Facial expression recognition with Convolutional Neural Networks: Coping with few data and the training sample order
Facial expression recognition has been an active research area in the past 10 years, with growing application areas including avatar animation, neuromarketing and sociable robots. The recognition of facial expressions is not an easy problem for machine learning methods, since people can vary signifi...
Saved in:
Published in | Pattern recognition Vol. 61; pp. 610 - 628 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Facial expression recognition has been an active research area in the past 10 years, with growing application areas including avatar animation, neuromarketing and sociable robots. The recognition of facial expressions is not an easy problem for machine learning methods, since people can vary significantly in the way they show their expressions. Even images of the same person in the same facial expression can vary in brightness, background and pose, and these variations are emphasized if considering different subjects (because of variations in shape, ethnicity among others). Although facial expression recognition is very studied in the literature, few works perform fair evaluation avoiding mixing subjects while training and testing the proposed algorithms. Hence, facial expression recognition is still a challenging problem in computer vision. In this work, we propose a simple solution for facial expression recognition that uses a combination of Convolutional Neural Network and specific image pre-processing steps. Convolutional Neural Networks achieve better accuracy with big data. However, there are no publicly available datasets with sufficient data for facial expression recognition with deep architectures. Therefore, to tackle the problem, we apply some pre-processing techniques to extract only expression specific features from a face image and explore the presentation order of the samples during training. The experiments employed to evaluate our technique were carried out using three largely used public databases (CK+, JAFFE and BU-3DFE). A study of the impact of each image pre-processing operation in the accuracy rate is presented. The proposed method: achieves competitive results when compared with other facial expression recognition methods – 96.76% of accuracy in the CK+ database – it is fast to train, and it allows for real time facial expression recognition with standard computers.
•A CNN based approach for facial expression recognition.•A set of pre-processing steps allowing for a simpler CNN architecture.•A study of the impact of each pre-processing step in the accuracy.•A study for lowering the impact of the sample presentation order during training.•High facial expression recognition accuracy (96.76%) with real time evaluation. |
---|---|
AbstractList | Facial expression recognition has been an active research area in the past 10 years, with growing application areas including avatar animation, neuromarketing and sociable robots. The recognition of facial expressions is not an easy problem for machine learning methods, since people can vary significantly in the way they show their expressions. Even images of the same person in the same facial expression can vary in brightness, background and pose, and these variations are emphasized if considering different subjects (because of variations in shape, ethnicity among others). Although facial expression recognition is very studied in the literature, few works perform fair evaluation avoiding mixing subjects while training and testing the proposed algorithms. Hence, facial expression recognition is still a challenging problem in computer vision. In this work, we propose a simple solution for facial expression recognition that uses a combination of Convolutional Neural Network and specific image pre-processing steps. Convolutional Neural Networks achieve better accuracy with big data. However, there are no publicly available datasets with sufficient data for facial expression recognition with deep architectures. Therefore, to tackle the problem, we apply some pre-processing techniques to extract only expression specific features from a face image and explore the presentation order of the samples during training. The experiments employed to evaluate our technique were carried out using three largely used public databases (CK+, JAFFE and BU-3DFE). A study of the impact of each image pre-processing operation in the accuracy rate is presented. The proposed method: achieves competitive results when compared with other facial expression recognition methods – 96.76% of accuracy in the CK+ database – it is fast to train, and it allows for real time facial expression recognition with standard computers.
•A CNN based approach for facial expression recognition.•A set of pre-processing steps allowing for a simpler CNN architecture.•A study of the impact of each pre-processing step in the accuracy.•A study for lowering the impact of the sample presentation order during training.•High facial expression recognition accuracy (96.76%) with real time evaluation. |
Author | De Souza, Alberto F. de Aguiar, Edilson Lopes, André Teixeira Oliveira-Santos, Thiago |
Author_xml | – sequence: 1 givenname: André Teixeira surname: Lopes fullname: Lopes, André Teixeira email: andreteixeiralopes@gmail.com organization: Department of Informatics, Universidade Federal do Espírito Santo (Campus Vitória), 514 Fernando Ferrari Avenue, 29075910 Goiabeiras, Vitória, Espírito Santo, Brazil – sequence: 2 givenname: Edilson surname: de Aguiar fullname: de Aguiar, Edilson email: edilson.de.aguiar@gmail.com organization: Department of Computing and Electronics, Universidade Federal do Espírito Santo (Campus São Mateus), BR 101 North highway, km 60, 29932540 Bairro Litorâneo, São Mateus, Espírito Santo, Brazil – sequence: 3 givenname: Alberto F. surname: De Souza fullname: De Souza, Alberto F. email: alberto@lcad.inf.ufes.br organization: Department of Informatics, Universidade Federal do Espírito Santo (Campus Vitória), 514 Fernando Ferrari Avenue, 29075910 Goiabeiras, Vitória, Espírito Santo, Brazil – sequence: 4 givenname: Thiago surname: Oliveira-Santos fullname: Oliveira-Santos, Thiago email: todsantos@inf.ufes.br organization: Department of Informatics, Universidade Federal do Espírito Santo (Campus Vitória), 514 Fernando Ferrari Avenue, 29075910 Goiabeiras, Vitória, Espírito Santo, Brazil |
BookMark | eNqFkFFPwyAUhYmZidv0H_jAH2iFltJ1DyZmcWqy6Is-E0pvN2YHDbBN_73U-eSDPl3g3HPC-SZoZKwBhK4pSSmh_Gab9jIou06zeEtJmZKMn6ExnZV5UlCWjdCYkJwmeUbyCzTxfksILaMwRmEplZYdho_egffaGuwgRhkdhvNRhw1eWHOw3X54iJvPsHffIxyte_fzKPfarE-rLRxxI4PE0jQ4bAAHJ7UZZC93fQfYugbcJTpvZefh6mdO0dvy_nXxmKxeHp4Wd6tE5YSHhFV1oVTd1Cq2rFmmSl4p1rQMMsarlqt8pmTNGRQNZxXQjNcVZKSaSUaLuqzzKZqfcpWz3jtohdJBDj2Gb3WCEjHwE1tx4icGfoKUIvKLZvbL3Du9k-7zP9vtyQax2EGDE15pMAoaHcEG0Vj9d8AX_kmRiQ |
CitedBy_id | crossref_primary_10_1007_s11042_018_7030_1 crossref_primary_10_1016_j_patrec_2019_01_008 crossref_primary_10_1186_s13673_018_0156_3 crossref_primary_10_1007_s00138_024_01641_0 crossref_primary_10_1109_TMM_2021_3116434 crossref_primary_10_1007_s12046_022_01943_x crossref_primary_10_1007_s12652_020_02311_5 crossref_primary_10_1007_s11760_020_01753_w crossref_primary_10_1016_j_patcog_2019_01_044 crossref_primary_10_1109_TBIOM_2021_3120758 crossref_primary_10_1016_j_image_2019_02_005 crossref_primary_10_1109_TAFFC_2018_2890471 crossref_primary_10_1007_s11760_022_02381_2 crossref_primary_10_1007_s00521_020_05557_4 crossref_primary_10_1016_j_ins_2020_04_041 crossref_primary_10_1155_2022_6738068 crossref_primary_10_1111_2041_210X_13436 crossref_primary_10_1155_2021_5570870 crossref_primary_10_1080_10584587_2021_1911313 crossref_primary_10_1142_S0219622019300052 crossref_primary_10_1016_j_patcog_2023_109496 crossref_primary_10_2478_amns_2024_1419 crossref_primary_10_1088_1361_6463_ab8036 crossref_primary_10_3390_info13060268 crossref_primary_10_3390_info15030135 crossref_primary_10_1016_j_patcog_2018_10_014 crossref_primary_10_1109_TIA_2020_3028558 crossref_primary_10_1016_j_neucom_2019_05_005 crossref_primary_10_1007_s11042_023_16066_6 crossref_primary_10_1016_j_eswa_2018_06_033 crossref_primary_10_1016_j_procs_2020_07_101 crossref_primary_10_1080_10447318_2023_2254626 crossref_primary_10_3390_jtaer19020058 crossref_primary_10_1088_1742_6596_1815_1_012005 crossref_primary_10_1007_s13042_022_01681_w crossref_primary_10_3934_mbe_2023357 crossref_primary_10_1016_j_patcog_2018_06_006 crossref_primary_10_3390_info10120375 crossref_primary_10_1016_j_atech_2024_100594 crossref_primary_10_1016_j_neuropsychologia_2019_04_022 