Triboelectric sensor for planetary gear fault diagnosis using data enhancement and CNN
The planetary gear transmission system is characterized by a complex structure and is often exposed to harsh working conditions, resulting in high failure damage rate. The self-powered sensing system based on the triboelectric nanogenerator provides an ideal scheme for online monitoring of the plane...
Saved in:
Published in | Nano energy Vol. 103; p. 107804 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The planetary gear transmission system is characterized by a complex structure and is often exposed to harsh working conditions, resulting in high failure damage rate. The self-powered sensing system based on the triboelectric nanogenerator provides an ideal scheme for online monitoring of the planetary gear operating condition. In this paper, a triboelectric planetary gear sensor (TPGS) is proposed for real-time monitoring of the speed and gear faults of the planetary reducer. The sensor is integrated at the tooth crest and root meshing gap of the planetary gear and the ring gear, which ensures the integrity of the gear structure and function. The results of the sensing experiment show that TPGS can be used to detect the speed of the planetary reducer in the range of 10–1000 rpm. Moreover, the speed detection error rate is less than 0.4%. To identify the gear faults, the stacked autoencoder (SAE) is used to enhance the data collected by TPGS, combined with convolutional neural network (CNN). The results show that the classification accuracy reached 100%. In this paper, a theoretical and experimental basis for development and online fault monitoring of a new intelligent gearbox with self-awareness and self-regulation is provided.
[Display omitted]
•A triboelectric planetary gear sensor (TPGS) is proposed to monitor the planetary gear speed and broken tooth faults.•TPGS is integrated into the non-bearing area to ensure the integrity of planetary gear structure and function.•A fault diagnosis method based on 1D data enhancement and CNN is proposed with 100% fault classification accuracy.•TPGS can effectively identify the fault type of planetary gears and accurately locate the fault location.•TPGS can monitor the operating condition of planetary gears, providing the basis for developing a new intelligent reducer. |
---|---|
AbstractList | The planetary gear transmission system is characterized by a complex structure and is often exposed to harsh working conditions, resulting in high failure damage rate. The self-powered sensing system based on the triboelectric nanogenerator provides an ideal scheme for online monitoring of the planetary gear operating condition. In this paper, a triboelectric planetary gear sensor (TPGS) is proposed for real-time monitoring of the speed and gear faults of the planetary reducer. The sensor is integrated at the tooth crest and root meshing gap of the planetary gear and the ring gear, which ensures the integrity of the gear structure and function. The results of the sensing experiment show that TPGS can be used to detect the speed of the planetary reducer in the range of 10–1000 rpm. Moreover, the speed detection error rate is less than 0.4%. To identify the gear faults, the stacked autoencoder (SAE) is used to enhance the data collected by TPGS, combined with convolutional neural network (CNN). The results show that the classification accuracy reached 100%. In this paper, a theoretical and experimental basis for development and online fault monitoring of a new intelligent gearbox with self-awareness and self-regulation is provided.
[Display omitted]
•A triboelectric planetary gear sensor (TPGS) is proposed to monitor the planetary gear speed and broken tooth faults.•TPGS is integrated into the non-bearing area to ensure the integrity of planetary gear structure and function.•A fault diagnosis method based on 1D data enhancement and CNN is proposed with 100% fault classification accuracy.•TPGS can effectively identify the fault type of planetary gears and accurately locate the fault location.•TPGS can monitor the operating condition of planetary gears, providing the basis for developing a new intelligent reducer. |
ArticleNumber | 107804 |
Author | Yu, Di Wang, Yu Xie, Zhijie Wu, Rensuan Yin, Jihui Liu, Jiuqing Yu, Mingyu Lv, Jingliang |
Author_xml | – sequence: 1 givenname: Zhijie surname: Xie fullname: Xie, Zhijie email: xiezhijie111@sina.com – sequence: 2 givenname: Yu surname: Wang fullname: Wang, Yu – sequence: 3 givenname: Mingyu surname: Yu fullname: Yu, Mingyu – sequence: 4 givenname: Di surname: Yu fullname: Yu, Di – sequence: 5 givenname: Jingliang surname: Lv fullname: Lv, Jingliang – sequence: 6 givenname: Jihui surname: Yin fullname: Yin, Jihui – sequence: 7 givenname: Jiuqing surname: Liu fullname: Liu, Jiuqing – sequence: 8 givenname: Rensuan surname: Wu fullname: Wu, Rensuan |
BookMark | eNp9kMtqwzAQRbVIoWmaP-hCP-BUD1u2N4US-oKQbtJuxVgapwqOFCSn0L-vgrvuwDDDhTvcOTdk5oNHQu44W3HG1f1h5cEH9CvBhMhS3bByRuZCcF6IpqquyTKlA8ulKl5zMSefu-i6gAOaMTpDE_oUIu1znwbwOEL8oXuELMF5GKl1sPchuUTPyfk9tTACRf8F3uAR_UjBW7rebm_JVQ9DwuXfXJCP56fd-rXYvL-8rR83hZFMjUUJTQtlb6W1sqrbumaoypy55SiElEKC6qqqtbZRzFjDkTetAsm6ssmrauSClNNdE0NKEXt9iu6YQ2vO9AWJPugJib4g0ROSbHuYbJizfTuMOhmH-QfrYiahbXD_H_gFSudvew |
CitedBy_id | crossref_primary_10_1016_j_sna_2023_114455 crossref_primary_10_1016_j_triboint_2024_109404 crossref_primary_10_1016_j_eswa_2024_124511 crossref_primary_10_1002_aelm_202300111 crossref_primary_10_1007_s11668_023_01814_5 crossref_primary_10_1115_1_4056391 crossref_primary_10_3390_su151310269 crossref_primary_10_1007_s11071_024_09842_y crossref_primary_10_1021_acsami_3c15956 crossref_primary_10_1016_j_nanoen_2023_108656 crossref_primary_10_1016_j_nanoen_2024_109429 crossref_primary_10_1002_advs_202302443 crossref_primary_10_1016_j_nanoen_2024_109655 crossref_primary_10_1016_j_matdes_2024_112640 |
Cites_doi | 10.1016/j.jsv.2020.115712 10.1016/j.nanoen.2021.105857 10.1016/j.nanoen.2022.107292 10.1002/aenm.201701300 10.1002/aenm.201900801 10.1021/acsnano.1c01606 10.1016/j.nanoen.2022.107387 10.1016/j.nanoen.2020.104745 10.1002/admt.202100655 10.1016/j.ymssp.2019.04.027 10.1016/j.nanoen.2022.107412 10.1021/acsnano.1c11658 10.1149/2.0201705jes 10.1016/j.nanoen.2018.12.054 10.1016/j.nanoen.2022.107263 10.1016/j.ymssp.2019.106304 10.1021/acsami.1c19075 10.1016/j.nanoen.2019.103920 10.1021/acsnano.1c10396 10.1016/j.nanoen.2021.106381 10.1016/j.ymssp.2016.01.018 10.1016/j.ymssp.2021.108382 10.1021/acsnano.2c01594 10.1021/acsnano.2c02149 10.1109/TIE.2015.2442216 10.1021/acsnano.9b10142 10.1039/C7EE00158D 10.1016/j.ymssp.2006.09.003 10.3390/mi9110598 10.1016/j.nanoen.2012.01.004 10.1021/acsenergylett.1c00368 10.1002/adfm.202106398 10.1016/j.nanoen.2021.106747 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.nanoen.2022.107804 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_nanoen_2022_107804 S2211285522008813 |
GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABMAC ABXRA ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC EBS EFJIC EFLBG FDB FIRID FNPLU FYGXN GBLVA JARJE KOM M41 MAGPM MO0 O-L O9- OAUVE P-8 P-9 PC. Q38 ROL SDF SPC SPCBC SSM SSR SSZ T5K ~G- AAXKI AAYXX ABXDB ACNNM ADMUD AFJKZ AKRWK CITATION EJD HZ~ RIG |
ID | FETCH-LOGICAL-c306t-4a89a4fd3dd3579770e6480491e223323a6b559dd860cdc1e1896a30b48e18683 |
IEDL.DBID | AIKHN |
ISSN | 2211-2855 |
IngestDate | Thu Sep 26 15:43:36 EDT 2024 Fri Feb 23 02:42:13 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fault diagnosis Speed Triboelectric sensor Planetary gear |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-4a89a4fd3dd3579770e6480491e223323a6b559dd860cdc1e1896a30b48e18683 |
ParticipantIDs | crossref_primary_10_1016_j_nanoen_2022_107804 elsevier_sciencedirect_doi_10_1016_j_nanoen_2022_107804 |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 2022-12-00 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Nano energy |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Guo, Zhao, Wu, Na (bib2) 2019; 129 Mukundan, Khosla, Hesketh, Heineman, Niwa (bib4) 2017; 164 Xie, Wang, Wu, Yin, Yu, Liu, Cheng (bib33) 2022; 92 Ra, Oh, Lee, Yun, Cho, Choi, Jang, Hwang, Choi, Kim, Choi (bib38) 2020; 73 Gao, Han, Jiang, Zhang, Pennacchi, Chu (bib14) 2022; 99 Yang, Deng, Chu, Wang, Hu, Fan, Song, Gao, Zhang, Tian, Xiong, Zhong, Tang, Hu, Yang (bib21) 2021; 15 Fu, He, Tang, Wang, Liu, Li, Shan, Long, Hu, Liu (bib13) 2021; 34 Zhang, Liu, Zhang, Yang, Yuan, He, Wei, Wang, Wang (bib11) 2021; 16 Ahmed, Hassan, Ibn-Mohammed, Mostafa, Reaney, Koh, Zu, Wang (bib5) 2017; 10 Kuang, Huang, Zhang, Chen, Shi, Zeng, Li, Yang, Wang, Dong, Yang, Flewitt, Luo (bib31) 2021; 14 Fan, Tian, Lin Wang (bib10) 2012; 1 Tang, Hou, Zheng, Fang, Zhu, Zheng (bib28) 2022; 99 Shi, Wu, Wang, Wu, Lee (bib25) 2017; 7 Wu, Wang, Ding, Guo, Wang (bib30) 2018; 9 He, Feng, Kong (bib7) 2007; 21 Xie, Zeng, Yang, Lv, Wang, Wu, Liu, Wang, Cheng (bib36) 2021; 6 Li, Liu, Zhao, Zhou, Yin, Li, Gao, Zhang, Zhang, Wang, Wang (bib23) 2020; 14 He, Zhang, Zhang, Yang, Yuan, Zhou, Zhao, Wu, Wang, Wang (bib27) 2022; 16 Zhang, Cui, Li, Liu, Wang, Wang (bib1) 2021; 491 Xue, Howard, Wang, Bao, Lian, Chen, Wang, Yan (bib3) 2019; 134 Yang, Yang, Wang, Liu, Lu, Ji, Wang, Cheng (bib15) 2021; 11 Zhang, Zhang, Zhao, Gao, Wang, Cheng (bib34) 2022; 16 Chen, Guo, Wu, Xu, Zi, Hu, Wang (bib24) 2019; 64 Han, Jiang, Xu, Ding, Chu (bib37) 2022; 166 Askari, Hashemi, Khajepour, Khamesee, Wang (bib29) 2018; 4 Lee, Lee, Kim, Yoo, Kim, Hwang, Song, Sim (bib18) 2018; 9 Choi, Sung, Kwon (bib35) 2018; 3 Liu, Guo, Xu, Hu, Wang (bib17) 2019; 9 Gao, Xu, Yu, Jing, Cheng, Wang (bib20) 2022; 16 Mehamud, Marklund, Björling, Shi (bib26) 2022; 98 Cheng, Guo, Wen, Zhang, Yin, Li, Liu, Song, Sun, Wang, Wang (bib32) 2019; 57 Pang, Feng, An, Chen, Han, Jiang, Wang (bib19) 2021; 31 Hu, Smith, Randall, Peng (bib8) 2016; 76–77 Yoon, He, Van Hecke (bib9) 2015; 62 Lin, Zhu, Qiu, Jiang, Wang, Zhu, Wu (bib6) 2021; 83 Zhao, Li, Liao, Qiao, Li, Dong, Zhang, Zhang (bib16) 2021; 89 Jiang, Gao, Kong, Pennacchi, Chu, Han (bib12) 2022 An, Pu, Zhou, Wu, Li, Xing, Zhang, Hu (bib22) 2022; 16 Pang (10.1016/j.nanoen.2022.107804_bib19) 2021; 31 Fan (10.1016/j.nanoen.2022.107804_bib10) 2012; 1 Cheng (10.1016/j.nanoen.2022.107804_bib32) 2019; 57 Hu (10.1016/j.nanoen.2022.107804_bib8) 2016; 76–77 Kuang (10.1016/j.nanoen.2022.107804_bib31) 2021; 14 Gao (10.1016/j.nanoen.2022.107804_bib14) 2022; 99 Liu (10.1016/j.nanoen.2022.107804_bib17) 2019; 9 Zhang (10.1016/j.nanoen.2022.107804_bib34) 2022; 16 Gao (10.1016/j.nanoen.2022.107804_bib20) 2022; 16 Askari (10.1016/j.nanoen.2022.107804_bib29) 2018; 4 Xie (10.1016/j.nanoen.2022.107804_bib33) 2022; 92 Yang (10.1016/j.nanoen.2022.107804_bib15) 2021; 11 Yang (10.1016/j.nanoen.2022.107804_bib21) 2021; 15 He (10.1016/j.nanoen.2022.107804_bib27) 2022; 16 An (10.1016/j.nanoen.2022.107804_bib22) 2022; 16 Zhang (10.1016/j.nanoen.2022.107804_bib1) 2021; 491 Xie (10.1016/j.nanoen.2022.107804_bib36) 2021; 6 Han (10.1016/j.nanoen.2022.107804_bib37) 2022; 166 Choi (10.1016/j.nanoen.2022.107804_bib35) 2018; 3 Mehamud (10.1016/j.nanoen.2022.107804_bib26) 2022; 98 Shi (10.1016/j.nanoen.2022.107804_bib25) 2017; 7 Ahmed (10.1016/j.nanoen.2022.107804_bib5) 2017; 10 He (10.1016/j.nanoen.2022.107804_bib7) 2007; 21 Yoon (10.1016/j.nanoen.2022.107804_bib9) 2015; 62 Ra (10.1016/j.nanoen.2022.107804_bib38) 2020; 73 Lee (10.1016/j.nanoen.2022.107804_bib18) 2018; 9 Lin (10.1016/j.nanoen.2022.107804_bib6) 2021; 83 Fu (10.1016/j.nanoen.2022.107804_bib13) 2021; 34 Jiang (10.1016/j.nanoen.2022.107804_bib12) 2022 Guo (10.1016/j.nanoen.2022.107804_bib2) 2019; 129 Zhao (10.1016/j.nanoen.2022.107804_bib16) 2021; 89 Zhang (10.1016/j.nanoen.2022.107804_bib11) 2021; 16 Chen (10.1016/j.nanoen.2022.107804_bib24) 2019; 64 Mukundan (10.1016/j.nanoen.2022.107804_bib4) 2017; 164 Wu (10.1016/j.nanoen.2022.107804_bib30) 2018; 9 Xue (10.1016/j.nanoen.2022.107804_bib3) 2019; 134 Li (10.1016/j.nanoen.2022.107804_bib23) 2020; 14 Tang (10.1016/j.nanoen.2022.107804_bib28) 2022; 99 |
References_xml | – volume: 99 year: 2022 ident: bib14 article-title: Triboelectric based high-precision self-powering cage skidding sensor and application on main bearing of jet engine publication-title: Nano Energy contributor: fullname: Chu – volume: 134 year: 2019 ident: bib3 article-title: The diagnostic analysis of the planet bearing faults using the torsional vibration signal publication-title: Mech. Syst. Signal Process. contributor: fullname: Yan – volume: 62 start-page: 6585 year: 2015 end-page: 6593 ident: bib9 article-title: On the use of a single piezoelectric strain sensor for wind turbine planetary gearbox fault diagnosis publication-title: IEEE Trans. Ind. Electron. contributor: fullname: Van Hecke – volume: 129 start-page: 130 year: 2019 end-page: 147 ident: bib2 article-title: Vibration separation technique based localized tooth fault detection of planetary gear sets: a tutorial publication-title: Mech. Syst. Signal Process. contributor: fullname: Na – volume: 21 start-page: 2056 year: 2007 end-page: 2071 ident: bib7 article-title: Detection of signal transients using independent component analysis and its application in gearbox condition monitoring publication-title: Mech. Syst. Signal Process. contributor: fullname: Kong – volume: 4 year: 2018 ident: bib29 article-title: Tire condition monitoring and intelligent tires using nanogenerators based on piezoelectric, electromagnetic, and triboelectric effects publication-title: Adv. Mater. Technol. contributor: fullname: Wang – volume: 92 year: 2022 ident: bib33 article-title: A high-speed and long-life triboelectric sensor with charge supplement for monitoring the speed and skidding of rolling bearing publication-title: Nano Energy contributor: fullname: Cheng – volume: 3 year: 2018 ident: bib35 article-title: A self‐powered smart roller‐bearing based on a triboelectric nanogenerator for measurement of rotation movement publication-title: Adv. Mater. Technol. contributor: fullname: Kwon – volume: 14 start-page: 794 year: 2021 end-page: 804 ident: bib31 article-title: Electric-field-resonance-based wireless triboelectric nanogenerators and sensors publication-title: ACS Appl. Mater. Interfaces contributor: fullname: Luo – volume: 73 year: 2020 ident: bib38 article-title: Triboelectric signal generation and its versatile utilization during gear-based ordinary power transmission publication-title: Nano Energy contributor: fullname: Choi – volume: 15 start-page: 11555 year: 2021 end-page: 11563 ident: bib21 article-title: Hierarchically microstructure-bioinspired flexible piezoresistive bioelectronics publication-title: ACS Nano contributor: fullname: Yang – volume: 34 year: 2021 ident: bib13 article-title: An ultrarobust and high‐performance rotational hydrodynamic triboelectric nanogenerator enabled by automatic mode switching and charge excitation publication-title: Adv. Mater. contributor: fullname: Liu – volume: 64 year: 2019 ident: bib24 article-title: Actuation and sensor integrated self-powered cantilever system based on TENG technology publication-title: Nano Energy contributor: fullname: Wang – volume: 491 year: 2021 ident: bib1 article-title: An improved sideband energy ratio for fault diagnosis of planetary gearboxes publication-title: J. Sound Vib. contributor: fullname: Wang – volume: 11 year: 2021 ident: bib15 article-title: Charge pumping for sliding‐mode triboelectric nanogenerator with voltage stabilization and boosted current publication-title: Adv. Energy Mater. contributor: fullname: Cheng – volume: 14 start-page: 2475 year: 2020 end-page: 2482 ident: bib23 article-title: A fully self-powered vibration monitoring system driven by dual-mode triboelectric nanogenerators publication-title: ACS Nano contributor: fullname: Wang – volume: 164 start-page: 5 year: 2017 ident: bib4 article-title: Preface—JES focus issue on biosensors and micro-nano fabricated electromechanical systems publication-title: J. Electrochem. Soc. contributor: fullname: Niwa – volume: 1 start-page: 328 year: 2012 end-page: 334 ident: bib10 article-title: Flexible triboelectric generator publication-title: Nano Energy contributor: fullname: Lin Wang – volume: 16 start-page: 1490 year: 2021 end-page: 1499 ident: bib11 article-title: Harvesting wind energy by a triboelectric nanogenerator for an intelligent high-speed train system publication-title: ACS Energy Lett. contributor: fullname: Wang – volume: 16 start-page: 6781 year: 2022 end-page: 6788 ident: bib20 article-title: Gyroscope-structured triboelectric nanogenerator for harvesting multidirectional ocean wave energy publication-title: ACS Nano contributor: fullname: Wang – volume: 9 year: 2018 ident: bib30 article-title: Triboelectric nanogenerator: a foundation of the energy for the new era publication-title: Adv. Energy Mater. contributor: fullname: Wang – volume: 9 start-page: 598 year: 2018 ident: bib18 article-title: A spherical hybrid triboelectric nanogenerator for enhanced water wave energy harvesting publication-title: Micromachines contributor: fullname: Sim – volume: 9 year: 2019 ident: bib17 article-title: Oblate spheroidal triboelectric nanogenerator for all‐weather blue energy harvesting publication-title: Adv. Energy Mater. contributor: fullname: Wang – volume: 7 year: 2017 ident: bib25 article-title: Self-powered gyroscope ball using a triboelectric mechanism publication-title: Adv. Energy Mater. contributor: fullname: Lee – volume: 98 year: 2022 ident: bib26 article-title: Machine condition monitoring enabled by broad range vibration frequency detecting triboelectric nano-generator (TENG)-based vibration sensors publication-title: Nano Energy contributor: fullname: Shi – volume: 16 start-page: 3008 year: 2022 end-page: 3016 ident: bib34 article-title: Nondestructive dimension sorting by soft robotic grippers integrated with triboelectric sensor publication-title: ACS Nano contributor: fullname: Cheng – volume: 83 year: 2021 ident: bib6 article-title: A self-powered multi-functional sensor based on triboelectric nanogenerator for monitoring states of rotating motion publication-title: Nano Energy contributor: fullname: Wu – volume: 10 start-page: 653 year: 2017 end-page: 671 ident: bib5 article-title: Environmental life cycle assessment and techno-economic analysis of triboelectric nanogenerators publication-title: Energy Environ. Sci. contributor: fullname: Wang – volume: 89 year: 2021 ident: bib16 article-title: A heaving point absorber-based ocean wave energy convertor hybridizing a multilayered soft-brush cylindrical triboelectric generator and an electromagnetic generator publication-title: Nano Energy contributor: fullname: Zhang – volume: 6 year: 2021 ident: bib36 article-title: Sliding triboelectric circular motion sensor with real‐time hardware processing publication-title: Adv. Mater. Technol. contributor: fullname: Cheng – volume: 31 year: 2021 ident: bib19 article-title: Segmented swing‐structured fur‐based triboelectric nanogenerator for harvesting blue energy toward marine environmental applications publication-title: Adv. Funct. Mater. contributor: fullname: Wang – volume: 16 start-page: 9359 year: 2022 end-page: 9367 ident: bib22 article-title: Deep learning enabled neck motion detection using a triboelectric nanogenerator publication-title: ACS Nano contributor: fullname: Hu – volume: 76–77 start-page: 319 year: 2016 end-page: 336 ident: bib8 article-title: Development of a gear vibration indicator and its application in gear wear monitoring publication-title: Mech. Syst. Signal Process. contributor: fullname: Peng – year: 2022 ident: bib12 article-title: Ultra-compact triboelectric bearing based on a ribbon cage with applications for fault diagnosis of rotating machinery publication-title: Nano Energy contributor: fullname: Han – volume: 166 year: 2022 ident: bib37 article-title: Self-powered fault diagnosis of rolling bearings based on triboelectric effect publication-title: Mech. Syst. Signal Process. contributor: fullname: Chu – volume: 99 year: 2022 ident: bib28 article-title: Self-powered wind sensor based on triboelectric nanogenerator for detecting breeze vibration on electric transmission lines publication-title: Nano Energy contributor: fullname: Zheng – volume: 57 start-page: 432 year: 2019 end-page: 439 ident: bib32 article-title: Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure publication-title: Nano Energy contributor: fullname: Wang – volume: 16 start-page: 6244 year: 2022 end-page: 6254 ident: bib27 article-title: A dual-mode triboelectric nanogenerator for wind energy harvesting and self-powered wind speed monitoring publication-title: ACS Nano contributor: fullname: Wang – volume: 491 year: 2021 ident: 10.1016/j.nanoen.2022.107804_bib1 article-title: An improved sideband energy ratio for fault diagnosis of planetary gearboxes publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2020.115712 contributor: fullname: Zhang – volume: 83 year: 2021 ident: 10.1016/j.nanoen.2022.107804_bib6 article-title: A self-powered multi-functional sensor based on triboelectric nanogenerator for monitoring states of rotating motion publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.105857 contributor: fullname: Lin – volume: 98 year: 2022 ident: 10.1016/j.nanoen.2022.107804_bib26 article-title: Machine condition monitoring enabled by broad range vibration frequency detecting triboelectric nano-generator (TENG)-based vibration sensors publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107292 contributor: fullname: Mehamud – volume: 7 year: 2017 ident: 10.1016/j.nanoen.2022.107804_bib25 article-title: Self-powered gyroscope ball using a triboelectric mechanism publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701300 contributor: fullname: Shi – volume: 9 year: 2019 ident: 10.1016/j.nanoen.2022.107804_bib17 article-title: Oblate spheroidal triboelectric nanogenerator for all‐weather blue energy harvesting publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900801 contributor: fullname: Liu – volume: 15 start-page: 11555 year: 2021 ident: 10.1016/j.nanoen.2022.107804_bib21 article-title: Hierarchically microstructure-bioinspired flexible piezoresistive bioelectronics publication-title: ACS Nano doi: 10.1021/acsnano.1c01606 contributor: fullname: Yang – volume: 34 year: 2021 ident: 10.1016/j.nanoen.2022.107804_bib13 article-title: An ultrarobust and high‐performance rotational hydrodynamic triboelectric nanogenerator enabled by automatic mode switching and charge excitation publication-title: Adv. Mater. contributor: fullname: Fu – volume: 99 year: 2022 ident: 10.1016/j.nanoen.2022.107804_bib14 article-title: Triboelectric based high-precision self-powering cage skidding sensor and application on main bearing of jet engine publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107387 contributor: fullname: Gao – volume: 9 year: 2018 ident: 10.1016/j.nanoen.2022.107804_bib30 article-title: Triboelectric nanogenerator: a foundation of the energy for the new era publication-title: Adv. Energy Mater. contributor: fullname: Wu – volume: 73 year: 2020 ident: 10.1016/j.nanoen.2022.107804_bib38 article-title: Triboelectric signal generation and its versatile utilization during gear-based ordinary power transmission publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104745 contributor: fullname: Ra – volume: 6 year: 2021 ident: 10.1016/j.nanoen.2022.107804_bib36 article-title: Sliding triboelectric circular motion sensor with real‐time hardware processing publication-title: Adv. Mater. Technol. doi: 10.1002/admt.202100655 contributor: fullname: Xie – volume: 3 year: 2018 ident: 10.1016/j.nanoen.2022.107804_bib35 article-title: A self‐powered smart roller‐bearing based on a triboelectric nanogenerator for measurement of rotation movement publication-title: Adv. Mater. Technol. contributor: fullname: Choi – volume: 129 start-page: 130 year: 2019 ident: 10.1016/j.nanoen.2022.107804_bib2 article-title: Vibration separation technique based localized tooth fault detection of planetary gear sets: a tutorial publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2019.04.027 contributor: fullname: Guo – volume: 99 year: 2022 ident: 10.1016/j.nanoen.2022.107804_bib28 article-title: Self-powered wind sensor based on triboelectric nanogenerator for detecting breeze vibration on electric transmission lines publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107412 contributor: fullname: Tang – volume: 16 start-page: 6244 year: 2022 ident: 10.1016/j.nanoen.2022.107804_bib27 article-title: A dual-mode triboelectric nanogenerator for wind energy harvesting and self-powered wind speed monitoring publication-title: ACS Nano doi: 10.1021/acsnano.1c11658 contributor: fullname: He – volume: 164 start-page: 5 year: 2017 ident: 10.1016/j.nanoen.2022.107804_bib4 article-title: Preface—JES focus issue on biosensors and micro-nano fabricated electromechanical systems publication-title: J. Electrochem. Soc. doi: 10.1149/2.0201705jes contributor: fullname: Mukundan – volume: 57 start-page: 432 year: 2019 ident: 10.1016/j.nanoen.2022.107804_bib32 article-title: Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.12.054 contributor: fullname: Cheng – year: 2022 ident: 10.1016/j.nanoen.2022.107804_bib12 article-title: Ultra-compact triboelectric bearing based on a ribbon cage with applications for fault diagnosis of rotating machinery publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107263 contributor: fullname: Jiang – volume: 134 year: 2019 ident: 10.1016/j.nanoen.2022.107804_bib3 article-title: The diagnostic analysis of the planet bearing faults using the torsional vibration signal publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2019.106304 contributor: fullname: Xue – volume: 14 start-page: 794 year: 2021 ident: 10.1016/j.nanoen.2022.107804_bib31 article-title: Electric-field-resonance-based wireless triboelectric nanogenerators and sensors publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c19075 contributor: fullname: Kuang – volume: 64 year: 2019 ident: 10.1016/j.nanoen.2022.107804_bib24 article-title: Actuation and sensor integrated self-powered cantilever system based on TENG technology publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.103920 contributor: fullname: Chen – volume: 16 start-page: 3008 year: 2022 ident: 10.1016/j.nanoen.2022.107804_bib34 article-title: Nondestructive dimension sorting by soft robotic grippers integrated with triboelectric sensor publication-title: ACS Nano doi: 10.1021/acsnano.1c10396 contributor: fullname: Zhang – volume: 89 year: 2021 ident: 10.1016/j.nanoen.2022.107804_bib16 article-title: A heaving point absorber-based ocean wave energy convertor hybridizing a multilayered soft-brush cylindrical triboelectric generator and an electromagnetic generator publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106381 contributor: fullname: Zhao – volume: 76–77 start-page: 319 year: 2016 ident: 10.1016/j.nanoen.2022.107804_bib8 article-title: Development of a gear vibration indicator and its application in gear wear monitoring publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2016.01.018 contributor: fullname: Hu – volume: 166 year: 2022 ident: 10.1016/j.nanoen.2022.107804_bib37 article-title: Self-powered fault diagnosis of rolling bearings based on triboelectric effect publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2021.108382 contributor: fullname: Han – volume: 16 start-page: 6781 year: 2022 ident: 10.1016/j.nanoen.2022.107804_bib20 article-title: Gyroscope-structured triboelectric nanogenerator for harvesting multidirectional ocean wave energy publication-title: ACS Nano doi: 10.1021/acsnano.2c01594 contributor: fullname: Gao – volume: 4 year: 2018 ident: 10.1016/j.nanoen.2022.107804_bib29 article-title: Tire condition monitoring and intelligent tires using nanogenerators based on piezoelectric, electromagnetic, and triboelectric effects publication-title: Adv. Mater. Technol. contributor: fullname: Askari – volume: 16 start-page: 9359 year: 2022 ident: 10.1016/j.nanoen.2022.107804_bib22 article-title: Deep learning enabled neck motion detection using a triboelectric nanogenerator publication-title: ACS Nano doi: 10.1021/acsnano.2c02149 contributor: fullname: An – volume: 62 start-page: 6585 year: 2015 ident: 10.1016/j.nanoen.2022.107804_bib9 article-title: On the use of a single piezoelectric strain sensor for wind turbine planetary gearbox fault diagnosis publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2015.2442216 contributor: fullname: Yoon – volume: 11 year: 2021 ident: 10.1016/j.nanoen.2022.107804_bib15 article-title: Charge pumping for sliding‐mode triboelectric nanogenerator with voltage stabilization and boosted current publication-title: Adv. Energy Mater. contributor: fullname: Yang – volume: 14 start-page: 2475 year: 2020 ident: 10.1016/j.nanoen.2022.107804_bib23 article-title: A fully self-powered vibration monitoring system driven by dual-mode triboelectric nanogenerators publication-title: ACS Nano doi: 10.1021/acsnano.9b10142 contributor: fullname: Li – volume: 10 start-page: 653 year: 2017 ident: 10.1016/j.nanoen.2022.107804_bib5 article-title: Environmental life cycle assessment and techno-economic analysis of triboelectric nanogenerators publication-title: Energy Environ. Sci. doi: 10.1039/C7EE00158D contributor: fullname: Ahmed – volume: 21 start-page: 2056 year: 2007 ident: 10.1016/j.nanoen.2022.107804_bib7 article-title: Detection of signal transients using independent component analysis and its application in gearbox condition monitoring publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2006.09.003 contributor: fullname: He – volume: 9 start-page: 598 year: 2018 ident: 10.1016/j.nanoen.2022.107804_bib18 article-title: A spherical hybrid triboelectric nanogenerator for enhanced water wave energy harvesting publication-title: Micromachines doi: 10.3390/mi9110598 contributor: fullname: Lee – volume: 1 start-page: 328 year: 2012 ident: 10.1016/j.nanoen.2022.107804_bib10 article-title: Flexible triboelectric generator publication-title: Nano Energy doi: 10.1016/j.nanoen.2012.01.004 contributor: fullname: Fan – volume: 16 start-page: 1490 year: 2021 ident: 10.1016/j.nanoen.2022.107804_bib11 article-title: Harvesting wind energy by a triboelectric nanogenerator for an intelligent high-speed train system publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c00368 contributor: fullname: Zhang – volume: 31 year: 2021 ident: 10.1016/j.nanoen.2022.107804_bib19 article-title: Segmented swing‐structured fur‐based triboelectric nanogenerator for harvesting blue energy toward marine environmental applications publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202106398 contributor: fullname: Pang – volume: 92 year: 2022 ident: 10.1016/j.nanoen.2022.107804_bib33 article-title: A high-speed and long-life triboelectric sensor with charge supplement for monitoring the speed and skidding of rolling bearing publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106747 contributor: fullname: Xie |
SSID | ssj0000651712 |
Score | 2.4828389 |
Snippet | The planetary gear transmission system is characterized by a complex structure and is often exposed to harsh working conditions, resulting in high failure... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 107804 |
SubjectTerms | Fault diagnosis Planetary gear Speed Triboelectric sensor |
Title | Triboelectric sensor for planetary gear fault diagnosis using data enhancement and CNN |
URI | https://dx.doi.org/10.1016/j.nanoen.2022.107804 |
Volume | 103 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED2VdoEB8SnKR-WBNTSJU8cZq4qqgMgCRd0iO3ZKEUqqNh1Y-O2c4wQVCTEwZIili5Jn5-6d_XwGuJYiYspTmJsoXzqBYNQRVGDWmkr89VK8hJnQf4zZZBrczwazFoyavTBGVln7fuvTK29dt_RrNPvLxaL_5GPu4vMBEgiMY9ycXNupFona0BnePUzi76kWjLJeWK17GhPH2DSb6CqlVy7yQptaqL6PTaYiz-9BaivwjA9gv2aMZGhf6hBaOj-Cva06gsfwYup_FPZEm0VK1piaFiuCdJQsjZa1FKsPMschTTKxeS-JsvK6xZoY1fucGJUo0fmrGQBmspCIXJFRHJ_AdHz7PJo49YEJTorMv0SoeSSCTFGl6CBEZudqFuDnRJ5GFkB9KpjEDEIpztxUpZ72eMQEdWXAtSmbT0-hnRe5PgMifSVVJmXA8BGZoDzDRFIrLjwt3VDSLjgNQsnS1sVIGsHYW2IRTQyiiUW0C2EDY_KjfxN03X9anv_b8gJ2zZ0Vn1xCu1xt9BVSiFL2YOfm0-vVA-ULfOvFpQ |
link.rule.ids | 315,783,787,4511,24130,27938,27939,45599,45693 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09b4MwELWiZGg7VP1U008PXVEAE8eMUdSINAlLkyqbZWOTUlUQJWTov-85hiqVqg4dWIwOweO4e2eezwg9ShFS5SmoTZQvnUBQ4ggioGpNJHx6CRzCTOhPYxrNg-dFd9FAg3otjJFVVrHfxvRdtK5GOhWanVWWdV58qF181gUCAXmMmZ1rW8AGQnD2Vn80juLvqRbIsl5v99_TmDjGpl5Et1N65SIvtOmF6vswZDry_J6k9hLP8AQdV4wR9-1NnaKGzs_Q0V4fwXP0avp_FHZHmyzBGyhNizUGOopXRstaivUnXoJL41RsP0qsrLwu22Cjel9ioxLFOn8zDmAmC7HIFR7E8QWaD59mg8ipNkxwEmD-JUDNQhGkiihFuj1gdq6mATxO6GlgAcQngkqoIJRi1E1U4mmPhVQQVwZMm7b55BI18yLXVwhLX0mVShlQuEQqCEuhkNSKCU9LtydJGzk1Qnxl-2LwWjD2zi2i3CDKLaJt1Kth5D_eL4fQ_afl9b8tH9BBNJtO-GQUj2_QoTljhSi3qFmut_oO6EQp7yt3-QJeAsei |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Triboelectric+sensor+for+planetary+gear+fault+diagnosis+using+data+enhancement+and+CNN&rft.jtitle=Nano+energy&rft.au=Xie%2C+Zhijie&rft.au=Wang%2C+Yu&rft.au=Yu%2C+Mingyu&rft.au=Yu%2C+Di&rft.date=2022-12-01&rft.issn=2211-2855&rft.volume=103&rft.spage=107804&rft_id=info:doi/10.1016%2Fj.nanoen.2022.107804&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nanoen_2022_107804 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon |