Triboelectric sensor for planetary gear fault diagnosis using data enhancement and CNN

The planetary gear transmission system is characterized by a complex structure and is often exposed to harsh working conditions, resulting in high failure damage rate. The self-powered sensing system based on the triboelectric nanogenerator provides an ideal scheme for online monitoring of the plane...

Full description

Saved in:
Bibliographic Details
Published inNano energy Vol. 103; p. 107804
Main Authors Xie, Zhijie, Wang, Yu, Yu, Mingyu, Yu, Di, Lv, Jingliang, Yin, Jihui, Liu, Jiuqing, Wu, Rensuan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The planetary gear transmission system is characterized by a complex structure and is often exposed to harsh working conditions, resulting in high failure damage rate. The self-powered sensing system based on the triboelectric nanogenerator provides an ideal scheme for online monitoring of the planetary gear operating condition. In this paper, a triboelectric planetary gear sensor (TPGS) is proposed for real-time monitoring of the speed and gear faults of the planetary reducer. The sensor is integrated at the tooth crest and root meshing gap of the planetary gear and the ring gear, which ensures the integrity of the gear structure and function. The results of the sensing experiment show that TPGS can be used to detect the speed of the planetary reducer in the range of 10–1000 rpm. Moreover, the speed detection error rate is less than 0.4%. To identify the gear faults, the stacked autoencoder (SAE) is used to enhance the data collected by TPGS, combined with convolutional neural network (CNN). The results show that the classification accuracy reached 100%. In this paper, a theoretical and experimental basis for development and online fault monitoring of a new intelligent gearbox with self-awareness and self-regulation is provided. [Display omitted] •A triboelectric planetary gear sensor (TPGS) is proposed to monitor the planetary gear speed and broken tooth faults.•TPGS is integrated into the non-bearing area to ensure the integrity of planetary gear structure and function.•A fault diagnosis method based on 1D data enhancement and CNN is proposed with 100% fault classification accuracy.•TPGS can effectively identify the fault type of planetary gears and accurately locate the fault location.•TPGS can monitor the operating condition of planetary gears, providing the basis for developing a new intelligent reducer.
AbstractList The planetary gear transmission system is characterized by a complex structure and is often exposed to harsh working conditions, resulting in high failure damage rate. The self-powered sensing system based on the triboelectric nanogenerator provides an ideal scheme for online monitoring of the planetary gear operating condition. In this paper, a triboelectric planetary gear sensor (TPGS) is proposed for real-time monitoring of the speed and gear faults of the planetary reducer. The sensor is integrated at the tooth crest and root meshing gap of the planetary gear and the ring gear, which ensures the integrity of the gear structure and function. The results of the sensing experiment show that TPGS can be used to detect the speed of the planetary reducer in the range of 10–1000 rpm. Moreover, the speed detection error rate is less than 0.4%. To identify the gear faults, the stacked autoencoder (SAE) is used to enhance the data collected by TPGS, combined with convolutional neural network (CNN). The results show that the classification accuracy reached 100%. In this paper, a theoretical and experimental basis for development and online fault monitoring of a new intelligent gearbox with self-awareness and self-regulation is provided. [Display omitted] •A triboelectric planetary gear sensor (TPGS) is proposed to monitor the planetary gear speed and broken tooth faults.•TPGS is integrated into the non-bearing area to ensure the integrity of planetary gear structure and function.•A fault diagnosis method based on 1D data enhancement and CNN is proposed with 100% fault classification accuracy.•TPGS can effectively identify the fault type of planetary gears and accurately locate the fault location.•TPGS can monitor the operating condition of planetary gears, providing the basis for developing a new intelligent reducer.
ArticleNumber 107804
Author Yu, Di
Wang, Yu
Xie, Zhijie
Wu, Rensuan
Yin, Jihui
Liu, Jiuqing
Yu, Mingyu
Lv, Jingliang
Author_xml – sequence: 1
  givenname: Zhijie
  surname: Xie
  fullname: Xie, Zhijie
  email: xiezhijie111@sina.com
– sequence: 2
  givenname: Yu
  surname: Wang
  fullname: Wang, Yu
– sequence: 3
  givenname: Mingyu
  surname: Yu
  fullname: Yu, Mingyu
– sequence: 4
  givenname: Di
  surname: Yu
  fullname: Yu, Di
– sequence: 5
  givenname: Jingliang
  surname: Lv
  fullname: Lv, Jingliang
– sequence: 6
  givenname: Jihui
  surname: Yin
  fullname: Yin, Jihui
– sequence: 7
  givenname: Jiuqing
  surname: Liu
  fullname: Liu, Jiuqing
– sequence: 8
  givenname: Rensuan
  surname: Wu
  fullname: Wu, Rensuan
BookMark eNp9kMtqwzAQRbVIoWmaP-hCP-BUD1u2N4US-oKQbtJuxVgapwqOFCSn0L-vgrvuwDDDhTvcOTdk5oNHQu44W3HG1f1h5cEH9CvBhMhS3bByRuZCcF6IpqquyTKlA8ulKl5zMSefu-i6gAOaMTpDE_oUIu1znwbwOEL8oXuELMF5GKl1sPchuUTPyfk9tTACRf8F3uAR_UjBW7rebm_JVQ9DwuXfXJCP56fd-rXYvL-8rR83hZFMjUUJTQtlb6W1sqrbumaoypy55SiElEKC6qqqtbZRzFjDkTetAsm6ssmrauSClNNdE0NKEXt9iu6YQ2vO9AWJPugJib4g0ROSbHuYbJizfTuMOhmH-QfrYiahbXD_H_gFSudvew
CitedBy_id crossref_primary_10_1016_j_sna_2023_114455
crossref_primary_10_1016_j_triboint_2024_109404
crossref_primary_10_1016_j_eswa_2024_124511
crossref_primary_10_1002_aelm_202300111
crossref_primary_10_1007_s11668_023_01814_5
crossref_primary_10_1115_1_4056391
crossref_primary_10_3390_su151310269
crossref_primary_10_1007_s11071_024_09842_y
crossref_primary_10_1021_acsami_3c15956
crossref_primary_10_1016_j_nanoen_2023_108656
crossref_primary_10_1016_j_nanoen_2024_109429
crossref_primary_10_1002_advs_202302443
crossref_primary_10_1016_j_nanoen_2024_109655
crossref_primary_10_1016_j_matdes_2024_112640
Cites_doi 10.1016/j.jsv.2020.115712
10.1016/j.nanoen.2021.105857
10.1016/j.nanoen.2022.107292
10.1002/aenm.201701300
10.1002/aenm.201900801
10.1021/acsnano.1c01606
10.1016/j.nanoen.2022.107387
10.1016/j.nanoen.2020.104745
10.1002/admt.202100655
10.1016/j.ymssp.2019.04.027
10.1016/j.nanoen.2022.107412
10.1021/acsnano.1c11658
10.1149/2.0201705jes
10.1016/j.nanoen.2018.12.054
10.1016/j.nanoen.2022.107263
10.1016/j.ymssp.2019.106304
10.1021/acsami.1c19075
10.1016/j.nanoen.2019.103920
10.1021/acsnano.1c10396
10.1016/j.nanoen.2021.106381
10.1016/j.ymssp.2016.01.018
10.1016/j.ymssp.2021.108382
10.1021/acsnano.2c01594
10.1021/acsnano.2c02149
10.1109/TIE.2015.2442216
10.1021/acsnano.9b10142
10.1039/C7EE00158D
10.1016/j.ymssp.2006.09.003
10.3390/mi9110598
10.1016/j.nanoen.2012.01.004
10.1021/acsenergylett.1c00368
10.1002/adfm.202106398
10.1016/j.nanoen.2021.106747
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.nanoen.2022.107804
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_nanoen_2022_107804
S2211285522008813
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
EBS
EFJIC
EFLBG
FDB
FIRID
FNPLU
FYGXN
GBLVA
JARJE
KOM
M41
MAGPM
MO0
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
ROL
SDF
SPC
SPCBC
SSM
SSR
SSZ
T5K
~G-
AAXKI
AAYXX
ABXDB
ACNNM
ADMUD
AFJKZ
AKRWK
CITATION
EJD
HZ~
RIG
ID FETCH-LOGICAL-c306t-4a89a4fd3dd3579770e6480491e223323a6b559dd860cdc1e1896a30b48e18683
IEDL.DBID AIKHN
ISSN 2211-2855
IngestDate Thu Sep 26 15:43:36 EDT 2024
Fri Feb 23 02:42:13 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fault diagnosis
Speed
Triboelectric sensor
Planetary gear
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-4a89a4fd3dd3579770e6480491e223323a6b559dd860cdc1e1896a30b48e18683
ParticipantIDs crossref_primary_10_1016_j_nanoen_2022_107804
elsevier_sciencedirect_doi_10_1016_j_nanoen_2022_107804
PublicationCentury 2000
PublicationDate 2022-12-01
2022-12-00
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Nano energy
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Guo, Zhao, Wu, Na (bib2) 2019; 129
Mukundan, Khosla, Hesketh, Heineman, Niwa (bib4) 2017; 164
