $Ax = b$ or computing the eigenvalues of $A$ behave very similarly to the exact algorithms applied to any of a certain class of larger matrices. This class consists of matrices $\hat{A} $ which have many eigenvalues spread throughout tiny intervals about the eigenvalues of $A$. The width of these intervals is a modest multiple of the machine precision times the norm of $A$. This analogy appears to hold, provided only that the algorithms are not run for huge numbers of steps. Numerical examples are given to show that many of the phenomena observed in finite precision computations with $A$ can also be observed in the exact algorithms applied to such a matrix $\hat{A} $. |
---|---|
AbstractList | It is demonstrated that finite precision Lanczos and conjugate gradient computations for solving a symmetric positive definite linear system $Ax = b$ or computing the eigenvalues of $A$ behave very similarly to the exact algorithms applied to any of a certain class of larger matrices. This class consists of matrices $\hat{A} $ which have many eigenvalues spread throughout tiny intervals about the eigenvalues of $A$. The width of these intervals is a modest multiple of the machine precision times the norm of $A$. This analogy appears to hold, provided only that the algorithms are not run for huge numbers of steps. Numerical examples are given to show that many of the phenomena observed in finite precision computations with $A$ can also be observed in the exact algorithms applied to such a matrix $\hat{A} $. |
Author | GREENBAUM, A STRAKOS, Z |
Author_xml | – sequence: 1 givenname: A surname: GREENBAUM fullname: GREENBAUM, A organization: Courant inst. mathematical sci., New York NY 10012, United States – sequence: 2 givenname: Z surname: STRAKOS fullname: STRAKOS, Z organization: Courant inst. mathematical sci., New York NY 10012, United States |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4551253$$DView record in Pascal Francis |
BookMark | eNo9kEFLAzEQhYNUsK3iXwgieFqdbJLdzVGKVaGgBwVvSzabtCltsiZZQX-9kRZPM8x8vHnzZmjivNMIXRK4JYTWd1ARCoScoCkBwYuaVOUETaHJPatFc4ZmMW4BSMUEmaKP16B7q5J1a5w2Gnd6I7-sHwP2BhvrbNJ4CFrZaL3DK-nUj49Yuh4r77bjWub9OsjeapfyaD-MSaaMxnN0auQu6otjnaP35cPb4qlYvTw-L-5XhaJQpYJ1PWW8FJ1i2pRVV1NWUS6o0KrrFe0q0AaUYD2UUirDCBVSNcBl1wtTNkDn6OqgOwT_OeqY2m127_LJVpS0bngDdYZuDpAKPsagTTsEu5fhuyXQ_qXWHlPL5PVRTkYldybkj238xxnnpOSU_gKY4W3y |
CODEN | SJMAEL |
CitedBy_id | crossref_primary_10_1016_j_jcp_2015_03_013 crossref_primary_10_1137_040608908 crossref_primary_10_1090_qam_1483 crossref_primary_10_1007_BF02142693 crossref_primary_10_1002_nla_1892 crossref_primary_10_1093_imanum_drx037 crossref_primary_10_1007_s10957_014_0600_0 crossref_primary_10_1137_080739987 crossref_primary_10_1007_s11075_021_01078_w crossref_primary_10_1137_S0895479897323087 crossref_primary_10_1111_rssb_12084 crossref_primary_10_1002_nla_1680010406 crossref_primary_10_1016_S0167_8191_01_00139_9 crossref_primary_10_1137_090761343 crossref_primary_10_1137_S0036144596305582 crossref_primary_10_1016_S0378_4754_02_00097_6 crossref_primary_10_1002_zamm_200410185 crossref_primary_10_1016_j_laa_2024_04_003 crossref_primary_10_1137_16M1103361 crossref_primary_10_1007_s00397_009_0392_6 crossref_primary_10_1016_j_procs_2011_04_251 crossref_primary_10_1137_S106482759834634X crossref_primary_10_1007_s10543_015_0596_3 crossref_primary_10_1137_S0895479895284944 crossref_primary_10_1090_S0025_5718_1994_1201066_7 crossref_primary_10_1016_S0743_7315_03_00121_7 crossref_primary_10_1137_23M1551973 crossref_primary_10_1016_j_laa_2014_02_009 crossref_primary_10_1007_s11075_013_9713_z crossref_primary_10_1155_2010_972794 crossref_primary_10_1137_S0895479893246765 crossref_primary_10_1137_S089547989631202X crossref_primary_10_1137_21M1424408 crossref_primary_10_1093_imanum_drab056 crossref_primary_10_1137_120889848 crossref_primary_10_1137_17M1133725 crossref_primary_10_1016_j_parco_2019_05_002 crossref_primary_10_1016_j_laa_2013_05_009 crossref_primary_10_1007_BF01385754 crossref_primary_10_1137_17M114635X crossref_primary_10_1007_s10898_023_01361_1 crossref_primary_10_1137_17M1117872 crossref_primary_10_1016_j_laa_2007_02_011 crossref_primary_10_1137_S1064827500381239 crossref_primary_10_1137_S1064827596303661 crossref_primary_10_1006_jcph_2002_7176 crossref_primary_10_1137_18M1212458 crossref_primary_10_1002_nme_2239 crossref_primary_10_1016_j_amc_2012_05_009 crossref_primary_10_1137_S1064827599362314 crossref_primary_10_1137_100796285 crossref_primary_10_1007_s00211_005_0603_8 crossref_primary_10_1098_rsta_2019_0050 crossref_primary_10_1007_s11075_023_01522_z crossref_primary_10_1007_s00211_011_0434_8 crossref_primary_10_1002_mrm_22330 crossref_primary_10_1007_s10543_005_0032_1 crossref_primary_10_1016_S0377_0427_00_00412_X crossref_primary_10_1016_j_ecosta_2023_07_003 crossref_primary_10_1016_j_laa_2016_06_041 crossref_primary_10_1109_TPDS_2019_2917663 crossref_primary_10_1137_S0895479897331862 crossref_primary_10_1017_S0962492900002737 crossref_primary_10_1137_20M1346249 crossref_primary_10_1016_S0021_9991_02_00043_8 crossref_primary_10_1007_s10543_005_0017_0 crossref_primary_10_1137_140990735 |
Cites_doi | 10.1090/S0025-5718-1984-0725988-X 10.1090/S0025-5718-1979-0514820-3 10.1093/imamat/18.3.341 10.6028/jres.045.026 10.1007/BF01399553 10.1016/B978-0-12-141050-6.50023-4 10.1007/978-3-0348-7224-9 10.1007/BFb0090905 10.1016/0024-3795(89)90285-1 10.1147/rd.164.0431 10.1016/0024-3795(91)90393-B 10.1016/0024-3795(80)90259-1 10.6028/jres.049.044 |
ContentType | Journal Article |
Copyright | 1993 INIST-CNRS [Copyright] © 1992 © Society for Industrial and Applied Mathematics |
Copyright_xml | – notice: 1993 INIST-CNRS – notice: [Copyright] © 1992 © Society for Industrial and Applied Mathematics |
DBID | IQODW AAYXX CITATION 3V. 7WY 7WZ 7X2 7XB 87Z 88A 88F 88I 88K 8AL 8FE 8FG 8FH 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI CCPQU D1I DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- KB. L.- L6V LK8 M0C M0K M0N M1Q M2O M2P M2T M7P M7S MBDVC P5Z P62 PATMY PDBOC PQBIZ PQBZA PQEST PQQKQ PQUKI PRINS PTHSS PYCSY Q9U |
DOI | 10.1137/0613011 |
DatabaseName | Pascal-Francis CrossRef ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) Agricultural Science Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Biology Database (Alumni Edition) Military Database (Alumni Edition) Science Database (Alumni Edition) Telecommunications (Alumni Edition) Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Research Library (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Business Premium Collection Technology Collection ProQuest Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database Materials Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Biological Sciences ABI/INFORM Global (ProQuest) Agricultural Science Database Computing Database Military Database ProQuest research library ProQuest Science Journals Telecommunications Database Biological Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Materials Science Collection ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic |
DatabaseTitle | CrossRef Agricultural Science Database ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Military Collection ProQuest Central China ABI/INFORM Complete ProQuest Telecommunications Natural Science Collection Biological Science Collection Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Technology Collection ProQuest Telecommunications (Alumni Edition) Biological Science Database ProQuest Business Collection Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database ProQuest One Academic ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Materials Science Collection ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Agricultural & Environmental Science Collection Materials Science Database ProQuest Research Library ABI/INFORM Complete (Alumni Edition) ProQuest Materials Science Collection ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest Military Collection (Alumni Edition) ProQuest SciTech Collection Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | Agricultural Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1095-7162 |
EndPage | 137 |
ExternalDocumentID | 2596784781 10_1137_0613011 4551253 |
GroupedDBID | -~X .4S .DC 123 186 3V. 4.4 7WY 7X2 7XC 88A 88I 8CJ 8FE 8FG 8FH 8FL 8G5 8V8 AAJWA AALVN AASXH ABDBF ABJCF ABKAD ABMZU ABPTK ABTAH ABUWG ACGFO ACGOD ACIWK ACPRK ADAJV ADBBV AEMOZ AENEX AFFNX AFKRA AFRAH AKVCP ALMA_UNASSIGNED_HOLDINGS ANXRF ARAPS ARCSS ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI BPHCQ CCPQU CS3 CZ9 D0L D1I D1J D1K DQ2 DU5 DWQXO EAP EBR EBS EBU ECS EDO EJD EMK EST ESX FA8 FRNLG G8K GNUQQ GROUPED_ABI_INFORM_COMPLETE GUQSH H13 HCIFZ H~9 I-F IQODW K1G K6- K60 K6V K6~ K7- KB. KC. L6V LK5 LK8 M0C M0K M0L M0N M1Q M2O M2P M7P M7R M7S P1Q P2P P62 PATMY PDBOC PQBIZ PQQKQ PROAC PTHSS PYCSY RJG RNS RSI TH9 TN5 TUS VOH XFK YNT ZKB ZY4 AAYXX CITATION PQBZA 7XB 88K 8AL 8FK JQ2 L.- M2T MBDVC PQEST PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c306t-4bd34529bc4ef26b734635939ecbdc3b60ef0c94d02aacf4139ac805abd9f2803 |
IEDL.DBID | BENPR |
ISSN | 0895-4798 |
IngestDate | Thu Oct 10 22:14:24 EDT 2024 Fri Aug 23 00:59:10 EDT 2024 Sun Oct 29 17:07:13 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Conjugate gradient method Computers arithmetic Equation system solving Symmetric matrix Positive definite matrix Eigenvalue Lanczos method |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-4bd34529bc4ef26b734635939ecbdc3b60ef0c94d02aacf4139ac805abd9f2803 |
PQID | 923785807 |
PQPubID | 666305 |
PageCount | 17 |
ParticipantIDs | proquest_journals_923785807 crossref_primary_10_1137_0613011 pascalfrancis_primary_4551253 |
PublicationCentury | 1900 |
PublicationDate | 1992 1992-01-00 19920101 |
PublicationDateYYYYMMDD | 1992-01-01 |
PublicationDate_xml | – year: 1992 text: 1992 |
PublicationDecade | 1990 |
PublicationPlace | Philadelphia, PA |
PublicationPlace_xml | – name: Philadelphia, PA – name: Philadelphia |
PublicationTitle | SIAM journal on matrix analysis and applications |
PublicationYear | 1992 |
Publisher | Society for Industrial and Applied Mathematics |
Publisher_xml | – name: Society for Industrial and Applied Mathematics |
References | R2 R4 R5 Chihara T. (R1) 1978 R9 R10 Cullum J. (R3) 1985 R20 R12 R11 R14 Golub Gene H. (R7) 1989 R15 R18 R17 R19 Reid J. K. (R16) 1971 Favard J. (R6) 1935; 200 |
References_xml | – volume-title: Matrix computations year: 1989 ident: R7 contributor: fullname: Golub Gene H. – start-page: 231 volume-title: Large sparse sets of linear equations (Proc. Conf., St. Catherine's Coll., Oxford, 1970) year: 1971 ident: R16 contributor: fullname: Reid J. K. – ident: R17 doi: 10.1090/S0025-5718-1984-0725988-X – ident: R15 doi: 10.1090/S0025-5718-1979-0514820-3 – ident: R14 doi: 10.1093/imamat/18.3.341 – ident: R12 doi: 10.6028/jres.045.026 – ident: R9 doi: 10.1007/BF01399553 – volume: 200 start-page: 2052 year: 1935 ident: R6 publication-title: C.R. Acad. Sci. Paris contributor: fullname: Favard J. – volume-title: Lánczos algorithms for large symmetric eigenvalue computations. Vol. I year: 1985 ident: R3 contributor: fullname: Cullum J. – ident: R4 doi: 10.1016/B978-0-12-141050-6.50023-4 – ident: R5 doi: 10.1007/978-3-0348-7224-9 – ident: R19 doi: 10.1007/BFb0090905 – volume-title: An introduction to orthogonal polynomials year: 1978 ident: R1 contributor: fullname: Chihara T. – ident: R10 doi: 10.1016/0024-3795(89)90285-1 – ident: R2 doi: 10.1147/rd.164.0431 – ident: R18 doi: 10.1016/0024-3795(91)90393-B – ident: R20 doi: 10.1016/0024-3795(80)90259-1 – ident: R11 doi: 10.6028/jres.049.044 |
SSID | ssj0016491 |
Score | 1.6194596 |
Snippet | It is demonstrated that finite precision Lanczos and conjugate gradient computations for solving a symmetric positive definite linear system $Ax = b$ or... |
SourceID | proquest crossref pascalfrancis |
SourceType | Aggregation Database Index Database |
StartPage | 121 |
SubjectTerms | Algorithms Eigenvalues Error analysis Exact sciences and technology Mathematics Nonlinear equations Numerical analysis Numerical analysis. Scientific computation Numerical linear algebra Sciences and techniques of general use |
Title | Predicting the behaviour of finite precision Lanczos and conjugate gradient computations |
URI | https://www.proquest.com/docview/923785807 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LSgMxFL3YdqOI-MRaW7JwO5jOZCbJSlT6QLAUsdjdkNeALmbqTLvx601m0kIR3M5jc5LcnNx7cg_AXUJNRjTDgcFKB4RQHHAiaSCYimRC3SSq1RazZLogL8t46bU5lZdVbmNiHah1oVyO_N4SEcpihunD6jtwplGuuOodNFrQCe1BIWxD52k0m7_tyggJaSzzGI9dCok1t2aHQ9fUxxHn4XBvOzpeicoikzWWFn-ic73ljE_hxHNF9NgM7hkcmPwcjl53jVarC_iYl67S4rTLyD5Gvt1hiYoMjT8dn0Tz0tvoIHff-aeokMg1ei7yr41LoaFJWau-1qgxeGgyeJewGI_en6eB90oIlCX964BIHbkaqlTEZGEiaUQsleARN0pqBzs2GVacaBwKoTK7dXGhGI6F1DxzDlVX0M6L3FwDspxKCh2pjMecUCmF_ZNjHYbYiCQxrAtoC1m6alpipPVRIqKpR7UL_T0od98RS9DCOOpCbwtt6tdMle5G-Obftz04bCSzLg1yC-11uTF9SwzWcgAtNp4M_CT4BQSmuhs |
link.rule.ids | 315,783,787,4033,12779,21402,27937,27938,27939,33387,33758,43614,43819 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwELWgDIAQ4lOUUvDAGuEmThxPCFW0BdqqQyu6Rf6KBENSknTh1-NL3EoIiTUfy7Pje7l7dw-h-4iZlOqYeIYo7VHKiMepZJ6IVSAjBpuoVltMo9GCvi7DpdPmlE5WuTkT64Na5wpy5A-WiLA4jAl7XH15YBoFxVXnoLGL9mhg4ww0ig-G2yJCRBvDvJiHkECKm57ZXg9G-gBt7vV-BaOjlSgtLmljaPHnbK4DzuAEHTumiJ-apT1FOyY7Q4eT7ZjV8hy9zwqos4ByGdvL2A07LHCe4sEHsEk8K5yJDoZu5--8xCLTuJ9nn2tIoOFhUWu-KtzYOzT5uwu0GDzP-yPPOSV4ylL-yqNSB1BBlYqa1I8kC6glEjzgRkkNoBOTEsWpJr4QKrWBiwsVk1BIzVPwp7pErSzPzBXCllFJoQOV8pBTJqWwb3KifZ8YEUUmbiO8gSxZNQMxkvpHImCJQ7WNur-g3D5HLT3zw6CNOhtoE_fFlMl2fa__vXuH9kfzyTgZv0zfOuigEc9CQuQGtapibbqWIlTytt4IP12rusA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+the+behaviour+of+finite+precision+Lanczos+and+conjugate+gradient+computations&rft.jtitle=SIAM+journal+on+matrix+analysis+and+applications&rft.au=GREENBAUM%2C+A&rft.au=STRAKOS%2C+Z&rft.date=1992&rft.pub=Society+for+Industrial+and+Applied+Mathematics&rft.issn=0895-4798&rft.eissn=1095-7162&rft.volume=13&rft.issue=1&rft.spage=121&rft.epage=137&rft_id=info:doi/10.1137%2F0613011&rft.externalDBID=n%2Fa&rft.externalDocID=4551253 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0895-4798&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0895-4798&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0895-4798&client=summon |