A novel image encryption scheme based on conservative hyperchaotic system and closed-loop diffusion between blocks
•We firstly use a 5-dimensional conservative hyper-chaotic system to generate key streams for image encryption.•Compare to dissipative chaotic system, the conservative hyper-chaotic system we used has no attractor, thus can avoid the reconstructing attacks.•We propose a closed-loop diffusion mechani...
Saved in:
Published in | Signal processing Vol. 171; p. 107484 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •We firstly use a 5-dimensional conservative hyper-chaotic system to generate key streams for image encryption.•Compare to dissipative chaotic system, the conservative hyper-chaotic system we used has no attractor, thus can avoid the reconstructing attacks.•We propose a closed-loop diffusion mechanism between blocks dependent on both plaintext and ciphertext (CDMBDPC) for the first time. Different to the existing open-loop diffusion scheme, our closed-loop diffusion scheme can greatly improve the reliability of encryption system. In addition, our closed-loop diffusion mechanism implements the complete diffusion process of encrypting the first plaintext pixel block to encrypting the last pixel block and then updating the first ciphertext block.•To resist reconfiguration attack and statistical attack, the chaotic system used to generate pseudorandom sequences can't be refactored and key streams of an encryption model need to be random. Using the 5d conservative hyperchaotic system, we design a new chaos-based encryption algorithm with random key streams, and a closed-loop diffusion mechanism is designed in the encryption model to enhance the encryption reliability.•The image encryption scheme is sensitive to both the plain image and the cipher image.•The experimental results show that the proposed encryption algorithm has excellent security and reliability compared with exiting algorithms.
Dissipative chaotic systems have been widely used in digital image encryption schemes in the past 20 years. However, compared to conservative chaotic systems, the dissipative chaotic systems have attractors thus attacker can reconstruct the chaotic systems by reconstructing the attractors. Therefore, the conservative chaotic systems are more suitable in chaos-based encryption system because they have no attractors thus can avoid the reconstructing attacks. Based on this, an image encryption scheme based on conservative hyper-chaotic system and closed-loop diffusion between blocks is proposed in this paper. On the one hand, the conservative hyperchaotic system has strong pseudo-randomness and anti-reconstruction attack property. On the other hand, different from the existing closed-loop diffusion schemes which change pixel values one by one until the last pixel value is changed, the proposed closed-loop diffusion method cannot only generate the first ciphertext and other ciphertext blocks but also update the first ciphertext block using the other generated ciphertext block information. In addition, the key streams are related to plaintext and ciphertext. Consequently, the key, plaintext and ciphertext form an organic whole to ensure the sensitivity of the encryption system. Moreover, simulation results and analysis show that the encryption scheme has strong security and excellent performance. |
---|---|
AbstractList | •We firstly use a 5-dimensional conservative hyper-chaotic system to generate key streams for image encryption.•Compare to dissipative chaotic system, the conservative hyper-chaotic system we used has no attractor, thus can avoid the reconstructing attacks.•We propose a closed-loop diffusion mechanism between blocks dependent on both plaintext and ciphertext (CDMBDPC) for the first time. Different to the existing open-loop diffusion scheme, our closed-loop diffusion scheme can greatly improve the reliability of encryption system. In addition, our closed-loop diffusion mechanism implements the complete diffusion process of encrypting the first plaintext pixel block to encrypting the last pixel block and then updating the first ciphertext block.•To resist reconfiguration attack and statistical attack, the chaotic system used to generate pseudorandom sequences can't be refactored and key streams of an encryption model need to be random. Using the 5d conservative hyperchaotic system, we design a new chaos-based encryption algorithm with random key streams, and a closed-loop diffusion mechanism is designed in the encryption model to enhance the encryption reliability.•The image encryption scheme is sensitive to both the plain image and the cipher image.•The experimental results show that the proposed encryption algorithm has excellent security and reliability compared with exiting algorithms.
Dissipative chaotic systems have been widely used in digital image encryption schemes in the past 20 years. However, compared to conservative chaotic systems, the dissipative chaotic systems have attractors thus attacker can reconstruct the chaotic systems by reconstructing the attractors. Therefore, the conservative chaotic systems are more suitable in chaos-based encryption system because they have no attractors thus can avoid the reconstructing attacks. Based on this, an image encryption scheme based on conservative hyper-chaotic system and closed-loop diffusion between blocks is proposed in this paper. On the one hand, the conservative hyperchaotic system has strong pseudo-randomness and anti-reconstruction attack property. On the other hand, different from the existing closed-loop diffusion schemes which change pixel values one by one until the last pixel value is changed, the proposed closed-loop diffusion method cannot only generate the first ciphertext and other ciphertext blocks but also update the first ciphertext block using the other generated ciphertext block information. In addition, the key streams are related to plaintext and ciphertext. Consequently, the key, plaintext and ciphertext form an organic whole to ensure the sensitivity of the encryption system. Moreover, simulation results and analysis show that the encryption scheme has strong security and excellent performance. |
ArticleNumber | 107484 |
Author | Wang, Chunhua Zhou, Minjun |
Author_xml | – sequence: 1 givenname: Minjun surname: Zhou fullname: Zhou, Minjun email: zmj0923@hnu.edu.cn – sequence: 2 givenname: Chunhua orcidid: 0000-0001-6522-9795 surname: Wang fullname: Wang, Chunhua email: wch1227164@hnu.edu.cn |
BookMark | eNqFkM1KAzEUhYMo2FbfwEVeYGoy_3UhlOIfFNzoOiQ3d9rU6WRIYmXe3gzjyoWuDvdyzoHzzcl5Zzsk5IazJWe8vD0svdn1zi5Tlo6vKq_zMzLjdZUmVVFU52QWbUXCyzq_JHPvD4wxnpVsRtyadvaELTVHuUOKHbihD8Z21MMej0iV9KhpvMF2Ht1JBnNCuh96dLCXNhigfvABj1R2mkJroz1pre2pNk3z6ccqheELMWpr4cNfkYtGth6vf3RB3h8f3jbPyfb16WWz3iaQsTIkeQYrSBUwSDUDrVReVkpyxVmqdVaWOlUFa7IaFK6Kgtc8U00T7fWqqmpMm2xB7qZecNZ7h40AE-S4LThpWsGZGOmJg5joiZGemOjFcP4r3LuIyA3_xe6nGMZhJ4NOeDARKmrjEILQ1vxd8A2NepFv |
CitedBy_id | crossref_primary_10_1088_1674_1056_ad3efa crossref_primary_10_3390_e24020273 crossref_primary_10_1007_s11071_021_07192_7 crossref_primary_10_1007_s11042_020_09542_w crossref_primary_10_1007_s10723_023_09655_0 crossref_primary_10_1007_s11042_023_15119_0 crossref_primary_10_1007_s11760_024_03455_z crossref_primary_10_1016_j_chaos_2023_113450 crossref_primary_10_1142_S0218127423501900 crossref_primary_10_3390_app12115452 crossref_primary_10_1016_j_sciaf_2022_e01217 crossref_primary_10_1109_TCSI_2022_3172313 crossref_primary_10_1016_j_amc_2023_128340 crossref_primary_10_1155_2021_6615708 crossref_primary_10_1007_s11071_023_08397_8 crossref_primary_10_1007_s11042_022_12742_1 crossref_primary_10_1007_s11071_022_07756_1 crossref_primary_10_1016_j_optlaseng_2021_106782 crossref_primary_10_1088_1674_1056_acef08 crossref_primary_10_3390_sym14081668 crossref_primary_10_1007_s11042_022_12604_w crossref_primary_10_1016_j_ijleo_2021_167286 crossref_primary_10_1080_19393555_2020_1767831 crossref_primary_10_1016_j_chaos_2021_111318 crossref_primary_10_1007_s11071_023_09148_5 crossref_primary_10_1007_s42979_022_01284_w crossref_primary_10_1088_1402_4896_ad1020 crossref_primary_10_1088_1402_4896_ad0c13 crossref_primary_10_1007_s11071_021_06663_1 crossref_primary_10_1007_s40747_021_00515_6 crossref_primary_10_1007_s00521_024_10665_6 crossref_primary_10_1007_s11042_023_16730_x crossref_primary_10_1016_j_chaos_2021_111687 crossref_primary_10_17780_ksujes_1208570 crossref_primary_10_1155_2020_8658797 crossref_primary_10_1088_1402_4896_adb523 crossref_primary_10_1007_s11277_021_08584_z crossref_primary_10_1007_s11042_023_16981_8 crossref_primary_10_1016_j_cnsns_2023_107143 crossref_primary_10_1007_s11071_021_06422_2 crossref_primary_10_1016_j_ijleo_2022_169357 crossref_primary_10_1007_s11071_022_07702_1 crossref_primary_10_1016_j_optlastec_2025_112751 crossref_primary_10_1016_j_measurement_2021_109257 crossref_primary_10_1155_2020_8869989 crossref_primary_10_1080_09500340_2024_2395982 crossref_primary_10_1063_5_0238893 crossref_primary_10_3390_e25071031 crossref_primary_10_1155_2020_8274685 crossref_primary_10_1109_TCYB_2024_3377011 crossref_primary_10_1140_epjp_s13360_024_05289_7 crossref_primary_10_1109_ACCESS_2020_3018659 crossref_primary_10_1140_epjp_s13360_024_05415_5 crossref_primary_10_1016_j_matcom_2022_12_025 crossref_primary_10_1080_03772063_2024_2373899 crossref_primary_10_1016_j_chaos_2021_110686 crossref_primary_10_1038_s41598_021_94748_7 crossref_primary_10_1002_admt_202400841 crossref_primary_10_1016_j_ijleo_2023_170590 crossref_primary_10_1088_1402_4896_acdda8 crossref_primary_10_1016_j_jisa_2022_103304 crossref_primary_10_1155_2020_9026516 crossref_primary_10_1088_1402_4896_acdc62 crossref_primary_10_1109_ACCESS_2024_3447068 crossref_primary_10_3390_e25101399 crossref_primary_10_1007_s11554_023_01278_8 crossref_primary_10_1007_s11071_024_09987_w crossref_primary_10_1142_S0218127420500601 crossref_primary_10_3390_e23101297 crossref_primary_10_1007_s11071_024_09547_2 crossref_primary_10_1155_2020_7638243 crossref_primary_10_1142_S0218127421501984 crossref_primary_10_1155_2021_6675565 crossref_primary_10_1007_s11036_023_02133_7 crossref_primary_10_1016_j_chaos_2022_112016 crossref_primary_10_1088_1402_4896_ac6544 crossref_primary_10_1038_s41598_025_89993_z crossref_primary_10_1007_s13389_023_00343_z crossref_primary_10_1088_1402_4896_ac95d9 crossref_primary_10_1007_s42979_021_00778_3 crossref_primary_10_1007_s10851_022_01099_7 crossref_primary_10_1109_ACCESS_2022_3181424 crossref_primary_10_1109_TII_2023_3281659 crossref_primary_10_1155_2020_2051653 crossref_primary_10_1016_j_chaos_2024_115443 crossref_primary_10_3390_sym13122317 crossref_primary_10_1109_ACCESS_2020_3016650 crossref_primary_10_1142_S0218127422501863 crossref_primary_10_1007_s10462_022_10295_1 crossref_primary_10_1016_j_iot_2025_101559 crossref_primary_10_1109_ACCESS_2020_3011524 crossref_primary_10_1016_j_optlastec_2020_106837 crossref_primary_10_1088_1402_4896_ad8819 crossref_primary_10_1155_2021_9698371 crossref_primary_10_1007_s11071_024_10013_2 crossref_primary_10_1007_s40313_023_00991_w crossref_primary_10_1016_j_heliyon_2023_e14072 crossref_primary_10_3390_e26090760 crossref_primary_10_1155_2021_6683284 crossref_primary_10_1016_j_eswa_2024_124904 crossref_primary_10_1155_cplx_2910833 crossref_primary_10_3390_e24081103 crossref_primary_10_1016_j_chaos_2023_113492 crossref_primary_10_1016_j_jisa_2024_103723 crossref_primary_10_1109_ACCESS_2021_3114030 crossref_primary_10_1109_ACCESS_2022_3218668 crossref_primary_10_1155_2020_8034196 crossref_primary_10_1142_S0218127424501888 crossref_primary_10_1007_s11042_023_15012_w crossref_primary_10_7498_aps_70_20210561 crossref_primary_10_1109_TVLSI_2024_3361889 crossref_primary_10_1016_j_chaos_2024_115039 crossref_primary_10_1088_1402_4896_ad9183 crossref_primary_10_1155_2021_6677325 crossref_primary_10_1142_S0218127420500868 crossref_primary_10_1016_j_jfranklin_2024_106874 crossref_primary_10_1016_j_ins_2021_12_126 crossref_primary_10_1142_S0217984921504650 crossref_primary_10_1109_TCSVT_2024_3375868 crossref_primary_10_1007_s11071_020_06115_2 crossref_primary_10_1007_s11071_022_07958_7 crossref_primary_10_1007_s11227_024_05906_3 crossref_primary_10_1088_1402_4896_ad0268 crossref_primary_10_1155_2022_8148831 crossref_primary_10_1088_1402_4896_ad6bce crossref_primary_10_1142_S021812742350061X crossref_primary_10_1016_j_sigpro_2020_107684 crossref_primary_10_1088_1402_4896_ac5ce1 crossref_primary_10_3390_math11030767 crossref_primary_10_1142_S0218127423500906 crossref_primary_10_1016_j_physa_2023_128759 crossref_primary_10_1140_epjp_s13360_020_00917_4 crossref_primary_10_1007_s11071_023_08866_0 crossref_primary_10_1007_s11554_023_01294_8 crossref_primary_10_1016_j_matcom_2022_11_016 crossref_primary_10_1088_1402_4896_ad7330 crossref_primary_10_1088_1674_1056_ac8cdf crossref_primary_10_1007_s00371_022_02750_5 crossref_primary_10_1007_s11554_021_01194_9 crossref_primary_10_1016_j_ijleo_2022_170379 crossref_primary_10_1109_TCSI_2021_3121555 crossref_primary_10_1016_j_chaos_2021_111693 crossref_primary_10_1109_ACCESS_2021_3118377 crossref_primary_10_1007_s11036_023_02147_1 crossref_primary_10_1007_s10470_025_02309_z crossref_primary_10_1109_ACCESS_2021_3049791 crossref_primary_10_1109_ACCESS_2020_2982567 crossref_primary_10_1007_s11071_021_06206_8 crossref_primary_10_3390_e27030299 crossref_primary_10_1007_s11042_020_10429_z crossref_primary_10_1016_j_aeue_2022_154242 crossref_primary_10_1016_j_optlastec_2021_107074 crossref_primary_10_1007_s11042_023_14394_1 crossref_primary_10_1088_1402_4896_ace93a crossref_primary_10_1155_2020_8842376 crossref_primary_10_1155_2020_5212601 crossref_primary_10_1016_j_jisa_2020_102566 crossref_primary_10_1007_s11071_021_06941_y crossref_primary_10_2478_aut_2022_0018 crossref_primary_10_1016_j_eswa_2022_118845 crossref_primary_10_1155_2021_6978772 crossref_primary_10_1088_1402_4896_acf7fa crossref_primary_10_3390_e24070900 crossref_primary_10_1016_j_matcom_2020_07_007 crossref_primary_10_1088_1674_1056_abfa01 crossref_primary_10_1007_s11042_023_14826_y crossref_primary_10_1007_s00371_023_02812_2 crossref_primary_10_1109_ACCESS_2022_3217520 crossref_primary_10_1109_TCSVT_2021_3054508 crossref_primary_10_1515_eng_2024_0016 crossref_primary_10_1007_s11042_024_18460_0 crossref_primary_10_1007_s11554_023_01338_z crossref_primary_10_1016_j_heliyon_2023_e23572 crossref_primary_10_1088_1402_4896_ad7239 crossref_primary_10_1155_2023_8994299 crossref_primary_10_1007_s11071_022_07391_w crossref_primary_10_1063_5_0155982 crossref_primary_10_1088_1674_1056_ab9dea crossref_primary_10_1088_1674_1056_ac0a61 crossref_primary_10_3390_mi13060844 crossref_primary_10_3389_fphy_2022_847385 crossref_primary_10_1016_j_jisa_2024_103938 crossref_primary_10_1155_2020_7530976 crossref_primary_10_1142_S0218127420501849 |
Cites_doi | 10.1016/j.optlaseng.2016.02.002 10.1103/PhysRevA.39.3776 10.1016/j.optlaseng.2014.08.005 10.1016/j.optlaseng.2016.10.020 10.3390/sym10090399 10.1016/j.sigpro.2017.03.011 10.1016/j.sigpro.2018.06.008 10.1016/j.optlaseng.2015.09.007 10.1016/j.sigpro.2018.01.026 10.1016/j.sigpro.2014.01.020 10.3390/e20110843 10.1016/j.optlaseng.2016.10.019 10.1016/j.sigpro.2018.05.008 10.1063/1.5116732 10.1142/S021812749800098X 10.1016/j.optlaseng.2018.05.009 10.1016/j.optlastec.2018.07.052 10.1016/j.apm.2019.03.037 10.3390/e21080790 10.1142/S0218127419501177 10.1007/s11071-019-05113-3 10.1007/s11042-019-7405-y 10.1515/acsc-2015-0022 10.1016/j.optlastec.2019.02.009 10.1142/S0218127499001383 10.1142/S0218127418500475 10.1016/j.optlaseng.2018.12.002 10.1016/j.image.2016.12.007 10.1063/1.5081076 10.1142/S0218127419501153 10.1109/ACCESS.2018.2832854 10.1119/1.18585 10.1016/j.sigpro.2019.02.016 10.1155/2019/4047957 10.1016/j.sigpro.2018.09.029 10.1016/j.optlastec.2019.01.043 10.1016/j.optlaseng.2016.10.012 10.1016/j.asoc.2009.12.011 10.1007/s11071-017-3599-6 10.1016/j.optlaseng.2016.08.009 10.1007/s11071-018-4676-1 10.1109/JPHOT.2018.2858823 10.1086/109234 |
ContentType | Journal Article |
Copyright | 2020 |
Copyright_xml | – notice: 2020 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.sigpro.2020.107484 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-7557 |
ExternalDocumentID | 10_1016_j_sigpro_2020_107484 S016516842030027X |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K TAE TN5 WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-43c9c2bc0c2d0cdbb467ba1b102dd366d2b50f38cbe9551813bffbc089778e2f3 |
IEDL.DBID | .~1 |
ISSN | 0165-1684 |
IngestDate | Tue Jul 01 02:07:28 EDT 2025 Thu Apr 24 23:00:28 EDT 2025 Fri Feb 23 02:47:13 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Image encryption Closed-loop diffusion Inter-block Conservative hyper-chaotic system |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-43c9c2bc0c2d0cdbb467ba1b102dd366d2b50f38cbe9551813bffbc089778e2f3 |
ORCID | 0000-0001-6522-9795 |
ParticipantIDs | crossref_citationtrail_10_1016_j_sigpro_2020_107484 crossref_primary_10_1016_j_sigpro_2020_107484 elsevier_sciencedirect_doi_10_1016_j_sigpro_2020_107484 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2020 2020-06-00 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: June 2020 |
PublicationDecade | 2020 |
PublicationTitle | Signal processing |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Chai, Chen, Broyde (bib0013) 2017; 88 Wang, Wong, Liao (bib0019) 2011; 11 Thomas (bib0040) 1999; 9 Yu, Liu, He (bib0010) 2019; 2019 Lakshmanan, Rajaseekar (bib0037) 2012 Sprott (bib0039) 1997; 65 Deng, Wang (bib0009) 2019; 29 Vaidyanathan, Volos (bib0034) 2015; 25 Fridrich (bib0011) 1998; 8 Qi (bib0035) 2019; 95 SIPI Image Database, University of Southern California Signal and Image Processing Institute (Accessed 29 May 2018). Wang, Wang, Zhang (bib0031) 2018; 108 Yaghouti Niyat, Moattar, Niazi Torshiz (bib0045) 2017; 90 Wang, Zhao, Wang (bib0022) 2019; 115 Hénon, Heiles (bib0036) 1964; 69 Eckhardt, Hose, Pollak (bib0038) 1989; 39 Zhu, Zhu (bib0027) 2019; 78 Lan, He, Wang (bib0021) 2018; 147 Zhu, Wang, Zhu (bib0026) 2019; 21 Chai, Gan, Yang (bib0024) 2017; 52 Cambel (bib0033) 1993 Xu, Gou, Li (bib0046) 2017; 91 Zhang, Wang, Liu (bib0012) 2016; 82 Zhu, Wang, Sun (bib0049) 2018; 10 Zhu, Wang, Sun (bib0048) 2018; 20 . Lin, Wang (bib0005) 2020; 369 Chen, Sun, He (bib0002) 2019 Dong, Yuan, Du (bib0042) 2019; 73 Wang, Liu, Zhang (bib0018) 2015; 66 Silva-García, Flores-Carapia, Rentería-Márquez (bib0003) 2018; 332 Li, Wang, Chen (bib0028) 2017; 90 Zhang, Zhou, Niu (bib0016) 2018; 10 Tang, Sun, Yang (bib0004) 2018; 6 Zhang, Yu, Zhu (bib0017) 2018; 151 Cheng, Wang, Chen (bib0032) 2019; 29 Xu, Li, Li (bib0050) 2016; 78 Wu, Liao, Yang (bib0015) 2018; 153 Barker, RoginskyTransitions (bib0044) 2011; 800 Zhao, Wang, Zhang (bib0006) 2019; 29 Yin, Wang (bib0023) 2018; 28 Chai, Fu, Gan (bib0014) 2019; 155 Zhou, Cao, Philip Chen (bib0051) 2014; 100 Yavuz (bib0030) 2019; 114 Alawida, Samsudin, Teh (bib0020) 2019; 160 Zhang, Wang (bib0007) 2019; 29 Zhang, Wang, Yao (bib0008) 2019; 97 Pak, Huang (bib0047) 2017; 138 Li, Zhang, Xie (bib0001) 2019; 48 Li, Wang, Zuo (bib0029) 2019; 115 Cang, Wu, Wang (bib0041) 2017; 89 Nematzadeh, Enayatifar, Motameni (bib0025) 2018; 110 Tang (10.1016/j.sigpro.2020.107484_bib0004) 2018; 6 Zhao (10.1016/j.sigpro.2020.107484_bib0006) 2019; 29 Chai (10.1016/j.sigpro.2020.107484_bib0013) 2017; 88 Xu (10.1016/j.sigpro.2020.107484_bib0050) 2016; 78 Zhu (10.1016/j.sigpro.2020.107484_bib0049) 2018; 10 Li (10.1016/j.sigpro.2020.107484_bib0029) 2019; 115 Eckhardt (10.1016/j.sigpro.2020.107484_bib0038) 1989; 39 Yaghouti Niyat (10.1016/j.sigpro.2020.107484_bib0045) 2017; 90 Zhang (10.1016/j.sigpro.2020.107484_bib0012) 2016; 82 Zhang (10.1016/j.sigpro.2020.107484_bib0008) 2019; 97 Yavuz (10.1016/j.sigpro.2020.107484_bib0030) 2019; 114 Lin (10.1016/j.sigpro.2020.107484_bib0005) 2020; 369 Li (10.1016/j.sigpro.2020.107484_bib0028) 2017; 90 Barker (10.1016/j.sigpro.2020.107484_bib0044) 2011; 800 Li (10.1016/j.sigpro.2020.107484_bib0001) 2019; 48 Zhang (10.1016/j.sigpro.2020.107484_bib0007) 2019; 29 Lan (10.1016/j.sigpro.2020.107484_bib0021) 2018; 147 Yin (10.1016/j.sigpro.2020.107484_bib0023) 2018; 28 Pak (10.1016/j.sigpro.2020.107484_bib0047) 2017; 138 Zhou (10.1016/j.sigpro.2020.107484_bib0051) 2014; 100 Chai (10.1016/j.sigpro.2020.107484_bib0014) 2019; 155 Dong (10.1016/j.sigpro.2020.107484_bib0042) 2019; 73 Silva-García (10.1016/j.sigpro.2020.107484_bib0003) 2018; 332 Zhu (10.1016/j.sigpro.2020.107484_bib0027) 2019; 78 Lakshmanan (10.1016/j.sigpro.2020.107484_bib0037) 2012 Cang (10.1016/j.sigpro.2020.107484_bib0041) 2017; 89 10.1016/j.sigpro.2020.107484_bib0043 Zhu (10.1016/j.sigpro.2020.107484_bib0048) 2018; 20 Wu (10.1016/j.sigpro.2020.107484_bib0015) 2018; 153 Wang (10.1016/j.sigpro.2020.107484_bib0018) 2015; 66 Chen (10.1016/j.sigpro.2020.107484_bib0002) 2019 Chai (10.1016/j.sigpro.2020.107484_bib0024) 2017; 52 Wang (10.1016/j.sigpro.2020.107484_bib0019) 2011; 11 Alawida (10.1016/j.sigpro.2020.107484_bib0020) 2019; 160 Cambel (10.1016/j.sigpro.2020.107484_bib0033) 1993 Fridrich (10.1016/j.sigpro.2020.107484_bib0011) 1998; 8 Wang (10.1016/j.sigpro.2020.107484_bib0031) 2018; 108 Vaidyanathan (10.1016/j.sigpro.2020.107484_bib0034) 2015; 25 Xu (10.1016/j.sigpro.2020.107484_bib0046) 2017; 91 Zhu (10.1016/j.sigpro.2020.107484_bib0026) 2019; 21 Deng (10.1016/j.sigpro.2020.107484_bib0009) 2019; 29 Wang (10.1016/j.sigpro.2020.107484_bib0022) 2019; 115 Cheng (10.1016/j.sigpro.2020.107484_bib0032) 2019; 29 Nematzadeh (10.1016/j.sigpro.2020.107484_bib0025) 2018; 110 Hénon (10.1016/j.sigpro.2020.107484_bib0036) 1964; 69 Sprott (10.1016/j.sigpro.2020.107484_bib0039) 1997; 65 Zhang (10.1016/j.sigpro.2020.107484_bib0017) 2018; 151 Qi (10.1016/j.sigpro.2020.107484_bib0035) 2019; 95 Zhang (10.1016/j.sigpro.2020.107484_bib0016) 2018; 10 Thomas (10.1016/j.sigpro.2020.107484_bib0040) 1999; 9 Yu (10.1016/j.sigpro.2020.107484_bib0010) 2019; 2019 |
References_xml | – reference: SIPI Image Database, University of Southern California Signal and Image Processing Institute (Accessed 29 May 2018). – volume: 88 start-page: 197 year: 2017 end-page: 213 ident: bib0013 article-title: A novel chaos-based image encryption algorithm using DNA sequence operations publication-title: Opt. Lasers Eng. – volume: 89 start-page: 2495 year: 2017 end-page: 2508 ident: bib0041 article-title: Four-dimensional autonomous dynamical systems with conservative flows: two-case study publication-title: Nonlinear Dyn. – volume: 25 start-page: 333 year: 2015 end-page: 353 ident: bib0034 article-title: Analysis and adaptive control of a novel 3-D conservative no-equilibrium chaotic system publication-title: Arch. Control Sci. – volume: 108 start-page: 558 year: 2018 end-page: 573 ident: bib0031 article-title: A novel chaotic encryption scheme based on image segmentation and multiple diffusion models publication-title: Opt. Laser Technol. – volume: 6 start-page: 26059 year: 2018 end-page: 26068 ident: bib0004 article-title: A network coding and DES based dynamic encryption scheme for moving target defense publication-title: IEEE Access – volume: 52 start-page: 6 year: 2017 end-page: 19 ident: bib0024 article-title: An image encryption algorithm based on the memristive hyperchaotic system, cellular automata and DNA sequence operations publication-title: Signal Process. Image Commun. – volume: 20 start-page: 843 year: 2018 ident: bib0048 article-title: Improved cryptanalysis and enhancements of an image encryption scheme using combined 1D chaotic maps publication-title: Entropy – volume: 147 start-page: 133 year: 2018 end-page: 145 ident: bib0021 article-title: Integrated chaotic systems for image encryption publication-title: Signal Process. – volume: 78 start-page: 20855 year: 2019 end-page: 20875 ident: bib0027 article-title: A new image compression-encryption scheme based on compressive sensing and cyclic shift publication-title: Multimed. Tools Appl. – volume: 151 start-page: 130 year: 2018 end-page: 143 ident: bib0017 article-title: An image encryption scheme using self-adaptive selective permutation and inter-intra-block feedback diffusion publication-title: Signal Process. – year: 1993 ident: bib0033 article-title: Applied Chaos Theory: A Paradigm for Complexity – volume: 155 start-page: 44 year: 2019 end-page: 62 ident: bib0014 article-title: A color image cryptosystem based on dynamic DNA encryption and chaos publication-title: Signal Process. – volume: 153 start-page: 11 year: 2018 end-page: 23 ident: bib0015 article-title: Image encryption using 2D Hénon-Sine map and DNA approach publication-title: Signal Process. – volume: 29 year: 2019 ident: bib0007 article-title: Multiscroll hyperchaotic system with hidden attractors and its circuit implementation publication-title: Int. J. Bifurc. Chaos – volume: 29 year: 2019 ident: bib0006 article-title: A universal emulator for memristor, memcapacitor, and meminductor and its chaotic circuit publication-title: Chaos Interdiscip. J. Nonlinear Sci. – volume: 73 start-page: 40 year: 2019 end-page: 71 ident: bib0042 article-title: A new class of Hamiltonian conservative chaotic systems with multistability and design of pseudo-random number generator publication-title: Appl. Math. Model. – volume: 10 start-page: 399 year: 2018 ident: bib0049 article-title: Cryptanalysis and improvement on an image encryption algorithm design using a novel chaos based S-box publication-title: Symmetry – volume: 29 year: 2019 ident: bib0009 article-title: Multi-scroll hidden attractors with two stable equilibrium points publication-title: Chaos Interdiscip. J. Nonlinear Sci. – volume: 78 start-page: 17 year: 2016 end-page: 25 ident: bib0050 article-title: A novel bit-level image encryption algorithm based on chaotic maps publication-title: Opt. Lasers Eng. – volume: 90 start-page: 238 year: 2017 end-page: 246 ident: bib0028 article-title: A hyper-chaos-based image encryption algorithm using pixel-level permutation and bit-level permutation publication-title: Opt. Lasers Eng. – volume: 369 year: 2020 ident: bib0005 article-title: Influences of electromagnetic radiation distribution on chaotic dynamics of a neural network publication-title: Appl. Math. Comput. – volume: 115 start-page: 197 year: 2019 end-page: 207 ident: bib0029 article-title: Chaos-based image encryption algorithm with orbit perturbation and dynamic state variable selection mechanisms publication-title: Opt. Lasers Eng. – volume: 39 start-page: 3776 year: 1989 ident: bib0038 article-title: Quantum mechanics of a classically chaotic system: Observations on scars, periodic orbits, and vibrational adiabaticity publication-title: Phys. Rev. A – volume: 69 start-page: 73 year: 1964 ident: bib0036 article-title: The applicability of the third integral of motion: some numerical experiments publication-title: Astron. J. – volume: 82 start-page: 95 year: 2016 end-page: 103 ident: bib0012 article-title: An image encryption scheme based on the MLNCML system using DNA sequences publication-title: Opt. Lasers Eng. – volume: 21 start-page: 790 year: 2019 ident: bib0026 article-title: A secure and fast image encryption scheme based on double chaotic s-boxes publication-title: Entropy – volume: 65 start-page: 537 year: 1997 end-page: 543 ident: bib0039 article-title: Some simple chaotic jerk functions publication-title: Am. J. Phys. – volume: 332 start-page: 123 year: 2018 end-page: 135 ident: bib0003 article-title: Substitution box generation using Chaos: an image encryption application publication-title: Appl. Math. Comput. – year: 2012 ident: bib0037 article-title: Nonlinear Dynamics: Integrability, Chaos and Patterns – volume: 66 start-page: 10 year: 2015 end-page: 18 ident: bib0018 article-title: A novel chaotic block image encryption algorithm based on dynamic random growth technique publication-title: Opt. Lasers Eng. – volume: 29 year: 2019 ident: bib0032 article-title: A novel color image encryption algorithm based on hyperchaotic system and permutation-diffusion architecture publication-title: Int. J. Bifurc. Chaos – volume: 90 start-page: 225 year: 2017 end-page: 237 ident: bib0045 article-title: Color image encryption based on hybrid hyper-chaotic system and cellular automata publication-title: Opt. Lasers Eng. – volume: 160 start-page: 45 year: 2019 end-page: 58 ident: bib0020 article-title: A new hybrid digital chaotic system with applications in image encryption publication-title: Signal Process. – volume: 28 year: 2018 ident: bib0023 article-title: A new chaotic image encryption scheme using breadth-first search and dynamic diffusion publication-title: Int. J. Bifurc. Chaos – volume: 97 start-page: 2159 year: 2019 end-page: 2174 ident: bib0008 article-title: Chaotic system with bondorbital attractors publication-title: Nonlinear Dyn. – volume: 110 start-page: 24 year: 2018 end-page: 32 ident: bib0025 article-title: Medical image encryption using a hybrid model of modified genetic algorithm and coupled map lattices publication-title: Opt. Lasers Eng. – volume: 115 start-page: 42 year: 2019 end-page: 57 ident: bib0022 article-title: A new image encryption algorithm with nonlinear-diffusion based on Multiple coupled map lattices publication-title: Opt. Laser Technol. – volume: 11 start-page: 514 year: 2011 end-page: 522 ident: bib0019 article-title: A new chaos-based fast image encryption algorithm publication-title: Appl. Soft Comput. – volume: 800 start-page: 131A year: 2011 ident: bib0044 article-title: Recommendation for transitioning the use of cryptographic algorithms and key lengths[J] publication-title: NIST Special Publication – volume: 138 start-page: 129 year: 2017 end-page: 137 ident: bib0047 article-title: A new color image encryption using combination of the 1D chaotic map publication-title: Signal Process. – volume: 100 start-page: 197 year: 2014 end-page: 207 ident: bib0051 article-title: Image encryption using binary bitplane publication-title: Signal Process. – volume: 9 start-page: 1889 year: 1999 end-page: 1905 ident: bib0040 article-title: Deterministic chaos seen in terms of feedback circuits: Analysis, synthesis," labyrinth chaos" publication-title: Int. J. Bifurc. Chaos – volume: 95 start-page: 2063 year: 2019 end-page: 2077 ident: bib0035 article-title: Modelings and mechanism analysis underlying both the 4D Euler equations and Hamiltonian conservative chaotic systems publication-title: Nonlinear Dyn. – reference: . – volume: 91 start-page: 41 year: 2017 end-page: 52 ident: bib0046 article-title: A novel chaotic image encryption algorithm using block scrambling and dynamic index based diffusion publication-title: Opt. Lasers Eng. – volume: 114 start-page: 224 year: 2019 end-page: 239 ident: bib0030 article-title: A novel chaotic image encryption algorithm based on content-sensitive dynamic function switching scheme publication-title: Opt. Laser Technol. – year: 2019 ident: bib0002 article-title: An improved image encryption algorithm with finite computing precision publication-title: Signal Process. – volume: 48 year: 2019 ident: bib0001 article-title: When an attacker meets a cipher-image in 2018: a year in review publication-title: J. Inf. Secur. Appl. – volume: 10 start-page: 1 year: 2018 end-page: 14 ident: bib0016 article-title: An image encryption method based on the feistel network and dynamic DNA encoding publication-title: IEEE Photonics J. – volume: 2019 year: 2019 ident: bib0010 article-title: Analysis and FPGA realization of a novel 5D hyperchaotic four-wing memristive system, active control synchronization, and secure communication application publication-title: Complexity – volume: 8 start-page: 1259 year: 1998 end-page: 1284 ident: bib0011 article-title: Symmetric ciphers based on two-dimensional chaotic maps publication-title: Int. J. Bifurc. Chaos – volume: 82 start-page: 95 year: 2016 ident: 10.1016/j.sigpro.2020.107484_bib0012 article-title: An image encryption scheme based on the MLNCML system using DNA sequences publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2016.02.002 – volume: 39 start-page: 3776 issue: 8 year: 1989 ident: 10.1016/j.sigpro.2020.107484_bib0038 article-title: Quantum mechanics of a classically chaotic system: Observations on scars, periodic orbits, and vibrational adiabaticity publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.39.3776 – volume: 66 start-page: 10 year: 2015 ident: 10.1016/j.sigpro.2020.107484_bib0018 article-title: A novel chaotic block image encryption algorithm based on dynamic random growth technique publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2014.08.005 – volume: 90 start-page: 238 year: 2017 ident: 10.1016/j.sigpro.2020.107484_bib0028 article-title: A hyper-chaos-based image encryption algorithm using pixel-level permutation and bit-level permutation publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2016.10.020 – volume: 10 start-page: 399 issue: 9 year: 2018 ident: 10.1016/j.sigpro.2020.107484_bib0049 article-title: Cryptanalysis and improvement on an image encryption algorithm design using a novel chaos based S-box publication-title: Symmetry doi: 10.3390/sym10090399 – volume: 138 start-page: 129 year: 2017 ident: 10.1016/j.sigpro.2020.107484_bib0047 article-title: A new color image encryption using combination of the 1D chaotic map publication-title: Signal Process. doi: 10.1016/j.sigpro.2017.03.011 – volume: 153 start-page: 11 year: 2018 ident: 10.1016/j.sigpro.2020.107484_bib0015 article-title: Image encryption using 2D Hénon-Sine map and DNA approach publication-title: Signal Process. doi: 10.1016/j.sigpro.2018.06.008 – volume: 78 start-page: 17 year: 2016 ident: 10.1016/j.sigpro.2020.107484_bib0050 article-title: A novel bit-level image encryption algorithm based on chaotic maps publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2015.09.007 – volume: 147 start-page: 133 year: 2018 ident: 10.1016/j.sigpro.2020.107484_bib0021 article-title: Integrated chaotic systems for image encryption publication-title: Signal Process. doi: 10.1016/j.sigpro.2018.01.026 – volume: 100 start-page: 197 year: 2014 ident: 10.1016/j.sigpro.2020.107484_bib0051 article-title: Image encryption using binary bitplane publication-title: Signal Process. doi: 10.1016/j.sigpro.2014.01.020 – volume: 20 start-page: 843 issue: 11 year: 2018 ident: 10.1016/j.sigpro.2020.107484_bib0048 article-title: Improved cryptanalysis and enhancements of an image encryption scheme using combined 1D chaotic maps publication-title: Entropy doi: 10.3390/e20110843 – ident: 10.1016/j.sigpro.2020.107484_bib0043 – volume: 90 start-page: 225 year: 2017 ident: 10.1016/j.sigpro.2020.107484_bib0045 article-title: Color image encryption based on hybrid hyper-chaotic system and cellular automata publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2016.10.019 – volume: 332 start-page: 123 year: 2018 ident: 10.1016/j.sigpro.2020.107484_bib0003 article-title: Substitution box generation using Chaos: an image encryption application publication-title: Appl. Math. Comput. – volume: 800 start-page: 131A year: 2011 ident: 10.1016/j.sigpro.2020.107484_bib0044 article-title: Recommendation for transitioning the use of cryptographic algorithms and key lengths[J] publication-title: NIST Special Publication – volume: 151 start-page: 130 year: 2018 ident: 10.1016/j.sigpro.2020.107484_bib0017 article-title: An image encryption scheme using self-adaptive selective permutation and inter-intra-block feedback diffusion publication-title: Signal Process. doi: 10.1016/j.sigpro.2018.05.008 – volume: 29 issue: 9 year: 2019 ident: 10.1016/j.sigpro.2020.107484_bib0009 article-title: Multi-scroll hidden attractors with two stable equilibrium points publication-title: Chaos Interdiscip. J. Nonlinear Sci. doi: 10.1063/1.5116732 – year: 1993 ident: 10.1016/j.sigpro.2020.107484_bib0033 – volume: 8 start-page: 1259 issue: 06 year: 1998 ident: 10.1016/j.sigpro.2020.107484_bib0011 article-title: Symmetric ciphers based on two-dimensional chaotic maps publication-title: Int. J. Bifurc. Chaos doi: 10.1142/S021812749800098X – volume: 110 start-page: 24 year: 2018 ident: 10.1016/j.sigpro.2020.107484_bib0025 article-title: Medical image encryption using a hybrid model of modified genetic algorithm and coupled map lattices publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2018.05.009 – volume: 108 start-page: 558 year: 2018 ident: 10.1016/j.sigpro.2020.107484_bib0031 article-title: A novel chaotic encryption scheme based on image segmentation and multiple diffusion models publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2018.07.052 – volume: 73 start-page: 40 year: 2019 ident: 10.1016/j.sigpro.2020.107484_bib0042 article-title: A new class of Hamiltonian conservative chaotic systems with multistability and design of pseudo-random number generator publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2019.03.037 – volume: 21 start-page: 790 issue: 8 year: 2019 ident: 10.1016/j.sigpro.2020.107484_bib0026 article-title: A secure and fast image encryption scheme based on double chaotic s-boxes publication-title: Entropy doi: 10.3390/e21080790 – volume: 29 issue: 09 year: 2019 ident: 10.1016/j.sigpro.2020.107484_bib0007 article-title: Multiscroll hyperchaotic system with hidden attractors and its circuit implementation publication-title: Int. J. Bifurc. Chaos doi: 10.1142/S0218127419501177 – volume: 97 start-page: 2159 issue: 4 year: 2019 ident: 10.1016/j.sigpro.2020.107484_bib0008 article-title: Chaotic system with bondorbital attractors publication-title: Nonlinear Dyn. doi: 10.1007/s11071-019-05113-3 – volume: 78 start-page: 20855 issue: 15 year: 2019 ident: 10.1016/j.sigpro.2020.107484_bib0027 article-title: A new image compression-encryption scheme based on compressive sensing and cyclic shift publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-019-7405-y – volume: 25 start-page: 333 issue: 3 year: 2015 ident: 10.1016/j.sigpro.2020.107484_bib0034 article-title: Analysis and adaptive control of a novel 3-D conservative no-equilibrium chaotic system publication-title: Arch. Control Sci. doi: 10.1515/acsc-2015-0022 – year: 2019 ident: 10.1016/j.sigpro.2020.107484_bib0002 article-title: An improved image encryption algorithm with finite computing precision publication-title: Signal Process. – volume: 115 start-page: 42 year: 2019 ident: 10.1016/j.sigpro.2020.107484_bib0022 article-title: A new image encryption algorithm with nonlinear-diffusion based on Multiple coupled map lattices publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2019.02.009 – volume: 9 start-page: 1889 issue: 10 year: 1999 ident: 10.1016/j.sigpro.2020.107484_bib0040 article-title: Deterministic chaos seen in terms of feedback circuits: Analysis, synthesis," labyrinth chaos" publication-title: Int. J. Bifurc. Chaos doi: 10.1142/S0218127499001383 – volume: 28 issue: 04 year: 2018 ident: 10.1016/j.sigpro.2020.107484_bib0023 article-title: A new chaotic image encryption scheme using breadth-first search and dynamic diffusion publication-title: Int. J. Bifurc. Chaos doi: 10.1142/S0218127418500475 – volume: 115 start-page: 197 year: 2019 ident: 10.1016/j.sigpro.2020.107484_bib0029 article-title: Chaos-based image encryption algorithm with orbit perturbation and dynamic state variable selection mechanisms publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2018.12.002 – volume: 52 start-page: 6 year: 2017 ident: 10.1016/j.sigpro.2020.107484_bib0024 article-title: An image encryption algorithm based on the memristive hyperchaotic system, cellular automata and DNA sequence operations publication-title: Signal Process. Image Commun. doi: 10.1016/j.image.2016.12.007 – volume: 29 issue: 1 year: 2019 ident: 10.1016/j.sigpro.2020.107484_bib0006 article-title: A universal emulator for memristor, memcapacitor, and meminductor and its chaotic circuit publication-title: Chaos Interdiscip. J. Nonlinear Sci. doi: 10.1063/1.5081076 – volume: 29 issue: 09 year: 2019 ident: 10.1016/j.sigpro.2020.107484_bib0032 article-title: A novel color image encryption algorithm based on hyperchaotic system and permutation-diffusion architecture publication-title: Int. J. Bifurc. Chaos doi: 10.1142/S0218127419501153 – volume: 6 start-page: 26059 year: 2018 ident: 10.1016/j.sigpro.2020.107484_bib0004 article-title: A network coding and DES based dynamic encryption scheme for moving target defense publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2832854 – volume: 48 year: 2019 ident: 10.1016/j.sigpro.2020.107484_bib0001 article-title: When an attacker meets a cipher-image in 2018: a year in review publication-title: J. Inf. Secur. Appl. – volume: 65 start-page: 537 issue: 6 year: 1997 ident: 10.1016/j.sigpro.2020.107484_bib0039 article-title: Some simple chaotic jerk functions publication-title: Am. J. Phys. doi: 10.1119/1.18585 – volume: 160 start-page: 45 year: 2019 ident: 10.1016/j.sigpro.2020.107484_bib0020 article-title: A new hybrid digital chaotic system with applications in image encryption publication-title: Signal Process. doi: 10.1016/j.sigpro.2019.02.016 – volume: 2019 year: 2019 ident: 10.1016/j.sigpro.2020.107484_bib0010 article-title: Analysis and FPGA realization of a novel 5D hyperchaotic four-wing memristive system, active control synchronization, and secure communication application publication-title: Complexity doi: 10.1155/2019/4047957 – volume: 155 start-page: 44 year: 2019 ident: 10.1016/j.sigpro.2020.107484_bib0014 article-title: A color image cryptosystem based on dynamic DNA encryption and chaos publication-title: Signal Process. doi: 10.1016/j.sigpro.2018.09.029 – volume: 114 start-page: 224 year: 2019 ident: 10.1016/j.sigpro.2020.107484_bib0030 article-title: A novel chaotic image encryption algorithm based on content-sensitive dynamic function switching scheme publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2019.01.043 – volume: 369 year: 2020 ident: 10.1016/j.sigpro.2020.107484_bib0005 article-title: Influences of electromagnetic radiation distribution on chaotic dynamics of a neural network publication-title: Appl. Math. Comput. – volume: 91 start-page: 41 year: 2017 ident: 10.1016/j.sigpro.2020.107484_bib0046 article-title: A novel chaotic image encryption algorithm using block scrambling and dynamic index based diffusion publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2016.10.012 – volume: 11 start-page: 514 issue: 1 year: 2011 ident: 10.1016/j.sigpro.2020.107484_bib0019 article-title: A new chaos-based fast image encryption algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2009.12.011 – volume: 89 start-page: 2495 issue: 4 year: 2017 ident: 10.1016/j.sigpro.2020.107484_bib0041 article-title: Four-dimensional autonomous dynamical systems with conservative flows: two-case study publication-title: Nonlinear Dyn. doi: 10.1007/s11071-017-3599-6 – year: 2012 ident: 10.1016/j.sigpro.2020.107484_bib0037 – volume: 88 start-page: 197 year: 2017 ident: 10.1016/j.sigpro.2020.107484_bib0013 article-title: A novel chaos-based image encryption algorithm using DNA sequence operations publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2016.08.009 – volume: 95 start-page: 2063 issue: 3 year: 2019 ident: 10.1016/j.sigpro.2020.107484_bib0035 article-title: Modelings and mechanism analysis underlying both the 4D Euler equations and Hamiltonian conservative chaotic systems publication-title: Nonlinear Dyn. doi: 10.1007/s11071-018-4676-1 – volume: 10 start-page: 1 issue: 4 year: 2018 ident: 10.1016/j.sigpro.2020.107484_bib0016 article-title: An image encryption method based on the feistel network and dynamic DNA encoding publication-title: IEEE Photonics J. doi: 10.1109/JPHOT.2018.2858823 – volume: 69 start-page: 73 year: 1964 ident: 10.1016/j.sigpro.2020.107484_bib0036 article-title: The applicability of the third integral of motion: some numerical experiments publication-title: Astron. J. doi: 10.1086/109234 |
SSID | ssj0001360 |
Score | 2.640099 |
Snippet | •We firstly use a 5-dimensional conservative hyper-chaotic system to generate key streams for image encryption.•Compare to dissipative chaotic system, the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 107484 |
SubjectTerms | Closed-loop diffusion Conservative hyper-chaotic system Image encryption Inter-block |
Title | A novel image encryption scheme based on conservative hyperchaotic system and closed-loop diffusion between blocks |
URI | https://dx.doi.org/10.1016/j.sigpro.2020.107484 |
Volume | 171 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFA6lXvQgrliXkoPX2JlMZjuWYqmKvWiht2GyjI62M6UbePG3-94sWkEUPCa8DOHl8ZbM974QculZvrZ9U1BfaiY8IVmYBBYTIubGOMJVRdf7_dAbjMTt2B03SK_uhUFYZeX7S59eeOtqplNpszNL084DNuLY-BsJ7BSKqzF2sAsfrfzq_QvmYTtFpzAKM5Su2-cKjNcifQI_BVUixymk1fw5PG2EnP4e2a1yRdott7NPGiY7IDsbDIKHZN6lWb42E5pOwTFQ2P78rXACFKpWMzUUo5SmMFYImy4uYNeGPkP1iSRJOXyZlmTONM40VZMcxNkkz2cUn05Z4V0arbBcVELge10ckVH_-rE3YNUzCkxBPbBkwlGh4lJZimtLaSnBN8rYlpBaaO14nubStRInUNKEyM9mOzJJQDyA1DAwPHGOSTPLM3NCKBR3MZQUvvK0FDKwwpgnrtFuYrjxLBO3iFNrL1IVxzg-dTGJajDZS1TqPEKdR6XOW4R9rpqVHBt_yPv1wUTfbCWCMPDrytN_rzwj2zgqQWLnpLmcr8wFpCNL2S7srU22ujd3g-EHQNTiUA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gHNSD8RnxuQevG_qmHAmRgDwuQsKt6T6qKLSEV-K_d6YPg4nRxGO3M0073XwzszvzLcCDZ9SVWdcp9aXijucI3oh8gztOaGltO65Mu94HQ68zdp4m7qQEraIXhsoqc-zPMD1F63yklluztphOa8_UiGPSNhLOU0yuJntQIXYqtwyVZrfXGX4BsmmnzcIkz0mh6KBLy7xW0xeEKkwULRoiZs2fPdSO12kfw1EeLrJm9kYnUNLxKRzukAiewbLJ4mSrZ2w6R2xg-AXLjxQHGCaueq4ZOSrF8FpS5XS6BrvV7BUTUOJJSvDJLONzZmGsmJwlKM5nSbJgdHrKhpbTWF7OxQT6vvfVOYzbj6NWh-cnKXCJKcGaO7ZsSEtIQ1rKkEoIhEcRmgKjC6Vsz1OWcI3I9qXQDaJoM20RRSjuY3ToayuyL6AcJ7G-BIb5XYhZRV16SjjCNxqhFblauZG2tGfosAp2Yb1A5jTjdNrFLCjqyd6CzOYB2TzIbF4F_qW1yGg2_pCvFz8m-DZdAvQEv2pe_VvzHvY7o0E_6HeHvWs4oDtZzdgNlNfLjb7F6GQt7vLZ9wkCYeUB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+image+encryption+scheme+based+on+conservative+hyperchaotic+system+and+closed-loop+diffusion+between+blocks&rft.jtitle=Signal+processing&rft.au=Zhou%2C+Minjun&rft.au=Wang%2C+Chunhua&rft.date=2020-06-01&rft.pub=Elsevier+B.V&rft.issn=0165-1684&rft.eissn=1872-7557&rft.volume=171&rft_id=info:doi/10.1016%2Fj.sigpro.2020.107484&rft.externalDocID=S016516842030027X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon |