Experimental evaluation of phase-field-based load-specific shape optimization of nature-inspired porous structures
Triply periodic minimal surface (TPMS) structures excel in various research fields, ranging from bone support structures to heat exchangers. By implementing measures for shape alteration, the mechanical properties of the structure can be improved under certain load conditions. While interface-based...
Saved in:
Published in | Materials today communications Vol. 38; p. 108088 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.03.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2352-4928 2352-4928 |
DOI | 10.1016/j.mtcomm.2024.108088 |
Cover
Loading…
Abstract | Triply periodic minimal surface (TPMS) structures excel in various research fields, ranging from bone support structures to heat exchangers. By implementing measures for shape alteration, the mechanical properties of the structure can be improved under certain load conditions. While interface-based methods such as the phase-field method have established themselves as powerful simulation techniques for the analysis of microstructure evolution and morphologically complex dynamic processes, they are not yet very well known and widely used for the application of shape optimization in mechanically loaded complex structures. In this study, an experimental procedure to validate shape-optimized samples is presented and applied to validate three computationally derived optimal candidates for sheet-based TPMS structures (Diamond, Gyroid, and Primitive) proposed by applying a mathematical model for shape optimization formulated in terms of the phase-field approach combined with linear elastic continuum mechanics and subject to the constraints of volume conservation. The present experimental study aims to validate recently obtained theoretical research results predict three different TPMS structures were shape-optimized under mechanical stress, using the phase-field method. In the following, the previous theoretical study is validated experimentally. The validation procedure creates a rare intersection between shape optimization phase-field simulations and experimental samples. The measurements show that the shape-optimized structures have a higher average stiffness, which leads to a shift in the plastic deformation range and thus confirms the computationally determined shape optimization.
[Display omitted] |
---|---|
AbstractList | Triply periodic minimal surface (TPMS) structures excel in various research fields, ranging from bone support structures to heat exchangers. By implementing measures for shape alteration, the mechanical properties of the structure can be improved under certain load conditions. While interface-based methods such as the phase-field method have established themselves as powerful simulation techniques for the analysis of microstructure evolution and morphologically complex dynamic processes, they are not yet very well known and widely used for the application of shape optimization in mechanically loaded complex structures. In this study, an experimental procedure to validate shape-optimized samples is presented and applied to validate three computationally derived optimal candidates for sheet-based TPMS structures (Diamond, Gyroid, and Primitive) proposed by applying a mathematical model for shape optimization formulated in terms of the phase-field approach combined with linear elastic continuum mechanics and subject to the constraints of volume conservation. The present experimental study aims to validate recently obtained theoretical research results predict three different TPMS structures were shape-optimized under mechanical stress, using the phase-field method. In the following, the previous theoretical study is validated experimentally. The validation procedure creates a rare intersection between shape optimization phase-field simulations and experimental samples. The measurements show that the shape-optimized structures have a higher average stiffness, which leads to a shift in the plastic deformation range and thus confirms the computationally determined shape optimization.
[Display omitted] |
ArticleNumber | 108088 |
Author | Koeppe, Arnd Seiler, Marcus Wallat, Leonie Nestler, Britta Poehler, Frank Selzer, Michael |
Author_xml | – sequence: 1 givenname: Leonie surname: Wallat fullname: Wallat, Leonie email: leonie.wallat@partner.kit.edu organization: Institute of Materials and Processes, Karlsruhe University of Applied Sciences, Moltkestraße 30, 76133 Karlsruhe, Germany – sequence: 2 givenname: Arnd surname: Koeppe fullname: Koeppe, Arnd organization: Institute for Applied Materials - Microstructure Modelling and Simulation, Karlsruhe Institute of Technology (KIT), Strasse am Forum 7, 76131 Karlsruhe, Germany – sequence: 3 givenname: Michael surname: Selzer fullname: Selzer, Michael organization: Institute of Materials and Processes, Karlsruhe University of Applied Sciences, Moltkestraße 30, 76133 Karlsruhe, Germany – sequence: 4 givenname: Marcus surname: Seiler fullname: Seiler, Marcus organization: ReOss GmbH, Echterdinger Str. 57, 70794 Filderstadt, Germany – sequence: 5 givenname: Frank surname: Poehler fullname: Poehler, Frank organization: Institute of Materials and Processes, Karlsruhe University of Applied Sciences, Moltkestraße 30, 76133 Karlsruhe, Germany – sequence: 6 givenname: Britta surname: Nestler fullname: Nestler, Britta organization: Institute of Digital Materials Science, Karlsruhe University of Applied Sciences, Moltkestraße 30, 76133 Karlsruhe, Germany |
BookMark | eNqFkN9LwzAQx4NMcM79Bz70H-i8tGmX-iDImD9g4Is-hzS9sIy2CUk21L_ezoqID_p0X-74HHefczLpbY-EXFJYUKDl1W7RRWW7bpFBxoYWB85PyDTLiyxlVcYnP_IZmYewAwDKC2AVmxK_fnXoTYd9lG2CB9nuZTS2T6xO3FYGTLXBtknrITZJa2WTBofKaKOSsJUOE-ui6cz7N9XLuPeYmj444wfGWW_3IQnR79VxEi7IqZZtwPlXnZGXu_Xz6iHdPN0_rm43qcqhjCnjush4oZcl5qxmvASu64rTZUOZgoZJkKVWmikNsla1VMu8qgqQlAJmkEM-I9fjXuVtCB61UCZ-nhm9NK2gII4CxU6MAsVRoBgFDjD7BbvBkvRv_2E3I4bDYweDXgRlsFfYDC5UFI01fy_4AOzOkfY |
CitedBy_id | crossref_primary_10_1088_1361_665X_adbdb2 crossref_primary_10_1007_s44245_024_00065_4 |
Cites_doi | 10.1016/j.bbamem.2020.183446 10.1016/j.oceaneng.2020.108301 10.1016/j.jcp.2022.111383 10.1089/ten.tea.2023.0033 10.1016/j.applthermaleng.2022.118339 10.1007/s10704-017-0185-3 10.1557/mrs2003.79 10.1016/j.matdes.2017.06.006 10.1137/140989066 10.1016/j.jmbbm.2022.105098 10.1016/j.engfracmech.2022.108819 10.1016/j.jmrt.2022.09.093 10.3390/ma15103730 10.3390/polym14051062 10.1016/j.camwa.2018.10.029 10.1038/s41598-018-25750-9 10.1007/s12541-014-0516-5 10.1016/j.ijheatmasstransfer.2021.122448 10.1177/0954406220975434 10.1016/j.engstruct.2021.113640 10.1002/adem.201900524 10.3390/ma12132183 10.1016/j.mseb.2022.116013 10.1016/j.matdes.2018.09.053 10.1016/j.mtcomm.2023.107018 10.1038/nature21075 10.1016/j.ijmecsci.2023.108353 10.3390/met12071104 10.1007/s10444-018-9586-8 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.mtcomm.2024.108088 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2352-4928 |
ExternalDocumentID | 10_1016_j_mtcomm_2024_108088 S2352492824000680 |
GroupedDBID | --M 0R~ 4.4 457 4G. 7-5 AABXZ AACTN AAEDT AAEDW AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC EBS EFJIC EJD FDB FIRID FYGXN HZ~ KOM M41 O9- OAUVE ROL SPC SPCBC SSM SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABJNI ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-48f5285f76e34b48608fb9817d14c0d4a0a6fcf4cf0abcbac739950a110e20303 |
IEDL.DBID | AIKHN |
ISSN | 2352-4928 |
IngestDate | Thu Apr 24 23:10:20 EDT 2025 Tue Jul 01 02:08:45 EDT 2025 Sat Aug 31 16:02:43 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | TPMS structures Experimental validation Phase-field method Shape optimization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-48f5285f76e34b48608fb9817d14c0d4a0a6fcf4cf0abcbac739950a110e20303 |
ParticipantIDs | crossref_citationtrail_10_1016_j_mtcomm_2024_108088 crossref_primary_10_1016_j_mtcomm_2024_108088 elsevier_sciencedirect_doi_10_1016_j_mtcomm_2024_108088 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2024 2024-03-00 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: March 2024 |
PublicationDecade | 2020 |
PublicationTitle | Materials today communications |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Li, Liao, Dai, Xie (b11) 2019; 12 Liu, Mao, Zhang, Zhang, Jiang, Ma (b12) 2018; 160 Mu, Kueh, Shek (b1) 2021; 219 Blank, Garcke, Hecht, Rupprecht (b24) 2016; 54 Garcke, Hinze, Kahle, Lam (b25) 2018; 44 Wang, Tan, Liu, Yin, Wen (b34) 2022; 252 Wallat, Reder, Selzer, Poehler, Nestler (b26) 2023 Shi, Zhu, Li, Li, Yang, Wang (b4) 2018; 8 Takaki, Kato (b20) 2017; 4 Rezapourian, Jasiuk, Saarna, Hussainova (b6) 2023; 251 Qin, Sang, Zhang, Lai, Zhao (b32) 2022; 14 Nelson, Kelly, Gall (b30) 2022; 286 Gibson (b3) 2003; 28 Wallat, Selzer, Wasmuth, Poehler, Nestler (b31) 2022; 21 Alketan, Abu Al-Rub (b8) 2019 Yu, Xia, Li (b15) 2022; 466 Li, Hu (b17) 2019; 77 Quan, Zhang, Xu, Luo, Nie, Zhu (b9) 2020; 5 Maevskaia, Guerrero, Ghayor, Bhattacharya, Weber (b27) 2023; 29 Pham, Ravi-Chandar, Landis (b23) 2017; 205 Mu, Kueh, Shek, Haniffah, Tan (b18) 2021; 235 Zhiliakov, Wang, Quaini, Olshanskii, Majd (b22) 2021; 1863 Yoo (b7) 2014; 15 Zheng, Luo, Wang, Li, Qu, Zhang (b16) 2022; 186 Foroughi, Razavi (b5) 2022; 128 Wallat, Altschuh, Reder, Nestler, Poehler (b10) 2022; 15 Choy, Sun, Leong, Wei (b13) 2017; 131 (b29) 2000 Blank, Garcke, Sarbu, Srisupattarawanit, Styles, Voigt (b19) 2012 Dixit, Al-Hajri, Paul, Nithiarasu, Kumar (b28) 2022; 210 Berger, Wadley, McMeeking (b2) 2017; 543 Gülcan, Simsek, Cokgunlu, Özdemir, Şendur, Yapici (b33) 2022; 12 Plocher, Panesar (b14) 2020; 33 Pech, Lukacevic, Füssl (b21) 2022; 275 Takaki (10.1016/j.mtcomm.2024.108088_b20) 2017; 4 Maevskaia (10.1016/j.mtcomm.2024.108088_b27) 2023; 29 Pham (10.1016/j.mtcomm.2024.108088_b23) 2017; 205 Choy (10.1016/j.mtcomm.2024.108088_b13) 2017; 131 Blank (10.1016/j.mtcomm.2024.108088_b24) 2016; 54 Wallat (10.1016/j.mtcomm.2024.108088_b10) 2022; 15 Mu (10.1016/j.mtcomm.2024.108088_b18) 2021; 235 Mu (10.1016/j.mtcomm.2024.108088_b1) 2021; 219 Gülcan (10.1016/j.mtcomm.2024.108088_b33) 2022; 12 Wallat (10.1016/j.mtcomm.2024.108088_b26) 2023 Li (10.1016/j.mtcomm.2024.108088_b17) 2019; 77 (10.1016/j.mtcomm.2024.108088_b29) 2000 Quan (10.1016/j.mtcomm.2024.108088_b9) 2020; 5 Alketan (10.1016/j.mtcomm.2024.108088_b8) 2019 Zheng (10.1016/j.mtcomm.2024.108088_b16) 2022; 186 Foroughi (10.1016/j.mtcomm.2024.108088_b5) 2022; 128 Qin (10.1016/j.mtcomm.2024.108088_b32) 2022; 14 Berger (10.1016/j.mtcomm.2024.108088_b2) 2017; 543 Zhiliakov (10.1016/j.mtcomm.2024.108088_b22) 2021; 1863 Wallat (10.1016/j.mtcomm.2024.108088_b31) 2022; 21 Liu (10.1016/j.mtcomm.2024.108088_b12) 2018; 160 Plocher (10.1016/j.mtcomm.2024.108088_b14) 2020; 33 Yoo (10.1016/j.mtcomm.2024.108088_b7) 2014; 15 Nelson (10.1016/j.mtcomm.2024.108088_b30) 2022; 286 Shi (10.1016/j.mtcomm.2024.108088_b4) 2018; 8 Rezapourian (10.1016/j.mtcomm.2024.108088_b6) 2023; 251 Blank (10.1016/j.mtcomm.2024.108088_b19) 2012 Dixit (10.1016/j.mtcomm.2024.108088_b28) 2022; 210 Wang (10.1016/j.mtcomm.2024.108088_b34) 2022; 252 Gibson (10.1016/j.mtcomm.2024.108088_b3) 2003; 28 Yu (10.1016/j.mtcomm.2024.108088_b15) 2022; 466 Li (10.1016/j.mtcomm.2024.108088_b11) 2019; 12 Garcke (10.1016/j.mtcomm.2024.108088_b25) 2018; 44 Pech (10.1016/j.mtcomm.2024.108088_b21) 2022; 275 |
References_xml | – volume: 14 year: 2022 ident: b32 article-title: Compression performance and deformation behavior of 3D-printed PLA-based lattice structures publication-title: Polymers – volume: 543 year: 2017 ident: b2 article-title: Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness publication-title: Nature – volume: 466 year: 2022 ident: b15 article-title: A phase field-based systematic multiscale topology optimization method for porous structures design publication-title: J. Comput. Phys. – year: 2000 ident: b29 article-title: Standard test method for compressive properties of rigid cellular plastics – volume: 12 year: 2022 ident: b33 article-title: Effect of build parameters on the compressive behavior of additive manufactured CoCrMo lattice parts based on experimental design publication-title: Metals – volume: 210 year: 2022 ident: b28 article-title: High performance, microarchitected, compact heat exchanger enabled by 3D printing publication-title: Appl. Therm. Eng. – volume: 15 start-page: 1657 year: 2014 end-page: 1666 ident: b7 article-title: Advanced porous scaffold design using multi-void triply periodic minimal surface models with High Surface Area to volume ratios publication-title: Int. J. Precis. Eng. Manuf. – volume: 252 year: 2022 ident: b34 article-title: On crashworthiness of novel porous structure based on composite TPMS structures publication-title: Eng. Struct. – volume: 205 year: 2017 ident: b23 article-title: Experimental validation of a phase-field model for fracture publication-title: Int. J. Fract. – volume: 12 start-page: 2183 year: 2019 ident: b11 article-title: Comparison of mechanical properties and energy absorption of sheet-based and strut-based gyroid cellular structures with graded densities publication-title: Materials – year: 2023 ident: b26 article-title: Shape optimization of porous structures by phase-field modelling with strain energy density reduction publication-title: Mater. Today Commun. – volume: 77 start-page: 1029 year: 2019 end-page: 1041 ident: b17 article-title: A phase-field method for shape optimization of incompressible flows publication-title: Comput. Math. Appl. – volume: 131 start-page: 112 year: 2017 end-page: 120 ident: b13 article-title: Compressive properties of functionally graded lattice structures manufactured by selective laser melting publication-title: Mater. Des. – volume: 15 start-page: 3730 year: 2022 ident: b10 article-title: Computational design and characterisation of gyroid structures with different gradient functions for porosity adjustment publication-title: Materials – volume: 128 year: 2022 ident: b5 article-title: Shape optimization of orthopedic porous scaffolds to enhance mechanical performance publication-title: J. Mech. Behav. Biomed. Mater. – year: 2019 ident: b8 article-title: Multifunctional mechanical-metamaterials based on triply periodic minimal surface lattices: A review publication-title: Adv. Eng. Mater. – volume: 29 start-page: 507 year: 2023 end-page: 517 ident: b27 article-title: Triply periodic minimal surface-based scaffolds for bone tissue engineering: A mechanical, in vitro and in vivo study publication-title: Tissue Eng. A – volume: 160 start-page: 849 year: 2018 end-page: 860 ident: b12 article-title: Functionally graded porous scaffolds in multiple patterns: New design method, physical and mechanical properties publication-title: Mater. Des. – volume: 235 start-page: 3975 year: 2021 end-page: 3987 ident: b18 article-title: Flow responses alteration by geometrical effects of tubercles on plates under the maximal angle of attack publication-title: Proc. Inst. Mech. Eng. C – volume: 8 year: 2018 ident: b4 article-title: A TPMS-based method for modeling porous scaffolds for bionic bone tissue engineering publication-title: Sci. Rep. – volume: 286 year: 2022 ident: b30 article-title: Effect of stress state on the mechanical behavior of 3D printed porous Ti6Al4V scaffolds produced by laser powder bed fusion publication-title: Mater. Sci. Eng. B – volume: 251 year: 2023 ident: b6 article-title: Selective laser melted Ti6Al4V split-P TPMS lattices for bone tissue engineering publication-title: Int. J. Mech. Sci. – volume: 44 year: 2018 ident: b25 article-title: A phase field approach to shape optimization in Navier–Stokes flow with integral state constraint publication-title: Adv. Comput. Math. – volume: 21 start-page: 1798 year: 2022 end-page: 1810 ident: b31 article-title: Energy absorption capability of graded and non-graded sheet-based gyroid structures fabricated by microcast processing publication-title: J. Mater. Res. Technol. – volume: 1863 year: 2021 ident: b22 article-title: Experimental validation of a phase-field model to predict coarsening dynamics of lipid domains in multicomponent membranes publication-title: Biochimica et Biophysica Acta (BBA) - Biomembranes – volume: 28 start-page: 270 year: 2003 end-page: 274 ident: b3 article-title: Cellular solids publication-title: MRS Bull. – volume: 275 year: 2022 ident: b21 article-title: Validation of a hybrid multi-phase field model for fracture of wood publication-title: Eng. Fract. Mech. – volume: 5 start-page: 110 year: 2020 end-page: 115 ident: b9 article-title: Photo-curing 3D printing technique and its challenges publication-title: Bioact. Mater. – volume: 219 year: 2021 ident: b1 article-title: Hydroelastic responses of plates with sinusoidal tubercles under perpendicularly loaded flow publication-title: Ocean Eng. – year: 2012 ident: b19 article-title: Phase-field approaches to structural topology optimization publication-title: Constrained Optimization and Optimal Control for Partial Differential Equations, Vol. 160 – volume: 54 start-page: 1558 year: 2016 end-page: 1584 ident: b24 article-title: Sharp interface limit for a phase field model in structural optimization publication-title: SIAM J. Control Optim. – volume: 33 year: 2020 ident: b14 article-title: Effect of density and unit cell size grading on the stiffness and energy absorption of short fibre-reinforced functionally graded lattice structures publication-title: Addit. Manuf. – volume: 186 year: 2022 ident: b16 article-title: Optimized high thermal insulation by the topological design of hierarchical structures publication-title: Int. J. Heat Mass Transfer – volume: 4 year: 2017 ident: b20 article-title: Phase-field topology optimization model that removes the curvature effects publication-title: Mech. Eng. J. – volume: 1863 issue: 1 year: 2021 ident: 10.1016/j.mtcomm.2024.108088_b22 article-title: Experimental validation of a phase-field model to predict coarsening dynamics of lipid domains in multicomponent membranes publication-title: Biochimica et Biophysica Acta (BBA) - Biomembranes doi: 10.1016/j.bbamem.2020.183446 – volume: 219 year: 2021 ident: 10.1016/j.mtcomm.2024.108088_b1 article-title: Hydroelastic responses of plates with sinusoidal tubercles under perpendicularly loaded flow publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.108301 – volume: 466 year: 2022 ident: 10.1016/j.mtcomm.2024.108088_b15 article-title: A phase field-based systematic multiscale topology optimization method for porous structures design publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2022.111383 – volume: 29 start-page: 507 issue: 19–20 year: 2023 ident: 10.1016/j.mtcomm.2024.108088_b27 article-title: Triply periodic minimal surface-based scaffolds for bone tissue engineering: A mechanical, in vitro and in vivo study publication-title: Tissue Eng. A doi: 10.1089/ten.tea.2023.0033 – volume: 210 year: 2022 ident: 10.1016/j.mtcomm.2024.108088_b28 article-title: High performance, microarchitected, compact heat exchanger enabled by 3D printing publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2022.118339 – volume: 205 year: 2017 ident: 10.1016/j.mtcomm.2024.108088_b23 article-title: Experimental validation of a phase-field model for fracture publication-title: Int. J. Fract. doi: 10.1007/s10704-017-0185-3 – volume: 28 start-page: 270 issue: 4 year: 2003 ident: 10.1016/j.mtcomm.2024.108088_b3 article-title: Cellular solids publication-title: MRS Bull. doi: 10.1557/mrs2003.79 – volume: 131 start-page: 112 year: 2017 ident: 10.1016/j.mtcomm.2024.108088_b13 article-title: Compressive properties of functionally graded lattice structures manufactured by selective laser melting publication-title: Mater. Des. doi: 10.1016/j.matdes.2017.06.006 – volume: 54 start-page: 1558 issue: 3 year: 2016 ident: 10.1016/j.mtcomm.2024.108088_b24 article-title: Sharp interface limit for a phase field model in structural optimization publication-title: SIAM J. Control Optim. doi: 10.1137/140989066 – volume: 128 year: 2022 ident: 10.1016/j.mtcomm.2024.108088_b5 article-title: Shape optimization of orthopedic porous scaffolds to enhance mechanical performance publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2022.105098 – volume: 33 year: 2020 ident: 10.1016/j.mtcomm.2024.108088_b14 article-title: Effect of density and unit cell size grading on the stiffness and energy absorption of short fibre-reinforced functionally graded lattice structures publication-title: Addit. Manuf. – volume: 275 year: 2022 ident: 10.1016/j.mtcomm.2024.108088_b21 article-title: Validation of a hybrid multi-phase field model for fracture of wood publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2022.108819 – volume: 21 start-page: 1798 year: 2022 ident: 10.1016/j.mtcomm.2024.108088_b31 article-title: Energy absorption capability of graded and non-graded sheet-based gyroid structures fabricated by microcast processing publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2022.09.093 – volume: 15 start-page: 3730 issue: 10 year: 2022 ident: 10.1016/j.mtcomm.2024.108088_b10 article-title: Computational design and characterisation of gyroid structures with different gradient functions for porosity adjustment publication-title: Materials doi: 10.3390/ma15103730 – volume: 14 issue: 5 year: 2022 ident: 10.1016/j.mtcomm.2024.108088_b32 article-title: Compression performance and deformation behavior of 3D-printed PLA-based lattice structures publication-title: Polymers doi: 10.3390/polym14051062 – volume: 77 start-page: 1029 issue: 4 year: 2019 ident: 10.1016/j.mtcomm.2024.108088_b17 article-title: A phase-field method for shape optimization of incompressible flows publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2018.10.029 – volume: 8 year: 2018 ident: 10.1016/j.mtcomm.2024.108088_b4 article-title: A TPMS-based method for modeling porous scaffolds for bionic bone tissue engineering publication-title: Sci. Rep. doi: 10.1038/s41598-018-25750-9 – volume: 5 start-page: 110 issue: 1 year: 2020 ident: 10.1016/j.mtcomm.2024.108088_b9 article-title: Photo-curing 3D printing technique and its challenges publication-title: Bioact. Mater. – volume: 15 start-page: 1657 year: 2014 ident: 10.1016/j.mtcomm.2024.108088_b7 article-title: Advanced porous scaffold design using multi-void triply periodic minimal surface models with High Surface Area to volume ratios publication-title: Int. J. Precis. Eng. Manuf. doi: 10.1007/s12541-014-0516-5 – volume: 186 year: 2022 ident: 10.1016/j.mtcomm.2024.108088_b16 article-title: Optimized high thermal insulation by the topological design of hierarchical structures publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2021.122448 – volume: 235 start-page: 3975 issue: 19 year: 2021 ident: 10.1016/j.mtcomm.2024.108088_b18 article-title: Flow responses alteration by geometrical effects of tubercles on plates under the maximal angle of attack publication-title: Proc. Inst. Mech. Eng. C doi: 10.1177/0954406220975434 – year: 2000 ident: 10.1016/j.mtcomm.2024.108088_b29 – volume: 252 year: 2022 ident: 10.1016/j.mtcomm.2024.108088_b34 article-title: On crashworthiness of novel porous structure based on composite TPMS structures publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2021.113640 – year: 2019 ident: 10.1016/j.mtcomm.2024.108088_b8 article-title: Multifunctional mechanical-metamaterials based on triply periodic minimal surface lattices: A review publication-title: Adv. Eng. Mater. doi: 10.1002/adem.201900524 – year: 2012 ident: 10.1016/j.mtcomm.2024.108088_b19 article-title: Phase-field approaches to structural topology optimization – volume: 12 start-page: 2183 issue: 13 year: 2019 ident: 10.1016/j.mtcomm.2024.108088_b11 article-title: Comparison of mechanical properties and energy absorption of sheet-based and strut-based gyroid cellular structures with graded densities publication-title: Materials doi: 10.3390/ma12132183 – volume: 286 year: 2022 ident: 10.1016/j.mtcomm.2024.108088_b30 article-title: Effect of stress state on the mechanical behavior of 3D printed porous Ti6Al4V scaffolds produced by laser powder bed fusion publication-title: Mater. Sci. Eng. B doi: 10.1016/j.mseb.2022.116013 – volume: 160 start-page: 849 year: 2018 ident: 10.1016/j.mtcomm.2024.108088_b12 article-title: Functionally graded porous scaffolds in multiple patterns: New design method, physical and mechanical properties publication-title: Mater. Des. doi: 10.1016/j.matdes.2018.09.053 – volume: 4 issue: 2 year: 2017 ident: 10.1016/j.mtcomm.2024.108088_b20 article-title: Phase-field topology optimization model that removes the curvature effects publication-title: Mech. Eng. J. – year: 2023 ident: 10.1016/j.mtcomm.2024.108088_b26 article-title: Shape optimization of porous structures by phase-field modelling with strain energy density reduction publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2023.107018 – volume: 543 year: 2017 ident: 10.1016/j.mtcomm.2024.108088_b2 article-title: Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness publication-title: Nature doi: 10.1038/nature21075 – volume: 251 year: 2023 ident: 10.1016/j.mtcomm.2024.108088_b6 article-title: Selective laser melted Ti6Al4V split-P TPMS lattices for bone tissue engineering publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2023.108353 – volume: 12 issue: 7 year: 2022 ident: 10.1016/j.mtcomm.2024.108088_b33 article-title: Effect of build parameters on the compressive behavior of additive manufactured CoCrMo lattice parts based on experimental design publication-title: Metals doi: 10.3390/met12071104 – volume: 44 year: 2018 ident: 10.1016/j.mtcomm.2024.108088_b25 article-title: A phase field approach to shape optimization in Navier–Stokes flow with integral state constraint publication-title: Adv. Comput. Math. doi: 10.1007/s10444-018-9586-8 |
SSID | ssj0001850494 |
Score | 2.283814 |
Snippet | Triply periodic minimal surface (TPMS) structures excel in various research fields, ranging from bone support structures to heat exchangers. By implementing... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 108088 |
SubjectTerms | Experimental validation Phase-field method Shape optimization TPMS structures |
Title | Experimental evaluation of phase-field-based load-specific shape optimization of nature-inspired porous structures |
URI | https://dx.doi.org/10.1016/j.mtcomm.2024.108088 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT8IwEG8QXnwxGjXiV_rga8NYu617JASCEnlQibwtXdcGDLBF8P_3busEE6OJT8s-Lluut7tr-7vfEXIHdiG1kV2mokwxEfmCKTAUllrlG645Fynu6D5OwtFUPMyCWYP061oYhFU631_59NJbuysdp81OsVh0nn3IHUQMUwbhlR0kDkjL53Eom6TVux-PJrulFhkgC0rZZi7wGcrURXQl0mu1hXdgVbovSshd2YXlhyC1F3iGx-TIZYy0V33UCWmY9Sl5H-wx89MdZTfNLS3mEJlYCU1jGKQyusxVxrCmEnFBdDNXhaE5-IqVK8JEqYrhky3WuPUOMpCX5x8bWvHLwp3NGZkOBy_9EXPtE5iGecCWCWkDXwY2Cg1oHJtNSZvGshtlXaG9TChPhVZboa2nUp0qHWGZq6cgITA-_Pv8nDTX-dpcEKqVFwSZTFMutTAcQljI0cXGMKwq8myb8FpfiXbc4tjiYpnUILK3pNJyglpOKi23CfuSKipujT-ej-qhSL7ZSALu_1fJy39LXpFDPKtQZ9ekCUo3N5CGbNNbZ2Z4HD-9jj8BGVHfMg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7GdoALAgFiPHPgGq1r0zY7TtOmwh4XNmm3KE0TbWhbKzb-P3YfbEgIJK5NrVa2azvN58-EPIFfCG1Em6kwUYyHLmcKHIXFVrnG057HYzzRHU-CaMZf5v68RnpVLwzCKsvYX8T0PFqXV1qlNlvZctl6daF24B3YMnAnnyBxRBrITsXrpNF9HkaT_a8W4SMLSj5mzncZylRNdDnSa72DZ2BXustzyF0-heWHJHWQeAZn5LSsGGm3eKlzUjObC_LeP2Dmp3vKbppami0gM7EcmsYwSSV0laqEYU8l4oLodqEyQ1OIFeuyCROlCoZPttzg0TvIQF2efmxpwS8LK9tLMhv0p72IleMTmIZ9wI5xYX1X-DYMDGgch00JG3dEO0zaXDsJV44KrLZcW0fFOlY6xDZXR0FBYFz49r0rUt-kG3NNqFaO7ycijj2hufEghQUehtgOmFWFjm0Sr9KX1CW3OI64WMkKRPYmCy1L1LIstNwk7EsqK7g1_rg_rEwhv_mIhPD_q-TNvyUfyXE0HY_k6HkyvCUnuFIg0O5IHQxg7qEk2cUPpct9AqBr4HU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+evaluation+of+phase-field-based+load-specific+shape+optimization+of+nature-inspired+porous+structures&rft.jtitle=Materials+today+communications&rft.au=Wallat%2C+Leonie&rft.au=Koeppe%2C+Arnd&rft.au=Selzer%2C+Michael&rft.au=Seiler%2C+Marcus&rft.date=2024-03-01&rft.pub=Elsevier+Ltd&rft.issn=2352-4928&rft.eissn=2352-4928&rft.volume=38&rft_id=info:doi/10.1016%2Fj.mtcomm.2024.108088&rft.externalDocID=S2352492824000680 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-4928&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-4928&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-4928&client=summon |