crossref_primary_10_1007_s00500_020_05501_7 crossref_primary_10_3390_s20041087 crossref_primary_10_1109_ACCESS_2019_2960769 crossref_primary_10_56532_mjsat_v4i1_195 crossref_primary_10_1088_1742_6596_887_1_012089 crossref_primary_10_1109_ACCESS_2018_2889852 crossref_primary_10_1007_s11760_019_01568_4 crossref_primary_10_1016_j_patcog_2019_07_007 crossref_primary_10_1088_1742_6596_1966_1_012027 crossref_primary_10_1007_s11277_024_10993_9 crossref_primary_10_1007_s00371_019_01705_7 crossref_primary_10_24017_science_2024_2_9 crossref_primary_10_1017_dap_2023_30 crossref_primary_10_1007_s11042_019_7530_7 crossref_primary_10_1007_s42979_023_02423_7 crossref_primary_10_1051_e3sconf_202014601003 crossref_primary_10_1145_3688000 crossref_primary_10_1177_2056305120924771 crossref_primary_10_3390_math10040645 crossref_primary_10_1016_j_jvcir_2020_102949 crossref_primary_10_1016_j_patrec_2017_10_022 crossref_primary_10_1155_2022_7450637 crossref_primary_10_1111_exsy_13670 crossref_primary_10_1007_s11760_022_02246_8 crossref_primary_10_1109_TAFFC_2021_3087222 crossref_primary_10_1016_j_dt_2021_05_017 crossref_primary_10_3390_brainsci11050548 crossref_primary_10_48175_IJARSCT_19257 crossref_primary_10_1155_2020_7954393 crossref_primary_10_1039_C9NR03450A crossref_primary_10_1016_j_optcom_2023_129287 crossref_primary_10_1016_j_patrec_2017_08_008 crossref_primary_10_1142_S0219691320500034 crossref_primary_10_1016_j_inffus_2018_06_003 crossref_primary_10_32604_csse_2022_019749 crossref_primary_10_1007_s11042_019_07959_6 crossref_primary_10_1016_j_chaos_2022_112429 crossref_primary_10_3390_app13137799 crossref_primary_10_1007_s12626_019_00059_9 crossref_primary_10_1109_TIFS_2020_3007327 crossref_primary_10_1155_2021_2689029 crossref_primary_10_3390_informatics7010006 crossref_primary_10_1016_j_apenergy_2021_117514 crossref_primary_10_1007_s10489_021_02254_0 crossref_primary_10_1016_j_tsep_2024_103197 crossref_primary_10_1017_S0954579419000312 crossref_primary_10_1142_S0219467822400058 crossref_primary_10_1007_s11042_019_08397_0 crossref_primary_10_1109_TAFFC_2018_2829707 crossref_primary_10_1109_TAFFC_2019_2953664 crossref_primary_10_1155_2022_4739897 crossref_primary_10_1007_s00521_017_3216_0 crossref_primary_10_1016_j_neucom_2018_12_037 crossref_primary_10_1007_s00521_019_04564_4 crossref_primary_10_1007_s11042_022_13117_2 crossref_primary_10_1109_TII_2020_3007629 crossref_primary_10_1007_s00521_022_08049_9 crossref_primary_10_1109_ACCESS_2019_2928364 crossref_primary_10_1016_j_engappai_2024_109014 crossref_primary_10_3390_electronics8030324 crossref_primary_10_1109_ACCESS_2019_2910605 crossref_primary_10_1007_s13735_023_00285_6 crossref_primary_10_1016_j_inffus_2022_03_009 crossref_primary_10_1109_ACCESS_2019_2907327 crossref_primary_10_1038_s41598_023_30442_0 crossref_primary_10_1007_s11042_023_16433_3 crossref_primary_10_1016_j_asoc_2021_107623 crossref_primary_10_1016_j_patrec_2017_06_025 crossref_primary_10_4236_jsip_2017_83009 crossref_primary_10_2139_ssrn_4120087 crossref_primary_10_3390_a15120444 crossref_primary_10_1364_OE_482489 crossref_primary_10_1007_s11042_018_6040_3 crossref_primary_10_1016_j_ifacol_2021_04_181 crossref_primary_10_1016_j_patcog_2020_107281 crossref_primary_10_1016_j_dibe_2020_100028 crossref_primary_10_1016_j_knosys_2022_108136 crossref_primary_10_3390_s20236716 crossref_primary_10_1016_j_compeleceng_2023_108583 crossref_primary_10_1142_S0218001422520280 crossref_primary_10_1007_s11042_023_15570_z crossref_primary_10_1007_s11831_021_09551_4 crossref_primary_10_3390_s23156799 crossref_primary_10_1109_ACCESS_2021_3078258 crossref_primary_10_1007_s12652_023_04586_w crossref_primary_10_1007_s11760_025_03889_z crossref_primary_10_1016_j_patcog_2024_110741 crossref_primary_10_1007_s11042_020_09261_2 crossref_primary_10_1016_j_eswa_2020_113459 crossref_primary_10_3934_mbe_2023042 crossref_primary_10_1007_s12193_023_00410_z crossref_primary_10_1016_j_asoc_2018_11_046 crossref_primary_10_1049_iet_bmt_2017_0160 crossref_primary_10_3233_IDA_194965 crossref_primary_10_3390_s21196438 crossref_primary_10_24012_dumf_679793 crossref_primary_10_1038_s41598_023_48250_x crossref_primary_10_3390_s23052455 crossref_primary_10_1007_s11042_020_08901_x crossref_primary_10_1007_s00521_021_06613_3 crossref_primary_10_1016_j_procs_2017_10_038 crossref_primary_10_1117_1_JEI_31_3_033039 crossref_primary_10_1016_j_apacoust_2020_107840 crossref_primary_10_3390_s23073577 crossref_primary_10_1007_s11571_022_09879_y crossref_primary_10_1016_j_ins_2021_10_005 crossref_primary_10_1007_s11042_024_19364_9 crossref_primary_10_3390_sym12020319 crossref_primary_10_1007_s11042_018_6839_y crossref_primary_10_1016_j_imavis_2020_104038 crossref_primary_10_3390_app10051897 crossref_primary_10_1109_TKDE_2020_3047894 crossref_primary_10_1080_03772063_2021_1902868 crossref_primary_10_1016_j_eswa_2021_114991 crossref_primary_10_1016_j_procs_2024_09_687 crossref_primary_10_3390_pr12020279 crossref_primary_10_1049_iet_ipr_2020_0591 crossref_primary_10_1049_iet_ipr_2019_1188 crossref_primary_10_3390_educsci13090914 crossref_primary_10_1080_13682199_2022_2157956 crossref_primary_10_1088_1742_6596_2083_3_032030 crossref_primary_10_1007_s10916_019_1500_5 crossref_primary_10_1109_ACCESS_2020_3015917 crossref_primary_10_1142_S0218001423570021 crossref_primary_10_1007_s11227_018_2554_8 crossref_primary_10_1109_TNSM_2020_3018303 crossref_primary_10_1016_j_patcog_2018_07_016 crossref_primary_10_1155_2022_8421434 crossref_primary_10_1016_j_neucom_2020_03_036 crossref_primary_10_1109_TCYB_2019_2917049 crossref_primary_10_3390_software2020009 crossref_primary_10_1007_s11760_018_1236_6 crossref_primary_10_1016_j_patcog_2019_04_007 crossref_primary_10_1007_s11042_018_5909_5 crossref_primary_10_1007_s42452_019_1538_5 crossref_primary_10_3390_sym10110626 crossref_primary_10_1007_s00521_024_09840_6 crossref_primary_10_1007_s10462_022_10160_1 crossref_primary_10_3390_bs12020055 crossref_primary_10_1007_s11042_017_5105_z crossref_primary_10_4236_jcc_2023_1112006 crossref_primary_10_1108_JCMARS_07_2022_0018 crossref_primary_10_1016_j_bspc_2021_102459 crossref_primary_10_1109_JPROC_2017_2684460 crossref_primary_10_32604_cmc_2024_047326 crossref_primary_10_1007_s12652_022_03843_8 crossref_primary_10_1108_JEIM_03_2022_0074 crossref_primary_10_1155_2021_9940148 crossref_primary_10_1016_j_dsp_2023_104082 crossref_primary_10_31209_2018_100000014 crossref_primary_10_1007_s00371_019_01627_4 crossref_primary_10_3390_s18113993 crossref_primary_10_1145_3478078 crossref_primary_10_1007_s11036_019_01366_9 crossref_primary_10_1080_21642583_2019_1647577 crossref_primary_10_1007_s11554_021_01071_5 crossref_primary_10_1049_el_2017_3538 crossref_primary_10_1155_2020_7646527 crossref_primary_10_1186_s13640_017_0212_3 crossref_primary_10_1007_s11042_021_10951_8 crossref_primary_10_1016_j_ijcce_2024_05_003 crossref_primary_10_1515_sagmb_2024_0004 crossref_primary_10_1007_s00521_019_04437_w crossref_primary_10_1109_ACCESS_2024_3422383 crossref_primary_10_1016_j_neucom_2019_04_050 crossref_primary_10_1088_1361_6579_ab55b3 crossref_primary_10_1093_pnasnexus_pgac039 crossref_primary_10_1142_S0129065721500428 crossref_primary_10_1063_5_0172297 crossref_primary_10_3233_JIFS_210762 crossref_primary_10_32604_cmc_2024_048304 crossref_primary_10_1109_ACCESS_2022_3204696 crossref_primary_10_3233_JIFS_212022 crossref_primary_10_3389_fbioe_2021_703048 crossref_primary_10_1109_ACCESS_2020_3012703 crossref_primary_10_1155_2022_9261438 crossref_primary_10_1016_j_yebeh_2018_02_010 crossref_primary_10_37391_ijeer_110419 crossref_primary_10_1177_00220221231196321 crossref_primary_10_3389_fpsyg_2021_713545 crossref_primary_10_1007_s42979_021_00868_2 crossref_primary_10_1016_j_neucom_2017_07_021 crossref_primary_10_1007_s11042_022_13799_8 crossref_primary_10_1007_s12559_019_09654_y crossref_primary_10_3390_sym15061228 crossref_primary_10_1177_18761364241296439 crossref_primary_10_1007_s00138_018_0967_2 crossref_primary_10_1016_j_cosrev_2021_100374 crossref_primary_10_1109_TMC_2020_3001989 crossref_primary_10_1007_s00530_019_00628_6 crossref_primary_10_1016_j_neucom_2023_126866 crossref_primary_10_1145_3200572 crossref_primary_10_1007_s11042_022_12871_7 crossref_primary_10_1007_s11227_021_04058_y crossref_primary_10_1155_2017_9846707 crossref_primary_10_1016_j_neucom_2020_12_070 crossref_primary_10_1016_j_patcog_2021_108207 crossref_primary_10_1007_s11042_020_09726_4 crossref_primary_10_1016_j_ins_2020_02_047 crossref_primary_10_1109_ACCESS_2022_3199358 crossref_primary_10_1016_j_compbiomed_2023_107457 crossref_primary_10_3390_app15010166 crossref_primary_10_1007_s10489_019_01427_2 crossref_primary_10_1016_j_jpdc_2019_04_017 crossref_primary_10_1016_j_patcog_2018_04_016 crossref_primary_10_1016_j_ifacol_2020_12_2754 crossref_primary_10_1016_j_imavis_2022_104572 crossref_primary_10_1109_JIOT_2020_3044031 crossref_primary_10_1016_j_asoc_2017_12_022 crossref_primary_10_1109_ACCESS_2017_2784096 crossref_primary_10_1142_S021800142056008X crossref_primary_10_3390_su13169066 crossref_primary_10_1007_s10639_019_10004_6 crossref_primary_10_1166_jmihi_2022_3938 crossref_primary_10_1007_s00371_018_1585_8 crossref_primary_10_1016_j_patcog_2017_10_022 crossref_primary_10_1016_j_dsp_2023_103978 crossref_primary_10_3934_mbe_2023050 crossref_primary_10_1109_TCDS_2022_3150019 crossref_primary_10_7717_peerj_cs_894 crossref_primary_10_1109_TCYB_2017_2788081 crossref_primary_10_1109_TCSVT_2021_3073558 crossref_primary_10_1109_ACCESS_2019_2907271 crossref_primary_10_1007_s00371_022_02413_5 crossref_primary_10_1007_s12652_019_01310_5 crossref_primary_10_32604_cmc_2024_048688 crossref_primary_10_1007_s11042_019_07860_2 crossref_primary_10_1109_TAFFC_2019_2949559 crossref_primary_10_1007_s00530_022_00984_w crossref_primary_10_1007_s11277_022_09616_y crossref_primary_10_1155_2020_8886872 crossref_primary_10_1049_iet_ipr_2019_0293 crossref_primary_10_1109_TAFFC_2021_3106254 crossref_primary_10_1109_TIP_2020_2991510 crossref_primary_10_3233_JIFS_200713 crossref_primary_10_1016_j_patcog_2019_107038 crossref_primary_10_1007_s00779_019_01235_y crossref_primary_10_1007_s10489_019_01491_8 crossref_primary_10_1080_02522667_2020_1809126 crossref_primary_10_1016_j_jvcir_2019_04_009 crossref_primary_10_1016_j_patcog_2017_10_013 crossref_primary_10_1007_s11042_017_5489_9 crossref_primary_10_1155_2023_9790005 crossref_primary_10_1016_j_engappai_2022_105486 crossref_primary_10_2478_amns_2021_1_00011 crossref_primary_10_1088_1742_6596_1237_3_032048 crossref_primary_10_1007_s00521_019_04089_w crossref_primary_10_1016_j_ypmed_2023_107580 crossref_primary_10_1016_j_engappai_2023_106637 crossref_primary_10_1016_j_conengprac_2020_104630 crossref_primary_10_1016_j_patcog_2017_06_009 crossref_primary_10_1016_j_ins_2017_10_044 crossref_primary_10_1109_TMM_2020_2966858 crossref_primary_10_1142_S146902682250002X crossref_primary_10_1109_TSMC_2019_2897330 crossref_primary_10_1049_joe_2020_0183 crossref_primary_10_1088_1742_6596_2319_1_012033 crossref_primary_10_1109_ACCESS_2021_3113464 crossref_primary_10_2139_ssrn_3370149 crossref_primary_10_1109_TMM_2021_3121547 crossref_primary_10_1007_s00500_023_08531_z crossref_primary_10_1016_j_displa_2022_102330 crossref_primary_10_1142_S0129183121501370 crossref_primary_10_1109_ACCESS_2018_2870063 crossref_primary_10_1007_s11263_018_1097_z crossref_primary_10_3233_JIFS_179049 crossref_primary_10_1016_j_eswa_2023_119957 crossref_primary_10_1016_j_neucom_2018_06_025 crossref_primary_10_1109_TIM_2021_3072144 crossref_primary_10_3390_electronics9111892 crossref_primary_10_1016_j_jvcir_2022_103458 crossref_primary_10_1016_j_patcog_2020_107208 crossref_primary_10_1186_s13640_020_00507_5 crossref_primary_10_1109_ACCESS_2021_3108029 crossref_primary_10_1109_TSMC_2023_3301001 crossref_primary_10_1016_j_cogsys_2018_06_017 crossref_primary_10_3390_app122312134 crossref_primary_10_1007_s00371_019_01635_4 crossref_primary_10_2139_ssrn_4126220 crossref_primary_10_3390_electronics8121487 crossref_primary_10_1016_j_eswa_2018_05_016 crossref_primary_10_1016_j_artmed_2021_102021 crossref_primary_10_1117_1_JEI_31_5_051416 crossref_primary_10_2139_ssrn_4482752 crossref_primary_10_1007_s11334_022_00437_7 crossref_primary_10_1142_S0218001422560079 crossref_primary_10_1016_j_ijleo_2019_01_020 crossref_primary_10_1016_j_neucom_2020_01_067 crossref_primary_10_1007_s10115_018_1176_z crossref_primary_10_1007_s11760_018_1388_4 crossref_primary_10_1007_s12626_020_00061_6 crossref_primary_10_1016_j_aej_2023_01_017 crossref_primary_10_1016_j_jvcir_2019_05_009 crossref_primary_10_1109_TAFFC_2023_3286838 crossref_primary_10_3233_IA_180015 crossref_primary_10_1007_s11042_022_13940_7 crossref_primary_10_1007_s00371_021_02069_7 crossref_primary_10_1049_iet_ipr_2018_0009 crossref_primary_10_1049_ipr2_12817 crossref_primary_10_1055_a_1866_2943 crossref_primary_10_20965_jaciii_2020_p0792 crossref_primary_10_4018_IJDA_297520 crossref_primary_10_1016_j_procs_2020_08_065 crossref_primary_10_1016_j_jvcir_2021_103062 crossref_primary_10_1109_ACCESS_2019_2901521 crossref_primary_10_1109_ACCESS_2021_3054332 crossref_primary_10_3390_s24113484 crossref_primary_10_1109_TAFFC_2018_2880201 crossref_primary_10_32628_CSEIT228111 crossref_primary_10_1016_j_neunet_2018_05_016 crossref_primary_10_3390_s21030833 crossref_primary_10_3233_IDT_190181 crossref_primary_10_3390_app11041428 crossref_primary_10_1155_2023_6859284 crossref_primary_10_1016_j_entcom_2023_100609 crossref_primary_10_1155_2021_9991531 crossref_primary_10_1007_s12652_017_0636_8 crossref_primary_10_1007_s11042_022_12058_0 crossref_primary_10_1016_j_compeleceng_2021_107196 crossref_primary_10_3390_s23115304 crossref_primary_10_7717_peerj_cs_1216 crossref_primary_10_1140_epjp_s13360_023_04128_5 crossref_primary_10_1016_j_compeleceng_2018_04_006 crossref_primary_10_1109_TBIOM_2023_3250832 crossref_primary_10_36548_jtcsst_2021_2_003 crossref_primary_10_1002_spe_2955 crossref_primary_10_1007_s40031_022_00746_2 crossref_primary_10_1016_j_neucom_2022_04_019 crossref_primary_10_1007_s42488_024_00129_w crossref_primary_10_1109_ACCESS_2018_2858278 crossref_primary_10_1007_s11277_023_10463_8 crossref_primary_10_1016_j_image_2022_116889 crossref_primary_10_1109_ACCESS_2021_3051403 crossref_primary_10_1109_TCSVT_2021_3063052 crossref_primary_10_1007_s11042_022_13327_8 |
Cites_doi | 10.1109/TPAMI.2004.97 10.1109/ICPR.2002.1048231 10.1109/SACI.2013.6608958 10.1109/ICDAR.2003.1227801 10.1016/j.patcog.2015.12.016 10.1007/978-3-642-35289-8_25 10.1007/s11263-010-0380-4 10.1016/j.neucom.2015.02.011 10.1109/IROS.2005.1545532 10.1007/978-0-85729-932-1 10.1109/TAFFC.2014.2317711 10.1109/ICIP.2014.7026204 10.1109/LSP.2011.2171949 10.1109/CVPR.2012.6247974 10.1016/j.patrec.2015.05.005 10.1016/j.patcog.2015.04.025 10.1145/2557642.2579369 10.1109/TIP.2015.2405346 10.1016/j.eswa.2012.07.074 10.1109/CVPR.2014.226 10.1017/CBO9781139833813 10.1016/j.neucom.2015.09.083 10.1109/34.817413 10.1109/AFGR.2000.840611 10.1016/j.imavis.2008.08.005 10.1016/S0921-8890(99)00103-7 10.1109/FG.2015.7163106 10.1109/ICME.2012.61 10.1016/j.patcog.2011.02.012 10.1109/CVPR.2007.383059 10.1007/978-3-319-25751-8_32 10.7551/mitpress/7496.003.0016 10.1109/TIP.2012.2235848 10.1109/SIBGRAPI.2015.14 10.1162/08997660260293319 10.1109/ICCE.2014.6776135 10.1109/ICET.2013.6743520 10.1109/ICCVW.2011.6130508 10.1109/CVPRW.2010.5543262 10.1109/MCG.2012.41 10.14569/IJACSA.2014.051215 10.1109/CVPR.2014.233 10.1109/CVPR.2005.297 10.1109/AFGR.1998.670990 10.1109/IROS.2006.281791 10.1016/j.patcog.2011.05.006 10.1016/S0893-6080(03)00115-1 10.1109/ICCVW.2011.6130446 10.1109/WACV.2014.6835736 10.1007/978-3-642-33783-3_58 10.1109/ICICS.2011.6173539 10.1016/j.neucom.2011.01.008 10.1109/AFGR.1998.670949 10.1007/s00530-014-0400-2 10.1109/TVLSI.2010.2069575 10.1007/s11042-014-2333-3 10.1109/CNMT.2009.5374770 10.1016/j.ijleo.2015.11.187 10.1109/MMSP.1997.602642 10.1109/CNT.2014.7062726 10.1016/j.patcog.2016.01.032 10.1109/ICIP.2014.7025686 10.1016/j.patcog.2015.04.012 10.5244/C.29.41 10.1109/CVPR.2013.442 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd |
Copyright_xml | – notice: 2016 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.patcog.2016.07.026 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-5142 |
EndPage | 628 |
ExternalDocumentID | 10_1016_j_patcog_2016_07_026 S0031320316301753 |
GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-49b5ccbdbc101b42c769c4df4e2469f6c38cab64e5d649e126b9e2098a415b7b3 |
IEDL.DBID | .~1 |
ISSN | 0031-3203 |
IngestDate | Thu Jul 03 08:26:48 EDT 2025 Thu Apr 24 23:02:55 EDT 2025 Fri Feb 23 02:25:23 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Facial expression recognition Computer vision Expression specific features Convolutional Neural Networks Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-49b5ccbdbc101b42c769c4df4e2469f6c38cab64e5d649e126b9e2098a415b7b3 |
PageCount | 19 |
ParticipantIDs | crossref_citationtrail_10_1016_j_patcog_2016_07_026 crossref_primary_10_1016_j_patcog_2016_07_026 elsevier_sciencedirect_doi_10_1016_j_patcog_2016_07_026 |
PublicationCentury | 2000 |
PublicationDate | January 2017 2017-01-00 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: January 2017 |
PublicationDecade | 2010 |
PublicationTitle | Pattern recognition |
PublicationYear | 2017 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | W. Liu, C. Song, Y. Wang, Facial expression recognition based on discriminative dictionary learning, in: 2012 21st International Conference on Pattern Recognition (ICPR), 2012, pp. 1839–1842. Y.-H. Byeon, K.-C. Kwak, Facial expression recognition using 3d convolutional neural network. International Journal of Advanced Computer Science and Applications(IJACSA), 5 (2014). Chen, Wong, Chiu (bib18) 2011; 19 Y. Bengio, I.J. Goodfellow, A. Courville, Deep Learning, MIT Press, Cambridge, Massachusetts, USA, 2015. Rivera, Castillo, Chae (bib43) 2013; 22 Y. Bengio, Y. LeCun, Scaling learning algorithms towards AI, in: L. Bottou, O. Chapelle, D. DeCoste, J. Weston (Eds.), Large-Scale Kernel Machines, MIT Press, Cambridge, Massachusetts, USA, 2007 (URL S. Arivazhagan, R.A. Priyadharshini, S. Sowmiya, Facial expression recognition based on local directional number pattern and anfis classifier, in: 2014 International Conference on Communication and Network Technologies (ICCNT), 2014, pp. 62–67 M. Bartlett, G. Littlewort, M. Frank, C. Lainscsek, I. Fasel, J. Movellan, Recognizing facial expression: machine learning and application to spontaneous behavior, in: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005 (CVPR 2005), vol. 2, 2005, pp. 568–573. I. Song, H.-J. Kim, P.B. Jeon, Deep learning for real-time robust facial expression recognition on a smartphone, in: International Conference on Consumer Electronics (ICCE), Institute of Electrical & Electronics Engineers (IEEE), Las Vegas, NV, USA, 2014. Gu, Xiang, Venkatesh, Huang, Lin (bib67) 2012; 45 P. Zhao-yi, W. Zhi-qiang, Z. Yu, Application of mean shift algorithm in real-time facial expression recognition, in: International Symposium on Computer Network and Multimedia Technology, 2009 (CNMT 2009), 2009, pp. 1–4. P. Lucey, J. Cohn, T. Kanade, J. Saragih, Z. Ambadar, I. Matthews, The extended Cohn–Kanade dataset (CK+): a complete dataset for action unit and emotion-specified expression, in: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2010, pp. 94–101. Lin, Song, Quynh, He, Chen (bib28) 2012; 32 S. Demyanov, J. Bailey, R. Kotagiri, C. Leckie, Invariant Backpropagation: How To Train a Transformation-Invariant Neural Network J.-J.J. Lien, T. Kanade, J. Cohn, C. Li, Detection, tracking, and classification of action units in facial expression, J. Robot. Auton. Syst. 31(3), 2000, 131-146 D.C. Cirean, U. Meier, J. Masci, L.M. Gambardella, J. Schmidhuber, Flexible, high performance convolutional neural networks for image classification, in: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence (IJCAI'11), vol. 2, AAAI Press, Barcelona, Catalonia, Spain, 2011, pp. 1237–1242. X. Glorot, A. Bordes, Y. Bengio, Deep sparse rectifier neural networks, in: G.J. Gordon, D.B. Dunson (Eds.), Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics (AISTATS-11), vol. 15, 2011, pp. 315–323. Zavaschi, Britto, Oliveira, Koerich (bib44) 2013; 40 Garcia, Delakis (bib19) 2004; 26 S. Jain, C. Hu, J. Aggarwal, Facial expression recognition with temporal modeling of shapes, in: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), 2011, pp. 1642–1649 X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in: Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS10), Society for Artificial Intelligence and Statistics, Sardinia, Italy, 2010. J.-I. Choi, C.-W. La, P.-K. Rhee, Y.-L. Bae, Face and eye location algorithms for visual user interface, in: Proceedings of First Signal Processing Society Workshop on Multimedia Signal Processing, Institute of Electrical & Electronics Engineers (IEEE), Princeton, NJ, USA, 1997. M. Demirkus, D. Precup, J. Clark, T. Arbel, Multi-layer temporal graphical model for head pose estimation in real-world videos, in: 2014 IEEE International Conference on Image Processing (ICIP), 2014, pp. 3392–3396. M. Valstar, M. Pantic, Induced disgust, happiness and surprise: an addition to the mmi facial expression database, in: Proceedings of the 3rd International Workshop on EMOTION (Satellite of LREC): Corpora for Research on Emotion and Affect, 2010, p. 65. P. Yang, Q. Liu, D. Metaxas, Boosting coded dynamic features for facial action units and facial expression recognition, in: IEEE Conference on Computer Vision and Pattern Recognition, 2007 (CVPR’07), 2007, pp. 1–6. B. Fasel, Robust face analysis using convolutional neural networks, in: Proceedings of the 16th International Conference on Pattern Recognition, 2002, vol. 2, 2002, pp. 40–43. F. Beat, Head-pose invariant facial expression recognition using convolutional neural networks, in: Proceedings of the Fourth IEEE International Conference on Multimodal Interfaces, 2002, 2002, pp. 529–534. Lecun, Bottou, Bengio, Haffner (bib36) 1998; 86 Liu, Li, Shan, Chen (bib12) 2015; 159 A. Zafer, R. Nawaz, J. Iqbal, Face recognition with expression variation via robust ncc, in: 2013 IEEE 9th International Conference on Emerging Technologies (ICET), 2013, pp. 1–5 C. Darwin, The Expression of the Emotions in Man and Animals, CreateSpace Independent Publishing Platform, 2012. L. Zhong, Q. Liu, P. Yang, B. Liu, J. Huang, D. Metaxas, Learning active facial patches for expression analysis, in: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012, pp. 2562–2569. . J.Y.R. Cornejo, H. Pedrini, F. Florez-Revuelta, Facial expression recognition with occlusions based on geometric representation, in: Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications: Proceedings of the 20th Iberoamerican Congress (CIARP 2015), Montevideo, Uruguay, November 9–12, 2015, Springer International Publishing, Cham, 2015, pp. 263–270. Lee, Baddar, Ro (bib69) 2016; 54 L. Bottou, Stochastic Gradient Descent Tricks, Springer, New York, NY, USA. 2012. P. Liu, S. Han, Z. Meng, Y. Tong, Facial expression recognition via a boosted deep belief network, in: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014, pp. 1805–1812. A. Dhall, R. Goecke, S. Lucey, T. Gedeon, Static facial expression analysis in tough conditions: data, evaluation protocol and benchmark, in: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), IEEE, Barcelona, Catalonia, Spain, 2011, pp. 2106–2112. Zhang, Zhang, Ma, Guan, Gong (bib17) 2015; 48 S. Cheng, A. Asthana, S. Zafeiriou, J. Shen, M. Pantic, Real-time generic face tracking in the wild with cuda, in: Proceedings of the 5th ACM Multimedia Systems Conference, ACM, Singapore, Singapore 2014, pp. 148–151. F.D. la Torre, W.S. Chu, X. Xiong, F. Vicente, X. Ding, J. Cohn, Intraface, in: 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), vol. 1, 2015, pp. 1–8 Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, T. Darrell, Caffe: Convolutional Architecture for Fast Feature Embedding C.-D. Caleanu, Face expression recognition: a brief overview of the last decade, in: 2013 IEEE 8th International Symposium on Applied Computational Intelligence and Informatics (SACI), 2013, pp. 157–161. Siddiqi, Ali, Idris, Khan, Kim, Whang, Lee (bib81) 2014; 75 Ekman, Friesen (bib66) 1978 A.T. Lopes, E. de Aguiar, T.O. Santos, A facial expression recognition system using convolutional networks, in: 2015 28th SIBGRAPI Conference on Graphics, Patterns and Images, Institute of Electrical & Electronics Engineers (IEEE), Salvador, Bahia, Brasil, 2015. A. Asthana, S. Zafeiriou, S. Cheng, M. Pantic, Robust discriminative response map fitting with constrained local models, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 3444–3451. P. Liu, M. Reale, L. Yin, 3d head pose estimation based on scene flow and generic head model, in: 2012 IEEE International Conference on Multimedia and Expo (ICME), 2012, pp. 794–799. Meguid, Levine (bib49) 2014; 5 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bib52) 2014; 15 Lyons, Budynek, Akamatsu (bib5) 1999; 21 Y. Wu, H. Liu, H. Zha, Modeling facial expression space for recognition, in: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005 (IROS 2005), 2005, pp. 1968–1973. S. Rifai, Y. Bengio, A. Courville, P. Vincent, M. Mirza, Disentangling factors of variation for facial expression recognition, in: A. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, C. Schmid (Eds.), Computer Vision – ECCV 2012, Lecture Notes in Computer Science, vol. 7577, Springer, Berlin Heidelberg, 2012, pp. 808–822. Patil, Kothari, Bhurchandi (bib39) 2016; 127 B.A. Wandell, Foundations of Vision, 1st ed., Sinauer Associates Inc, Sunderland, Mass, 1995. Maalej, Amor, Daoudi, Srivastava, Berretti (bib74) 2011; 44 T. Kanade, Y. Tian, J.F. Cohn, Comprehensive database for facial expression analysis, in: Proceedings of the Fourth IEEE International Conference on Automatic Face and Gesture Recognition 2000 (FG’00), IEEE Computer Society, Washington, DC, USA, 2000, p. 46. S.Z. Li, A.K. Jain, Handbook of Face Recognition, Springer Science & Business Media, Secaucus, NJ, USA, 2011. C. Turan, K. M. Lam, Region-based feature fusion for facial-expression recognition, in: 2014 IEEE International Conference on Image Processing (ICIP), 2014, pp. 5966–5970 M. Xue, A. Mian, W. Liu, L. Li, Fully automatic 3d facial expression recognition using local depth features, in: IEEE Winter Conference on Applications of Computer Vision, 2014, pp. 1096–1103 Saragih, Lucey, Cohn (bib59) 2010; 91 J. Cohn A. Zlochower, A Computerized Analysis of Facial Expression: Feasibility of Automated Discrimination, vol. 2. American Psychological Society, 1995, p. 6. Zhang, Yi, Lei, Li (bib20) 2012; 19 Matsugu, Mori, Mitari, Kaneda (bib32) 2003; 16 M. Lyons, S. Akamatsu, M. Kamachi, J. Gyoba, Coding facial expressions with gabor wavelets, in: Proceedings of the T Fan (10.1016/j.patcog.2016.07.026_bib16) 2015; 48 Utgoff (10.1016/j.patcog.2016.07.026_bib34) 2002; 14 10.1016/j.patcog.2016.07.026_bib35 10.1016/j.patcog.2016.07.026_bib79 10.1016/j.patcog.2016.07.026_bib38 10.1016/j.patcog.2016.07.026_bib37 Garcia (10.1016/j.patcog.2016.07.026_bib19) 2004; 26 10.1016/j.patcog.2016.07.026_bib83 10.1016/j.patcog.2016.07.026_bib82 10.1016/j.patcog.2016.07.026_bib40 10.1016/j.patcog.2016.07.026_bib42 10.1016/j.patcog.2016.07.026_bib45 Patil (10.1016/j.patcog.2016.07.026_bib39) 2016; 127 Siddiqi (10.1016/j.patcog.2016.07.026_bib78) 2015; 24 Liu (10.1016/j.patcog.2016.07.026_bib12) 2015; 159 Lee (10.1016/j.patcog.2016.07.026_bib69) 2016; 54 10.1016/j.patcog.2016.07.026_bib47 Shan (10.1016/j.patcog.2016.07.026_bib8) 2009; 27 10.1016/j.patcog.2016.07.026_bib46 Siddiqi (10.1016/j.patcog.2016.07.026_bib81) 2014; 75 10.1016/j.patcog.2016.07.026_bib48 Ali (10.1016/j.patcog.2016.07.026_bib13) 2016; 55 Gu (10.1016/j.patcog.2016.07.026_bib67) 2012; 45 10.1016/j.patcog.2016.07.026_bib50 Chen (10.1016/j.patcog.2016.07.026_bib18) 2011; 19 10.1016/j.patcog.2016.07.026_bib51 10.1016/j.patcog.2016.07.026_bib9 10.1016/j.patcog.2016.07.026_bib10 10.1016/j.patcog.2016.07.026_bib54 Lecun (10.1016/j.patcog.2016.07.026_bib36) 1998; 86 10.1016/j.patcog.2016.07.026_bib53 10.1016/j.patcog.2016.07.026_bib7 10.1016/j.patcog.2016.07.026_bib56 10.1016/j.patcog.2016.07.026_bib6 10.1016/j.patcog.2016.07.026_bib11 10.1016/j.patcog.2016.07.026_bib55 Sha (10.1016/j.patcog.2016.07.026_bib73) 2011; 74 10.1016/j.patcog.2016.07.026_bib4 10.1016/j.patcog.2016.07.026_bib3 10.1016/j.patcog.2016.07.026_bib2 10.1016/j.patcog.2016.07.026_bib1 Zavaschi (10.1016/j.patcog.2016.07.026_bib44) 2013; 40 Mery (10.1016/j.patcog.2016.07.026_bib77) 2015; 68 Maalej (10.1016/j.patcog.2016.07.026_bib74) 2011; 44 10.1016/j.patcog.2016.07.026_bib14 10.1016/j.patcog.2016.07.026_bib58 Rivera (10.1016/j.patcog.2016.07.026_bib43) 2013; 22 10.1016/j.patcog.2016.07.026_bib57 10.1016/j.patcog.2016.07.026_bib15 Matsugu (10.1016/j.patcog.2016.07.026_bib32) 2003; 16 Srivastava (10.1016/j.patcog.2016.07.026_bib52) 2014; 15 10.1016/j.patcog.2016.07.026_bib61 Lin (10.1016/j.patcog.2016.07.026_bib28) 2012; 32 Wang (10.1016/j.patcog.2016.07.026_bib41) 2016; 174 10.1016/j.patcog.2016.07.026_bib60 10.1016/j.patcog.2016.07.026_bib63 10.1016/j.patcog.2016.07.026_bib62 10.1016/j.patcog.2016.07.026_bib21 10.1016/j.patcog.2016.07.026_bib65 10.1016/j.patcog.2016.07.026_bib64 10.1016/j.patcog.2016.07.026_bib23 10.1016/j.patcog.2016.07.026_bib22 Lyons (10.1016/j.patcog.2016.07.026_bib5) 1999; 21 Saragih (10.1016/j.patcog.2016.07.026_bib59) 2010; 91 Ekman (10.1016/j.patcog.2016.07.026_bib66) 1978 10.1016/j.patcog.2016.07.026_bib25 10.1016/j.patcog.2016.07.026_bib24 10.1016/j.patcog.2016.07.026_bib68 10.1016/j.patcog.2016.07.026_bib27 10.1016/j.patcog.2016.07.026_bib26 10.1016/j.patcog.2016.07.026_bib29 Zhang (10.1016/j.patcog.2016.07.026_bib17) 2015; 48 Zhang (10.1016/j.patcog.2016.07.026_bib20) 2012; 19 Siddiqi (10.1016/j.patcog.2016.07.026_bib80) 2014; 21 10.1016/j.patcog.2016.07.026_bib72 10.1016/j.patcog.2016.07.026_bib71 10.1016/j.patcog.2016.07.026_bib30 10.1016/j.patcog.2016.07.026_bib76 10.1016/j.patcog.2016.07.026_bib31 10.1016/j.patcog.2016.07.026_bib33 Meguid (10.1016/j.patcog.2016.07.026_bib49) 2014; 5 10.1016/j.patcog.2016.07.026_bib70 |
References_xml | – volume: 45 start-page: 80 year: 2012 end-page: 91 ident: bib67 article-title: Facial expression recognition using radial encoding of local gabor features and classifier synthesis publication-title: Pattern Recognit. – reference: S. Jain, C. Hu, J. Aggarwal, Facial expression recognition with temporal modeling of shapes, in: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), 2011, pp. 1642–1649, – volume: 40 start-page: 646 year: 2013 end-page: 655 ident: bib44 article-title: Fusion of feature sets and classifiers for facial expression recognition publication-title: Expert Syst. Appl. – reference: Y.-H. Byeon, K.-C. Kwak, Facial expression recognition using 3d convolutional neural network. International Journal of Advanced Computer Science and Applications(IJACSA), 5 (2014). – reference: J.-I. Choi, C.-W. La, P.-K. Rhee, Y.-L. Bae, Face and eye location algorithms for visual user interface, in: Proceedings of First Signal Processing Society Workshop on Multimedia Signal Processing, Institute of Electrical & Electronics Engineers (IEEE), Princeton, NJ, USA, 1997. – reference: P. Yang, Q. Liu, D. Metaxas, Boosting coded dynamic features for facial action units and facial expression recognition, in: IEEE Conference on Computer Vision and Pattern Recognition, 2007 (CVPR’07), 2007, pp. 1–6. – reference: P. Burkert, F. Trier, M.Z. Afzal, A. Dengel, M. Liwicki, Dexpression: Deep Convolutional Neural Network for Expression Recognition, CoRR abs/1509.05371 (URL 〈 – volume: 22 start-page: 1740 year: 2013 end-page: 1752 ident: bib43 article-title: Local directional number pattern for face analysis publication-title: IEEE Trans. Image Process. – reference: M. Xue, A. Mian, W. Liu, L. Li, Fully automatic 3d facial expression recognition using local depth features, in: IEEE Winter Conference on Applications of Computer Vision, 2014, pp. 1096–1103 – reference: P. Lucey, J. Cohn, T. Kanade, J. Saragih, Z. Ambadar, I. Matthews, The extended Cohn–Kanade dataset (CK+): a complete dataset for action unit and emotion-specified expression, in: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2010, pp. 94–101. – volume: 21 start-page: 541 year: 2014 end-page: 555 ident: bib80 article-title: Facial expression recognition using active contour-based face detection, facial movement-based feature extraction, and non-linear feature selection publication-title: Multimed. Syst. – reference: C. Darwin, The Expression of the Emotions in Man and Animals, CreateSpace Independent Publishing Platform, 2012. – reference: C. Turan, K. M. Lam, Region-based feature fusion for facial-expression recognition, in: 2014 IEEE International Conference on Image Processing (ICIP), 2014, pp. 5966–5970 ( – year: 1978 ident: bib66 article-title: Facial Action Coding System: A Technique for the Measurement of Facial Movement – reference: J.Y.R. Cornejo, H. Pedrini, F. Florez-Revuelta, Facial expression recognition with occlusions based on geometric representation, in: Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications: Proceedings of the 20th Iberoamerican Congress (CIARP 2015), Montevideo, Uruguay, November 9–12, 2015, Springer International Publishing, Cham, 2015, pp. 263–270. – reference: C.-D. Caleanu, Face expression recognition: a brief overview of the last decade, in: 2013 IEEE 8th International Symposium on Applied Computational Intelligence and Informatics (SACI), 2013, pp. 157–161. – volume: 74 start-page: 2135 year: 2011 end-page: 2141 ident: bib73 article-title: Feature level analysis for 3d facial expression recognition publication-title: Neurocomputing – volume: 21 start-page: 1357 year: 1999 end-page: 1362 ident: bib5 article-title: Automatic classification of single facial images publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: P. Liu, M. Reale, L. Yin, 3d head pose estimation based on scene flow and generic head model, in: 2012 IEEE International Conference on Multimedia and Expo (ICME), 2012, pp. 794–799. – reference: M. Valstar, M. Pantic, Induced disgust, happiness and surprise: an addition to the mmi facial expression database, in: Proceedings of the 3rd International Workshop on EMOTION (Satellite of LREC): Corpora for Research on Emotion and Affect, 2010, p. 65. – volume: 26 start-page: 1408 year: 2004 end-page: 1423 ident: bib19 article-title: Convolutional face finder publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: P. Zhao-yi, W. Zhi-qiang, Z. Yu, Application of mean shift algorithm in real-time facial expression recognition, in: International Symposium on Computer Network and Multimedia Technology, 2009 (CNMT 2009), 2009, pp. 1–4. – reference: A.T. Lopes, E. de Aguiar, T.O. Santos, A facial expression recognition system using convolutional networks, in: 2015 28th SIBGRAPI Conference on Graphics, Patterns and Images, Institute of Electrical & Electronics Engineers (IEEE), Salvador, Bahia, Brasil, 2015. – reference: F.D. la Torre, W.S. Chu, X. Xiong, F. Vicente, X. Ding, J. Cohn, Intraface, in: 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), vol. 1, 2015, pp. 1–8 ( – reference: B.A. Wandell, Foundations of Vision, 1st ed., Sinauer Associates Inc, Sunderland, Mass, 1995. – reference: X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in: Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS10), Society for Artificial Intelligence and Statistics, Sardinia, Italy, 2010. – reference: Z. Zhang, M. Lyons, M. Schuster, S. Akamatsu, Comparison between geometry-based and gabor-wavelets-based facial expression recognition using multi-layer perceptron, in: 1998 Proceedings of the Third IEEE International Conference on Automatic Face and Gesture Recognition, 1998, pp. 454–459. – reference: F. Beat, Head-pose invariant facial expression recognition using convolutional neural networks, in: Proceedings of the Fourth IEEE International Conference on Multimodal Interfaces, 2002, 2002, pp. 529–534. – volume: 75 start-page: 935 year: 2014 end-page: 959 ident: bib81 article-title: Human facial expression recognition using curvelet feature extraction and normalized mutual information feature selection publication-title: Multimed. Tools Appl. – volume: 174 start-page: 756 year: 2016 end-page: 766 ident: bib41 article-title: Facial expression recognition using sparse local fisher discriminant analysis publication-title: Neurocomputing – reference: A. Asthana, S. Zafeiriou, S. Cheng, M. Pantic, Robust discriminative response map fitting with constrained local models, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 3444–3451. – reference: M. Liu, S. Shan, R. Wang, X. Chen, Learning expressionlets on spatio-temporal manifold for dynamic facial expression recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 1749–1756. – volume: 55 start-page: 14 year: 2016 end-page: 27 ident: bib13 article-title: Boosted NNE collections for multicultural facial expression recognition publication-title: Pattern Recognit. – reference: O.M. Parkhi, A. Vedaldi, A. Zisserman, Deep face recognition, in: British Machine Vision Conference, 2015, 46-53. – reference: Y. Bengio, Y. LeCun, Scaling learning algorithms towards AI, in: L. Bottou, O. Chapelle, D. DeCoste, J. Weston (Eds.), Large-Scale Kernel Machines, MIT Press, Cambridge, Massachusetts, USA, 2007 (URL 〈 – reference: Y. Bengio, I.J. Goodfellow, A. Courville, Deep Learning, MIT Press, Cambridge, Massachusetts, USA, 2015. – reference: S. Arivazhagan, R.A. Priyadharshini, S. Sowmiya, Facial expression recognition based on local directional number pattern and anfis classifier, in: 2014 International Conference on Communication and Network Technologies (ICCNT), 2014, pp. 62–67 ( – reference: L. Bottou, Stochastic Gradient Descent Tricks, Springer, New York, NY, USA. 2012. – reference: L. Yin, X. Wei, Y. Sun, J. Wang, M. Rosato, A 3d facial expression database for facial behavior research, in: 7th International Conference on Automatic Face and Gesture Recognition (FGR06), Institute of Electrical & Electronics Engineers (IEEE), Southampton, UK, 2006. – volume: 27 start-page: 803 year: 2009 end-page: 816 ident: bib8 article-title: Facial expression recognition based on local binary patterns publication-title: Image Vis. Comput. – reference: W.W. Kim, S. Park, J. Hwang, S. Lee, Automatic head pose estimation from a single camera using projective geometry, in: 2011 8th International Conference on Information, Communications and Signal Processing (ICICS), 2011, pp. 1–5. – reference: A. Zafer, R. Nawaz, J. Iqbal, Face recognition with expression variation via robust ncc, in: 2013 IEEE 9th International Conference on Emerging Technologies (ICET), 2013, pp. 1–5 – reference: J. Cohn A. Zlochower, A Computerized Analysis of Facial Expression: Feasibility of Automated Discrimination, vol. 2. American Psychological Society, 1995, p. 6. – volume: 19 start-page: 131 year: 2012 end-page: 134 ident: bib20 article-title: Regularized transfer boosting for face detection across spectrum publication-title: IEEE Signal Process. Lett. – reference: P. Liu, S. Han, Z. Meng, Y. Tong, Facial expression recognition via a boosted deep belief network, in: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014, pp. 1805–1812. – reference: M. Lyons, S. Akamatsu, M. Kamachi, J. Gyoba, Coding facial expressions with gabor wavelets, in: Proceedings of the Third IEEE International Conference on Automatic Face and Gesture Recognition, 1998, 1998, pp. 200–205. – volume: 68 start-page: 260 year: 2015 end-page: 269 ident: bib77 article-title: Automatic facial attribute analysis via adaptive sparse representation of random patches publication-title: Pattern Recognit. Lett. – reference: J.-J.J. Lien, T. Kanade, J. Cohn, C. Li, Detection, tracking, and classification of action units in facial expression, J. Robot. Auton. Syst. 31(3), 2000, 131-146 – reference: Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, T. Darrell, Caffe: Convolutional Architecture for Fast Feature Embedding ( – reference: M. Bartlett, G. Littlewort, M. Frank, C. Lainscsek, I. Fasel, J. Movellan, Recognizing facial expression: machine learning and application to spontaneous behavior, in: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005 (CVPR 2005), vol. 2, 2005, pp. 568–573. – reference: T. Kanade, Y. Tian, J.F. Cohn, Comprehensive database for facial expression analysis, in: Proceedings of the Fourth IEEE International Conference on Automatic Face and Gesture Recognition 2000 (FG’00), IEEE Computer Society, Washington, DC, USA, 2000, p. 46. – volume: 19 start-page: 1937 year: 2011 end-page: 1948 ident: bib18 article-title: A 0.64 publication-title: IEEE Trans. Very Large Scale Integr. (VLSI) Syst. – reference: W. Liu, C. Song, Y. Wang, Facial expression recognition based on discriminative dictionary learning, in: 2012 21st International Conference on Pattern Recognition (ICPR), 2012, pp. 1839–1842. – reference: G. Li, X. Cai, X. Li, Y. Liu, An efficient face normalization algorithm based on eyes detection, in: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Institute of Electrical & Electronics Engineers (IEEE), Beijing, China, 2006. – volume: 5 start-page: 141 year: 2014 end-page: 154 ident: bib49 article-title: Fully automated recognition of spontaneous facial expressions in videos using random forest classifiers publication-title: IEEE Trans. Affect. Comput. – reference: J.M. Girard, J.F. Cohn, L.A. Jeni, S. Lucey, F.D. la Torre, How much training data for facial action unit detection?, in: 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), vol. 1, 2015, pp. 1–8 ( – reference: P. Simard, D. Steinkraus, J.C. Platt, Best practices for convolutional neural networks applied to visual document analysis, in: 2003 Proceedings of the Seventh International Conference on Document Analysis and Recognition, 2003, pp. 958–963. – volume: 44 start-page: 1581 year: 2011 end-page: 1589 ident: bib74 article-title: Shape analysis of local facial patches for 3d facial expression recognition publication-title: Pattern Recognit. – reference: S. Cheng, A. Asthana, S. Zafeiriou, J. Shen, M. Pantic, Real-time generic face tracking in the wild with cuda, in: Proceedings of the 5th ACM Multimedia Systems Conference, ACM, Singapore, Singapore 2014, pp. 148–151. – volume: 91 start-page: 200 year: 2010 end-page: 215 ident: bib59 article-title: Deformable model fitting by regularized landmark mean-shift publication-title: Int. J. Comput. Vision. – reference: M. Demirkus, D. Precup, J. Clark, T. Arbel, Multi-layer temporal graphical model for head pose estimation in real-world videos, in: 2014 IEEE International Conference on Image Processing (ICIP), 2014, pp. 3392–3396. – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: bib52 article-title: Dropout publication-title: J. Mach. Learn. Res. – reference: 〉). – reference: B. Fasel, Robust face analysis using convolutional neural networks, in: Proceedings of the 16th International Conference on Pattern Recognition, 2002, vol. 2, 2002, pp. 40–43. – reference: X. Glorot, A. Bordes, Y. Bengio, Deep sparse rectifier neural networks, in: G.J. Gordon, D.B. Dunson (Eds.), Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics (AISTATS-11), vol. 15, 2011, pp. 315–323. – reference: S. Rifai, Y. Bengio, A. Courville, P. Vincent, M. Mirza, Disentangling factors of variation for facial expression recognition, in: A. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, C. Schmid (Eds.), Computer Vision – ECCV 2012, Lecture Notes in Computer Science, vol. 7577, Springer, Berlin Heidelberg, 2012, pp. 808–822. – volume: 14 start-page: 2497 year: 2002 end-page: 2529 ident: bib34 article-title: Many-layered learning publication-title: Neural Comput. – reference: Y. Wu, H. Liu, H. Zha, Modeling facial expression space for recognition, in: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005 (IROS 2005), 2005, pp. 1968–1973. – volume: 48 start-page: 3407 year: 2015 end-page: 3416 ident: bib16 article-title: A spatial–temporal framework based on histogram of gradients and optical flow for facial expression recognition in video sequences publication-title: Pattern Recognit. – reference: A. Dhall, R. Goecke, S. Lucey, T. Gedeon, Static facial expression analysis in tough conditions: data, evaluation protocol and benchmark, in: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), IEEE, Barcelona, Catalonia, Spain, 2011, pp. 2106–2112. – reference: L. Zhong, Q. Liu, P. Yang, B. Liu, J. Huang, D. Metaxas, Learning active facial patches for expression analysis, in: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012, pp. 2562–2569. – volume: 24 start-page: 1386 year: 2015 end-page: 1398 ident: bib78 article-title: Human facial expression recognition using stepwise linear discriminant analysis and hidden conditional random fields publication-title: IEEE Trans. Image Process. – reference: I. Song, H.-J. Kim, P.B. Jeon, Deep learning for real-time robust facial expression recognition on a smartphone, in: International Conference on Consumer Electronics (ICCE), Institute of Electrical & Electronics Engineers (IEEE), Las Vegas, NV, USA, 2014. – reference: . – reference: S. Demyanov, J. Bailey, R. Kotagiri, C. Leckie, Invariant Backpropagation: How To Train a Transformation-Invariant Neural Network ( – volume: 159 start-page: 126 year: 2015 end-page: 136 ident: bib12 article-title: Au-inspired deep networks for facial expression feature learning publication-title: Neurocomputing – volume: 48 start-page: 3191 year: 2015 end-page: 3202 ident: bib17 article-title: Multimodal learning for facial expression recognition publication-title: Pattern Recognit. – volume: 54 start-page: 52 year: 2016 end-page: 67 ident: bib69 article-title: Collaborative expression representation using peak expression and intra class variation face images for practical subject-independent emotion recognition in videos publication-title: Pattern Recognit. – reference: S.Z. Li, A.K. Jain, Handbook of Face Recognition, Springer Science & Business Media, Secaucus, NJ, USA, 2011. – volume: 16 start-page: 555 year: 2003 end-page: 559 ident: bib32 article-title: Subject independent facial expression recognition with robust face detection using a convolutional neural network publication-title: Neural Netw.: Off. J. Int. Neural Netw. Soc. – volume: 86 start-page: 2278 year: 1998 end-page: 2324 ident: bib36 publication-title: Gradient-based Learn. Appl. Doc. Recognit. – reference: D.C. Cirean, U. Meier, J. Masci, L.M. Gambardella, J. Schmidhuber, Flexible, high performance convolutional neural networks for image classification, in: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence (IJCAI'11), vol. 2, AAAI Press, Barcelona, Catalonia, Spain, 2011, pp. 1237–1242. – volume: 32 start-page: 76 year: 2012 end-page: 88 ident: bib28 article-title: Sparse coding for flexible, robust 3d facial-expression synthesis publication-title: IEEE Comput. Graph. Appl. – volume: 127 start-page: 2670 year: 2016 end-page: 2678 ident: bib39 article-title: Expression invariant face recognition using local binary patterns and contourlet transform publication-title: Opt.-Int. J. Light Electron Opt. – volume: 26 start-page: 1408 issue: 11 year: 2004 ident: 10.1016/j.patcog.2016.07.026_bib19 article-title: Convolutional face finder publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2004.97 – ident: 10.1016/j.patcog.2016.07.026_bib30 doi: 10.1109/ICPR.2002.1048231 – ident: 10.1016/j.patcog.2016.07.026_bib48 doi: 10.1109/SACI.2013.6608958 – ident: 10.1016/j.patcog.2016.07.026_bib56 doi: 10.1109/ICDAR.2003.1227801 – volume: 54 start-page: 52 year: 2016 ident: 10.1016/j.patcog.2016.07.026_bib69 article-title: Collaborative expression representation using peak expression and intra class variation face images for practical subject-independent emotion recognition in videos publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2015.12.016 – ident: 10.1016/j.patcog.2016.07.026_bib63 doi: 10.1007/978-3-642-35289-8_25 – volume: 91 start-page: 200 issue: 2 year: 2010 ident: 10.1016/j.patcog.2016.07.026_bib59 article-title: Deformable model fitting by regularized landmark mean-shift publication-title: Int. J. Comput. Vision. doi: 10.1007/s11263-010-0380-4 – volume: 159 start-page: 126 year: 2015 ident: 10.1016/j.patcog.2016.07.026_bib12 article-title: Au-inspired deep networks for facial expression feature learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.02.011 – ident: 10.1016/j.patcog.2016.07.026_bib1 doi: 10.1109/IROS.2005.1545532 – ident: 10.1016/j.patcog.2016.07.026_bib3 doi: 10.1007/978-0-85729-932-1 – ident: 10.1016/j.patcog.2016.07.026_bib11 – volume: 5 start-page: 141 issue: 2 year: 2014 ident: 10.1016/j.patcog.2016.07.026_bib49 article-title: Fully automated recognition of spontaneous facial expressions in videos using random forest classifiers publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2014.2317711 – ident: 10.1016/j.patcog.2016.07.026_bib54 – ident: 10.1016/j.patcog.2016.07.026_bib50 doi: 10.1109/ICIP.2014.7026204 – volume: 19 start-page: 131 issue: 3 year: 2012 ident: 10.1016/j.patcog.2016.07.026_bib20 article-title: Regularized transfer boosting for face detection across spectrum publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2011.2171949 – ident: 10.1016/j.patcog.2016.07.026_bib68 doi: 10.1109/CVPR.2012.6247974 – volume: 68 start-page: 260 issue: Part 2 year: 2015 ident: 10.1016/j.patcog.2016.07.026_bib77 article-title: Automatic facial attribute analysis via adaptive sparse representation of random patches publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2015.05.005 – volume: 48 start-page: 3407 issue: 11 year: 2015 ident: 10.1016/j.patcog.2016.07.026_bib16 article-title: A spatial–temporal framework based on histogram of gradients and optical flow for facial expression recognition in video sequences publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2015.04.025 – ident: 10.1016/j.patcog.2016.07.026_bib61 doi: 10.1145/2557642.2579369 – volume: 24 start-page: 1386 issue: 4 year: 2015 ident: 10.1016/j.patcog.2016.07.026_bib78 article-title: Human facial expression recognition using stepwise linear discriminant analysis and hidden conditional random fields publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2015.2405346 – volume: 40 start-page: 646 issue: 2 year: 2013 ident: 10.1016/j.patcog.2016.07.026_bib44 article-title: Fusion of feature sets and classifiers for facial expression recognition publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.07.074 – ident: 10.1016/j.patcog.2016.07.026_bib76 doi: 10.1109/CVPR.2014.226 – ident: 10.1016/j.patcog.2016.07.026_bib2 doi: 10.1017/CBO9781139833813 – ident: 10.1016/j.patcog.2016.07.026_bib37 – volume: 174 start-page: 756 issue: Part B year: 2016 ident: 10.1016/j.patcog.2016.07.026_bib41 article-title: Facial expression recognition using sparse local fisher discriminant analysis publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.09.083 – ident: 10.1016/j.patcog.2016.07.026_bib70 – volume: 21 start-page: 1357 issue: 12 year: 1999 ident: 10.1016/j.patcog.2016.07.026_bib5 article-title: Automatic classification of single facial images publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.817413 – ident: 10.1016/j.patcog.2016.07.026_bib82 doi: 10.1109/AFGR.2000.840611 – volume: 27 start-page: 803 issue: 6 year: 2009 ident: 10.1016/j.patcog.2016.07.026_bib8 article-title: Facial expression recognition based on local binary patterns publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2008.08.005 – ident: 10.1016/j.patcog.2016.07.026_bib64 – ident: 10.1016/j.patcog.2016.07.026_bib15 doi: 10.1016/S0921-8890(99)00103-7 – ident: 10.1016/j.patcog.2016.07.026_bib53 doi: 10.1109/FG.2015.7163106 – ident: 10.1016/j.patcog.2016.07.026_bib22 doi: 10.1109/ICME.2012.61 – ident: 10.1016/j.patcog.2016.07.026_bib47 – volume: 44 start-page: 1581 issue: 8 year: 2011 ident: 10.1016/j.patcog.2016.07.026_bib74 article-title: Shape analysis of local facial patches for 3d facial expression recognition publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2011.02.012 – ident: 10.1016/j.patcog.2016.07.026_bib26 doi: 10.1109/CVPR.2007.383059 – ident: 10.1016/j.patcog.2016.07.026_bib40 doi: 10.1007/978-3-319-25751-8_32 – ident: 10.1016/j.patcog.2016.07.026_bib33 doi: 10.7551/mitpress/7496.003.0016 – volume: 22 start-page: 1740 issue: 5 year: 2013 ident: 10.1016/j.patcog.2016.07.026_bib43 article-title: Local directional number pattern for face analysis publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2012.2235848 – ident: 10.1016/j.patcog.2016.07.026_bib6 – ident: 10.1016/j.patcog.2016.07.026_bib45 doi: 10.1109/SIBGRAPI.2015.14 – volume: 14 start-page: 2497 issue: 10 year: 2002 ident: 10.1016/j.patcog.2016.07.026_bib34 article-title: Many-layered learning publication-title: Neural Comput. doi: 10.1162/08997660260293319 – ident: 10.1016/j.patcog.2016.07.026_bib10 doi: 10.1109/ICCE.2014.6776135 – ident: 10.1016/j.patcog.2016.07.026_bib79 doi: 10.1109/ICET.2013.6743520 – ident: 10.1016/j.patcog.2016.07.026_bib55 doi: 10.1109/ICCVW.2011.6130508 – ident: 10.1016/j.patcog.2016.07.026_bib4 doi: 10.1109/CVPRW.2010.5543262 – volume: 32 start-page: 76 issue: 2 year: 2012 ident: 10.1016/j.patcog.2016.07.026_bib28 article-title: Sparse coding for flexible, robust 3d facial-expression synthesis publication-title: IEEE Comput. Graph. Appl. doi: 10.1109/MCG.2012.41 – ident: 10.1016/j.patcog.2016.07.026_bib14 doi: 10.14569/IJACSA.2014.051215 – ident: 10.1016/j.patcog.2016.07.026_bib7 doi: 10.1109/CVPR.2014.233 – ident: 10.1016/j.patcog.2016.07.026_bib71 – ident: 10.1016/j.patcog.2016.07.026_bib21 doi: 10.1109/CVPR.2005.297 – ident: 10.1016/j.patcog.2016.07.026_bib25 doi: 10.1109/AFGR.1998.670990 – volume: 86 start-page: 2278 issue: 11 year: 1998 ident: 10.1016/j.patcog.2016.07.026_bib36 publication-title: Gradient-based Learn. Appl. Doc. Recognit. – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: 10.1016/j.patcog.2016.07.026_bib52 article-title: Dropout publication-title: J. Mach. Learn. Res. – ident: 10.1016/j.patcog.2016.07.026_bib58 doi: 10.1109/IROS.2006.281791 – volume: 45 start-page: 80 issue: 1 year: 2012 ident: 10.1016/j.patcog.2016.07.026_bib67 article-title: Facial expression recognition using radial encoding of local gabor features and classifier synthesis publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2011.05.006 – volume: 16 start-page: 555 issue: 5 year: 2003 ident: 10.1016/j.patcog.2016.07.026_bib32 article-title: Subject independent facial expression recognition with robust face detection using a convolutional neural network publication-title: Neural Netw.: Off. J. Int. Neural Netw. Soc. doi: 10.1016/S0893-6080(03)00115-1 – ident: 10.1016/j.patcog.2016.07.026_bib27 doi: 10.1109/ICCVW.2011.6130446 – ident: 10.1016/j.patcog.2016.07.026_bib72 doi: 10.1109/WACV.2014.6835736 – ident: 10.1016/j.patcog.2016.07.026_bib29 doi: 10.1007/978-3-642-33783-3_58 – ident: 10.1016/j.patcog.2016.07.026_bib65 – ident: 10.1016/j.patcog.2016.07.026_bib46 – ident: 10.1016/j.patcog.2016.07.026_bib23 doi: 10.1109/ICICS.2011.6173539 – ident: 10.1016/j.patcog.2016.07.026_bib9 – volume: 74 start-page: 2135 issue: 12–13 year: 2011 ident: 10.1016/j.patcog.2016.07.026_bib73 article-title: Feature level analysis for 3d facial expression recognition publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.01.008 – ident: 10.1016/j.patcog.2016.07.026_bib51 doi: 10.1109/AFGR.1998.670949 – volume: 21 start-page: 541 issue: 6 year: 2014 ident: 10.1016/j.patcog.2016.07.026_bib80 article-title: Facial expression recognition using active contour-based face detection, facial movement-based feature extraction, and non-linear feature selection publication-title: Multimed. Syst. doi: 10.1007/s00530-014-0400-2 – volume: 19 start-page: 1937 issue: 11 year: 2011 ident: 10.1016/j.patcog.2016.07.026_bib18 article-title: A 0.64mm real-time cascade face detection design based on reduced two-field extraction publication-title: IEEE Trans. Very Large Scale Integr. (VLSI) Syst. doi: 10.1109/TVLSI.2010.2069575 – volume: 75 start-page: 935 issue: 2 year: 2014 ident: 10.1016/j.patcog.2016.07.026_bib81 article-title: Human facial expression recognition using curvelet feature extraction and normalized mutual information feature selection publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-014-2333-3 – ident: 10.1016/j.patcog.2016.07.026_bib38 doi: 10.1109/CNMT.2009.5374770 – volume: 127 start-page: 2670 issue: 5 year: 2016 ident: 10.1016/j.patcog.2016.07.026_bib39 article-title: Expression invariant face recognition using local binary patterns and contourlet transform publication-title: Opt.-Int. J. Light Electron Opt. doi: 10.1016/j.ijleo.2015.11.187 – ident: 10.1016/j.patcog.2016.07.026_bib35 – ident: 10.1016/j.patcog.2016.07.026_bib31 – ident: 10.1016/j.patcog.2016.07.026_bib57 doi: 10.1109/MMSP.1997.602642 – ident: 10.1016/j.patcog.2016.07.026_bib42 doi: 10.1109/CNT.2014.7062726 – volume: 55 start-page: 14 year: 2016 ident: 10.1016/j.patcog.2016.07.026_bib13 article-title: Boosted NNE collections for multicultural facial expression recognition publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.01.032 – ident: 10.1016/j.patcog.2016.07.026_bib24 doi: 10.1109/ICIP.2014.7025686 – volume: 48 start-page: 3191 issue: 10 year: 2015 ident: 10.1016/j.patcog.2016.07.026_bib17 article-title: Multimodal learning for facial expression recognition publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2015.04.012 – ident: 10.1016/j.patcog.2016.07.026_bib83 doi: 10.5244/C.29.41 – ident: 10.1016/j.patcog.2016.07.026_bib60 doi: 10.1109/CVPR.2013.442 – year: 1978 ident: 10.1016/j.patcog.2016.07.026_bib66 – ident: 10.1016/j.patcog.2016.07.026_bib62 |
SSID | ssj0017142 |
Score | 2.6532426 |
Snippet | Facial expression recognition has been an active research area in the past 10 years, with growing application areas including avatar animation, neuromarketing... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 610 |
SubjectTerms | Computer vision Convolutional Neural Networks Expression specific features Facial expression recognition Machine learning |
Title | Facial expression recognition with Convolutional Neural Networks: Coping with few data and the training sample order |
URI | https://dx.doi.org/10.1016/j.patcog.2016.07.026 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRpRH5YHVNA_badiqiqqA6ESlbpHtOKgIpRUNj4nfzp3jVCAhkFiSKPZFzuVyd7a--0zIueImLoQRTKtAMy6KiKU6FyyxoRahDhR3kP-7iRxP-c1MzFpk2NTCIKzS-_7apztv7e_0vDZ7y_kca3yRdhAOEowUsm6sYOcJWvnFxxrmgft714zhcciwd1M-5zBeS3B3iwcEeNUUnkix8FN4-hJyRjtky-eKdFAPZ5e0bLlHtpt9GKj_LfdJNVK48E3tu0e1lnSNC4JrXGqlw0X56q0MeiIlhzs5DPjqEpqxbqruWtg3isBRqsqcQn5Im20k6EohlzB1dJ0HZDq6uh-Omd9NgRmYFlSMp1oYo3Nt4OU1j0wiU8PzgtsIpsiFNHHfKC25FbnkqQ0jqVMbBWlfQYzXiY4PSbtclPaIUJAvLKSGBeSC0AiPVJh5ytwmeQqhsEPiRomZ8VTjONSnrMGUPWa16jNUfRYkGai-Q9haallTbfzRP2m-T_bNZDKIBr9KHv9b8oRsRhjX3RrMKWlXzy_2DLKSSned2XXJxuD6djz5BGiE5Fo |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGOMCFN-JNDlwj1jZpV27TxLTx2GmTuEVJmiIQ6iYoj5-P3aYTSAgkLm3VxlXquraTfv4CcKaFjXJpJTe6Y7iQechTk0meuMDIwHS0qCD_t-N4OBVXd_KuBf2mFoZgld731z698tb-zLnX5vn84YFqfIl2EDcxGilm3UuwTOxUsg3LvdH1cLz4mZAEoiYNjwJOAk0FXQXzmqPHm90Txqtm8SSWhZ8i1JeoM9iANZ8usl7do01ouWIL1pulGJj_MrehHGia-2buwwNbC7aABuExzbay_qx484aGLYmVo9pVMPCXC7xMpVN109y9M8KOMl1kDFNE1qwkwV400QmzirFzB6aDy0l_yP2CCtziyKDkIjXSWpMZiw9vRGiTOLUiy4ULcZScxzbqWm1i4WQWi9QFYWxSF3bSrsYwbxIT7UK7mBVuDxjK5w6zwxzTQbyIt9SUfMaZS7IUo-E-RI0SlfVs49TVJ9XAyh5VrXpFqledRKHq94EvpOY128Yf7ZPm_ahvVqMwIPwqefBvyVNYGU5ub9TNaHx9CKshhflqSuYI2uXzqzvGJKU0J94IPwE9lucL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facial+expression+recognition+with+Convolutional+Neural+Networks%3A+Coping+with+few+data+and+the+training+sample+order&rft.jtitle=Pattern+recognition&rft.au=Lopes%2C+Andr%C3%A9+Teixeira&rft.au=de+Aguiar%2C+Edilson&rft.au=De+Souza%2C+Alberto+F.&rft.au=Oliveira-Santos%2C+Thiago&rft.date=2017-01-01&rft.issn=0031-3203&rft.volume=61&rft.spage=610&rft.epage=628&rft_id=info:doi/10.1016%2Fj.patcog.2016.07.026&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2016_07_026 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |