Probing the coalescence mechanism of water droplet and Oil/Water interface in demulsification process under DC electric field
[Display omitted] •Droplet-interface electrocoalescence was studied via molecular dynamics.•Dipole-dipole force mainly comes from the charge accumulation effect at interface.•Electric field could weaken the interaction between water molecules.•Ec for droplet-interface partial coalescence has a linea...
Saved in:
Published in | Separation and purification technology Vol. 326; p. 124798 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1383-5866 1873-3794 |
DOI | 10.1016/j.seppur.2023.124798 |
Cover
Abstract | [Display omitted]
•Droplet-interface electrocoalescence was studied via molecular dynamics.•Dipole-dipole force mainly comes from the charge accumulation effect at interface.•Electric field could weaken the interaction between water molecules.•Ec for droplet-interface partial coalescence has a linear relationship with r0−0.5.
Under electric fields, coalescence of water droplets in oil media and bulk water (droplet-interface coalescence) is a significant phenomenon during the electrostatic process of water-in-oil (W/O) emulsion. In order to reveal the microscopic mechanism of droplet-interface coalescence, MD simulations and high-speed imaging were performed to study the influence of droplet size (r0) and electric field strength (E) on the coalescence process between water layer and droplet in oil. The findings suggested that the molecular arrangement of water molecules was altered at applied electric fields, resulting in a weakened interaction force and an increased spacing between water molecules. The droplet-interface coalescence process could be classified into five temporal regimes, under the mutual effect of the associated intermolecular interactions (Coulomb interaction and van der Waals interaction) and external electric field. The interfacial charge density reached a high value of 0.15 e·nm−3 due to the charge orientation, leading to dipole–dipole interaction between the droplet and water layer. Driven by both applied electric field and polarized charge, when E = 0.44 V·nm−1, the droplet with a diameter of 6 nm had the shortest coalescence period, only 370 ps. The critical field strength (Ec) required to prevent complete coalescence between nano-droplets and oil–water interface increased approximately linearly with r0−0.5. This work has revealed the molecular interaction mechanism of electro-coalescence between water droplets and oil/water interface, and provides useful insights into the electrostatic demulsification. |
---|---|
AbstractList | [Display omitted]
•Droplet-interface electrocoalescence was studied via molecular dynamics.•Dipole-dipole force mainly comes from the charge accumulation effect at interface.•Electric field could weaken the interaction between water molecules.•Ec for droplet-interface partial coalescence has a linear relationship with r0−0.5.
Under electric fields, coalescence of water droplets in oil media and bulk water (droplet-interface coalescence) is a significant phenomenon during the electrostatic process of water-in-oil (W/O) emulsion. In order to reveal the microscopic mechanism of droplet-interface coalescence, MD simulations and high-speed imaging were performed to study the influence of droplet size (r0) and electric field strength (E) on the coalescence process between water layer and droplet in oil. The findings suggested that the molecular arrangement of water molecules was altered at applied electric fields, resulting in a weakened interaction force and an increased spacing between water molecules. The droplet-interface coalescence process could be classified into five temporal regimes, under the mutual effect of the associated intermolecular interactions (Coulomb interaction and van der Waals interaction) and external electric field. The interfacial charge density reached a high value of 0.15 e·nm−3 due to the charge orientation, leading to dipole–dipole interaction between the droplet and water layer. Driven by both applied electric field and polarized charge, when E = 0.44 V·nm−1, the droplet with a diameter of 6 nm had the shortest coalescence period, only 370 ps. The critical field strength (Ec) required to prevent complete coalescence between nano-droplets and oil–water interface increased approximately linearly with r0−0.5. This work has revealed the molecular interaction mechanism of electro-coalescence between water droplets and oil/water interface, and provides useful insights into the electrostatic demulsification. |
ArticleNumber | 124798 |
Author | Li, Ning Sun, Xiaoyu Li, Bin Tang, Tian Zeng, Hongbo Pang, Yunhui Li, Wangqing Sun, Zhiqian Wang, Zhenbo |
Author_xml | – sequence: 1 givenname: Ning surname: Li fullname: Li, Ning organization: College of New Energy, China University of Petroleum (East China), Qingdao 266580, China – sequence: 2 givenname: Yunhui surname: Pang fullname: Pang, Yunhui organization: College of New Energy, China University of Petroleum (East China), Qingdao 266580, China – sequence: 3 givenname: Zhiqian surname: Sun fullname: Sun, Zhiqian email: sunzhq@upc.edu.cn organization: College of New Energy, China University of Petroleum (East China), Qingdao 266580, China – sequence: 4 givenname: Zhenbo surname: Wang fullname: Wang, Zhenbo email: wangzhb@upc.edu.cn organization: College of New Energy, China University of Petroleum (East China), Qingdao 266580, China – sequence: 5 givenname: Xiaoyu surname: Sun fullname: Sun, Xiaoyu organization: Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G1H9, Canada – sequence: 6 givenname: Tian surname: Tang fullname: Tang, Tian organization: Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G1H9, Canada – sequence: 7 givenname: Bin surname: Li fullname: Li, Bin organization: School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China – sequence: 8 givenname: Wangqing surname: Li fullname: Li, Wangqing organization: College of New Energy, China University of Petroleum (East China), Qingdao 266580, China – sequence: 9 givenname: Hongbo surname: Zeng fullname: Zeng, Hongbo email: Hongbo.Zeng@ualberta.ca organization: Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G1H9, Canada |
BookMark | eNqFkM1qGzEQgEVJobHbN-hBL7C2_rwr9VAIbn4KhuQQ6FHI0qgZs5YWaZ2SQ9496zinHJrLzDDMN8x8M3KWcgJCvnO24Iy3y92iwjAcykIwIRdcqM7oT-Sc6042sjPqbKqlls1Kt-0XMqt1xxjvuBbn5Pmu5C2mv3R8AOqz66F6SB7oHvyDS1j3NEf6z41QaCh56GGkLgV6i_3yz2sX0xSjmxBMNMD-0FeM6N2IOdGhZA-10kMK0-ivNYUe_FjQ04jQh6_kc3R9hW9veU7ury7v1zfN5vb69_pi03jJ2rFRUgWl5SowZ1ZMi9Zos_URjBJhC0Iww0ErI7pOOdBtdKxTiqtp1MCqi3JOfpzW-pJrLRCtx_H1wLE47C1n9ujR7uzJoz16tCePE6zewUPBvStPH2E_TxhMfz0iFFs9Hs0GLJMCGzL-f8EL6MaS-g |
CitedBy_id | crossref_primary_10_1016_j_jece_2024_114016 crossref_primary_10_1016_j_ces_2024_120195 crossref_primary_10_1016_j_compfluid_2024_106478 crossref_primary_10_1063_5_0240476 crossref_primary_10_1016_j_watres_2024_121329 crossref_primary_10_1016_j_ces_2024_120730 crossref_primary_10_1016_j_seppur_2025_131501 crossref_primary_10_1016_j_seppur_2024_127045 crossref_primary_10_1016_j_colsurfa_2024_135254 crossref_primary_10_1021_acs_langmuir_3c04024 crossref_primary_10_1016_j_eng_2024_08_021 crossref_primary_10_1088_1742_6596_2834_1_012101 crossref_primary_10_1021_acs_iecr_4c01829 |
Cites_doi | 10.1016/j.cep.2018.10.013 10.1134/S1061933X16060211 10.1016/j.colsurfa.2021.127746 10.1016/j.fuel.2020.119390 10.1002/jcc.21224 10.1038/srep23936 10.1016/S0045-7930(97)00053-4 10.1021/acs.chemrev.6b00045 10.1103/PhysRevE.80.036301 10.1016/j.ces.2019.115360 10.1021/acs.langmuir.9b03969 10.1016/0263-7855(96)00018-5 10.1103/PhysRevLett.109.094501 10.1021/acs.energyfuels.1c02266 10.1021/acs.energyfuels.7b00396 10.1016/j.cherd.2018.10.010 10.1002/jcc.540160303 10.1017/S0022112008004801 10.1063/1.470117 10.1002/anie.200703987 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H 10.1039/tf9615702027 10.1021/ar9001203 10.1063/1.2408420 10.1016/j.jcis.2022.08.027 10.1021/jp304444d 10.1016/j.molliq.2021.115995 10.1016/j.jcis.2022.07.132 10.1016/j.cherd.2018.05.004 10.1021/acs.langmuir.0c00652 10.1002/jcc.540130805 10.1021/acs.langmuir.5b01574 10.1016/j.molliq.2021.117875 10.1021/acs.langmuir.6b01000 10.1016/j.petrol.2018.03.014 10.1016/j.seppur.2021.119622 10.1016/j.seppur.2022.120756 10.1021/la902758u 10.1016/j.jcis.2019.06.035 10.1016/j.aca.2011.09.010 10.1016/j.colsurfa.2020.125136 10.1080/10407782.2014.986403 10.1016/S0927-7757(02)00445-4 10.1016/j.ijmultiphaseflow.2021.103628 10.1063/1.1730376 10.1021/acs.energyfuels.1c00538 10.1063/1.328693 10.1146/annurev.fluid.29.1.27 10.1016/j.cherd.2018.12.019 10.3390/nano11071764 10.1021/acs.energyfuels.6b01995 10.1038/ncomms3517 10.1016/j.ces.2016.07.022 10.1016/j.molliq.2020.114475 10.1021/acs.jpcb.6b03691 10.1016/j.ces.2019.07.054 10.1021/acs.jpcc.9b05906 10.1016/j.cherd.2016.08.019 10.1021/j100308a038 10.1063/1.448118 10.1002/jcc.26812 10.1002/wcms.1327 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. |
Copyright_xml | – notice: 2023 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.seppur.2023.124798 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3794 |
ExternalDocumentID | 10_1016_j_seppur_2023_124798 S1383586623017069 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABJNI ABMAC ABNUV ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 ROL RPZ SDF SDG SES SEW SPC SPCBC SSG SSM SSZ T5K ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FGOYB HZ~ R2- RIG SSH |
ID | FETCH-LOGICAL-c306t-434d4835d0a950826989bcfe942dbe22091e8492774ae86fa0744145089e57f3 |
IEDL.DBID | AIKHN |
ISSN | 1383-5866 |
IngestDate | Thu Apr 24 22:58:45 EDT 2025 Tue Jul 01 00:45:24 EDT 2025 Fri Feb 23 02:36:38 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Intermolecular interaction Molecular dynamics Electric field Droplet-interface Coalescence |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-434d4835d0a950826989bcfe942dbe22091e8492774ae86fa0744145089e57f3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_seppur_2023_124798 crossref_primary_10_1016_j_seppur_2023_124798 elsevier_sciencedirect_doi_10_1016_j_seppur_2023_124798 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 2023-12-00 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Separation and purification technology |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Eow, Ghadiri (b0075) 2003; 215 Yang, Ghadiri, Sun, He, Luo, Lü (b0290) 2018; 136 Martínez, Andrade, Birgin, Martínez (b0245) 2009; 30 Yang, Sun, Chang, Sun, He (b0060) 2021; 11 Mousavi, Shariaty Niasar, Bahmanyar, Moosavian (b0055) 2013; 10 Wang, Wang, Yan, Wang (b0275) 2015; 31 Yang, Sun, He, Luo, Lü, Yin, Xia, Zhang (b0100) 2018; 140 Yang, Sun, He, Luo, Lü, Gao (b0090) 2019; 142 Miljkovic, Preston, Enright, Wang (b0300) 2013; 4 Aryafar, Kavehpour (b0085) 2009; 25 Neese (b0250) 2018; 8 Eisenhaber, Lijnzaad, Argos, Sander, Scharf (b0295) 1995; 16 Li, Sun, Pang, Qi, Liu, Li, Sun, Li, Wang (b0195) 2022; 289 Sun, Yang, Sun, Wu, Chang, Shi, Cao, He, Xie (b0070) 2020; 603 Blanchette, Bigioni (b0120) 2009; 620 Silva, Silva, Ribeiro, Martins, Da Silva, Silva (b0190) 2011; 707 Berendsen, Postma, van Gunsteren, DiNola, Haak (b0215) 1984; 81 Xie, Lu, Tan, Liu, Tang, Zeng (b0110) 2019; 553 Rebek (b0305) 2009; 42 Li, Dou, Yu, Li, Zhang, Xu, Sun, Wang, Wang (b0185) 2021; 344 Pillai, Berry, Harvie, Davidson (b0125) 2017; 169 Vivacqua, Ghadiri, Abdullah, Hassanpour, Al-Marri, Azzopardi, Hewakandamby, Kermani (b0135) 2016; 114 Zhang, Shi, Lu, Liu, Zeng (b0020) 2016; 32 Sussman, Fatemi, Smereka, Osher (b0140) 1998; 27 Caleman, van der Spoel (b0200) 2008; 47 Li, Sun, Liu, Wei, Li, Qi, Wang (b0270) 2021; 333 Allan, Mason (b0115) 1961; 57 Lemkul (b0240) 2018; 1 Wang, Yang, Huang, Huang, Yang, Zhang, Liu, Tang, Gamal El-Din, Kemppi, Perdicakis, Zeng (b0015) 2021; 286 Parrinello, Rahman (b0220) 1981; 52 Saville (b0080) 1997; 29 Sun, Yang, He, Luo, Lü (b0045) 2019; 208 Miyamoto, Kollman (b0230) 1992; 13 Umar, Saaid, Sulaimon, Pilus (b0030) 2018; 165 Li, Sun, Fan, Liu, Guo, Li, Wang (b0315) 2021; 321 Yang, Sun, He, Luo, Lü (b0065) 2018; 134 Lu, Chen (b0285) 2022; 43 Zadymova, Skvortsova, Traskin, Yampol’skaya, Mironova, Frenkin, Kulichikhin, Malkin (b0005) 2016; 78 Jian, Poopari, Liu, Zerpa, Zeng, Tang (b0105) 2016; 30 Liu, Cao (b0325) 2016; 6 Wang, Li, Sun, Wang, Chen, Liu, Qi, Wei, Li (b0310) 2022; 278 Teigen, Munkejord, Bjørklund (b0130) 2008 Jian, Poopari, Liu, Zerpa, Zeng, Tang (b0010) 2016; 120 Wollborn, Michaelis, Ciacchi, Fritsching (b0175) 2022; 628 Li, Rao, Xia, Hoepfner, Deo (b0165) 2020; 36 Björneholm, Hansen, Hodgson, Liu, Limmer, Michaelides, Pedevilla, Rossmeisl, Shen, Tocci, Tyrode, Walz, Werner, Bluhm (b0050) 2016; 116 Lan, Zeng, Tang (b0265) 2019; 123 Humphrey, Dalke, Schulten (b0255) 1996; 14 Wang, Lu, Harbottle, Sjöblom, Xu, Zeng (b0035) 2012; 116 Zhao, Xi, Jia, Yang (b0040) 2021; 35 Liu, Wang, Huang, Cui, Tan, Liu, Zeng (b0025) 2017; 31 Bussi, Donadio, Parrinello (b0210) 2007; 126 Essmann, Perera, Berkowitz, Darden, Lee, Pedersen (b0225) 1995; 103 Hamlin, Creasey, Ristenpart (b0095) 2012; 109 Ballard, Pickering, Rosbottom, Tangparitkul, Roberts, Rae, Dowding, Hammond, Harbottle (b0170) 2021; 35 Berendsen, Grigera, Straatsma (b0205) 1987; 91 Li, Zeng, Tang (b0260) 2022; 628 Hess, Bekker, Berendsen, Fraaije (b0235) 1997; 18 Li, Wang, Vivacqua, Ghadiri, Wang, Zhang, Wang, Liu, Sun, Wang (b0145) 2020; 213 Zhou, Yu, Li, He, Tao (b0180) 2015; 68 Pan, Chou, Tseng (b0150) 2009; 80 Li, Sun, Sun, Liu, Wei, Li, Li, Wang (b0280) 2022; 632 Anand, Juvekar, Thaokar (b0320) 2020; 36 Alder, Wainwright (b0160) 1959; 31 Li, Dou, Yu, Huang, Zhang, Xu, Sun, Wang, Wang (b0155) 2021; 139 Bussi (10.1016/j.seppur.2023.124798_b0210) 2007; 126 Wang (10.1016/j.seppur.2023.124798_b0275) 2015; 31 Eisenhaber (10.1016/j.seppur.2023.124798_b0295) 1995; 16 Berendsen (10.1016/j.seppur.2023.124798_b0205) 1987; 91 Caleman (10.1016/j.seppur.2023.124798_b0200) 2008; 47 Saville (10.1016/j.seppur.2023.124798_b0080) 1997; 29 Parrinello (10.1016/j.seppur.2023.124798_b0220) 1981; 52 Essmann (10.1016/j.seppur.2023.124798_b0225) 1995; 103 Wang (10.1016/j.seppur.2023.124798_b0310) 2022; 278 Aryafar (10.1016/j.seppur.2023.124798_b0085) 2009; 25 Yang (10.1016/j.seppur.2023.124798_b0290) 2018; 136 Allan (10.1016/j.seppur.2023.124798_b0115) 1961; 57 Sun (10.1016/j.seppur.2023.124798_b0045) 2019; 208 Miyamoto (10.1016/j.seppur.2023.124798_b0230) 1992; 13 Anand (10.1016/j.seppur.2023.124798_b0320) 2020; 36 Yang (10.1016/j.seppur.2023.124798_b0100) 2018; 140 Miljkovic (10.1016/j.seppur.2023.124798_b0300) 2013; 4 Yang (10.1016/j.seppur.2023.124798_b0090) 2019; 142 Lan (10.1016/j.seppur.2023.124798_b0265) 2019; 123 Zhou (10.1016/j.seppur.2023.124798_b0180) 2015; 68 Jian (10.1016/j.seppur.2023.124798_b0010) 2016; 120 Liu (10.1016/j.seppur.2023.124798_b0325) 2016; 6 Jian (10.1016/j.seppur.2023.124798_b0105) 2016; 30 Lu (10.1016/j.seppur.2023.124798_b0285) 2022; 43 Pan (10.1016/j.seppur.2023.124798_b0150) 2009; 80 Li (10.1016/j.seppur.2023.124798_b0155) 2021; 139 Sussman (10.1016/j.seppur.2023.124798_b0140) 1998; 27 Ballard (10.1016/j.seppur.2023.124798_b0170) 2021; 35 Neese (10.1016/j.seppur.2023.124798_b0250) 2018; 8 Li (10.1016/j.seppur.2023.124798_b0165) 2020; 36 Wollborn (10.1016/j.seppur.2023.124798_b0175) 2022; 628 Björneholm (10.1016/j.seppur.2023.124798_b0050) 2016; 116 Hamlin (10.1016/j.seppur.2023.124798_b0095) 2012; 109 Lemkul (10.1016/j.seppur.2023.124798_b0240) 2018; 1 Eow (10.1016/j.seppur.2023.124798_b0075) 2003; 215 Alder (10.1016/j.seppur.2023.124798_b0160) 1959; 31 Silva (10.1016/j.seppur.2023.124798_b0190) 2011; 707 Zadymova (10.1016/j.seppur.2023.124798_b0005) 2016; 78 Rebek (10.1016/j.seppur.2023.124798_b0305) 2009; 42 Martínez (10.1016/j.seppur.2023.124798_b0245) 2009; 30 Li (10.1016/j.seppur.2023.124798_b0260) 2022; 628 Humphrey (10.1016/j.seppur.2023.124798_b0255) 1996; 14 Hess (10.1016/j.seppur.2023.124798_b0235) 1997; 18 Li (10.1016/j.seppur.2023.124798_b0145) 2020; 213 Wang (10.1016/j.seppur.2023.124798_b0035) 2012; 116 Wang (10.1016/j.seppur.2023.124798_b0015) 2021; 286 Li (10.1016/j.seppur.2023.124798_b0270) 2021; 333 Li (10.1016/j.seppur.2023.124798_b0185) 2021; 344 Liu (10.1016/j.seppur.2023.124798_b0025) 2017; 31 Yang (10.1016/j.seppur.2023.124798_b0060) 2021; 11 Sun (10.1016/j.seppur.2023.124798_b0070) 2020; 603 Vivacqua (10.1016/j.seppur.2023.124798_b0135) 2016; 114 Umar (10.1016/j.seppur.2023.124798_b0030) 2018; 165 Xie (10.1016/j.seppur.2023.124798_b0110) 2019; 553 Blanchette (10.1016/j.seppur.2023.124798_b0120) 2009; 620 Berendsen (10.1016/j.seppur.2023.124798_b0215) 1984; 81 Yang (10.1016/j.seppur.2023.124798_b0065) 2018; 134 Teigen (10.1016/j.seppur.2023.124798_b0130) 2008 Pillai (10.1016/j.seppur.2023.124798_b0125) 2017; 169 Li (10.1016/j.seppur.2023.124798_b0280) 2022; 632 Zhang (10.1016/j.seppur.2023.124798_b0020) 2016; 32 Zhao (10.1016/j.seppur.2023.124798_b0040) 2021; 35 Li (10.1016/j.seppur.2023.124798_b0195) 2022; 289 Li (10.1016/j.seppur.2023.124798_b0315) 2021; 321 Mousavi (10.1016/j.seppur.2023.124798_b0055) 2013; 10 |
References_xml | – volume: 30 start-page: 10228 year: 2016 end-page: 10235 ident: b0105 article-title: Mechanistic understanding of the effect of temperature and salinity on the water/toluene interfacial tension publication-title: Energy Fuels – volume: 628 start-page: 924 year: 2022 end-page: 934 ident: b0260 article-title: Molecular dynamics simulation on water/oil interface with model asphaltene subjected to electric field publication-title: J. Colloid Interface Sci. – volume: 10 start-page: 30 year: 2013 end-page: 44 ident: b0055 article-title: Electro-coalescence of an aqueous droplet at an oil–water interface with an investigation of secondary droplets formation publication-title: Iran Journal of Chemical Engineering – volume: 620 start-page: 333 year: 2009 end-page: 352 ident: b0120 article-title: Dynamics of drop coalescence at fluid interfaces publication-title: J. Fluid Mech. – volume: 36 start-page: 6051 year: 2020 end-page: 6060 ident: b0320 article-title: Coalescence, partial coalescence, and noncoalescence of an aqueous drop at an oil-water interface under an electric field publication-title: Langmuir – volume: 213 start-page: 115360 year: 2020 ident: b0145 article-title: Drop-interface electrocoalescence mode transition under a direct current electric field publication-title: Chem. Eng. Sci. – volume: 57 start-page: 2027 year: 1961 end-page: 2040 ident: b0115 article-title: Effects of electric fields on coalescence in liquid+liquid systems publication-title: Trans. Faraday Soc. – volume: 31 start-page: 7457 year: 2015 end-page: 7462 ident: b0275 article-title: Molecular dynamics simulations on coalescence and non-coalescence of conducting droplets publication-title: Langmuir – volume: 140 start-page: 128 year: 2018 end-page: 141 ident: b0100 article-title: Coalescence characteristics of silica nanoparticle-laden droplets with a planar interface under direct current electric field publication-title: Chem. Eng. Res. Des. – volume: 208 start-page: 115136 year: 2019 ident: b0045 article-title: Influence of alkali concentration, electric waveform, and frequency on the critical electric field strength of droplet–interface partial coalescence publication-title: Chem. Eng. Sci. – volume: 14 start-page: 33 year: 1996 end-page: 38 ident: b0255 article-title: VMD: Visual molecular dynamics publication-title: J. Mol. Graph. – volume: 120 start-page: 5646 year: 2016 end-page: 5654 ident: b0010 article-title: Reduction of water/oil interfacial tension by model asphaltenes: The governing role of surface concentration publication-title: J. Phys. Chem. B – volume: 123 start-page: 22989 year: 2019 end-page: 22999 ident: b0265 article-title: Molecular dynamics study on the mechanism of graphene oxide to destabilize oil/water emulsion publication-title: J. Phys. Chem. C – volume: 11 start-page: 1764 year: 2021 ident: b0060 article-title: Study on the effect of nanoparticle used in nano-fluid flooding on droplet-interface electro-coalescence publication-title: Nanomaterials – volume: 344 start-page: 117875 year: 2021 ident: b0185 article-title: Molecular dynamics simulations of nanoparticle-laden drop–interface electrocoalescence behaviors under direct and alternating current electric fields publication-title: J. Mol. Liq. – volume: 30 start-page: 2157 year: 2009 end-page: 2164 ident: b0245 article-title: PACKMOL: A package for building initial configurations for molecular dynamics simulations publication-title: J. Comput. Chem. – volume: 139 start-page: 103628 year: 2021 ident: b0155 article-title: Coalescence dynamic response of an aqueous droplet at an oil-water interface under a steady electric field publication-title: Int. J. Multiph. Flow – volume: 289 start-page: 120756 year: 2022 ident: b0195 article-title: Microscopic mechanism for electrocoalescence of water droplets in water-in-oil emulsions containing surfactant: A molecular dynamics study publication-title: Sep. Purif. Technol. – volume: 8 start-page: e1327 year: 2018 ident: b0250 article-title: Software update: The ORCA program system, version 4.0, WIREs comput publication-title: Mol. Sci. – volume: 333 start-page: 115995 year: 2021 ident: b0270 article-title: Effect of electric field strength on deformation and breakup behaviors of droplet in oil phase: A molecular dynamics study publication-title: J. Mol. Liq. – volume: 215 start-page: 101 year: 2003 end-page: 123 ident: b0075 article-title: The behaviour of a liquid–liquid interface and drop-interface coalescence under the influence of an electric field publication-title: Colloids Surf A – volume: 52 start-page: 7182 year: 1981 end-page: 7190 ident: b0220 article-title: Polymorphic transitions in single crystals: A new molecular dynamics method publication-title: J. Appl. Phys. – volume: 286 start-page: 119390 year: 2021 ident: b0015 article-title: Stabilization mechanism and chemical demulsification of water-in-oil and oil-in-water emulsions in petroleum industry: A review publication-title: Fuel 286 – volume: 31 start-page: 8833 year: 2017 end-page: 8842 ident: b0025 article-title: Heterogeneous distribution of adsorbed bitumen on fine solids from solvent-based extraction of oil sands probed by AFM publication-title: Energy & Fuels: An American Chemical Society Journal – volume: 114 start-page: 180 year: 2016 end-page: 189 ident: b0135 article-title: Analysis of partial electrocoalescence by Level-Set and finite element methods publication-title: Chem. Eng. Res. Des. – volume: 13 start-page: 952 year: 1992 end-page: 962 ident: b0230 article-title: Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models publication-title: J. Comput. Chem. – volume: 78 start-page: 735 year: 2016 end-page: 746 ident: b0005 article-title: Heavy oil as an emulsion: Composition, structure, and rheological properties publication-title: Colloid J. – volume: 165 start-page: 673 year: 2018 end-page: 690 ident: b0030 article-title: A review of petroleum emulsions and recent progress on water-in-crude oil emulsions stabilized by natural surfactants and solids publication-title: J. Pet. Sci. Eng. – volume: 32 start-page: 4886 year: 2016 end-page: 4895 ident: b0020 article-title: Probing molecular interactions of asphaltenes in heptol using a surface forces apparatus: implications on stability of water-in-oil emulsions publication-title: Langmuir – volume: 278 start-page: 119622 year: 2022 ident: b0310 article-title: Molecular dynamics study of droplet electrocoalescence in the oil phase and the gas phase publication-title: Sep. Purif. Technol. – volume: 81 start-page: 3684 year: 1984 ident: b0215 article-title: Molecular dynamics with coupling to an external bath publication-title: J. Chem. Phys. – volume: 321 start-page: 114475 year: 2021 ident: b0315 article-title: Understanding the breakup mechanism of a droplet under a DC electric field with molecular dynamics simulations and weak interaction analysis publication-title: J. Mol. Liq. – volume: 25 start-page: 12460 year: 2009 end-page: 12465 ident: b0085 article-title: Electrocoalescence: Effects of DC electric fields on coalescence of drops at planar interfaces publication-title: Langmuir – volume: 29 start-page: 27 year: 1997 end-page: 64 ident: b0080 article-title: ELECTROHYDRODYNAMICS: The taylor-melcher leaky dielectric model publication-title: Annu. Rev. Fluid Mech. – volume: 80 start-page: 036301 year: 2009 ident: b0150 article-title: Binary droplet collision at high weber number publication-title: Phys. Rev. E – volume: 553 start-page: 341 year: 2019 end-page: 349 ident: b0110 article-title: Interfacial behavior and interaction mechanism of pentol/water interface stabilized with asphaltenes publication-title: J. Colloid Interface Sci. – volume: 169 start-page: 273 year: 2017 end-page: 283 ident: b0125 article-title: Electrophoretically mediated partial coalescence of a charged microdrop publication-title: Chem. Eng. Sci. – volume: 35 start-page: 11835 year: 2021 end-page: 11847 ident: b0040 article-title: A population balance model for emulsion behavior of alkaline water-heavy oil systems in bulk phase publication-title: Energy Fuels – volume: 134 start-page: 28 year: 2018 end-page: 37 ident: b0065 article-title: Coalescence characteristics of droplets at oil–water interface subjected to different electric waveforms publication-title: Chem. Eng. Process. – volume: 91 start-page: 6269 year: 1987 end-page: 6271 ident: b0205 article-title: The missing term in effective pair potentials publication-title: J. Phys. Chem. – volume: 632 start-page: 127746 year: 2022 ident: b0280 article-title: Deformation and breakup mechanism of water droplet in acidic crude oil emulsion under uniform electric field: A molecular dynamics study publication-title: Colloids Surf. A – volume: 103 start-page: 8577 year: 1995 end-page: 8593 ident: b0225 article-title: A smooth particle mesh ewald method publication-title: J. Chem. Phys. – volume: 707 start-page: 18 year: 2011 end-page: 37 ident: b0190 article-title: Chromatographic and spectroscopic analysis of heavy crude oil mixtures with emphasis in nuclear magnetic resonance spectroscopy: A review publication-title: Anal. Chim. Acta – volume: 116 start-page: 11187 year: 2012 end-page: 11196 ident: b0035 article-title: Molecular interactions of a polyaromatic surfactant C5Pe in aqueous solutions studied by a surface forces apparatus publication-title: J. Phys. Chem. B – volume: 36 start-page: 7277 year: 2020 end-page: 7288 ident: b0165 article-title: Confinement-mediated phase behavior of hydrocarbon fluids: Insights from monte carlo simulations publication-title: Langmuir – volume: 16 start-page: 273 year: 1995 end-page: 284 ident: b0295 article-title: The double cubic lattice method: Efficient approaches to numerical integration of surface area and volume and to dot surface contouring of molecular assemblies publication-title: J. Comput. Chem. – volume: 628 start-page: 72 year: 2022 end-page: 81 ident: b0175 article-title: Protein conformational changes at the oil/water-interface induced by premix membrane emulsification publication-title: J. Colloid Interface Sci. – volume: 31 start-page: 459 year: 1959 end-page: 466 ident: b0160 article-title: Studies in molecular dynamics. I. General method publication-title: J. Chem. Phys. – volume: 68 start-page: 512 year: 2015 end-page: 525 ident: b0180 article-title: Molecular dynamics-continuum hybrid simulation for the impingement of droplet on a liquid film publication-title: Numer. Heat Transfer, Part A – volume: 35 start-page: 17424 year: 2021 end-page: 17433 ident: b0170 article-title: Molecular survey of strongly and weakly interfacially active asphaltenes: An intermolecular force field approach publication-title: Energy Fuels – volume: 109 start-page: 094501 year: 2012 ident: b0095 article-title: Electrically tunable partial coalescence of oppositely charged drops publication-title: Phys. Rev. Lett. – volume: 126 start-page: 014101 year: 2007 ident: b0210 article-title: Canonical sampling through velocity rescaling publication-title: J. Chem. Phys. – volume: 43 start-page: 539 year: 2022 end-page: 555 ident: b0285 article-title: Independent gradient model based on Hirshfeld partition: A new method for visual study of interactions in chemical systems publication-title: J. Comput. Chem. – volume: 136 start-page: 83 year: 2018 end-page: 93 ident: b0290 article-title: Critical electric field strength for partial coalescence of droplets on oil–water interface under DC electric field publication-title: Chem. Eng. Res. Des. – volume: 47 start-page: 1417 year: 2008 end-page: 1420 ident: b0200 article-title: Picosecond melting of ice by an infrared laser pulse: A simulation study publication-title: Angew. Chem. Int. Ed. – volume: 27 start-page: 663 year: 1998 end-page: 680 ident: b0140 article-title: An improved level set method for incompressible two-phase flows publication-title: Comput. Fluids – volume: 142 start-page: 214 year: 2019 end-page: 224 ident: b0090 article-title: Partial coalescence of droplets at oil–water interface subjected to different electric waveforms: Effects of non-ionic surfactant on critical electric field strength publication-title: Chem. Eng. Res. Des. – volume: 6 start-page: 23936 year: 2016 ident: b0325 article-title: Effectiveness of the young-laplace equation at nanoscale publication-title: Sci. Rep. – year: 2008 ident: b0130 article-title: a Computationalstudy of the Coalescence Process Between a Drop and an interface in an Electric Field – volume: 116 start-page: 7698 year: 2016 end-page: 7726 ident: b0050 article-title: Water at Interfaces publication-title: Chem. Rev. – volume: 42 start-page: 1660 year: 2009 end-page: 1668 ident: b0305 article-title: Molecular behavior in small spaces publication-title: Acc. Chem. Res. – volume: 4 start-page: 2517 year: 2013 ident: b0300 article-title: Electrostatic charging of jumping droplets publication-title: Nat. Commun. – volume: 18 start-page: 1463 year: 1997 end-page: 1472 ident: b0235 article-title: LINCS: A linear constraint solver for molecular simulations publication-title: J. Comput. Chem. – volume: 1 start-page: 5068 year: 2018 ident: b0240 article-title: From proteins to perturbed hamiltonians: A suite of tutorials for the GROMACS-2018 molecular simulation package [Article v1.0] publication-title: Living J. Comp. Mol. Sci. – volume: 603 start-page: 125136 year: 2020 ident: b0070 article-title: Experimental study on the falling and coalescence characteristics of droplets under alternating electric fields publication-title: Colloids Surf., A – volume: 134 start-page: 28 year: 2018 ident: 10.1016/j.seppur.2023.124798_b0065 article-title: Coalescence characteristics of droplets at oil–water interface subjected to different electric waveforms publication-title: Chem. Eng. Process. doi: 10.1016/j.cep.2018.10.013 – volume: 78 start-page: 735 issue: 6 year: 2016 ident: 10.1016/j.seppur.2023.124798_b0005 article-title: Heavy oil as an emulsion: Composition, structure, and rheological properties publication-title: Colloid J. doi: 10.1134/S1061933X16060211 – volume: 632 start-page: 127746 year: 2022 ident: 10.1016/j.seppur.2023.124798_b0280 article-title: Deformation and breakup mechanism of water droplet in acidic crude oil emulsion under uniform electric field: A molecular dynamics study publication-title: Colloids Surf. A doi: 10.1016/j.colsurfa.2021.127746 – volume: 286 start-page: 119390 year: 2021 ident: 10.1016/j.seppur.2023.124798_b0015 article-title: Stabilization mechanism and chemical demulsification of water-in-oil and oil-in-water emulsions in petroleum industry: A review publication-title: Fuel 286 doi: 10.1016/j.fuel.2020.119390 – volume: 30 start-page: 2157 year: 2009 ident: 10.1016/j.seppur.2023.124798_b0245 article-title: PACKMOL: A package for building initial configurations for molecular dynamics simulations publication-title: J. Comput. Chem. doi: 10.1002/jcc.21224 – volume: 6 start-page: 23936 year: 2016 ident: 10.1016/j.seppur.2023.124798_b0325 article-title: Effectiveness of the young-laplace equation at nanoscale publication-title: Sci. Rep. doi: 10.1038/srep23936 – volume: 27 start-page: 663 year: 1998 ident: 10.1016/j.seppur.2023.124798_b0140 article-title: An improved level set method for incompressible two-phase flows publication-title: Comput. Fluids doi: 10.1016/S0045-7930(97)00053-4 – volume: 116 start-page: 7698 issue: 13 year: 2016 ident: 10.1016/j.seppur.2023.124798_b0050 article-title: Water at Interfaces publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00045 – volume: 80 start-page: 036301 year: 2009 ident: 10.1016/j.seppur.2023.124798_b0150 article-title: Binary droplet collision at high weber number publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.80.036301 – volume: 10 start-page: 30 year: 2013 ident: 10.1016/j.seppur.2023.124798_b0055 article-title: Electro-coalescence of an aqueous droplet at an oil–water interface with an investigation of secondary droplets formation publication-title: Iran Journal of Chemical Engineering – volume: 213 start-page: 115360 year: 2020 ident: 10.1016/j.seppur.2023.124798_b0145 article-title: Drop-interface electrocoalescence mode transition under a direct current electric field publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2019.115360 – volume: 36 start-page: 6051 year: 2020 ident: 10.1016/j.seppur.2023.124798_b0320 article-title: Coalescence, partial coalescence, and noncoalescence of an aqueous drop at an oil-water interface under an electric field publication-title: Langmuir doi: 10.1021/acs.langmuir.9b03969 – volume: 14 start-page: 33 year: 1996 ident: 10.1016/j.seppur.2023.124798_b0255 article-title: VMD: Visual molecular dynamics publication-title: J. Mol. Graph. doi: 10.1016/0263-7855(96)00018-5 – volume: 109 start-page: 094501 year: 2012 ident: 10.1016/j.seppur.2023.124798_b0095 article-title: Electrically tunable partial coalescence of oppositely charged drops publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.094501 – volume: 35 start-page: 17424 year: 2021 ident: 10.1016/j.seppur.2023.124798_b0170 article-title: Molecular survey of strongly and weakly interfacially active asphaltenes: An intermolecular force field approach publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.1c02266 – volume: 31 start-page: 8833 year: 2017 ident: 10.1016/j.seppur.2023.124798_b0025 article-title: Heterogeneous distribution of adsorbed bitumen on fine solids from solvent-based extraction of oil sands probed by AFM publication-title: Energy & Fuels: An American Chemical Society Journal doi: 10.1021/acs.energyfuels.7b00396 – volume: 140 start-page: 128 year: 2018 ident: 10.1016/j.seppur.2023.124798_b0100 article-title: Coalescence characteristics of silica nanoparticle-laden droplets with a planar interface under direct current electric field publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2018.10.010 – volume: 16 start-page: 273 year: 1995 ident: 10.1016/j.seppur.2023.124798_b0295 article-title: The double cubic lattice method: Efficient approaches to numerical integration of surface area and volume and to dot surface contouring of molecular assemblies publication-title: J. Comput. Chem. doi: 10.1002/jcc.540160303 – volume: 620 start-page: 333 year: 2009 ident: 10.1016/j.seppur.2023.124798_b0120 article-title: Dynamics of drop coalescence at fluid interfaces publication-title: J. Fluid Mech. doi: 10.1017/S0022112008004801 – volume: 103 start-page: 8577 year: 1995 ident: 10.1016/j.seppur.2023.124798_b0225 article-title: A smooth particle mesh ewald method publication-title: J. Chem. Phys. doi: 10.1063/1.470117 – year: 2008 ident: 10.1016/j.seppur.2023.124798_b0130 – volume: 47 start-page: 1417 year: 2008 ident: 10.1016/j.seppur.2023.124798_b0200 article-title: Picosecond melting of ice by an infrared laser pulse: A simulation study publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200703987 – volume: 18 start-page: 1463 year: 1997 ident: 10.1016/j.seppur.2023.124798_b0235 article-title: LINCS: A linear constraint solver for molecular simulations publication-title: J. Comput. Chem. doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H – volume: 57 start-page: 2027 year: 1961 ident: 10.1016/j.seppur.2023.124798_b0115 article-title: Effects of electric fields on coalescence in liquid+liquid systems publication-title: Trans. Faraday Soc. doi: 10.1039/tf9615702027 – volume: 42 start-page: 1660 issue: 10 year: 2009 ident: 10.1016/j.seppur.2023.124798_b0305 article-title: Molecular behavior in small spaces publication-title: Acc. Chem. Res. doi: 10.1021/ar9001203 – volume: 126 start-page: 014101 year: 2007 ident: 10.1016/j.seppur.2023.124798_b0210 article-title: Canonical sampling through velocity rescaling publication-title: J. Chem. Phys. doi: 10.1063/1.2408420 – volume: 628 start-page: 924 year: 2022 ident: 10.1016/j.seppur.2023.124798_b0260 article-title: Molecular dynamics simulation on water/oil interface with model asphaltene subjected to electric field publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2022.08.027 – volume: 116 start-page: 11187 year: 2012 ident: 10.1016/j.seppur.2023.124798_b0035 article-title: Molecular interactions of a polyaromatic surfactant C5Pe in aqueous solutions studied by a surface forces apparatus publication-title: J. Phys. Chem. B doi: 10.1021/jp304444d – volume: 333 start-page: 115995 year: 2021 ident: 10.1016/j.seppur.2023.124798_b0270 article-title: Effect of electric field strength on deformation and breakup behaviors of droplet in oil phase: A molecular dynamics study publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2021.115995 – volume: 628 start-page: 72 year: 2022 ident: 10.1016/j.seppur.2023.124798_b0175 article-title: Protein conformational changes at the oil/water-interface induced by premix membrane emulsification publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2022.07.132 – volume: 136 start-page: 83 year: 2018 ident: 10.1016/j.seppur.2023.124798_b0290 article-title: Critical electric field strength for partial coalescence of droplets on oil–water interface under DC electric field publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2018.05.004 – volume: 36 start-page: 7277 year: 2020 ident: 10.1016/j.seppur.2023.124798_b0165 article-title: Confinement-mediated phase behavior of hydrocarbon fluids: Insights from monte carlo simulations publication-title: Langmuir doi: 10.1021/acs.langmuir.0c00652 – volume: 13 start-page: 952 year: 1992 ident: 10.1016/j.seppur.2023.124798_b0230 article-title: Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models publication-title: J. Comput. Chem. doi: 10.1002/jcc.540130805 – volume: 31 start-page: 7457 year: 2015 ident: 10.1016/j.seppur.2023.124798_b0275 article-title: Molecular dynamics simulations on coalescence and non-coalescence of conducting droplets publication-title: Langmuir doi: 10.1021/acs.langmuir.5b01574 – volume: 344 start-page: 117875 year: 2021 ident: 10.1016/j.seppur.2023.124798_b0185 article-title: Molecular dynamics simulations of nanoparticle-laden drop–interface electrocoalescence behaviors under direct and alternating current electric fields publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2021.117875 – volume: 32 start-page: 4886 year: 2016 ident: 10.1016/j.seppur.2023.124798_b0020 article-title: Probing molecular interactions of asphaltenes in heptol using a surface forces apparatus: implications on stability of water-in-oil emulsions publication-title: Langmuir doi: 10.1021/acs.langmuir.6b01000 – volume: 165 start-page: 673 year: 2018 ident: 10.1016/j.seppur.2023.124798_b0030 article-title: A review of petroleum emulsions and recent progress on water-in-crude oil emulsions stabilized by natural surfactants and solids publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2018.03.014 – volume: 278 start-page: 119622 year: 2022 ident: 10.1016/j.seppur.2023.124798_b0310 article-title: Molecular dynamics study of droplet electrocoalescence in the oil phase and the gas phase publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2021.119622 – volume: 289 start-page: 120756 year: 2022 ident: 10.1016/j.seppur.2023.124798_b0195 article-title: Microscopic mechanism for electrocoalescence of water droplets in water-in-oil emulsions containing surfactant: A molecular dynamics study publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2022.120756 – volume: 25 start-page: 12460 year: 2009 ident: 10.1016/j.seppur.2023.124798_b0085 article-title: Electrocoalescence: Effects of DC electric fields on coalescence of drops at planar interfaces publication-title: Langmuir doi: 10.1021/la902758u – volume: 553 start-page: 341 year: 2019 ident: 10.1016/j.seppur.2023.124798_b0110 article-title: Interfacial behavior and interaction mechanism of pentol/water interface stabilized with asphaltenes publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.06.035 – volume: 707 start-page: 18 year: 2011 ident: 10.1016/j.seppur.2023.124798_b0190 article-title: Chromatographic and spectroscopic analysis of heavy crude oil mixtures with emphasis in nuclear magnetic resonance spectroscopy: A review publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2011.09.010 – volume: 603 start-page: 125136 year: 2020 ident: 10.1016/j.seppur.2023.124798_b0070 article-title: Experimental study on the falling and coalescence characteristics of droplets under alternating electric fields publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2020.125136 – volume: 68 start-page: 512 year: 2015 ident: 10.1016/j.seppur.2023.124798_b0180 article-title: Molecular dynamics-continuum hybrid simulation for the impingement of droplet on a liquid film publication-title: Numer. Heat Transfer, Part A doi: 10.1080/10407782.2014.986403 – volume: 215 start-page: 101 year: 2003 ident: 10.1016/j.seppur.2023.124798_b0075 article-title: The behaviour of a liquid–liquid interface and drop-interface coalescence under the influence of an electric field publication-title: Colloids Surf A doi: 10.1016/S0927-7757(02)00445-4 – volume: 139 start-page: 103628 year: 2021 ident: 10.1016/j.seppur.2023.124798_b0155 article-title: Coalescence dynamic response of an aqueous droplet at an oil-water interface under a steady electric field publication-title: Int. J. Multiph. Flow doi: 10.1016/j.ijmultiphaseflow.2021.103628 – volume: 31 start-page: 459 year: 1959 ident: 10.1016/j.seppur.2023.124798_b0160 article-title: Studies in molecular dynamics. I. General method publication-title: J. Chem. Phys. doi: 10.1063/1.1730376 – volume: 35 start-page: 11835 year: 2021 ident: 10.1016/j.seppur.2023.124798_b0040 article-title: A population balance model for emulsion behavior of alkaline water-heavy oil systems in bulk phase publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.1c00538 – volume: 52 start-page: 7182 year: 1981 ident: 10.1016/j.seppur.2023.124798_b0220 article-title: Polymorphic transitions in single crystals: A new molecular dynamics method publication-title: J. Appl. Phys. doi: 10.1063/1.328693 – volume: 29 start-page: 27 year: 1997 ident: 10.1016/j.seppur.2023.124798_b0080 article-title: ELECTROHYDRODYNAMICS: The taylor-melcher leaky dielectric model publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.29.1.27 – volume: 142 start-page: 214 year: 2019 ident: 10.1016/j.seppur.2023.124798_b0090 article-title: Partial coalescence of droplets at oil–water interface subjected to different electric waveforms: Effects of non-ionic surfactant on critical electric field strength publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2018.12.019 – volume: 11 start-page: 1764 issue: 7 year: 2021 ident: 10.1016/j.seppur.2023.124798_b0060 article-title: Study on the effect of nanoparticle used in nano-fluid flooding on droplet-interface electro-coalescence publication-title: Nanomaterials doi: 10.3390/nano11071764 – volume: 30 start-page: 10228 year: 2016 ident: 10.1016/j.seppur.2023.124798_b0105 article-title: Mechanistic understanding of the effect of temperature and salinity on the water/toluene interfacial tension publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.6b01995 – volume: 4 start-page: 2517 year: 2013 ident: 10.1016/j.seppur.2023.124798_b0300 article-title: Electrostatic charging of jumping droplets publication-title: Nat. Commun. doi: 10.1038/ncomms3517 – volume: 169 start-page: 273 year: 2017 ident: 10.1016/j.seppur.2023.124798_b0125 article-title: Electrophoretically mediated partial coalescence of a charged microdrop publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2016.07.022 – volume: 321 start-page: 114475 year: 2021 ident: 10.1016/j.seppur.2023.124798_b0315 article-title: Understanding the breakup mechanism of a droplet under a DC electric field with molecular dynamics simulations and weak interaction analysis publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2020.114475 – volume: 120 start-page: 5646 year: 2016 ident: 10.1016/j.seppur.2023.124798_b0010 article-title: Reduction of water/oil interfacial tension by model asphaltenes: The governing role of surface concentration publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.6b03691 – volume: 208 start-page: 115136 year: 2019 ident: 10.1016/j.seppur.2023.124798_b0045 article-title: Influence of alkali concentration, electric waveform, and frequency on the critical electric field strength of droplet–interface partial coalescence publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2019.07.054 – volume: 123 start-page: 22989 year: 2019 ident: 10.1016/j.seppur.2023.124798_b0265 article-title: Molecular dynamics study on the mechanism of graphene oxide to destabilize oil/water emulsion publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b05906 – volume: 1 start-page: 5068 year: 2018 ident: 10.1016/j.seppur.2023.124798_b0240 article-title: From proteins to perturbed hamiltonians: A suite of tutorials for the GROMACS-2018 molecular simulation package [Article v1.0] publication-title: Living J. Comp. Mol. Sci. – volume: 114 start-page: 180 year: 2016 ident: 10.1016/j.seppur.2023.124798_b0135 article-title: Analysis of partial electrocoalescence by Level-Set and finite element methods publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2016.08.019 – volume: 91 start-page: 6269 year: 1987 ident: 10.1016/j.seppur.2023.124798_b0205 article-title: The missing term in effective pair potentials publication-title: J. Phys. Chem. doi: 10.1021/j100308a038 – volume: 81 start-page: 3684 year: 1984 ident: 10.1016/j.seppur.2023.124798_b0215 article-title: Molecular dynamics with coupling to an external bath publication-title: J. Chem. Phys. doi: 10.1063/1.448118 – volume: 43 start-page: 539 year: 2022 ident: 10.1016/j.seppur.2023.124798_b0285 article-title: Independent gradient model based on Hirshfeld partition: A new method for visual study of interactions in chemical systems publication-title: J. Comput. Chem. doi: 10.1002/jcc.26812 – volume: 8 start-page: e1327 year: 2018 ident: 10.1016/j.seppur.2023.124798_b0250 article-title: Software update: The ORCA program system, version 4.0, WIREs comput publication-title: Mol. Sci. doi: 10.1002/wcms.1327 |
SSID | ssj0017182 |
Score | 2.5005655 |
Snippet | [Display omitted]
•Droplet-interface electrocoalescence was studied via molecular dynamics.•Dipole-dipole force mainly comes from the charge accumulation... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 124798 |
SubjectTerms | Coalescence Droplet-interface Electric field Intermolecular interaction Molecular dynamics |
Title | Probing the coalescence mechanism of water droplet and Oil/Water interface in demulsification process under DC electric field |
URI | https://dx.doi.org/10.1016/j.seppur.2023.124798 |
Volume | 326 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50vehBfOKbHLzG3aZptznKqqyKD1DRW8m2E6nsdkt3F0_62500rSiIgseGDJRJmPmGzPcNwKHpYBRhKHhHoc8lBoZrozpcaT8VEikHCssdvroO-w_y4il4moNew4WxbZV17HcxvYrW9Uq79ma7yLL2nUfFVRCFlL8rDRg1DwvCV2HQgoXj88v-9edjAoXf6tGT9nNr0DDoqjavCRbFzAqDCv-Icl1XRT9nqC9Z52wFlmu4yI7dH63CHOZrsPRFRHAd3m6tlFL-zAjKsWSsnUBTgmyEltWbTUZsbNgrYcqSpaXtF58ynafsJhu2H6tVKxlRGk0mWc5SHM2GE9tAVJ0ZKxyTgFmyWclOeswNzskSVjW_bcD92el9r8_roQo8oepgyqUvU0mOSzvaDoAVdoDkIDGopEgHKAThB4ykEgQLNUah0YQxpCdpq8Kga_xNaOXjHLeAhcJLvdBYWjRSkZ0MjPZVhFHXUBxAobfBb_wYJ7XguJ17MYybzrKX2Hk_tt6Pnfe3gX9aFU5w44_93eaI4m8XJ6ac8Kvlzr8td2HRfrmulj1oTcsZ7hM2mQ4OYP7o3Tuob-AHfl_krQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9tAEF0FOLQcqgKtCJSyB65L4vX6Y48oJUr5lggqN2tjzyKjxLGcRJzgt3fGayMqVa3EdT0jrWZXM2_lN28YO7J9iGMIpehr8IWCwApjdV9o42dSAdZASb3Dl1fh6E6d3Qf3HTZoe2GIVtnkfpfT62zdrPSaaPbKPO_devi4CuIQ63etAaPX2IYK_Ih4fccvrzwPD5Nv_csTrQWZt_1zNclrAWW5IllQ6R9jpYt0_Pf69KbmDD-zTw1Y5CduP1usA8U223wjIbjDnm9ISKl44AjkeDo3Tp4pBT4D6unNFzM-t_wJEWXFs4rY4ktuioxf59Per3qVBCMqa9AlL3gGs9V0QfSh-sR46foIOLWaVfzHgLuxOXnKa-rbFzYeno4HI9GMVBApvg2WQvkqUxi2rG9o_Kuk8ZGT1IJWMpuAlIgeIFZaIig0EIfWIMJQnkJTDUFk_a9svZgXsMt4KL3MCy01RQM-sdOJNb6OIY4sZgGQpsv8No5J2siN09SLadLyyh4TF_2Eop-46HeZePUqndzGf-yj9oiSP65NghXhn5577_Y8ZB9G48uL5OLn1fk--0hfHL_lG1tfVis4QJSynHyvb-FvbcLleA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probing+the+coalescence+mechanism+of+water+droplet+and+Oil%2FWater+interface+in+demulsification+process+under+DC+electric+field&rft.jtitle=Separation+and+purification+technology&rft.au=Li%2C+Ning&rft.au=Pang%2C+Yunhui&rft.au=Sun%2C+Zhiqian&rft.au=Wang%2C+Zhenbo&rft.date=2023-12-01&rft.pub=Elsevier+B.V&rft.issn=1383-5866&rft.eissn=1873-3794&rft.volume=326&rft_id=info:doi/10.1016%2Fj.seppur.2023.124798&rft.externalDocID=S1383586623017069 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1383-5866&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1383-5866&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1383-5866&client=summon |