Xie, Wang, Wu, Yin, Yu, Liu, Cheng (bib33) 2022; 92
Ra, Oh, Lee, Yun, Cho, Choi, Jang, Hwang, Choi, Kim, Choi (bib38) 2020; 73
Gao, Han, Jiang, Zhang, Pennacchi, Chu (bib14) 2022; 99
Yang, Deng, Chu, Wang, Hu, Fan, Song, Gao, Zhang, Tian, Xiong, Zhong, Tang, Hu, Yang (bib21) 2021; 15
Fu, He, Tang, Wang, Liu, Li, Shan, Long, Hu, Liu (bib13) 2021; 34
Zhang, Liu, Zhang, Yang, Yuan, He, Wei, Wang, Wang (bib11) 2021; 16
Ahmed, Hassan, Ibn-Mohammed, Mostafa, Reaney, Koh, Zu, Wang (bib5) 2017; 10
Kuang, Huang, Zhang, Chen, Shi, Zeng, Li, Yang, Wang, Dong, Yang, Flewitt, Luo (bib31) 2021; 14
Fan, Tian, Lin Wang (bib10) 2012; 1
Tang, Hou, Zheng, Fang, Zhu, Zheng (bib28) 2022; 99
Shi, Wu, Wang, Wu, Lee (bib25) 2017; 7
Wu, Wang, Ding, Guo, Wang (bib30) 2018; 9
He, Feng, Kong (bib7) 2007; 21
Xie, Zeng, Yang, Lv, Wang, Wu, Liu, Wang, Cheng (bib36) 2021; 6
Li, Liu, Zhao, Zhou, Yin, Li, Gao, Zhang, Zhang, Wang, Wang (bib23) 2020; 14
He, Zhang, Zhang, Yang, Yuan, Zhou, Zhao, Wu, Wang, Wang (bib27) 2022; 16
Zhang, Cui, Li, Liu, Wang, Wang (bib1) 2021; 491
Xue, Howard, Wang, Bao, Lian, Chen, Wang, Yan (bib3) 2019; 134
Yang, Yang, Wang, Liu, Lu, Ji, Wang, Cheng (bib15) 2021; 11
Zhang, Zhang, Zhao, Gao, Wang, Cheng (bib34) 2022; 16
Chen, Guo, Wu, Xu, Zi, Hu, Wang (bib24) 2019; 64
Han, Jiang, Xu, Ding, Chu (bib37) 2022; 166
Askari, Hashemi, Khajepour, Khamesee, Wang (bib29) 2018; 4
Lee, Lee, Kim, Yoo, Kim, Hwang, Song, Sim (bib18) 2018; 9
Choi, Sung, Kwon (bib35) 2018; 3
Liu, Guo, Xu, Hu, Wang (bib17) 2019; 9
Gao, Xu, Yu, Jing, Cheng, Wang (bib20) 2022; 16
Mehamud, Marklund, Björling, Shi (bib26) 2022; 98
Cheng, Guo, Wen, Zhang, Yin, Li, Liu, Song, Sun, Wang, Wang (bib32) 2019; 57
Pang, Feng, An, Chen, Han, Jiang, Wang (bib19) 2021; 31
Hu, Smith, Randall, Peng (bib8) 2016; 76–77
Yoon, He, Van Hecke (bib9) 2015; 62
Lin, Zhu, Qiu, Jiang, Wang, Zhu, Wu (bib6) 2021; 83
Zhao, Li, Liao, Qiao, Li, Dong, Zhang, Zhang (bib16) 2021; 89
Jiang, Gao, Kong, Pennacchi, Chu, Han (bib12) 2022
An, Pu, Zhou, Wu, Li, Xing, Zhang, Hu (bib22) 2022; 16
Pang (10.1016/j.nanoen.2022.107804_bib19) 2021; 31
Fan (10.1016/j.nanoen.2022.107804_bib10) 2012; 1
Cheng (10.1016/j.nanoen.2022.107804_bib32) 2019; 57
Hu (10.1016/j.nanoen.2022.107804_bib8) 2016; 76–77
Kuang (10.1016/j.nanoen.2022.107804_bib31) 2021; 14
Gao (10.1016/j.nanoen.2022.107804_bib14) 2022; 99
Liu (10.1016/j.nanoen.2022.107804_bib17) 2019; 9
Zhang (10.1016/j.nanoen.2022.107804_bib34) 2022; 16
Gao (10.1016/j.nanoen.2022.107804_bib20) 2022; 16
Askari (10.1016/j.nanoen.2022.107804_bib29) 2018; 4
Xie (10.1016/j.nanoen.2022.107804_bib33) 2022; 92
Yang (10.1016/j.nanoen.2022.107804_bib15) 2021; 11
Yang (10.1016/j.nanoen.2022.107804_bib21) 2021; 15
He (10.1016/j.nanoen.2022.107804_bib27) 2022; 16
An (10.1016/j.nanoen.2022.107804_bib22) 2022; 16
Zhang (10.1016/j.nanoen.2022.107804_bib1) 2021; 491
Xie (10.1016/j.nanoen.2022.107804_bib36) 2021; 6
Han (10.1016/j.nanoen.2022.107804_bib37) 2022; 166
Choi (10.1016/j.nanoen.2022.107804_bib35) 2018; 3
Mehamud (10.1016/j.nanoen.2022.107804_bib26) 2022; 98
Shi (10.1016/j.nanoen.2022.107804_bib25) 2017; 7
Ahmed (10.1016/j.nanoen.2022.107804_bib5) 2017; 10
He (10.1016/j.nanoen.2022.107804_bib7) 2007; 21
Yoon (10.1016/j.nanoen.2022.107804_bib9) 2015; 62
Ra (10.1016/j.nanoen.2022.107804_bib38) 2020; 73
Lee (10.1016/j.nanoen.2022.107804_bib18) 2018; 9
Lin (10.1016/j.nanoen.2022.107804_bib6) 2021; 83
Fu (10.1016/j.nanoen.2022.107804_bib13) 2021; 34
Jiang (10.1016/j.nanoen.2022.107804_bib12) 2022
Guo (10.1016/j.nanoen.2022.107804_bib2) 2019; 129
Zhao (10.1016/j.nanoen.2022.107804_bib16) 2021; 89
Zhang (10.1016/j.nanoen.2022.107804_bib11) 2021; 16
Chen (10.1016/j.nanoen.2022.107804_bib24) 2019; 64
Mukundan (10.1016/j.nanoen.2022.107804_bib4) 2017; 164
Wu (10.1016/j.nanoen.2022.107804_bib30) 2018; 9
Xue (10.1016/j.nanoen.2022.107804_bib3) 2019; 134
Li (10.1016/j.nanoen.2022.107804_bib23) 2020; 14
Tang (10.1016/j.nanoen.2022.107804_bib28) 2022; 99
References_xml – volume: 99
  year: 2022
  ident: bib14
  article-title: Triboelectric based high-precision self-powering cage skidding sensor and application on main bearing of jet engine
  publication-title: Nano Energy
  contributor:
    fullname: Chu
– volume: 134
  year: 2019
  ident: bib3
  article-title: The diagnostic analysis of the planet bearing faults using the torsional vibration signal
  publication-title: Mech. Syst. Signal Process.
  contributor:
    fullname: Yan
– volume: 62
  start-page: 6585
  year: 2015
  end-page: 6593
  ident: bib9
  article-title: On the use of a single piezoelectric strain sensor for wind turbine planetary gearbox fault diagnosis
  publication-title: IEEE Trans. Ind. Electron.
  contributor:
    fullname: Van Hecke
– volume: 129
  start-page: 130
  year: 2019
  end-page: 147
  ident: bib2
  article-title: Vibration separation technique based localized tooth fault detection of planetary gear sets: a tutorial
  publication-title: Mech. Syst. Signal Process.
  contributor:
    fullname: Na
– volume: 21
  start-page: 2056
  year: 2007
  end-page: 2071
  ident: bib7
  article-title: Detection of signal transients using independent component analysis and its application in gearbox condition monitoring
  publication-title: Mech. Syst. Signal Process.
  contributor:
    fullname: Kong
– volume: 4
  year: 2018
  ident: bib29
  article-title: Tire condition monitoring and intelligent tires using nanogenerators based on piezoelectric, electromagnetic, and triboelectric effects
  publication-title: Adv. Mater. Technol.
  contributor:
    fullname: Wang
– volume: 92
  year: 2022
  ident: bib33
  article-title: A high-speed and long-life triboelectric sensor with charge supplement for monitoring the speed and skidding of rolling bearing
  publication-title: Nano Energy
  contributor:
    fullname: Cheng
– volume: 3
  year: 2018
  ident: bib35
  article-title: A self‐powered smart roller‐bearing based on a triboelectric nanogenerator for measurement of rotation movement
  publication-title: Adv. Mater. Technol.
  contributor:
    fullname: Kwon
– volume: 14
  start-page: 794
  year: 2021
  end-page: 804
  ident: bib31
  article-title: Electric-field-resonance-based wireless triboelectric nanogenerators and sensors
  publication-title: ACS Appl. Mater. Interfaces
  contributor:
    fullname: Luo
– volume: 73
  year: 2020
  ident: bib38
  article-title: Triboelectric signal generation and its versatile utilization during gear-based ordinary power transmission
  publication-title: Nano Energy
  contributor:
    fullname: Choi
– volume: 15
  start-page: 11555
  year: 2021
  end-page: 11563
  ident: bib21
  article-title: Hierarchically microstructure-bioinspired flexible piezoresistive bioelectronics
  publication-title: ACS Nano
  contributor:
    fullname: Yang
– volume: 34
  year: 2021
  ident: bib13
  article-title: An ultrarobust and high‐performance rotational hydrodynamic triboelectric nanogenerator enabled by automatic mode switching and charge excitation
  publication-title: Adv. Mater.
  contributor:
    fullname: Liu
– volume: 64
  year: 2019
  ident: bib24
  article-title: Actuation and sensor integrated self-powered cantilever system based on TENG technology
  publication-title: Nano Energy
  contributor:
    fullname: Wang
– volume: 491
  year: 2021
  ident: bib1
  article-title: An improved sideband energy ratio for fault diagnosis of planetary gearboxes
  publication-title: J. Sound Vib.
  contributor:
    fullname: Wang
– volume: 11
  year: 2021
  ident: bib15
  article-title: Charge pumping for sliding‐mode triboelectric nanogenerator with voltage stabilization and boosted current
  publication-title: Adv. Energy Mater.
  contributor:
    fullname: Cheng
– volume: 14
  start-page: 2475
  year: 2020
  end-page: 2482
  ident: bib23
  article-title: A fully self-powered vibration monitoring system driven by dual-mode triboelectric nanogenerators
  publication-title: ACS Nano
  contributor:
    fullname: Wang
– volume: 164
  start-page: 5
  year: 2017
  ident: bib4
  article-title: Preface—JES focus issue on biosensors and micro-nano fabricated electromechanical systems
  publication-title: J. Electrochem. Soc.
  contributor:
    fullname: Niwa
– volume: 1
  start-page: 328
  year: 2012
  end-page: 334
  ident: bib10
  article-title: Flexible triboelectric generator
  publication-title: Nano Energy
  contributor:
    fullname: Lin Wang
– volume: 16
  start-page: 1490
  year: 2021
  end-page: 1499
  ident: bib11
  article-title: Harvesting wind energy by a triboelectric nanogenerator for an intelligent high-speed train system
  publication-title: ACS Energy Lett.
  contributor:
    fullname: Wang
– volume: 16
  start-page: 6781
  year: 2022
  end-page: 6788
  ident: bib20
  article-title: Gyroscope-structured triboelectric nanogenerator for harvesting multidirectional ocean wave energy
  publication-title: ACS Nano
  contributor:
    fullname: Wang
– volume: 9
  year: 2018
  ident: bib30
  article-title: Triboelectric nanogenerator: a foundation of the energy for the new era
  publication-title: Adv. Energy Mater.
  contributor:
    fullname: Wang
– volume: 9
  start-page: 598
  year: 2018
  ident: bib18
  article-title: A spherical hybrid triboelectric nanogenerator for enhanced water wave energy harvesting
  publication-title: Micromachines
  contributor:
    fullname: Sim
– volume: 9
  year: 2019
  ident: bib17
  article-title: Oblate spheroidal triboelectric nanogenerator for all‐weather blue energy harvesting
  publication-title: Adv. Energy Mater.
  contributor:
    fullname: Wang
– volume: 7
  year: 2017
  ident: bib25
  article-title: Self-powered gyroscope ball using a triboelectric mechanism
  publication-title: Adv. Energy Mater.
  contributor:
    fullname: Lee
– volume: 98
  year: 2022
  ident: bib26
  article-title: Machine condition monitoring enabled by broad range vibration frequency detecting triboelectric nano-generator (TENG)-based vibration sensors
  publication-title: Nano Energy
  contributor:
    fullname: Shi
– volume: 16
  start-page: 3008
  year: 2022
  end-page: 3016
  ident: bib34
  article-title: Nondestructive dimension sorting by soft robotic grippers integrated with triboelectric sensor
  publication-title: ACS Nano
  contributor:
    fullname: Cheng
– volume: 83
  year: 2021
  ident: bib6
  article-title: A self-powered multi-functional sensor based on triboelectric nanogenerator for monitoring states of rotating motion
  publication-title: Nano Energy
  contributor:
    fullname: Wu
– volume: 10
  start-page: 653
  year: 2017
  end-page: 671
  ident: bib5
  article-title: Environmental life cycle assessment and techno-economic analysis of triboelectric nanogenerators
  publication-title: Energy Environ. Sci.
  contributor:
    fullname: Wang
– volume: 89
  year: 2021
  ident: bib16
  article-title: A heaving point absorber-based ocean wave energy convertor hybridizing a multilayered soft-brush cylindrical triboelectric generator and an electromagnetic generator
  publication-title: Nano Energy
  contributor:
    fullname: Zhang
– volume: 6
  year: 2021
  ident: bib36
  article-title: Sliding triboelectric circular motion sensor with real‐time hardware processing
  publication-title: Adv. Mater. Technol.
  contributor:
    fullname: Cheng
– volume: 31
  year: 2021
  ident: bib19
  article-title: Segmented swing‐structured fur‐based triboelectric nanogenerator for harvesting blue energy toward marine environmental applications
  publication-title: Adv. Funct. Mater.
  contributor:
    fullname: Wang
– volume: 16
  start-page: 9359
  year: 2022
  end-page: 9367
  ident: bib22
  article-title: Deep learning enabled neck motion detection using a triboelectric nanogenerator
  publication-title: ACS Nano
  contributor:
    fullname: Hu
– volume: 76–77
  start-page: 319
  year: 2016
  end-page: 336
  ident: bib8
  article-title: Development of a gear vibration indicator and its application in gear wear monitoring
  publication-title: Mech. Syst. Signal Process.
  contributor:
    fullname: Peng
– year: 2022
  ident: bib12
  article-title: Ultra-compact triboelectric bearing based on a ribbon cage with applications for fault diagnosis of rotating machinery
  publication-title: Nano Energy
  contributor:
    fullname: Han
– volume: 166
  year: 2022
  ident: bib37
  article-title: Self-powered fault diagnosis of rolling bearings based on triboelectric effect
  publication-title: Mech. Syst. Signal Process.
  contributor:
    fullname: Chu
– volume: 99
  year: 2022
  ident: bib28
  article-title: Self-powered wind sensor based on triboelectric nanogenerator for detecting breeze vibration on electric transmission lines
  publication-title: Nano Energy
  contributor:
    fullname: Zheng
– volume: 57
  start-page: 432
  year: 2019
  end-page: 439
  ident: bib32
  article-title: Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure
  publication-title: Nano Energy
  contributor:
    fullname: Wang
– volume: 16
  start-page: 6244
  year: 2022
  end-page: 6254
  ident: bib27
  article-title: A dual-mode triboelectric nanogenerator for wind energy harvesting and self-powered wind speed monitoring
  publication-title: ACS Nano
  contributor:
    fullname: Wang
– volume: 491
  year: 2021
  ident: 10.1016/j.nanoen.2022.107804_bib1
  article-title: An improved sideband energy ratio for fault diagnosis of planetary gearboxes
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2020.115712
  contributor:
    fullname: Zhang
– volume: 83
  year: 2021
  ident: 10.1016/j.nanoen.2022.107804_bib6
  article-title: A self-powered multi-functional sensor based on triboelectric nanogenerator for monitoring states of rotating motion
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.105857
  contributor:
    fullname: Lin
– volume: 98
  year: 2022
  ident: 10.1016/j.nanoen.2022.107804_bib26
  article-title: Machine condition monitoring enabled by broad range vibration frequency detecting triboelectric nano-generator (TENG)-based vibration sensors
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107292
  contributor:
    fullname: Mehamud
– volume: 7
  year: 2017
  ident: 10.1016/j.nanoen.2022.107804_bib25
  article-title: Self-powered gyroscope ball using a triboelectric mechanism
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701300
  contributor:
    fullname: Shi
– volume: 9
  year: 2019
  ident: 10.1016/j.nanoen.2022.107804_bib17
  article-title: Oblate spheroidal triboelectric nanogenerator for all‐weather blue energy harvesting
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201900801
  contributor:
    fullname: Liu
– volume: 15
  start-page: 11555
  year: 2021
  ident: 10.1016/j.nanoen.2022.107804_bib21
  article-title: Hierarchically microstructure-bioinspired flexible piezoresistive bioelectronics
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c01606
  contributor:
    fullname: Yang
– volume: 34
  year: 2021
  ident: 10.1016/j.nanoen.2022.107804_bib13
  article-title: An ultrarobust and high‐performance rotational hydrodynamic triboelectric nanogenerator enabled by automatic mode switching and charge excitation
  publication-title: Adv. Mater.
  contributor:
    fullname: Fu
– volume: 99
  year: 2022
  ident: 10.1016/j.nanoen.2022.107804_bib14
  article-title: Triboelectric based high-precision self-powering cage skidding sensor and application on main bearing of jet engine
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107387
  contributor:
    fullname: Gao
– volume: 9
  year: 2018
  ident: 10.1016/j.nanoen.2022.107804_bib30
  article-title: Triboelectric nanogenerator: a foundation of the energy for the new era
  publication-title: Adv. Energy Mater.
  contributor:
    fullname: Wu
– volume: 73
  year: 2020
  ident: 10.1016/j.nanoen.2022.107804_bib38
  article-title: Triboelectric signal generation and its versatile utilization during gear-based ordinary power transmission
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104745
  contributor:
    fullname: Ra
– volume: 6
  year: 2021
  ident: 10.1016/j.nanoen.2022.107804_bib36
  article-title: Sliding triboelectric circular motion sensor with real‐time hardware processing
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.202100655
  contributor:
    fullname: Xie
– volume: 3
  year: 2018
  ident: 10.1016/j.nanoen.2022.107804_bib35
  article-title: A self‐powered smart roller‐bearing based on a triboelectric nanogenerator for measurement of rotation movement
  publication-title: Adv. Mater. Technol.
  contributor:
    fullname: Choi
– volume: 129
  start-page: 130
  year: 2019
  ident: 10.1016/j.nanoen.2022.107804_bib2
  article-title: Vibration separation technique based localized tooth fault detection of planetary gear sets: a tutorial
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2019.04.027
  contributor:
    fullname: Guo
– volume: 99
  year: 2022
  ident: 10.1016/j.nanoen.2022.107804_bib28
  article-title: Self-powered wind sensor based on triboelectric nanogenerator for detecting breeze vibration on electric transmission lines
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107412
  contributor:
    fullname: Tang
– volume: 16
  start-page: 6244
  year: 2022
  ident: 10.1016/j.nanoen.2022.107804_bib27
  article-title: A dual-mode triboelectric nanogenerator for wind energy harvesting and self-powered wind speed monitoring
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c11658
  contributor:
    fullname: He
– volume: 164
  start-page: 5
  year: 2017
  ident: 10.1016/j.nanoen.2022.107804_bib4
  article-title: Preface—JES focus issue on biosensors and micro-nano fabricated electromechanical systems
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0201705jes
  contributor:
    fullname: Mukundan
– volume: 57
  start-page: 432
  year: 2019
  ident: 10.1016/j.nanoen.2022.107804_bib32
  article-title: Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.12.054
  contributor:
    fullname: Cheng
– year: 2022
  ident: 10.1016/j.nanoen.2022.107804_bib12
  article-title: Ultra-compact triboelectric bearing based on a ribbon cage with applications for fault diagnosis of rotating machinery
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107263
  contributor:
    fullname: Jiang
– volume: 134
  year: 2019
  ident: 10.1016/j.nanoen.2022.107804_bib3
  article-title: The diagnostic analysis of the planet bearing faults using the torsional vibration signal
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2019.106304
  contributor:
    fullname: Xue
– volume: 14
  start-page: 794
  year: 2021
  ident: 10.1016/j.nanoen.2022.107804_bib31
  article-title: Electric-field-resonance-based wireless triboelectric nanogenerators and sensors
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c19075
  contributor:
    fullname: Kuang
– volume: 64
  year: 2019
  ident: 10.1016/j.nanoen.2022.107804_bib24
  article-title: Actuation and sensor integrated self-powered cantilever system based on TENG technology
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.103920
  contributor:
    fullname: Chen
– volume: 16
  start-page: 3008
  year: 2022
  ident: 10.1016/j.nanoen.2022.107804_bib34
  article-title: Nondestructive dimension sorting by soft robotic grippers integrated with triboelectric sensor
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c10396
  contributor:
    fullname: Zhang
– volume: 89
  year: 2021
  ident: 10.1016/j.nanoen.2022.107804_bib16
  article-title: A heaving point absorber-based ocean wave energy convertor hybridizing a multilayered soft-brush cylindrical triboelectric generator and an electromagnetic generator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106381
  contributor:
    fullname: Zhao
– volume: 76–77
  start-page: 319
  year: 2016
  ident: 10.1016/j.nanoen.2022.107804_bib8
  article-title: Development of a gear vibration indicator and its application in gear wear monitoring
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2016.01.018
  contributor:
    fullname: Hu
– volume: 166
  year: 2022
  ident: 10.1016/j.nanoen.2022.107804_bib37
  article-title: Self-powered fault diagnosis of rolling bearings based on triboelectric effect
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2021.108382
  contributor:
    fullname: Han
– volume: 16
  start-page: 6781
  year: 2022
  ident: 10.1016/j.nanoen.2022.107804_bib20
  article-title: Gyroscope-structured triboelectric nanogenerator for harvesting multidirectional ocean wave energy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c01594
  contributor:
    fullname: Gao
– volume: 4
  year: 2018
  ident: 10.1016/j.nanoen.2022.107804_bib29
  article-title: Tire condition monitoring and intelligent tires using nanogenerators based on piezoelectric, electromagnetic, and triboelectric effects
  publication-title: Adv. Mater. Technol.
  contributor:
    fullname: Askari
– volume: 16
  start-page: 9359
  year: 2022
  ident: 10.1016/j.nanoen.2022.107804_bib22
  article-title: Deep learning enabled neck motion detection using a triboelectric nanogenerator
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c02149
  contributor:
    fullname: An
– volume: 62
  start-page: 6585
  year: 2015
  ident: 10.1016/j.nanoen.2022.107804_bib9
  article-title: On the use of a single piezoelectric strain sensor for wind turbine planetary gearbox fault diagnosis
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2015.2442216
  contributor:
    fullname: Yoon
– volume: 11
  year: 2021
  ident: 10.1016/j.nanoen.2022.107804_bib15
  article-title: Charge pumping for sliding‐mode triboelectric nanogenerator with voltage stabilization and boosted current
  publication-title: Adv. Energy Mater.
  contributor:
    fullname: Yang
– volume: 14
  start-page: 2475
  year: 2020
  ident: 10.1016/j.nanoen.2022.107804_bib23
  article-title: A fully self-powered vibration monitoring system driven by dual-mode triboelectric nanogenerators
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b10142
  contributor:
    fullname: Li
– volume: 10
  start-page: 653
  year: 2017
  ident: 10.1016/j.nanoen.2022.107804_bib5
  article-title: Environmental life cycle assessment and techno-economic analysis of triboelectric nanogenerators
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE00158D
  contributor:
    fullname: Ahmed
– volume: 21
  start-page: 2056
  year: 2007
  ident: 10.1016/j.nanoen.2022.107804_bib7
  article-title: Detection of signal transients using independent component analysis and its application in gearbox condition monitoring
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2006.09.003
  contributor:
    fullname: He
– volume: 9
  start-page: 598
  year: 2018
  ident: 10.1016/j.nanoen.2022.107804_bib18
  article-title: A spherical hybrid triboelectric nanogenerator for enhanced water wave energy harvesting
  publication-title: Micromachines
  doi: 10.3390/mi9110598
  contributor:
    fullname: Lee
– volume: 1
  start-page: 328
  year: 2012
  ident: 10.1016/j.nanoen.2022.107804_bib10
  article-title: Flexible triboelectric generator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2012.01.004
  contributor:
    fullname: Fan
– volume: 16
  start-page: 1490
  year: 2021
  ident: 10.1016/j.nanoen.2022.107804_bib11
  article-title: Harvesting wind energy by a triboelectric nanogenerator for an intelligent high-speed train system
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c00368
  contributor:
    fullname: Zhang
– volume: 31
  year: 2021
  ident: 10.1016/j.nanoen.2022.107804_bib19
  article-title: Segmented swing‐structured fur‐based triboelectric nanogenerator for harvesting blue energy toward marine environmental applications
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202106398
  contributor:
    fullname: Pang
– volume: 92
  year: 2022
  ident: 10.1016/j.nanoen.2022.107804_bib33
  article-title: A high-speed and long-life triboelectric sensor with charge supplement for monitoring the speed and skidding of rolling bearing
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106747
  contributor:
    fullname: Xie
SSID ssj0000651712
Score 2.4828389
Snippet The planetary gear transmission system is characterized by a complex structure and is often exposed to harsh working conditions, resulting in high failure...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 107804
SubjectTerms Fault diagnosis
Planetary gear
Speed
Triboelectric sensor
Title Triboelectric sensor for planetary gear fault diagnosis using data enhancement and CNN
URI https://dx.doi.org/10.1016/j.nanoen.2022.107804
Volume 103
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED2VdoEB8SnKR-WBNTSJU8cZq4qqgMgCRd0iO3ZKEUqqNh1Y-O2c4wQVCTEwZIili5Jn5-6d_XwGuJYiYspTmJsoXzqBYNQRVGDWmkr89VK8hJnQf4zZZBrczwazFoyavTBGVln7fuvTK29dt_RrNPvLxaL_5GPu4vMBEgiMY9ycXNupFona0BnePUzi76kWjLJeWK17GhPH2DSb6CqlVy7yQptaqL6PTaYiz-9BaivwjA9gv2aMZGhf6hBaOj-Cva06gsfwYup_FPZEm0VK1piaFiuCdJQsjZa1FKsPMschTTKxeS-JsvK6xZoY1fucGJUo0fmrGQBmspCIXJFRHJ_AdHz7PJo49YEJTorMv0SoeSSCTFGl6CBEZudqFuDnRJ5GFkB9KpjEDEIpztxUpZ72eMQEdWXAtSmbT0-hnRe5PgMifSVVJmXA8BGZoDzDRFIrLjwt3VDSLjgNQsnS1sVIGsHYW2IRTQyiiUW0C2EDY_KjfxN03X9anv_b8gJ2zZ0Vn1xCu1xt9BVSiFL2YOfm0-vVA-ULfOvFpQ
link.rule.ids 315,783,787,4511,24130,27938,27939,45599,45693
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09b4MwELWiZGg7VP1U008PXVEAE8eMUdSINAlLkyqbZWOTUlUQJWTov-85hiqVqg4dWIwOweO4e2eezwg9ShFS5SmoTZQvnUBQ4ggioGpNJHx6CRzCTOhPYxrNg-dFd9FAg3otjJFVVrHfxvRdtK5GOhWanVWWdV58qF181gUCAXmMmZ1rW8AGQnD2Vn80juLvqRbIsl5v99_TmDjGpl5Et1N65SIvtOmF6vswZDry_J6k9hLP8AQdV4wR9-1NnaKGzs_Q0V4fwXP0avp_FHZHmyzBGyhNizUGOopXRstaivUnXoJL41RsP0qsrLwu22Cjel9ioxLFOn8zDmAmC7HIFR7E8QWaD59mg8ipNkxwEmD-JUDNQhGkiihFuj1gdq6mATxO6GlgAcQngkqoIJRi1E1U4mmPhVQQVwZMm7b55BI18yLXVwhLX0mVShlQuEQqCEuhkNSKCU9LtydJGzk1Qnxl-2LwWjD2zi2i3CDKLaJt1Kth5D_eL4fQ_afl9b8tH9BBNJtO-GQUj2_QoTljhSi3qFmut_oO6EQp7yt3-QJeAsei
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Triboelectric+sensor+for+planetary+gear+fault+diagnosis+using+data+enhancement+and+CNN&rft.jtitle=Nano+energy&rft.au=Xie%2C+Zhijie&rft.au=Wang%2C+Yu&rft.au=Yu%2C+Mingyu&rft.au=Yu%2C+Di&rft.date=2022-12-01&rft.issn=2211-2855&rft.volume=103&rft.spage=107804&rft_id=info:doi/10.1016%2Fj.nanoen.2022.107804&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nanoen_2022_107804
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon