Experimental evaluation of phase-field-based load-specific shape optimization of nature-inspired porous structures

Triply periodic minimal surface (TPMS) structures excel in various research fields, ranging from bone support structures to heat exchangers. By implementing measures for shape alteration, the mechanical properties of the structure can be improved under certain load conditions. While interface-based...

Full description

Saved in:
Bibliographic Details
Published inMaterials today communications Vol. 38; p. 108088
Main Authors Wallat, Leonie, Koeppe, Arnd, Selzer, Michael, Seiler, Marcus, Poehler, Frank, Nestler, Britta
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2024
Subjects
Online AccessGet full text
ISSN2352-4928
2352-4928
DOI10.1016/j.mtcomm.2024.108088

Cover

Loading…
Abstract Triply periodic minimal surface (TPMS) structures excel in various research fields, ranging from bone support structures to heat exchangers. By implementing measures for shape alteration, the mechanical properties of the structure can be improved under certain load conditions. While interface-based methods such as the phase-field method have established themselves as powerful simulation techniques for the analysis of microstructure evolution and morphologically complex dynamic processes, they are not yet very well known and widely used for the application of shape optimization in mechanically loaded complex structures. In this study, an experimental procedure to validate shape-optimized samples is presented and applied to validate three computationally derived optimal candidates for sheet-based TPMS structures (Diamond, Gyroid, and Primitive) proposed by applying a mathematical model for shape optimization formulated in terms of the phase-field approach combined with linear elastic continuum mechanics and subject to the constraints of volume conservation. The present experimental study aims to validate recently obtained theoretical research results predict three different TPMS structures were shape-optimized under mechanical stress, using the phase-field method. In the following, the previous theoretical study is validated experimentally. The validation procedure creates a rare intersection between shape optimization phase-field simulations and experimental samples. The measurements show that the shape-optimized structures have a higher average stiffness, which leads to a shift in the plastic deformation range and thus confirms the computationally determined shape optimization. [Display omitted]
AbstractList Triply periodic minimal surface (TPMS) structures excel in various research fields, ranging from bone support structures to heat exchangers. By implementing measures for shape alteration, the mechanical properties of the structure can be improved under certain load conditions. While interface-based methods such as the phase-field method have established themselves as powerful simulation techniques for the analysis of microstructure evolution and morphologically complex dynamic processes, they are not yet very well known and widely used for the application of shape optimization in mechanically loaded complex structures. In this study, an experimental procedure to validate shape-optimized samples is presented and applied to validate three computationally derived optimal candidates for sheet-based TPMS structures (Diamond, Gyroid, and Primitive) proposed by applying a mathematical model for shape optimization formulated in terms of the phase-field approach combined with linear elastic continuum mechanics and subject to the constraints of volume conservation. The present experimental study aims to validate recently obtained theoretical research results predict three different TPMS structures were shape-optimized under mechanical stress, using the phase-field method. In the following, the previous theoretical study is validated experimentally. The validation procedure creates a rare intersection between shape optimization phase-field simulations and experimental samples. The measurements show that the shape-optimized structures have a higher average stiffness, which leads to a shift in the plastic deformation range and thus confirms the computationally determined shape optimization. [Display omitted]
ArticleNumber 108088
Author Koeppe, Arnd
Seiler, Marcus
Wallat, Leonie
Nestler, Britta
Poehler, Frank
Selzer, Michael
Author_xml – sequence: 1
  givenname: Leonie
  surname: Wallat
  fullname: Wallat, Leonie
  email: leonie.wallat@partner.kit.edu
  organization: Institute of Materials and Processes, Karlsruhe University of Applied Sciences, Moltkestraße 30, 76133 Karlsruhe, Germany
– sequence: 2
  givenname: Arnd
  surname: Koeppe
  fullname: Koeppe, Arnd
  organization: Institute for Applied Materials - Microstructure Modelling and Simulation, Karlsruhe Institute of Technology (KIT), Strasse am Forum 7, 76131 Karlsruhe, Germany
– sequence: 3
  givenname: Michael
  surname: Selzer
  fullname: Selzer, Michael
  organization: Institute of Materials and Processes, Karlsruhe University of Applied Sciences, Moltkestraße 30, 76133 Karlsruhe, Germany
– sequence: 4
  givenname: Marcus
  surname: Seiler
  fullname: Seiler, Marcus
  organization: ReOss GmbH, Echterdinger Str. 57, 70794 Filderstadt, Germany
– sequence: 5
  givenname: Frank
  surname: Poehler
  fullname: Poehler, Frank
  organization: Institute of Materials and Processes, Karlsruhe University of Applied Sciences, Moltkestraße 30, 76133 Karlsruhe, Germany
– sequence: 6
  givenname: Britta
  surname: Nestler
  fullname: Nestler, Britta
  organization: Institute of Digital Materials Science, Karlsruhe University of Applied Sciences, Moltkestraße 30, 76133 Karlsruhe, Germany
BookMark eNqFkN9LwzAQx4NMcM79Bz70H-i8tGmX-iDImD9g4Is-hzS9sIy2CUk21L_ezoqID_p0X-74HHefczLpbY-EXFJYUKDl1W7RRWW7bpFBxoYWB85PyDTLiyxlVcYnP_IZmYewAwDKC2AVmxK_fnXoTYd9lG2CB9nuZTS2T6xO3FYGTLXBtknrITZJa2WTBofKaKOSsJUOE-ui6cz7N9XLuPeYmj444wfGWW_3IQnR79VxEi7IqZZtwPlXnZGXu_Xz6iHdPN0_rm43qcqhjCnjush4oZcl5qxmvASu64rTZUOZgoZJkKVWmikNsla1VMu8qgqQlAJmkEM-I9fjXuVtCB61UCZ-nhm9NK2gII4CxU6MAsVRoBgFDjD7BbvBkvRv_2E3I4bDYweDXgRlsFfYDC5UFI01fy_4AOzOkfY
CitedBy_id crossref_primary_10_1088_1361_665X_adbdb2
crossref_primary_10_1007_s44245_024_00065_4
Cites_doi 10.1016/j.bbamem.2020.183446
10.1016/j.oceaneng.2020.108301
10.1016/j.jcp.2022.111383
10.1089/ten.tea.2023.0033
10.1016/j.applthermaleng.2022.118339
10.1007/s10704-017-0185-3
10.1557/mrs2003.79
10.1016/j.matdes.2017.06.006
10.1137/140989066
10.1016/j.jmbbm.2022.105098
10.1016/j.engfracmech.2022.108819
10.1016/j.jmrt.2022.09.093
10.3390/ma15103730
10.3390/polym14051062
10.1016/j.camwa.2018.10.029
10.1038/s41598-018-25750-9
10.1007/s12541-014-0516-5
10.1016/j.ijheatmasstransfer.2021.122448
10.1177/0954406220975434
10.1016/j.engstruct.2021.113640
10.1002/adem.201900524
10.3390/ma12132183
10.1016/j.mseb.2022.116013
10.1016/j.matdes.2018.09.053
10.1016/j.mtcomm.2023.107018
10.1038/nature21075
10.1016/j.ijmecsci.2023.108353
10.3390/met12071104
10.1007/s10444-018-9586-8
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.mtcomm.2024.108088
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2352-4928
ExternalDocumentID 10_1016_j_mtcomm_2024_108088
S2352492824000680
GroupedDBID --M
0R~
4.4
457
4G.
7-5
AABXZ
AACTN
AAEDT
AAEDW
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EJD
FDB
FIRID
FYGXN
HZ~
KOM
M41
O9-
OAUVE
ROL
SPC
SPCBC
SSM
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-48f5285f76e34b48608fb9817d14c0d4a0a6fcf4cf0abcbac739950a110e20303
IEDL.DBID AIKHN
ISSN 2352-4928
IngestDate Thu Apr 24 23:10:20 EDT 2025
Tue Jul 01 02:08:45 EDT 2025
Sat Aug 31 16:02:43 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords TPMS structures
Experimental validation
Phase-field method
Shape optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-48f5285f76e34b48608fb9817d14c0d4a0a6fcf4cf0abcbac739950a110e20303
ParticipantIDs crossref_citationtrail_10_1016_j_mtcomm_2024_108088
crossref_primary_10_1016_j_mtcomm_2024_108088
elsevier_sciencedirect_doi_10_1016_j_mtcomm_2024_108088
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2024
2024-03-00
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: March 2024
PublicationDecade 2020
PublicationTitle Materials today communications
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Li, Liao, Dai, Xie (b11) 2019; 12
Liu, Mao, Zhang, Zhang, Jiang, Ma (b12) 2018; 160
Mu, Kueh, Shek (b1) 2021; 219
Blank, Garcke, Hecht, Rupprecht (b24) 2016; 54
Garcke, Hinze, Kahle, Lam (b25) 2018; 44
Wang, Tan, Liu, Yin, Wen (b34) 2022; 252
Wallat, Reder, Selzer, Poehler, Nestler (b26) 2023
Shi, Zhu, Li, Li, Yang, Wang (b4) 2018; 8
Takaki, Kato (b20) 2017; 4
Rezapourian, Jasiuk, Saarna, Hussainova (b6) 2023; 251
Qin, Sang, Zhang, Lai, Zhao (b32) 2022; 14
Nelson, Kelly, Gall (b30) 2022; 286
Gibson (b3) 2003; 28
Wallat, Selzer, Wasmuth, Poehler, Nestler (b31) 2022; 21
Alketan, Abu Al-Rub (b8) 2019
Yu, Xia, Li (b15) 2022; 466
Li, Hu (b17) 2019; 77
Quan, Zhang, Xu, Luo, Nie, Zhu (b9) 2020; 5
Maevskaia, Guerrero, Ghayor, Bhattacharya, Weber (b27) 2023; 29
Pham, Ravi-Chandar, Landis (b23) 2017; 205
Mu, Kueh, Shek, Haniffah, Tan (b18) 2021; 235
Zhiliakov, Wang, Quaini, Olshanskii, Majd (b22) 2021; 1863
Yoo (b7) 2014; 15
Zheng, Luo, Wang, Li, Qu, Zhang (b16) 2022; 186
Foroughi, Razavi (b5) 2022; 128
Wallat, Altschuh, Reder, Nestler, Poehler (b10) 2022; 15
Choy, Sun, Leong, Wei (b13) 2017; 131
(b29) 2000
Blank, Garcke, Sarbu, Srisupattarawanit, Styles, Voigt (b19) 2012
Dixit, Al-Hajri, Paul, Nithiarasu, Kumar (b28) 2022; 210
Berger, Wadley, McMeeking (b2) 2017; 543
Gülcan, Simsek, Cokgunlu, Özdemir, Şendur, Yapici (b33) 2022; 12
Plocher, Panesar (b14) 2020; 33
Pech, Lukacevic, Füssl (b21) 2022; 275
Takaki (10.1016/j.mtcomm.2024.108088_b20) 2017; 4
Maevskaia (10.1016/j.mtcomm.2024.108088_b27) 2023; 29
Pham (10.1016/j.mtcomm.2024.108088_b23) 2017; 205
Choy (10.1016/j.mtcomm.2024.108088_b13) 2017; 131
Blank (10.1016/j.mtcomm.2024.108088_b24) 2016; 54
Wallat (10.1016/j.mtcomm.2024.108088_b10) 2022; 15
Mu (10.1016/j.mtcomm.2024.108088_b18) 2021; 235
Mu (10.1016/j.mtcomm.2024.108088_b1) 2021; 219
Gülcan (10.1016/j.mtcomm.2024.108088_b33) 2022; 12
Wallat (10.1016/j.mtcomm.2024.108088_b26) 2023
Li (10.1016/j.mtcomm.2024.108088_b17) 2019; 77
(10.1016/j.mtcomm.2024.108088_b29) 2000
Quan (10.1016/j.mtcomm.2024.108088_b9) 2020; 5
Alketan (10.1016/j.mtcomm.2024.108088_b8) 2019
Zheng (10.1016/j.mtcomm.2024.108088_b16) 2022; 186
Foroughi (10.1016/j.mtcomm.2024.108088_b5) 2022; 128
Qin (10.1016/j.mtcomm.2024.108088_b32) 2022; 14
Berger (10.1016/j.mtcomm.2024.108088_b2) 2017; 543
Zhiliakov (10.1016/j.mtcomm.2024.108088_b22) 2021; 1863
Wallat (10.1016/j.mtcomm.2024.108088_b31) 2022; 21
Liu (10.1016/j.mtcomm.2024.108088_b12) 2018; 160
Plocher (10.1016/j.mtcomm.2024.108088_b14) 2020; 33
Yoo (10.1016/j.mtcomm.2024.108088_b7) 2014; 15
Nelson (10.1016/j.mtcomm.2024.108088_b30) 2022; 286
Shi (10.1016/j.mtcomm.2024.108088_b4) 2018; 8
Rezapourian (10.1016/j.mtcomm.2024.108088_b6) 2023; 251
Blank (10.1016/j.mtcomm.2024.108088_b19) 2012
Dixit (10.1016/j.mtcomm.2024.108088_b28) 2022; 210
Wang (10.1016/j.mtcomm.2024.108088_b34) 2022; 252
Gibson (10.1016/j.mtcomm.2024.108088_b3) 2003; 28
Yu (10.1016/j.mtcomm.2024.108088_b15) 2022; 466
Li (10.1016/j.mtcomm.2024.108088_b11) 2019; 12
Garcke (10.1016/j.mtcomm.2024.108088_b25) 2018; 44
Pech (10.1016/j.mtcomm.2024.108088_b21) 2022; 275
References_xml – volume: 14
  year: 2022
  ident: b32
  article-title: Compression performance and deformation behavior of 3D-printed PLA-based lattice structures
  publication-title: Polymers
– volume: 543
  year: 2017
  ident: b2
  article-title: Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness
  publication-title: Nature
– volume: 466
  year: 2022
  ident: b15
  article-title: A phase field-based systematic multiscale topology optimization method for porous structures design
  publication-title: J. Comput. Phys.
– year: 2000
  ident: b29
  article-title: Standard test method for compressive properties of rigid cellular plastics
– volume: 12
  year: 2022
  ident: b33
  article-title: Effect of build parameters on the compressive behavior of additive manufactured CoCrMo lattice parts based on experimental design
  publication-title: Metals
– volume: 210
  year: 2022
  ident: b28
  article-title: High performance, microarchitected, compact heat exchanger enabled by 3D printing
  publication-title: Appl. Therm. Eng.
– volume: 15
  start-page: 1657
  year: 2014
  end-page: 1666
  ident: b7
  article-title: Advanced porous scaffold design using multi-void triply periodic minimal surface models with High Surface Area to volume ratios
  publication-title: Int. J. Precis. Eng. Manuf.
– volume: 252
  year: 2022
  ident: b34
  article-title: On crashworthiness of novel porous structure based on composite TPMS structures
  publication-title: Eng. Struct.
– volume: 205
  year: 2017
  ident: b23
  article-title: Experimental validation of a phase-field model for fracture
  publication-title: Int. J. Fract.
– volume: 12
  start-page: 2183
  year: 2019
  ident: b11
  article-title: Comparison of mechanical properties and energy absorption of sheet-based and strut-based gyroid cellular structures with graded densities
  publication-title: Materials
– year: 2023
  ident: b26
  article-title: Shape optimization of porous structures by phase-field modelling with strain energy density reduction
  publication-title: Mater. Today Commun.
– volume: 77
  start-page: 1029
  year: 2019
  end-page: 1041
  ident: b17
  article-title: A phase-field method for shape optimization of incompressible flows
  publication-title: Comput. Math. Appl.
– volume: 131
  start-page: 112
  year: 2017
  end-page: 120
  ident: b13
  article-title: Compressive properties of functionally graded lattice structures manufactured by selective laser melting
  publication-title: Mater. Des.
– volume: 15
  start-page: 3730
  year: 2022
  ident: b10
  article-title: Computational design and characterisation of gyroid structures with different gradient functions for porosity adjustment
  publication-title: Materials
– volume: 128
  year: 2022
  ident: b5
  article-title: Shape optimization of orthopedic porous scaffolds to enhance mechanical performance
  publication-title: J. Mech. Behav. Biomed. Mater.
– year: 2019
  ident: b8
  article-title: Multifunctional mechanical-metamaterials based on triply periodic minimal surface lattices: A review
  publication-title: Adv. Eng. Mater.
– volume: 29
  start-page: 507
  year: 2023
  end-page: 517
  ident: b27
  article-title: Triply periodic minimal surface-based scaffolds for bone tissue engineering: A mechanical, in vitro and in vivo study
  publication-title: Tissue Eng. A
– volume: 160
  start-page: 849
  year: 2018
  end-page: 860
  ident: b12
  article-title: Functionally graded porous scaffolds in multiple patterns: New design method, physical and mechanical properties
  publication-title: Mater. Des.
– volume: 235
  start-page: 3975
  year: 2021
  end-page: 3987
  ident: b18
  article-title: Flow responses alteration by geometrical effects of tubercles on plates under the maximal angle of attack
  publication-title: Proc. Inst. Mech. Eng. C
– volume: 8
  year: 2018
  ident: b4
  article-title: A TPMS-based method for modeling porous scaffolds for bionic bone tissue engineering
  publication-title: Sci. Rep.
– volume: 286
  year: 2022
  ident: b30
  article-title: Effect of stress state on the mechanical behavior of 3D printed porous Ti6Al4V scaffolds produced by laser powder bed fusion
  publication-title: Mater. Sci. Eng. B
– volume: 251
  year: 2023
  ident: b6
  article-title: Selective laser melted Ti6Al4V split-P TPMS lattices for bone tissue engineering
  publication-title: Int. J. Mech. Sci.
– volume: 44
  year: 2018
  ident: b25
  article-title: A phase field approach to shape optimization in Navier–Stokes flow with integral state constraint
  publication-title: Adv. Comput. Math.
– volume: 21
  start-page: 1798
  year: 2022
  end-page: 1810
  ident: b31
  article-title: Energy absorption capability of graded and non-graded sheet-based gyroid structures fabricated by microcast processing
  publication-title: J. Mater. Res. Technol.
– volume: 1863
  year: 2021
  ident: b22
  article-title: Experimental validation of a phase-field model to predict coarsening dynamics of lipid domains in multicomponent membranes
  publication-title: Biochimica et Biophysica Acta (BBA) - Biomembranes
– volume: 28
  start-page: 270
  year: 2003
  end-page: 274
  ident: b3
  article-title: Cellular solids
  publication-title: MRS Bull.
– volume: 275
  year: 2022
  ident: b21
  article-title: Validation of a hybrid multi-phase field model for fracture of wood
  publication-title: Eng. Fract. Mech.
– volume: 5
  start-page: 110
  year: 2020
  end-page: 115
  ident: b9
  article-title: Photo-curing 3D printing technique and its challenges
  publication-title: Bioact. Mater.
– volume: 219
  year: 2021
  ident: b1
  article-title: Hydroelastic responses of plates with sinusoidal tubercles under perpendicularly loaded flow
  publication-title: Ocean Eng.
– year: 2012
  ident: b19
  article-title: Phase-field approaches to structural topology optimization
  publication-title: Constrained Optimization and Optimal Control for Partial Differential Equations, Vol. 160
– volume: 54
  start-page: 1558
  year: 2016
  end-page: 1584
  ident: b24
  article-title: Sharp interface limit for a phase field model in structural optimization
  publication-title: SIAM J. Control Optim.
– volume: 33
  year: 2020
  ident: b14
  article-title: Effect of density and unit cell size grading on the stiffness and energy absorption of short fibre-reinforced functionally graded lattice structures
  publication-title: Addit. Manuf.
– volume: 186
  year: 2022
  ident: b16
  article-title: Optimized high thermal insulation by the topological design of hierarchical structures
  publication-title: Int. J. Heat Mass Transfer
– volume: 4
  year: 2017
  ident: b20
  article-title: Phase-field topology optimization model that removes the curvature effects
  publication-title: Mech. Eng. J.
– volume: 1863
  issue: 1
  year: 2021
  ident: 10.1016/j.mtcomm.2024.108088_b22
  article-title: Experimental validation of a phase-field model to predict coarsening dynamics of lipid domains in multicomponent membranes
  publication-title: Biochimica et Biophysica Acta (BBA) - Biomembranes
  doi: 10.1016/j.bbamem.2020.183446
– volume: 219
  year: 2021
  ident: 10.1016/j.mtcomm.2024.108088_b1
  article-title: Hydroelastic responses of plates with sinusoidal tubercles under perpendicularly loaded flow
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2020.108301
– volume: 466
  year: 2022
  ident: 10.1016/j.mtcomm.2024.108088_b15
  article-title: A phase field-based systematic multiscale topology optimization method for porous structures design
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2022.111383
– volume: 29
  start-page: 507
  issue: 19–20
  year: 2023
  ident: 10.1016/j.mtcomm.2024.108088_b27
  article-title: Triply periodic minimal surface-based scaffolds for bone tissue engineering: A mechanical, in vitro and in vivo study
  publication-title: Tissue Eng. A
  doi: 10.1089/ten.tea.2023.0033
– volume: 210
  year: 2022
  ident: 10.1016/j.mtcomm.2024.108088_b28
  article-title: High performance, microarchitected, compact heat exchanger enabled by 3D printing
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2022.118339
– volume: 205
  year: 2017
  ident: 10.1016/j.mtcomm.2024.108088_b23
  article-title: Experimental validation of a phase-field model for fracture
  publication-title: Int. J. Fract.
  doi: 10.1007/s10704-017-0185-3
– volume: 28
  start-page: 270
  issue: 4
  year: 2003
  ident: 10.1016/j.mtcomm.2024.108088_b3
  article-title: Cellular solids
  publication-title: MRS Bull.
  doi: 10.1557/mrs2003.79
– volume: 131
  start-page: 112
  year: 2017
  ident: 10.1016/j.mtcomm.2024.108088_b13
  article-title: Compressive properties of functionally graded lattice structures manufactured by selective laser melting
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2017.06.006
– volume: 54
  start-page: 1558
  issue: 3
  year: 2016
  ident: 10.1016/j.mtcomm.2024.108088_b24
  article-title: Sharp interface limit for a phase field model in structural optimization
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/140989066
– volume: 128
  year: 2022
  ident: 10.1016/j.mtcomm.2024.108088_b5
  article-title: Shape optimization of orthopedic porous scaffolds to enhance mechanical performance
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2022.105098
– volume: 33
  year: 2020
  ident: 10.1016/j.mtcomm.2024.108088_b14
  article-title: Effect of density and unit cell size grading on the stiffness and energy absorption of short fibre-reinforced functionally graded lattice structures
  publication-title: Addit. Manuf.
– volume: 275
  year: 2022
  ident: 10.1016/j.mtcomm.2024.108088_b21
  article-title: Validation of a hybrid multi-phase field model for fracture of wood
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2022.108819
– volume: 21
  start-page: 1798
  year: 2022
  ident: 10.1016/j.mtcomm.2024.108088_b31
  article-title: Energy absorption capability of graded and non-graded sheet-based gyroid structures fabricated by microcast processing
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2022.09.093
– volume: 15
  start-page: 3730
  issue: 10
  year: 2022
  ident: 10.1016/j.mtcomm.2024.108088_b10
  article-title: Computational design and characterisation of gyroid structures with different gradient functions for porosity adjustment
  publication-title: Materials
  doi: 10.3390/ma15103730
– volume: 14
  issue: 5
  year: 2022
  ident: 10.1016/j.mtcomm.2024.108088_b32
  article-title: Compression performance and deformation behavior of 3D-printed PLA-based lattice structures
  publication-title: Polymers
  doi: 10.3390/polym14051062
– volume: 77
  start-page: 1029
  issue: 4
  year: 2019
  ident: 10.1016/j.mtcomm.2024.108088_b17
  article-title: A phase-field method for shape optimization of incompressible flows
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2018.10.029
– volume: 8
  year: 2018
  ident: 10.1016/j.mtcomm.2024.108088_b4
  article-title: A TPMS-based method for modeling porous scaffolds for bionic bone tissue engineering
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-25750-9
– volume: 5
  start-page: 110
  issue: 1
  year: 2020
  ident: 10.1016/j.mtcomm.2024.108088_b9
  article-title: Photo-curing 3D printing technique and its challenges
  publication-title: Bioact. Mater.
– volume: 15
  start-page: 1657
  year: 2014
  ident: 10.1016/j.mtcomm.2024.108088_b7
  article-title: Advanced porous scaffold design using multi-void triply periodic minimal surface models with High Surface Area to volume ratios
  publication-title: Int. J. Precis. Eng. Manuf.
  doi: 10.1007/s12541-014-0516-5
– volume: 186
  year: 2022
  ident: 10.1016/j.mtcomm.2024.108088_b16
  article-title: Optimized high thermal insulation by the topological design of hierarchical structures
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2021.122448
– volume: 235
  start-page: 3975
  issue: 19
  year: 2021
  ident: 10.1016/j.mtcomm.2024.108088_b18
  article-title: Flow responses alteration by geometrical effects of tubercles on plates under the maximal angle of attack
  publication-title: Proc. Inst. Mech. Eng. C
  doi: 10.1177/0954406220975434
– year: 2000
  ident: 10.1016/j.mtcomm.2024.108088_b29
– volume: 252
  year: 2022
  ident: 10.1016/j.mtcomm.2024.108088_b34
  article-title: On crashworthiness of novel porous structure based on composite TPMS structures
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2021.113640
– year: 2019
  ident: 10.1016/j.mtcomm.2024.108088_b8
  article-title: Multifunctional mechanical-metamaterials based on triply periodic minimal surface lattices: A review
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.201900524
– year: 2012
  ident: 10.1016/j.mtcomm.2024.108088_b19
  article-title: Phase-field approaches to structural topology optimization
– volume: 12
  start-page: 2183
  issue: 13
  year: 2019
  ident: 10.1016/j.mtcomm.2024.108088_b11
  article-title: Comparison of mechanical properties and energy absorption of sheet-based and strut-based gyroid cellular structures with graded densities
  publication-title: Materials
  doi: 10.3390/ma12132183
– volume: 286
  year: 2022
  ident: 10.1016/j.mtcomm.2024.108088_b30
  article-title: Effect of stress state on the mechanical behavior of 3D printed porous Ti6Al4V scaffolds produced by laser powder bed fusion
  publication-title: Mater. Sci. Eng. B
  doi: 10.1016/j.mseb.2022.116013
– volume: 160
  start-page: 849
  year: 2018
  ident: 10.1016/j.mtcomm.2024.108088_b12
  article-title: Functionally graded porous scaffolds in multiple patterns: New design method, physical and mechanical properties
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2018.09.053
– volume: 4
  issue: 2
  year: 2017
  ident: 10.1016/j.mtcomm.2024.108088_b20
  article-title: Phase-field topology optimization model that removes the curvature effects
  publication-title: Mech. Eng. J.
– year: 2023
  ident: 10.1016/j.mtcomm.2024.108088_b26
  article-title: Shape optimization of porous structures by phase-field modelling with strain energy density reduction
  publication-title: Mater. Today Commun.
  doi: 10.1016/j.mtcomm.2023.107018
– volume: 543
  year: 2017
  ident: 10.1016/j.mtcomm.2024.108088_b2
  article-title: Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness
  publication-title: Nature
  doi: 10.1038/nature21075
– volume: 251
  year: 2023
  ident: 10.1016/j.mtcomm.2024.108088_b6
  article-title: Selective laser melted Ti6Al4V split-P TPMS lattices for bone tissue engineering
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2023.108353
– volume: 12
  issue: 7
  year: 2022
  ident: 10.1016/j.mtcomm.2024.108088_b33
  article-title: Effect of build parameters on the compressive behavior of additive manufactured CoCrMo lattice parts based on experimental design
  publication-title: Metals
  doi: 10.3390/met12071104
– volume: 44
  year: 2018
  ident: 10.1016/j.mtcomm.2024.108088_b25
  article-title: A phase field approach to shape optimization in Navier–Stokes flow with integral state constraint
  publication-title: Adv. Comput. Math.
  doi: 10.1007/s10444-018-9586-8
SSID ssj0001850494
Score 2.283814
Snippet Triply periodic minimal surface (TPMS) structures excel in various research fields, ranging from bone support structures to heat exchangers. By implementing...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108088
SubjectTerms Experimental validation
Phase-field method
Shape optimization
TPMS structures
Title Experimental evaluation of phase-field-based load-specific shape optimization of nature-inspired porous structures
URI https://dx.doi.org/10.1016/j.mtcomm.2024.108088
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT8IwEG8QXnwxGjXiV_rga8NYu617JASCEnlQibwtXdcGDLBF8P_3busEE6OJT8s-Lluut7tr-7vfEXIHdiG1kV2mokwxEfmCKTAUllrlG645Fynu6D5OwtFUPMyCWYP061oYhFU631_59NJbuysdp81OsVh0nn3IHUQMUwbhlR0kDkjL53Eom6TVux-PJrulFhkgC0rZZi7wGcrURXQl0mu1hXdgVbovSshd2YXlhyC1F3iGx-TIZYy0V33UCWmY9Sl5H-wx89MdZTfNLS3mEJlYCU1jGKQyusxVxrCmEnFBdDNXhaE5-IqVK8JEqYrhky3WuPUOMpCX5x8bWvHLwp3NGZkOBy_9EXPtE5iGecCWCWkDXwY2Cg1oHJtNSZvGshtlXaG9TChPhVZboa2nUp0qHWGZq6cgITA-_Pv8nDTX-dpcEKqVFwSZTFMutTAcQljI0cXGMKwq8myb8FpfiXbc4tjiYpnUILK3pNJyglpOKi23CfuSKipujT-ej-qhSL7ZSALu_1fJy39LXpFDPKtQZ9ekCUo3N5CGbNNbZ2Z4HD-9jj8BGVHfMg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7GdoALAgFiPHPgGq1r0zY7TtOmwh4XNmm3KE0TbWhbKzb-P3YfbEgIJK5NrVa2azvN58-EPIFfCG1Em6kwUYyHLmcKHIXFVrnG057HYzzRHU-CaMZf5v68RnpVLwzCKsvYX8T0PFqXV1qlNlvZctl6daF24B3YMnAnnyBxRBrITsXrpNF9HkaT_a8W4SMLSj5mzncZylRNdDnSa72DZ2BXustzyF0-heWHJHWQeAZn5LSsGGm3eKlzUjObC_LeP2Dmp3vKbppami0gM7EcmsYwSSV0laqEYU8l4oLodqEyQ1OIFeuyCROlCoZPttzg0TvIQF2efmxpwS8LK9tLMhv0p72IleMTmIZ9wI5xYX1X-DYMDGgch00JG3dEO0zaXDsJV44KrLZcW0fFOlY6xDZXR0FBYFz49r0rUt-kG3NNqFaO7ycijj2hufEghQUehtgOmFWFjm0Sr9KX1CW3OI64WMkKRPYmCy1L1LIstNwk7EsqK7g1_rg_rEwhv_mIhPD_q-TNvyUfyXE0HY_k6HkyvCUnuFIg0O5IHQxg7qEk2cUPpct9AqBr4HU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+evaluation+of+phase-field-based+load-specific+shape+optimization+of+nature-inspired+porous+structures&rft.jtitle=Materials+today+communications&rft.au=Wallat%2C+Leonie&rft.au=Koeppe%2C+Arnd&rft.au=Selzer%2C+Michael&rft.au=Seiler%2C+Marcus&rft.date=2024-03-01&rft.pub=Elsevier+Ltd&rft.issn=2352-4928&rft.eissn=2352-4928&rft.volume=38&rft_id=info:doi/10.1016%2Fj.mtcomm.2024.108088&rft.externalDocID=S2352492824000680
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-4928&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-4928&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-4928&client=summon