A novel image encryption scheme based on conservative hyperchaotic system and closed-loop diffusion between blocks

•We firstly use a 5-dimensional conservative hyper-chaotic system to generate key streams for image encryption.•Compare to dissipative chaotic system, the conservative hyper-chaotic system we used has no attractor, thus can avoid the reconstructing attacks.•We propose a closed-loop diffusion mechani...

Full description

Saved in:
Bibliographic Details
Published inSignal processing Vol. 171; p. 107484
Main Authors Zhou, Minjun, Wang, Chunhua
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •We firstly use a 5-dimensional conservative hyper-chaotic system to generate key streams for image encryption.•Compare to dissipative chaotic system, the conservative hyper-chaotic system we used has no attractor, thus can avoid the reconstructing attacks.•We propose a closed-loop diffusion mechanism between blocks dependent on both plaintext and ciphertext (CDMBDPC) for the first time. Different to the existing open-loop diffusion scheme, our closed-loop diffusion scheme can greatly improve the reliability of encryption system. In addition, our closed-loop diffusion mechanism implements the complete diffusion process of encrypting the first plaintext pixel block to encrypting the last pixel block and then updating the first ciphertext block.•To resist reconfiguration attack and statistical attack, the chaotic system used to generate pseudorandom sequences can't be refactored and key streams of an encryption model need to be random. Using the 5d conservative hyperchaotic system, we design a new chaos-based encryption algorithm with random key streams, and a closed-loop diffusion mechanism is designed in the encryption model to enhance the encryption reliability.•The image encryption scheme is sensitive to both the plain image and the cipher image.•The experimental results show that the proposed encryption algorithm has excellent security and reliability compared with exiting algorithms. Dissipative chaotic systems have been widely used in digital image encryption schemes in the past 20 years. However, compared to conservative chaotic systems, the dissipative chaotic systems have attractors thus attacker can reconstruct the chaotic systems by reconstructing the attractors. Therefore, the conservative chaotic systems are more suitable in chaos-based encryption system because they have no attractors thus can avoid the reconstructing attacks. Based on this, an image encryption scheme based on conservative hyper-chaotic system and closed-loop diffusion between blocks is proposed in this paper. On the one hand, the conservative hyperchaotic system has strong pseudo-randomness and anti-reconstruction attack property. On the other hand, different from the existing closed-loop diffusion schemes which change pixel values one by one until the last pixel value is changed, the proposed closed-loop diffusion method cannot only generate the first ciphertext and other ciphertext blocks but also update the first ciphertext block using the other generated ciphertext block information. In addition, the key streams are related to plaintext and ciphertext. Consequently, the key, plaintext and ciphertext form an organic whole to ensure the sensitivity of the encryption system. Moreover, simulation results and analysis show that the encryption scheme has strong security and excellent performance.
AbstractList •We firstly use a 5-dimensional conservative hyper-chaotic system to generate key streams for image encryption.•Compare to dissipative chaotic system, the conservative hyper-chaotic system we used has no attractor, thus can avoid the reconstructing attacks.•We propose a closed-loop diffusion mechanism between blocks dependent on both plaintext and ciphertext (CDMBDPC) for the first time. Different to the existing open-loop diffusion scheme, our closed-loop diffusion scheme can greatly improve the reliability of encryption system. In addition, our closed-loop diffusion mechanism implements the complete diffusion process of encrypting the first plaintext pixel block to encrypting the last pixel block and then updating the first ciphertext block.•To resist reconfiguration attack and statistical attack, the chaotic system used to generate pseudorandom sequences can't be refactored and key streams of an encryption model need to be random. Using the 5d conservative hyperchaotic system, we design a new chaos-based encryption algorithm with random key streams, and a closed-loop diffusion mechanism is designed in the encryption model to enhance the encryption reliability.•The image encryption scheme is sensitive to both the plain image and the cipher image.•The experimental results show that the proposed encryption algorithm has excellent security and reliability compared with exiting algorithms. Dissipative chaotic systems have been widely used in digital image encryption schemes in the past 20 years. However, compared to conservative chaotic systems, the dissipative chaotic systems have attractors thus attacker can reconstruct the chaotic systems by reconstructing the attractors. Therefore, the conservative chaotic systems are more suitable in chaos-based encryption system because they have no attractors thus can avoid the reconstructing attacks. Based on this, an image encryption scheme based on conservative hyper-chaotic system and closed-loop diffusion between blocks is proposed in this paper. On the one hand, the conservative hyperchaotic system has strong pseudo-randomness and anti-reconstruction attack property. On the other hand, different from the existing closed-loop diffusion schemes which change pixel values one by one until the last pixel value is changed, the proposed closed-loop diffusion method cannot only generate the first ciphertext and other ciphertext blocks but also update the first ciphertext block using the other generated ciphertext block information. In addition, the key streams are related to plaintext and ciphertext. Consequently, the key, plaintext and ciphertext form an organic whole to ensure the sensitivity of the encryption system. Moreover, simulation results and analysis show that the encryption scheme has strong security and excellent performance.
ArticleNumber 107484
Author Wang, Chunhua
Zhou, Minjun
Author_xml – sequence: 1
  givenname: Minjun
  surname: Zhou
  fullname: Zhou, Minjun
  email: zmj0923@hnu.edu.cn
– sequence: 2
  givenname: Chunhua
  orcidid: 0000-0001-6522-9795
  surname: Wang
  fullname: Wang, Chunhua
  email: wch1227164@hnu.edu.cn
BookMark eNqFkM1KAzEUhYMo2FbfwEVeYGoy_3UhlOIfFNzoOiQ3d9rU6WRIYmXe3gzjyoWuDvdyzoHzzcl5Zzsk5IazJWe8vD0svdn1zi5Tlo6vKq_zMzLjdZUmVVFU52QWbUXCyzq_JHPvD4wxnpVsRtyadvaELTVHuUOKHbihD8Z21MMej0iV9KhpvMF2Ht1JBnNCuh96dLCXNhigfvABj1R2mkJroz1pre2pNk3z6ccqheELMWpr4cNfkYtGth6vf3RB3h8f3jbPyfb16WWz3iaQsTIkeQYrSBUwSDUDrVReVkpyxVmqdVaWOlUFa7IaFK6Kgtc8U00T7fWqqmpMm2xB7qZecNZ7h40AE-S4LThpWsGZGOmJg5joiZGemOjFcP4r3LuIyA3_xe6nGMZhJ4NOeDARKmrjEILQ1vxd8A2NepFv
CitedBy_id crossref_primary_10_1088_1674_1056_ad3efa
crossref_primary_10_3390_e24020273
crossref_primary_10_1007_s11071_021_07192_7
crossref_primary_10_1007_s11042_020_09542_w
crossref_primary_10_1007_s10723_023_09655_0
crossref_primary_10_1007_s11042_023_15119_0
crossref_primary_10_1007_s11760_024_03455_z
crossref_primary_10_1016_j_chaos_2023_113450
crossref_primary_10_1142_S0218127423501900
crossref_primary_10_3390_app12115452
crossref_primary_10_1016_j_sciaf_2022_e01217
crossref_primary_10_1109_TCSI_2022_3172313
crossref_primary_10_1016_j_amc_2023_128340
crossref_primary_10_1155_2021_6615708
crossref_primary_10_1007_s11071_023_08397_8
crossref_primary_10_1007_s11042_022_12742_1
crossref_primary_10_1007_s11071_022_07756_1
crossref_primary_10_1016_j_optlaseng_2021_106782
crossref_primary_10_1088_1674_1056_acef08
crossref_primary_10_3390_sym14081668
crossref_primary_10_1007_s11042_022_12604_w
crossref_primary_10_1016_j_ijleo_2021_167286
crossref_primary_10_1080_19393555_2020_1767831
crossref_primary_10_1016_j_chaos_2021_111318
crossref_primary_10_1007_s11071_023_09148_5
crossref_primary_10_1007_s42979_022_01284_w
crossref_primary_10_1088_1402_4896_ad1020
crossref_primary_10_1088_1402_4896_ad0c13
crossref_primary_10_1007_s11071_021_06663_1
crossref_primary_10_1007_s40747_021_00515_6
crossref_primary_10_1007_s00521_024_10665_6
crossref_primary_10_1007_s11042_023_16730_x
crossref_primary_10_1016_j_chaos_2021_111687
crossref_primary_10_17780_ksujes_1208570
crossref_primary_10_1155_2020_8658797
crossref_primary_10_1088_1402_4896_adb523
crossref_primary_10_1007_s11277_021_08584_z
crossref_primary_10_1007_s11042_023_16981_8
crossref_primary_10_1016_j_cnsns_2023_107143
crossref_primary_10_1007_s11071_021_06422_2
crossref_primary_10_1016_j_ijleo_2022_169357
crossref_primary_10_1007_s11071_022_07702_1
crossref_primary_10_1016_j_optlastec_2025_112751
crossref_primary_10_1016_j_measurement_2021_109257
crossref_primary_10_1155_2020_8869989
crossref_primary_10_1080_09500340_2024_2395982
crossref_primary_10_1063_5_0238893
crossref_primary_10_3390_e25071031
crossref_primary_10_1155_2020_8274685
crossref_primary_10_1109_TCYB_2024_3377011
crossref_primary_10_1140_epjp_s13360_024_05289_7
crossref_primary_10_1109_ACCESS_2020_3018659
crossref_primary_10_1140_epjp_s13360_024_05415_5
crossref_primary_10_1016_j_matcom_2022_12_025
crossref_primary_10_1080_03772063_2024_2373899
crossref_primary_10_1016_j_chaos_2021_110686
crossref_primary_10_1038_s41598_021_94748_7
crossref_primary_10_1002_admt_202400841
crossref_primary_10_1016_j_ijleo_2023_170590
crossref_primary_10_1088_1402_4896_acdda8
crossref_primary_10_1016_j_jisa_2022_103304
crossref_primary_10_1155_2020_9026516
crossref_primary_10_1088_1402_4896_acdc62
crossref_primary_10_1109_ACCESS_2024_3447068
crossref_primary_10_3390_e25101399
crossref_primary_10_1007_s11554_023_01278_8
crossref_primary_10_1007_s11071_024_09987_w
crossref_primary_10_1142_S0218127420500601
crossref_primary_10_3390_e23101297
crossref_primary_10_1007_s11071_024_09547_2
crossref_primary_10_1155_2020_7638243
crossref_primary_10_1142_S0218127421501984
crossref_primary_10_1155_2021_6675565
crossref_primary_10_1007_s11036_023_02133_7
crossref_primary_10_1016_j_chaos_2022_112016
crossref_primary_10_1088_1402_4896_ac6544
crossref_primary_10_1038_s41598_025_89993_z
crossref_primary_10_1007_s13389_023_00343_z
crossref_primary_10_1088_1402_4896_ac95d9
crossref_primary_10_1007_s42979_021_00778_3
crossref_primary_10_1007_s10851_022_01099_7
crossref_primary_10_1109_ACCESS_2022_3181424
crossref_primary_10_1109_TII_2023_3281659
crossref_primary_10_1155_2020_2051653
crossref_primary_10_1016_j_chaos_2024_115443
crossref_primary_10_3390_sym13122317
crossref_primary_10_1109_ACCESS_2020_3016650
crossref_primary_10_1142_S0218127422501863
crossref_primary_10_1007_s10462_022_10295_1
crossref_primary_10_1016_j_iot_2025_101559
crossref_primary_10_1109_ACCESS_2020_3011524
crossref_primary_10_1016_j_optlastec_2020_106837
crossref_primary_10_1088_1402_4896_ad8819
crossref_primary_10_1155_2021_9698371
crossref_primary_10_1007_s11071_024_10013_2
crossref_primary_10_1007_s40313_023_00991_w
crossref_primary_10_1016_j_heliyon_2023_e14072
crossref_primary_10_3390_e26090760
crossref_primary_10_1155_2021_6683284
crossref_primary_10_1016_j_eswa_2024_124904
crossref_primary_10_1155_cplx_2910833
crossref_primary_10_3390_e24081103
crossref_primary_10_1016_j_chaos_2023_113492
crossref_primary_10_1016_j_jisa_2024_103723
crossref_primary_10_1109_ACCESS_2021_3114030
crossref_primary_10_1109_ACCESS_2022_3218668
crossref_primary_10_1155_2020_8034196
crossref_primary_10_1142_S0218127424501888
crossref_primary_10_1007_s11042_023_15012_w
crossref_primary_10_7498_aps_70_20210561
crossref_primary_10_1109_TVLSI_2024_3361889
crossref_primary_10_1016_j_chaos_2024_115039
crossref_primary_10_1088_1402_4896_ad9183
crossref_primary_10_1155_2021_6677325
crossref_primary_10_1142_S0218127420500868
crossref_primary_10_1016_j_jfranklin_2024_106874
crossref_primary_10_1016_j_ins_2021_12_126
crossref_primary_10_1142_S0217984921504650
crossref_primary_10_1109_TCSVT_2024_3375868
crossref_primary_10_1007_s11071_020_06115_2
crossref_primary_10_1007_s11071_022_07958_7
crossref_primary_10_1007_s11227_024_05906_3
crossref_primary_10_1088_1402_4896_ad0268
crossref_primary_10_1155_2022_8148831
crossref_primary_10_1088_1402_4896_ad6bce
crossref_primary_10_1142_S021812742350061X
crossref_primary_10_1016_j_sigpro_2020_107684
crossref_primary_10_1088_1402_4896_ac5ce1
crossref_primary_10_3390_math11030767
crossref_primary_10_1142_S0218127423500906
crossref_primary_10_1016_j_physa_2023_128759
crossref_primary_10_1140_epjp_s13360_020_00917_4
crossref_primary_10_1007_s11071_023_08866_0
crossref_primary_10_1007_s11554_023_01294_8
crossref_primary_10_1016_j_matcom_2022_11_016
crossref_primary_10_1088_1402_4896_ad7330
crossref_primary_10_1088_1674_1056_ac8cdf
crossref_primary_10_1007_s00371_022_02750_5
crossref_primary_10_1007_s11554_021_01194_9
crossref_primary_10_1016_j_ijleo_2022_170379
crossref_primary_10_1109_TCSI_2021_3121555
crossref_primary_10_1016_j_chaos_2021_111693
crossref_primary_10_1109_ACCESS_2021_3118377
crossref_primary_10_1007_s11036_023_02147_1
crossref_primary_10_1007_s10470_025_02309_z
crossref_primary_10_1109_ACCESS_2021_3049791
crossref_primary_10_1109_ACCESS_2020_2982567
crossref_primary_10_1007_s11071_021_06206_8
crossref_primary_10_3390_e27030299
crossref_primary_10_1007_s11042_020_10429_z
crossref_primary_10_1016_j_aeue_2022_154242
crossref_primary_10_1016_j_optlastec_2021_107074
crossref_primary_10_1007_s11042_023_14394_1
crossref_primary_10_1088_1402_4896_ace93a
crossref_primary_10_1155_2020_8842376
crossref_primary_10_1155_2020_5212601
crossref_primary_10_1016_j_jisa_2020_102566
crossref_primary_10_1007_s11071_021_06941_y
crossref_primary_10_2478_aut_2022_0018
crossref_primary_10_1016_j_eswa_2022_118845
crossref_primary_10_1155_2021_6978772
crossref_primary_10_1088_1402_4896_acf7fa
crossref_primary_10_3390_e24070900
crossref_primary_10_1016_j_matcom_2020_07_007
crossref_primary_10_1088_1674_1056_abfa01
crossref_primary_10_1007_s11042_023_14826_y
crossref_primary_10_1007_s00371_023_02812_2
crossref_primary_10_1109_ACCESS_2022_3217520
crossref_primary_10_1109_TCSVT_2021_3054508
crossref_primary_10_1515_eng_2024_0016
crossref_primary_10_1007_s11042_024_18460_0
crossref_primary_10_1007_s11554_023_01338_z
crossref_primary_10_1016_j_heliyon_2023_e23572
crossref_primary_10_1088_1402_4896_ad7239
crossref_primary_10_1155_2023_8994299
crossref_primary_10_1007_s11071_022_07391_w
crossref_primary_10_1063_5_0155982
crossref_primary_10_1088_1674_1056_ab9dea
crossref_primary_10_1088_1674_1056_ac0a61
crossref_primary_10_3390_mi13060844
crossref_primary_10_3389_fphy_2022_847385
crossref_primary_10_1016_j_jisa_2024_103938
crossref_primary_10_1155_2020_7530976
crossref_primary_10_1142_S0218127420501849
Cites_doi 10.1016/j.optlaseng.2016.02.002
10.1103/PhysRevA.39.3776
10.1016/j.optlaseng.2014.08.005
10.1016/j.optlaseng.2016.10.020
10.3390/sym10090399
10.1016/j.sigpro.2017.03.011
10.1016/j.sigpro.2018.06.008
10.1016/j.optlaseng.2015.09.007
10.1016/j.sigpro.2018.01.026
10.1016/j.sigpro.2014.01.020
10.3390/e20110843
10.1016/j.optlaseng.2016.10.019
10.1016/j.sigpro.2018.05.008
10.1063/1.5116732
10.1142/S021812749800098X
10.1016/j.optlaseng.2018.05.009
10.1016/j.optlastec.2018.07.052
10.1016/j.apm.2019.03.037
10.3390/e21080790
10.1142/S0218127419501177
10.1007/s11071-019-05113-3
10.1007/s11042-019-7405-y
10.1515/acsc-2015-0022
10.1016/j.optlastec.2019.02.009
10.1142/S0218127499001383
10.1142/S0218127418500475
10.1016/j.optlaseng.2018.12.002
10.1016/j.image.2016.12.007
10.1063/1.5081076
10.1142/S0218127419501153
10.1109/ACCESS.2018.2832854
10.1119/1.18585
10.1016/j.sigpro.2019.02.016
10.1155/2019/4047957
10.1016/j.sigpro.2018.09.029
10.1016/j.optlastec.2019.01.043
10.1016/j.optlaseng.2016.10.012
10.1016/j.asoc.2009.12.011
10.1007/s11071-017-3599-6
10.1016/j.optlaseng.2016.08.009
10.1007/s11071-018-4676-1
10.1109/JPHOT.2018.2858823
10.1086/109234
ContentType Journal Article
Copyright 2020
Copyright_xml – notice: 2020
DBID AAYXX
CITATION
DOI 10.1016/j.sigpro.2020.107484
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-7557
ExternalDocumentID 10_1016_j_sigpro_2020_107484
S016516842030027X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-43c9c2bc0c2d0cdbb467ba1b102dd366d2b50f38cbe9551813bffbc089778e2f3
IEDL.DBID .~1
ISSN 0165-1684
IngestDate Tue Jul 01 02:07:28 EDT 2025
Thu Apr 24 23:00:28 EDT 2025
Fri Feb 23 02:47:13 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Image encryption
Closed-loop diffusion
Inter-block
Conservative hyper-chaotic system
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-43c9c2bc0c2d0cdbb467ba1b102dd366d2b50f38cbe9551813bffbc089778e2f3
ORCID 0000-0001-6522-9795
ParticipantIDs crossref_citationtrail_10_1016_j_sigpro_2020_107484
crossref_primary_10_1016_j_sigpro_2020_107484
elsevier_sciencedirect_doi_10_1016_j_sigpro_2020_107484
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2020
2020-06-00
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationTitle Signal processing
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Chai, Chen, Broyde (bib0013) 2017; 88
Wang, Wong, Liao (bib0019) 2011; 11
Thomas (bib0040) 1999; 9
Yu, Liu, He (bib0010) 2019; 2019
Lakshmanan, Rajaseekar (bib0037) 2012
Sprott (bib0039) 1997; 65
Deng, Wang (bib0009) 2019; 29
Vaidyanathan, Volos (bib0034) 2015; 25
Fridrich (bib0011) 1998; 8
Qi (bib0035) 2019; 95
SIPI Image Database, University of Southern California Signal and Image Processing Institute (Accessed 29 May 2018).
Wang, Wang, Zhang (bib0031) 2018; 108
Yaghouti Niyat, Moattar, Niazi Torshiz (bib0045) 2017; 90
Wang, Zhao, Wang (bib0022) 2019; 115
Hénon, Heiles (bib0036) 1964; 69
Eckhardt, Hose, Pollak (bib0038) 1989; 39
Zhu, Zhu (bib0027) 2019; 78
Lan, He, Wang (bib0021) 2018; 147
Zhu, Wang, Zhu (bib0026) 2019; 21
Chai, Gan, Yang (bib0024) 2017; 52
Cambel (bib0033) 1993
Xu, Gou, Li (bib0046) 2017; 91
Zhang, Wang, Liu (bib0012) 2016; 82
Zhu, Wang, Sun (bib0049) 2018; 10
Zhu, Wang, Sun (bib0048) 2018; 20
.
Lin, Wang (bib0005) 2020; 369
Chen, Sun, He (bib0002) 2019
Dong, Yuan, Du (bib0042) 2019; 73
Wang, Liu, Zhang (bib0018) 2015; 66
Silva-García, Flores-Carapia, Rentería-Márquez (bib0003) 2018; 332
Li, Wang, Chen (bib0028) 2017; 90
Zhang, Zhou, Niu (bib0016) 2018; 10
Tang, Sun, Yang (bib0004) 2018; 6
Zhang, Yu, Zhu (bib0017) 2018; 151
Cheng, Wang, Chen (bib0032) 2019; 29
Xu, Li, Li (bib0050) 2016; 78
Wu, Liao, Yang (bib0015) 2018; 153
Barker, RoginskyTransitions (bib0044) 2011; 800
Zhao, Wang, Zhang (bib0006) 2019; 29
Yin, Wang (bib0023) 2018; 28
Chai, Fu, Gan (bib0014) 2019; 155
Zhou, Cao, Philip Chen (bib0051) 2014; 100
Yavuz (bib0030) 2019; 114
Alawida, Samsudin, Teh (bib0020) 2019; 160
Zhang, Wang (bib0007) 2019; 29
Zhang, Wang, Yao (bib0008) 2019; 97
Pak, Huang (bib0047) 2017; 138
Li, Zhang, Xie (bib0001) 2019; 48
Li, Wang, Zuo (bib0029) 2019; 115
Cang, Wu, Wang (bib0041) 2017; 89
Nematzadeh, Enayatifar, Motameni (bib0025) 2018; 110
Tang (10.1016/j.sigpro.2020.107484_bib0004) 2018; 6
Zhao (10.1016/j.sigpro.2020.107484_bib0006) 2019; 29
Chai (10.1016/j.sigpro.2020.107484_bib0013) 2017; 88
Xu (10.1016/j.sigpro.2020.107484_bib0050) 2016; 78
Zhu (10.1016/j.sigpro.2020.107484_bib0049) 2018; 10
Li (10.1016/j.sigpro.2020.107484_bib0029) 2019; 115
Eckhardt (10.1016/j.sigpro.2020.107484_bib0038) 1989; 39
Yaghouti Niyat (10.1016/j.sigpro.2020.107484_bib0045) 2017; 90
Zhang (10.1016/j.sigpro.2020.107484_bib0012) 2016; 82
Zhang (10.1016/j.sigpro.2020.107484_bib0008) 2019; 97
Yavuz (10.1016/j.sigpro.2020.107484_bib0030) 2019; 114
Lin (10.1016/j.sigpro.2020.107484_bib0005) 2020; 369
Li (10.1016/j.sigpro.2020.107484_bib0028) 2017; 90
Barker (10.1016/j.sigpro.2020.107484_bib0044) 2011; 800
Li (10.1016/j.sigpro.2020.107484_bib0001) 2019; 48
Zhang (10.1016/j.sigpro.2020.107484_bib0007) 2019; 29
Lan (10.1016/j.sigpro.2020.107484_bib0021) 2018; 147
Yin (10.1016/j.sigpro.2020.107484_bib0023) 2018; 28
Pak (10.1016/j.sigpro.2020.107484_bib0047) 2017; 138
Zhou (10.1016/j.sigpro.2020.107484_bib0051) 2014; 100
Chai (10.1016/j.sigpro.2020.107484_bib0014) 2019; 155
Dong (10.1016/j.sigpro.2020.107484_bib0042) 2019; 73
Silva-García (10.1016/j.sigpro.2020.107484_bib0003) 2018; 332
Zhu (10.1016/j.sigpro.2020.107484_bib0027) 2019; 78
Lakshmanan (10.1016/j.sigpro.2020.107484_bib0037) 2012
Cang (10.1016/j.sigpro.2020.107484_bib0041) 2017; 89
10.1016/j.sigpro.2020.107484_bib0043
Zhu (10.1016/j.sigpro.2020.107484_bib0048) 2018; 20
Wu (10.1016/j.sigpro.2020.107484_bib0015) 2018; 153
Wang (10.1016/j.sigpro.2020.107484_bib0018) 2015; 66
Chen (10.1016/j.sigpro.2020.107484_bib0002) 2019
Chai (10.1016/j.sigpro.2020.107484_bib0024) 2017; 52
Wang (10.1016/j.sigpro.2020.107484_bib0019) 2011; 11
Alawida (10.1016/j.sigpro.2020.107484_bib0020) 2019; 160
Cambel (10.1016/j.sigpro.2020.107484_bib0033) 1993
Fridrich (10.1016/j.sigpro.2020.107484_bib0011) 1998; 8
Wang (10.1016/j.sigpro.2020.107484_bib0031) 2018; 108
Vaidyanathan (10.1016/j.sigpro.2020.107484_bib0034) 2015; 25
Xu (10.1016/j.sigpro.2020.107484_bib0046) 2017; 91
Zhu (10.1016/j.sigpro.2020.107484_bib0026) 2019; 21
Deng (10.1016/j.sigpro.2020.107484_bib0009) 2019; 29
Wang (10.1016/j.sigpro.2020.107484_bib0022) 2019; 115
Cheng (10.1016/j.sigpro.2020.107484_bib0032) 2019; 29
Nematzadeh (10.1016/j.sigpro.2020.107484_bib0025) 2018; 110
Hénon (10.1016/j.sigpro.2020.107484_bib0036) 1964; 69
Sprott (10.1016/j.sigpro.2020.107484_bib0039) 1997; 65
Zhang (10.1016/j.sigpro.2020.107484_bib0017) 2018; 151
Qi (10.1016/j.sigpro.2020.107484_bib0035) 2019; 95
Zhang (10.1016/j.sigpro.2020.107484_bib0016) 2018; 10
Thomas (10.1016/j.sigpro.2020.107484_bib0040) 1999; 9
Yu (10.1016/j.sigpro.2020.107484_bib0010) 2019; 2019
References_xml – reference: SIPI Image Database, University of Southern California Signal and Image Processing Institute (Accessed 29 May 2018).
– volume: 88
  start-page: 197
  year: 2017
  end-page: 213
  ident: bib0013
  article-title: A novel chaos-based image encryption algorithm using DNA sequence operations
  publication-title: Opt. Lasers Eng.
– volume: 89
  start-page: 2495
  year: 2017
  end-page: 2508
  ident: bib0041
  article-title: Four-dimensional autonomous dynamical systems with conservative flows: two-case study
  publication-title: Nonlinear Dyn.
– volume: 25
  start-page: 333
  year: 2015
  end-page: 353
  ident: bib0034
  article-title: Analysis and adaptive control of a novel 3-D conservative no-equilibrium chaotic system
  publication-title: Arch. Control Sci.
– volume: 108
  start-page: 558
  year: 2018
  end-page: 573
  ident: bib0031
  article-title: A novel chaotic encryption scheme based on image segmentation and multiple diffusion models
  publication-title: Opt. Laser Technol.
– volume: 6
  start-page: 26059
  year: 2018
  end-page: 26068
  ident: bib0004
  article-title: A network coding and DES based dynamic encryption scheme for moving target defense
  publication-title: IEEE Access
– volume: 52
  start-page: 6
  year: 2017
  end-page: 19
  ident: bib0024
  article-title: An image encryption algorithm based on the memristive hyperchaotic system, cellular automata and DNA sequence operations
  publication-title: Signal Process. Image Commun.
– volume: 20
  start-page: 843
  year: 2018
  ident: bib0048
  article-title: Improved cryptanalysis and enhancements of an image encryption scheme using combined 1D chaotic maps
  publication-title: Entropy
– volume: 147
  start-page: 133
  year: 2018
  end-page: 145
  ident: bib0021
  article-title: Integrated chaotic systems for image encryption
  publication-title: Signal Process.
– volume: 78
  start-page: 20855
  year: 2019
  end-page: 20875
  ident: bib0027
  article-title: A new image compression-encryption scheme based on compressive sensing and cyclic shift
  publication-title: Multimed. Tools Appl.
– volume: 151
  start-page: 130
  year: 2018
  end-page: 143
  ident: bib0017
  article-title: An image encryption scheme using self-adaptive selective permutation and inter-intra-block feedback diffusion
  publication-title: Signal Process.
– year: 1993
  ident: bib0033
  article-title: Applied Chaos Theory: A Paradigm for Complexity
– volume: 155
  start-page: 44
  year: 2019
  end-page: 62
  ident: bib0014
  article-title: A color image cryptosystem based on dynamic DNA encryption and chaos
  publication-title: Signal Process.
– volume: 153
  start-page: 11
  year: 2018
  end-page: 23
  ident: bib0015
  article-title: Image encryption using 2D Hénon-Sine map and DNA approach
  publication-title: Signal Process.
– volume: 29
  year: 2019
  ident: bib0007
  article-title: Multiscroll hyperchaotic system with hidden attractors and its circuit implementation
  publication-title: Int. J. Bifurc. Chaos
– volume: 29
  year: 2019
  ident: bib0006
  article-title: A universal emulator for memristor, memcapacitor, and meminductor and its chaotic circuit
  publication-title: Chaos Interdiscip. J. Nonlinear Sci.
– volume: 73
  start-page: 40
  year: 2019
  end-page: 71
  ident: bib0042
  article-title: A new class of Hamiltonian conservative chaotic systems with multistability and design of pseudo-random number generator
  publication-title: Appl. Math. Model.
– volume: 10
  start-page: 399
  year: 2018
  ident: bib0049
  article-title: Cryptanalysis and improvement on an image encryption algorithm design using a novel chaos based S-box
  publication-title: Symmetry
– volume: 29
  year: 2019
  ident: bib0009
  article-title: Multi-scroll hidden attractors with two stable equilibrium points
  publication-title: Chaos Interdiscip. J. Nonlinear Sci.
– volume: 78
  start-page: 17
  year: 2016
  end-page: 25
  ident: bib0050
  article-title: A novel bit-level image encryption algorithm based on chaotic maps
  publication-title: Opt. Lasers Eng.
– volume: 90
  start-page: 238
  year: 2017
  end-page: 246
  ident: bib0028
  article-title: A hyper-chaos-based image encryption algorithm using pixel-level permutation and bit-level permutation
  publication-title: Opt. Lasers Eng.
– volume: 369
  year: 2020
  ident: bib0005
  article-title: Influences of electromagnetic radiation distribution on chaotic dynamics of a neural network
  publication-title: Appl. Math. Comput.
– volume: 115
  start-page: 197
  year: 2019
  end-page: 207
  ident: bib0029
  article-title: Chaos-based image encryption algorithm with orbit perturbation and dynamic state variable selection mechanisms
  publication-title: Opt. Lasers Eng.
– volume: 39
  start-page: 3776
  year: 1989
  ident: bib0038
  article-title: Quantum mechanics of a classically chaotic system: Observations on scars, periodic orbits, and vibrational adiabaticity
  publication-title: Phys. Rev. A
– volume: 69
  start-page: 73
  year: 1964
  ident: bib0036
  article-title: The applicability of the third integral of motion: some numerical experiments
  publication-title: Astron. J.
– volume: 82
  start-page: 95
  year: 2016
  end-page: 103
  ident: bib0012
  article-title: An image encryption scheme based on the MLNCML system using DNA sequences
  publication-title: Opt. Lasers Eng.
– volume: 21
  start-page: 790
  year: 2019
  ident: bib0026
  article-title: A secure and fast image encryption scheme based on double chaotic s-boxes
  publication-title: Entropy
– volume: 65
  start-page: 537
  year: 1997
  end-page: 543
  ident: bib0039
  article-title: Some simple chaotic jerk functions
  publication-title: Am. J. Phys.
– volume: 332
  start-page: 123
  year: 2018
  end-page: 135
  ident: bib0003
  article-title: Substitution box generation using Chaos: an image encryption application
  publication-title: Appl. Math. Comput.
– year: 2012
  ident: bib0037
  article-title: Nonlinear Dynamics: Integrability, Chaos and Patterns
– volume: 66
  start-page: 10
  year: 2015
  end-page: 18
  ident: bib0018
  article-title: A novel chaotic block image encryption algorithm based on dynamic random growth technique
  publication-title: Opt. Lasers Eng.
– volume: 29
  year: 2019
  ident: bib0032
  article-title: A novel color image encryption algorithm based on hyperchaotic system and permutation-diffusion architecture
  publication-title: Int. J. Bifurc. Chaos
– volume: 90
  start-page: 225
  year: 2017
  end-page: 237
  ident: bib0045
  article-title: Color image encryption based on hybrid hyper-chaotic system and cellular automata
  publication-title: Opt. Lasers Eng.
– volume: 160
  start-page: 45
  year: 2019
  end-page: 58
  ident: bib0020
  article-title: A new hybrid digital chaotic system with applications in image encryption
  publication-title: Signal Process.
– volume: 28
  year: 2018
  ident: bib0023
  article-title: A new chaotic image encryption scheme using breadth-first search and dynamic diffusion
  publication-title: Int. J. Bifurc. Chaos
– volume: 97
  start-page: 2159
  year: 2019
  end-page: 2174
  ident: bib0008
  article-title: Chaotic system with bondorbital attractors
  publication-title: Nonlinear Dyn.
– volume: 110
  start-page: 24
  year: 2018
  end-page: 32
  ident: bib0025
  article-title: Medical image encryption using a hybrid model of modified genetic algorithm and coupled map lattices
  publication-title: Opt. Lasers Eng.
– volume: 115
  start-page: 42
  year: 2019
  end-page: 57
  ident: bib0022
  article-title: A new image encryption algorithm with nonlinear-diffusion based on Multiple coupled map lattices
  publication-title: Opt. Laser Technol.
– volume: 11
  start-page: 514
  year: 2011
  end-page: 522
  ident: bib0019
  article-title: A new chaos-based fast image encryption algorithm
  publication-title: Appl. Soft Comput.
– volume: 800
  start-page: 131A
  year: 2011
  ident: bib0044
  article-title: Recommendation for transitioning the use of cryptographic algorithms and key lengths[J]
  publication-title: NIST Special Publication
– volume: 138
  start-page: 129
  year: 2017
  end-page: 137
  ident: bib0047
  article-title: A new color image encryption using combination of the 1D chaotic map
  publication-title: Signal Process.
– volume: 100
  start-page: 197
  year: 2014
  end-page: 207
  ident: bib0051
  article-title: Image encryption using binary bitplane
  publication-title: Signal Process.
– volume: 9
  start-page: 1889
  year: 1999
  end-page: 1905
  ident: bib0040
  article-title: Deterministic chaos seen in terms of feedback circuits: Analysis, synthesis," labyrinth chaos"
  publication-title: Int. J. Bifurc. Chaos
– volume: 95
  start-page: 2063
  year: 2019
  end-page: 2077
  ident: bib0035
  article-title: Modelings and mechanism analysis underlying both the 4D Euler equations and Hamiltonian conservative chaotic systems
  publication-title: Nonlinear Dyn.
– reference: .
– volume: 91
  start-page: 41
  year: 2017
  end-page: 52
  ident: bib0046
  article-title: A novel chaotic image encryption algorithm using block scrambling and dynamic index based diffusion
  publication-title: Opt. Lasers Eng.
– volume: 114
  start-page: 224
  year: 2019
  end-page: 239
  ident: bib0030
  article-title: A novel chaotic image encryption algorithm based on content-sensitive dynamic function switching scheme
  publication-title: Opt. Laser Technol.
– year: 2019
  ident: bib0002
  article-title: An improved image encryption algorithm with finite computing precision
  publication-title: Signal Process.
– volume: 48
  year: 2019
  ident: bib0001
  article-title: When an attacker meets a cipher-image in 2018: a year in review
  publication-title: J. Inf. Secur. Appl.
– volume: 10
  start-page: 1
  year: 2018
  end-page: 14
  ident: bib0016
  article-title: An image encryption method based on the feistel network and dynamic DNA encoding
  publication-title: IEEE Photonics J.
– volume: 2019
  year: 2019
  ident: bib0010
  article-title: Analysis and FPGA realization of a novel 5D hyperchaotic four-wing memristive system, active control synchronization, and secure communication application
  publication-title: Complexity
– volume: 8
  start-page: 1259
  year: 1998
  end-page: 1284
  ident: bib0011
  article-title: Symmetric ciphers based on two-dimensional chaotic maps
  publication-title: Int. J. Bifurc. Chaos
– volume: 82
  start-page: 95
  year: 2016
  ident: 10.1016/j.sigpro.2020.107484_bib0012
  article-title: An image encryption scheme based on the MLNCML system using DNA sequences
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2016.02.002
– volume: 39
  start-page: 3776
  issue: 8
  year: 1989
  ident: 10.1016/j.sigpro.2020.107484_bib0038
  article-title: Quantum mechanics of a classically chaotic system: Observations on scars, periodic orbits, and vibrational adiabaticity
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.39.3776
– volume: 66
  start-page: 10
  year: 2015
  ident: 10.1016/j.sigpro.2020.107484_bib0018
  article-title: A novel chaotic block image encryption algorithm based on dynamic random growth technique
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2014.08.005
– volume: 90
  start-page: 238
  year: 2017
  ident: 10.1016/j.sigpro.2020.107484_bib0028
  article-title: A hyper-chaos-based image encryption algorithm using pixel-level permutation and bit-level permutation
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2016.10.020
– volume: 10
  start-page: 399
  issue: 9
  year: 2018
  ident: 10.1016/j.sigpro.2020.107484_bib0049
  article-title: Cryptanalysis and improvement on an image encryption algorithm design using a novel chaos based S-box
  publication-title: Symmetry
  doi: 10.3390/sym10090399
– volume: 138
  start-page: 129
  year: 2017
  ident: 10.1016/j.sigpro.2020.107484_bib0047
  article-title: A new color image encryption using combination of the 1D chaotic map
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2017.03.011
– volume: 153
  start-page: 11
  year: 2018
  ident: 10.1016/j.sigpro.2020.107484_bib0015
  article-title: Image encryption using 2D Hénon-Sine map and DNA approach
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2018.06.008
– volume: 78
  start-page: 17
  year: 2016
  ident: 10.1016/j.sigpro.2020.107484_bib0050
  article-title: A novel bit-level image encryption algorithm based on chaotic maps
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2015.09.007
– volume: 147
  start-page: 133
  year: 2018
  ident: 10.1016/j.sigpro.2020.107484_bib0021
  article-title: Integrated chaotic systems for image encryption
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2018.01.026
– volume: 100
  start-page: 197
  year: 2014
  ident: 10.1016/j.sigpro.2020.107484_bib0051
  article-title: Image encryption using binary bitplane
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2014.01.020
– volume: 20
  start-page: 843
  issue: 11
  year: 2018
  ident: 10.1016/j.sigpro.2020.107484_bib0048
  article-title: Improved cryptanalysis and enhancements of an image encryption scheme using combined 1D chaotic maps
  publication-title: Entropy
  doi: 10.3390/e20110843
– ident: 10.1016/j.sigpro.2020.107484_bib0043
– volume: 90
  start-page: 225
  year: 2017
  ident: 10.1016/j.sigpro.2020.107484_bib0045
  article-title: Color image encryption based on hybrid hyper-chaotic system and cellular automata
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2016.10.019
– volume: 332
  start-page: 123
  year: 2018
  ident: 10.1016/j.sigpro.2020.107484_bib0003
  article-title: Substitution box generation using Chaos: an image encryption application
  publication-title: Appl. Math. Comput.
– volume: 800
  start-page: 131A
  year: 2011
  ident: 10.1016/j.sigpro.2020.107484_bib0044
  article-title: Recommendation for transitioning the use of cryptographic algorithms and key lengths[J]
  publication-title: NIST Special Publication
– volume: 151
  start-page: 130
  year: 2018
  ident: 10.1016/j.sigpro.2020.107484_bib0017
  article-title: An image encryption scheme using self-adaptive selective permutation and inter-intra-block feedback diffusion
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2018.05.008
– volume: 29
  issue: 9
  year: 2019
  ident: 10.1016/j.sigpro.2020.107484_bib0009
  article-title: Multi-scroll hidden attractors with two stable equilibrium points
  publication-title: Chaos Interdiscip. J. Nonlinear Sci.
  doi: 10.1063/1.5116732
– year: 1993
  ident: 10.1016/j.sigpro.2020.107484_bib0033
– volume: 8
  start-page: 1259
  issue: 06
  year: 1998
  ident: 10.1016/j.sigpro.2020.107484_bib0011
  article-title: Symmetric ciphers based on two-dimensional chaotic maps
  publication-title: Int. J. Bifurc. Chaos
  doi: 10.1142/S021812749800098X
– volume: 110
  start-page: 24
  year: 2018
  ident: 10.1016/j.sigpro.2020.107484_bib0025
  article-title: Medical image encryption using a hybrid model of modified genetic algorithm and coupled map lattices
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2018.05.009
– volume: 108
  start-page: 558
  year: 2018
  ident: 10.1016/j.sigpro.2020.107484_bib0031
  article-title: A novel chaotic encryption scheme based on image segmentation and multiple diffusion models
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2018.07.052
– volume: 73
  start-page: 40
  year: 2019
  ident: 10.1016/j.sigpro.2020.107484_bib0042
  article-title: A new class of Hamiltonian conservative chaotic systems with multistability and design of pseudo-random number generator
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2019.03.037
– volume: 21
  start-page: 790
  issue: 8
  year: 2019
  ident: 10.1016/j.sigpro.2020.107484_bib0026
  article-title: A secure and fast image encryption scheme based on double chaotic s-boxes
  publication-title: Entropy
  doi: 10.3390/e21080790
– volume: 29
  issue: 09
  year: 2019
  ident: 10.1016/j.sigpro.2020.107484_bib0007
  article-title: Multiscroll hyperchaotic system with hidden attractors and its circuit implementation
  publication-title: Int. J. Bifurc. Chaos
  doi: 10.1142/S0218127419501177
– volume: 97
  start-page: 2159
  issue: 4
  year: 2019
  ident: 10.1016/j.sigpro.2020.107484_bib0008
  article-title: Chaotic system with bondorbital attractors
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-019-05113-3
– volume: 78
  start-page: 20855
  issue: 15
  year: 2019
  ident: 10.1016/j.sigpro.2020.107484_bib0027
  article-title: A new image compression-encryption scheme based on compressive sensing and cyclic shift
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-019-7405-y
– volume: 25
  start-page: 333
  issue: 3
  year: 2015
  ident: 10.1016/j.sigpro.2020.107484_bib0034
  article-title: Analysis and adaptive control of a novel 3-D conservative no-equilibrium chaotic system
  publication-title: Arch. Control Sci.
  doi: 10.1515/acsc-2015-0022
– year: 2019
  ident: 10.1016/j.sigpro.2020.107484_bib0002
  article-title: An improved image encryption algorithm with finite computing precision
  publication-title: Signal Process.
– volume: 115
  start-page: 42
  year: 2019
  ident: 10.1016/j.sigpro.2020.107484_bib0022
  article-title: A new image encryption algorithm with nonlinear-diffusion based on Multiple coupled map lattices
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2019.02.009
– volume: 9
  start-page: 1889
  issue: 10
  year: 1999
  ident: 10.1016/j.sigpro.2020.107484_bib0040
  article-title: Deterministic chaos seen in terms of feedback circuits: Analysis, synthesis," labyrinth chaos"
  publication-title: Int. J. Bifurc. Chaos
  doi: 10.1142/S0218127499001383
– volume: 28
  issue: 04
  year: 2018
  ident: 10.1016/j.sigpro.2020.107484_bib0023
  article-title: A new chaotic image encryption scheme using breadth-first search and dynamic diffusion
  publication-title: Int. J. Bifurc. Chaos
  doi: 10.1142/S0218127418500475
– volume: 115
  start-page: 197
  year: 2019
  ident: 10.1016/j.sigpro.2020.107484_bib0029
  article-title: Chaos-based image encryption algorithm with orbit perturbation and dynamic state variable selection mechanisms
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2018.12.002
– volume: 52
  start-page: 6
  year: 2017
  ident: 10.1016/j.sigpro.2020.107484_bib0024
  article-title: An image encryption algorithm based on the memristive hyperchaotic system, cellular automata and DNA sequence operations
  publication-title: Signal Process. Image Commun.
  doi: 10.1016/j.image.2016.12.007
– volume: 29
  issue: 1
  year: 2019
  ident: 10.1016/j.sigpro.2020.107484_bib0006
  article-title: A universal emulator for memristor, memcapacitor, and meminductor and its chaotic circuit
  publication-title: Chaos Interdiscip. J. Nonlinear Sci.
  doi: 10.1063/1.5081076
– volume: 29
  issue: 09
  year: 2019
  ident: 10.1016/j.sigpro.2020.107484_bib0032
  article-title: A novel color image encryption algorithm based on hyperchaotic system and permutation-diffusion architecture
  publication-title: Int. J. Bifurc. Chaos
  doi: 10.1142/S0218127419501153
– volume: 6
  start-page: 26059
  year: 2018
  ident: 10.1016/j.sigpro.2020.107484_bib0004
  article-title: A network coding and DES based dynamic encryption scheme for moving target defense
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2832854
– volume: 48
  year: 2019
  ident: 10.1016/j.sigpro.2020.107484_bib0001
  article-title: When an attacker meets a cipher-image in 2018: a year in review
  publication-title: J. Inf. Secur. Appl.
– volume: 65
  start-page: 537
  issue: 6
  year: 1997
  ident: 10.1016/j.sigpro.2020.107484_bib0039
  article-title: Some simple chaotic jerk functions
  publication-title: Am. J. Phys.
  doi: 10.1119/1.18585
– volume: 160
  start-page: 45
  year: 2019
  ident: 10.1016/j.sigpro.2020.107484_bib0020
  article-title: A new hybrid digital chaotic system with applications in image encryption
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2019.02.016
– volume: 2019
  year: 2019
  ident: 10.1016/j.sigpro.2020.107484_bib0010
  article-title: Analysis and FPGA realization of a novel 5D hyperchaotic four-wing memristive system, active control synchronization, and secure communication application
  publication-title: Complexity
  doi: 10.1155/2019/4047957
– volume: 155
  start-page: 44
  year: 2019
  ident: 10.1016/j.sigpro.2020.107484_bib0014
  article-title: A color image cryptosystem based on dynamic DNA encryption and chaos
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2018.09.029
– volume: 114
  start-page: 224
  year: 2019
  ident: 10.1016/j.sigpro.2020.107484_bib0030
  article-title: A novel chaotic image encryption algorithm based on content-sensitive dynamic function switching scheme
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2019.01.043
– volume: 369
  year: 2020
  ident: 10.1016/j.sigpro.2020.107484_bib0005
  article-title: Influences of electromagnetic radiation distribution on chaotic dynamics of a neural network
  publication-title: Appl. Math. Comput.
– volume: 91
  start-page: 41
  year: 2017
  ident: 10.1016/j.sigpro.2020.107484_bib0046
  article-title: A novel chaotic image encryption algorithm using block scrambling and dynamic index based diffusion
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2016.10.012
– volume: 11
  start-page: 514
  issue: 1
  year: 2011
  ident: 10.1016/j.sigpro.2020.107484_bib0019
  article-title: A new chaos-based fast image encryption algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2009.12.011
– volume: 89
  start-page: 2495
  issue: 4
  year: 2017
  ident: 10.1016/j.sigpro.2020.107484_bib0041
  article-title: Four-dimensional autonomous dynamical systems with conservative flows: two-case study
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-017-3599-6
– year: 2012
  ident: 10.1016/j.sigpro.2020.107484_bib0037
– volume: 88
  start-page: 197
  year: 2017
  ident: 10.1016/j.sigpro.2020.107484_bib0013
  article-title: A novel chaos-based image encryption algorithm using DNA sequence operations
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2016.08.009
– volume: 95
  start-page: 2063
  issue: 3
  year: 2019
  ident: 10.1016/j.sigpro.2020.107484_bib0035
  article-title: Modelings and mechanism analysis underlying both the 4D Euler equations and Hamiltonian conservative chaotic systems
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-018-4676-1
– volume: 10
  start-page: 1
  issue: 4
  year: 2018
  ident: 10.1016/j.sigpro.2020.107484_bib0016
  article-title: An image encryption method based on the feistel network and dynamic DNA encoding
  publication-title: IEEE Photonics J.
  doi: 10.1109/JPHOT.2018.2858823
– volume: 69
  start-page: 73
  year: 1964
  ident: 10.1016/j.sigpro.2020.107484_bib0036
  article-title: The applicability of the third integral of motion: some numerical experiments
  publication-title: Astron. J.
  doi: 10.1086/109234
SSID ssj0001360
Score 2.640099
Snippet •We firstly use a 5-dimensional conservative hyper-chaotic system to generate key streams for image encryption.•Compare to dissipative chaotic system, the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107484
SubjectTerms Closed-loop diffusion
Conservative hyper-chaotic system
Image encryption
Inter-block
Title A novel image encryption scheme based on conservative hyperchaotic system and closed-loop diffusion between blocks
URI https://dx.doi.org/10.1016/j.sigpro.2020.107484
Volume 171
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFA6lXvQgrliXkoPX2JlMZjuWYqmKvWiht2GyjI62M6UbePG3-94sWkEUPCa8DOHl8ZbM974QculZvrZ9U1BfaiY8IVmYBBYTIubGOMJVRdf7_dAbjMTt2B03SK_uhUFYZeX7S59eeOtqplNpszNL084DNuLY-BsJ7BSKqzF2sAsfrfzq_QvmYTtFpzAKM5Su2-cKjNcifQI_BVUixymk1fw5PG2EnP4e2a1yRdott7NPGiY7IDsbDIKHZN6lWb42E5pOwTFQ2P78rXACFKpWMzUUo5SmMFYImy4uYNeGPkP1iSRJOXyZlmTONM40VZMcxNkkz2cUn05Z4V0arbBcVELge10ckVH_-rE3YNUzCkxBPbBkwlGh4lJZimtLaSnBN8rYlpBaaO14nubStRInUNKEyM9mOzJJQDyA1DAwPHGOSTPLM3NCKBR3MZQUvvK0FDKwwpgnrtFuYrjxLBO3iFNrL1IVxzg-dTGJajDZS1TqPEKdR6XOW4R9rpqVHBt_yPv1wUTfbCWCMPDrytN_rzwj2zgqQWLnpLmcr8wFpCNL2S7srU22ujd3g-EHQNTiUA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gHNSD8RnxuQevG_qmHAmRgDwuQsKt6T6qKLSEV-K_d6YPg4nRxGO3M0073XwzszvzLcCDZ9SVWdcp9aXijucI3oh8gztOaGltO65Mu94HQ68zdp4m7qQEraIXhsoqc-zPMD1F63yklluztphOa8_UiGPSNhLOU0yuJntQIXYqtwyVZrfXGX4BsmmnzcIkz0mh6KBLy7xW0xeEKkwULRoiZs2fPdSO12kfw1EeLrJm9kYnUNLxKRzukAiewbLJ4mSrZ2w6R2xg-AXLjxQHGCaueq4ZOSrF8FpS5XS6BrvV7BUTUOJJSvDJLONzZmGsmJwlKM5nSbJgdHrKhpbTWF7OxQT6vvfVOYzbj6NWh-cnKXCJKcGaO7ZsSEtIQ1rKkEoIhEcRmgKjC6Vsz1OWcI3I9qXQDaJoM20RRSjuY3ToayuyL6AcJ7G-BIb5XYhZRV16SjjCNxqhFblauZG2tGfosAp2Yb1A5jTjdNrFLCjqyd6CzOYB2TzIbF4F_qW1yGg2_pCvFz8m-DZdAvQEv2pe_VvzHvY7o0E_6HeHvWs4oDtZzdgNlNfLjb7F6GQt7vLZ9wkCYeUB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+image+encryption+scheme+based+on+conservative+hyperchaotic+system+and+closed-loop+diffusion+between+blocks&rft.jtitle=Signal+processing&rft.au=Zhou%2C+Minjun&rft.au=Wang%2C+Chunhua&rft.date=2020-06-01&rft.pub=Elsevier+B.V&rft.issn=0165-1684&rft.eissn=1872-7557&rft.volume=171&rft_id=info:doi/10.1016%2Fj.sigpro.2020.107484&rft.externalDocID=S016516842030027X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon