Probing the coalescence mechanism of water droplet and Oil/Water interface in demulsification process under DC electric field

[Display omitted] •Droplet-interface electrocoalescence was studied via molecular dynamics.•Dipole-dipole force mainly comes from the charge accumulation effect at interface.•Electric field could weaken the interaction between water molecules.•Ec for droplet-interface partial coalescence has a linea...

Full description

Saved in:
Bibliographic Details
Published inSeparation and purification technology Vol. 326; p. 124798
Main Authors Li, Ning, Pang, Yunhui, Sun, Zhiqian, Wang, Zhenbo, Sun, Xiaoyu, Tang, Tian, Li, Bin, Li, Wangqing, Zeng, Hongbo
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2023
Subjects
Online AccessGet full text
ISSN1383-5866
1873-3794
DOI10.1016/j.seppur.2023.124798

Cover

Abstract [Display omitted] •Droplet-interface electrocoalescence was studied via molecular dynamics.•Dipole-dipole force mainly comes from the charge accumulation effect at interface.•Electric field could weaken the interaction between water molecules.•Ec for droplet-interface partial coalescence has a linear relationship with r0−0.5. Under electric fields, coalescence of water droplets in oil media and bulk water (droplet-interface coalescence) is a significant phenomenon during the electrostatic process of water-in-oil (W/O) emulsion. In order to reveal the microscopic mechanism of droplet-interface coalescence, MD simulations and high-speed imaging were performed to study the influence of droplet size (r0) and electric field strength (E) on the coalescence process between water layer and droplet in oil. The findings suggested that the molecular arrangement of water molecules was altered at applied electric fields, resulting in a weakened interaction force and an increased spacing between water molecules. The droplet-interface coalescence process could be classified into five temporal regimes, under the mutual effect of the associated intermolecular interactions (Coulomb interaction and van der Waals interaction) and external electric field. The interfacial charge density reached a high value of 0.15 e·nm−3 due to the charge orientation, leading to dipole–dipole interaction between the droplet and water layer. Driven by both applied electric field and polarized charge, when E = 0.44 V·nm−1, the droplet with a diameter of 6 nm had the shortest coalescence period, only 370 ps. The critical field strength (Ec) required to prevent complete coalescence between nano-droplets and oil–water interface increased approximately linearly with r0−0.5. This work has revealed the molecular interaction mechanism of electro-coalescence between water droplets and oil/water interface, and provides useful insights into the electrostatic demulsification.
AbstractList [Display omitted] •Droplet-interface electrocoalescence was studied via molecular dynamics.•Dipole-dipole force mainly comes from the charge accumulation effect at interface.•Electric field could weaken the interaction between water molecules.•Ec for droplet-interface partial coalescence has a linear relationship with r0−0.5. Under electric fields, coalescence of water droplets in oil media and bulk water (droplet-interface coalescence) is a significant phenomenon during the electrostatic process of water-in-oil (W/O) emulsion. In order to reveal the microscopic mechanism of droplet-interface coalescence, MD simulations and high-speed imaging were performed to study the influence of droplet size (r0) and electric field strength (E) on the coalescence process between water layer and droplet in oil. The findings suggested that the molecular arrangement of water molecules was altered at applied electric fields, resulting in a weakened interaction force and an increased spacing between water molecules. The droplet-interface coalescence process could be classified into five temporal regimes, under the mutual effect of the associated intermolecular interactions (Coulomb interaction and van der Waals interaction) and external electric field. The interfacial charge density reached a high value of 0.15 e·nm−3 due to the charge orientation, leading to dipole–dipole interaction between the droplet and water layer. Driven by both applied electric field and polarized charge, when E = 0.44 V·nm−1, the droplet with a diameter of 6 nm had the shortest coalescence period, only 370 ps. The critical field strength (Ec) required to prevent complete coalescence between nano-droplets and oil–water interface increased approximately linearly with r0−0.5. This work has revealed the molecular interaction mechanism of electro-coalescence between water droplets and oil/water interface, and provides useful insights into the electrostatic demulsification.
ArticleNumber 124798
Author Li, Ning
Sun, Xiaoyu
Li, Bin
Tang, Tian
Zeng, Hongbo
Pang, Yunhui
Li, Wangqing
Sun, Zhiqian
Wang, Zhenbo
Author_xml – sequence: 1
  givenname: Ning
  surname: Li
  fullname: Li, Ning
  organization: College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
– sequence: 2
  givenname: Yunhui
  surname: Pang
  fullname: Pang, Yunhui
  organization: College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
– sequence: 3
  givenname: Zhiqian
  surname: Sun
  fullname: Sun, Zhiqian
  email: sunzhq@upc.edu.cn
  organization: College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
– sequence: 4
  givenname: Zhenbo
  surname: Wang
  fullname: Wang, Zhenbo
  email: wangzhb@upc.edu.cn
  organization: College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
– sequence: 5
  givenname: Xiaoyu
  surname: Sun
  fullname: Sun, Xiaoyu
  organization: Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G1H9, Canada
– sequence: 6
  givenname: Tian
  surname: Tang
  fullname: Tang, Tian
  organization: Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G1H9, Canada
– sequence: 7
  givenname: Bin
  surname: Li
  fullname: Li, Bin
  organization: School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China
– sequence: 8
  givenname: Wangqing
  surname: Li
  fullname: Li, Wangqing
  organization: College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
– sequence: 9
  givenname: Hongbo
  surname: Zeng
  fullname: Zeng, Hongbo
  email: Hongbo.Zeng@ualberta.ca
  organization: Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G1H9, Canada
BookMark eNqFkM1qGzEQgEVJobHbN-hBL7C2_rwr9VAIbn4KhuQQ6FHI0qgZs5YWaZ2SQ9496zinHJrLzDDMN8x8M3KWcgJCvnO24Iy3y92iwjAcykIwIRdcqM7oT-Sc6042sjPqbKqlls1Kt-0XMqt1xxjvuBbn5Pmu5C2mv3R8AOqz66F6SB7oHvyDS1j3NEf6z41QaCh56GGkLgV6i_3yz2sX0xSjmxBMNMD-0FeM6N2IOdGhZA-10kMK0-ivNYUe_FjQ04jQh6_kc3R9hW9veU7ury7v1zfN5vb69_pi03jJ2rFRUgWl5SowZ1ZMi9Zos_URjBJhC0Iww0ErI7pOOdBtdKxTiqtp1MCqi3JOfpzW-pJrLRCtx_H1wLE47C1n9ujR7uzJoz16tCePE6zewUPBvStPH2E_TxhMfz0iFFs9Hs0GLJMCGzL-f8EL6MaS-g
CitedBy_id crossref_primary_10_1016_j_jece_2024_114016
crossref_primary_10_1016_j_ces_2024_120195
crossref_primary_10_1016_j_compfluid_2024_106478
crossref_primary_10_1063_5_0240476
crossref_primary_10_1016_j_watres_2024_121329
crossref_primary_10_1016_j_ces_2024_120730
crossref_primary_10_1016_j_seppur_2025_131501
crossref_primary_10_1016_j_seppur_2024_127045
crossref_primary_10_1016_j_colsurfa_2024_135254
crossref_primary_10_1021_acs_langmuir_3c04024
crossref_primary_10_1016_j_eng_2024_08_021
crossref_primary_10_1088_1742_6596_2834_1_012101
crossref_primary_10_1021_acs_iecr_4c01829
Cites_doi 10.1016/j.cep.2018.10.013
10.1134/S1061933X16060211
10.1016/j.colsurfa.2021.127746
10.1016/j.fuel.2020.119390
10.1002/jcc.21224
10.1038/srep23936
10.1016/S0045-7930(97)00053-4
10.1021/acs.chemrev.6b00045
10.1103/PhysRevE.80.036301
10.1016/j.ces.2019.115360
10.1021/acs.langmuir.9b03969
10.1016/0263-7855(96)00018-5
10.1103/PhysRevLett.109.094501
10.1021/acs.energyfuels.1c02266
10.1021/acs.energyfuels.7b00396
10.1016/j.cherd.2018.10.010
10.1002/jcc.540160303
10.1017/S0022112008004801
10.1063/1.470117
10.1002/anie.200703987
10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
10.1039/tf9615702027
10.1021/ar9001203
10.1063/1.2408420
10.1016/j.jcis.2022.08.027
10.1021/jp304444d
10.1016/j.molliq.2021.115995
10.1016/j.jcis.2022.07.132
10.1016/j.cherd.2018.05.004
10.1021/acs.langmuir.0c00652
10.1002/jcc.540130805
10.1021/acs.langmuir.5b01574
10.1016/j.molliq.2021.117875
10.1021/acs.langmuir.6b01000
10.1016/j.petrol.2018.03.014
10.1016/j.seppur.2021.119622
10.1016/j.seppur.2022.120756
10.1021/la902758u
10.1016/j.jcis.2019.06.035
10.1016/j.aca.2011.09.010
10.1016/j.colsurfa.2020.125136
10.1080/10407782.2014.986403
10.1016/S0927-7757(02)00445-4
10.1016/j.ijmultiphaseflow.2021.103628
10.1063/1.1730376
10.1021/acs.energyfuels.1c00538
10.1063/1.328693
10.1146/annurev.fluid.29.1.27
10.1016/j.cherd.2018.12.019
10.3390/nano11071764
10.1021/acs.energyfuels.6b01995
10.1038/ncomms3517
10.1016/j.ces.2016.07.022
10.1016/j.molliq.2020.114475
10.1021/acs.jpcb.6b03691
10.1016/j.ces.2019.07.054
10.1021/acs.jpcc.9b05906
10.1016/j.cherd.2016.08.019
10.1021/j100308a038
10.1063/1.448118
10.1002/jcc.26812
10.1002/wcms.1327
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.seppur.2023.124798
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3794
ExternalDocumentID 10_1016_j_seppur_2023_124798
S1383586623017069
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABJNI
ABMAC
ABNUV
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSM
SSZ
T5K
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FGOYB
HZ~
R2-
RIG
SSH
ID FETCH-LOGICAL-c306t-434d4835d0a950826989bcfe942dbe22091e8492774ae86fa0744145089e57f3
IEDL.DBID AIKHN
ISSN 1383-5866
IngestDate Thu Apr 24 22:58:45 EDT 2025
Tue Jul 01 00:45:24 EDT 2025
Fri Feb 23 02:36:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Intermolecular interaction
Molecular dynamics
Electric field
Droplet-interface
Coalescence
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-434d4835d0a950826989bcfe942dbe22091e8492774ae86fa0744145089e57f3
ParticipantIDs crossref_citationtrail_10_1016_j_seppur_2023_124798
crossref_primary_10_1016_j_seppur_2023_124798
elsevier_sciencedirect_doi_10_1016_j_seppur_2023_124798
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
2023-12-00
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Separation and purification technology
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Eow, Ghadiri (b0075) 2003; 215
Yang, Ghadiri, Sun, He, Luo, Lü (b0290) 2018; 136
Martínez, Andrade, Birgin, Martínez (b0245) 2009; 30
Yang, Sun, Chang, Sun, He (b0060) 2021; 11
Mousavi, Shariaty Niasar, Bahmanyar, Moosavian (b0055) 2013; 10
Wang, Wang, Yan, Wang (b0275) 2015; 31
Yang, Sun, He, Luo, Lü, Yin, Xia, Zhang (b0100) 2018; 140
Yang, Sun, He, Luo, Lü, Gao (b0090) 2019; 142
Miljkovic, Preston, Enright, Wang (b0300) 2013; 4
Aryafar, Kavehpour (b0085) 2009; 25
Neese (b0250) 2018; 8
Eisenhaber, Lijnzaad, Argos, Sander, Scharf (b0295) 1995; 16
Li, Sun, Pang, Qi, Liu, Li, Sun, Li, Wang (b0195) 2022; 289
Sun, Yang, Sun, Wu, Chang, Shi, Cao, He, Xie (b0070) 2020; 603
Blanchette, Bigioni (b0120) 2009; 620
Silva, Silva, Ribeiro, Martins, Da Silva, Silva (b0190) 2011; 707
Berendsen, Postma, van Gunsteren, DiNola, Haak (b0215) 1984; 81
Xie, Lu, Tan, Liu, Tang, Zeng (b0110) 2019; 553
Rebek (b0305) 2009; 42
Li, Dou, Yu, Li, Zhang, Xu, Sun, Wang, Wang (b0185) 2021; 344
Pillai, Berry, Harvie, Davidson (b0125) 2017; 169
Vivacqua, Ghadiri, Abdullah, Hassanpour, Al-Marri, Azzopardi, Hewakandamby, Kermani (b0135) 2016; 114
Zhang, Shi, Lu, Liu, Zeng (b0020) 2016; 32
Sussman, Fatemi, Smereka, Osher (b0140) 1998; 27
Caleman, van der Spoel (b0200) 2008; 47
Li, Sun, Liu, Wei, Li, Qi, Wang (b0270) 2021; 333
Allan, Mason (b0115) 1961; 57
Lemkul (b0240) 2018; 1
Wang, Yang, Huang, Huang, Yang, Zhang, Liu, Tang, Gamal El-Din, Kemppi, Perdicakis, Zeng (b0015) 2021; 286
Parrinello, Rahman (b0220) 1981; 52
Saville (b0080) 1997; 29
Sun, Yang, He, Luo, Lü (b0045) 2019; 208
Miyamoto, Kollman (b0230) 1992; 13
Umar, Saaid, Sulaimon, Pilus (b0030) 2018; 165
Li, Sun, Fan, Liu, Guo, Li, Wang (b0315) 2021; 321
Yang, Sun, He, Luo, Lü (b0065) 2018; 134
Lu, Chen (b0285) 2022; 43
Zadymova, Skvortsova, Traskin, Yampol’skaya, Mironova, Frenkin, Kulichikhin, Malkin (b0005) 2016; 78
Jian, Poopari, Liu, Zerpa, Zeng, Tang (b0105) 2016; 30
Liu, Cao (b0325) 2016; 6
Wang, Li, Sun, Wang, Chen, Liu, Qi, Wei, Li (b0310) 2022; 278
Teigen, Munkejord, Bjørklund (b0130) 2008
Jian, Poopari, Liu, Zerpa, Zeng, Tang (b0010) 2016; 120
Wollborn, Michaelis, Ciacchi, Fritsching (b0175) 2022; 628
Li, Rao, Xia, Hoepfner, Deo (b0165) 2020; 36
Björneholm, Hansen, Hodgson, Liu, Limmer, Michaelides, Pedevilla, Rossmeisl, Shen, Tocci, Tyrode, Walz, Werner, Bluhm (b0050) 2016; 116
Lan, Zeng, Tang (b0265) 2019; 123
Humphrey, Dalke, Schulten (b0255) 1996; 14
Wang, Lu, Harbottle, Sjöblom, Xu, Zeng (b0035) 2012; 116
Zhao, Xi, Jia, Yang (b0040) 2021; 35
Liu, Wang, Huang, Cui, Tan, Liu, Zeng (b0025) 2017; 31
Bussi, Donadio, Parrinello (b0210) 2007; 126
Essmann, Perera, Berkowitz, Darden, Lee, Pedersen (b0225) 1995; 103
Hamlin, Creasey, Ristenpart (b0095) 2012; 109
Ballard, Pickering, Rosbottom, Tangparitkul, Roberts, Rae, Dowding, Hammond, Harbottle (b0170) 2021; 35
Berendsen, Grigera, Straatsma (b0205) 1987; 91
Li, Zeng, Tang (b0260) 2022; 628
Hess, Bekker, Berendsen, Fraaije (b0235) 1997; 18
Li, Wang, Vivacqua, Ghadiri, Wang, Zhang, Wang, Liu, Sun, Wang (b0145) 2020; 213
Zhou, Yu, Li, He, Tao (b0180) 2015; 68
Pan, Chou, Tseng (b0150) 2009; 80
Li, Sun, Sun, Liu, Wei, Li, Li, Wang (b0280) 2022; 632
Anand, Juvekar, Thaokar (b0320) 2020; 36
Alder, Wainwright (b0160) 1959; 31
Li, Dou, Yu, Huang, Zhang, Xu, Sun, Wang, Wang (b0155) 2021; 139
Bussi (10.1016/j.seppur.2023.124798_b0210) 2007; 126
Wang (10.1016/j.seppur.2023.124798_b0275) 2015; 31
Eisenhaber (10.1016/j.seppur.2023.124798_b0295) 1995; 16
Berendsen (10.1016/j.seppur.2023.124798_b0205) 1987; 91
Caleman (10.1016/j.seppur.2023.124798_b0200) 2008; 47
Saville (10.1016/j.seppur.2023.124798_b0080) 1997; 29
Parrinello (10.1016/j.seppur.2023.124798_b0220) 1981; 52
Essmann (10.1016/j.seppur.2023.124798_b0225) 1995; 103
Wang (10.1016/j.seppur.2023.124798_b0310) 2022; 278
Aryafar (10.1016/j.seppur.2023.124798_b0085) 2009; 25
Yang (10.1016/j.seppur.2023.124798_b0290) 2018; 136
Allan (10.1016/j.seppur.2023.124798_b0115) 1961; 57
Sun (10.1016/j.seppur.2023.124798_b0045) 2019; 208
Miyamoto (10.1016/j.seppur.2023.124798_b0230) 1992; 13
Anand (10.1016/j.seppur.2023.124798_b0320) 2020; 36
Yang (10.1016/j.seppur.2023.124798_b0100) 2018; 140
Miljkovic (10.1016/j.seppur.2023.124798_b0300) 2013; 4
Yang (10.1016/j.seppur.2023.124798_b0090) 2019; 142
Lan (10.1016/j.seppur.2023.124798_b0265) 2019; 123
Zhou (10.1016/j.seppur.2023.124798_b0180) 2015; 68
Jian (10.1016/j.seppur.2023.124798_b0010) 2016; 120
Liu (10.1016/j.seppur.2023.124798_b0325) 2016; 6
Jian (10.1016/j.seppur.2023.124798_b0105) 2016; 30
Lu (10.1016/j.seppur.2023.124798_b0285) 2022; 43
Pan (10.1016/j.seppur.2023.124798_b0150) 2009; 80
Li (10.1016/j.seppur.2023.124798_b0155) 2021; 139
Sussman (10.1016/j.seppur.2023.124798_b0140) 1998; 27
Ballard (10.1016/j.seppur.2023.124798_b0170) 2021; 35
Neese (10.1016/j.seppur.2023.124798_b0250) 2018; 8
Li (10.1016/j.seppur.2023.124798_b0165) 2020; 36
Wollborn (10.1016/j.seppur.2023.124798_b0175) 2022; 628
Björneholm (10.1016/j.seppur.2023.124798_b0050) 2016; 116
Hamlin (10.1016/j.seppur.2023.124798_b0095) 2012; 109
Lemkul (10.1016/j.seppur.2023.124798_b0240) 2018; 1
Eow (10.1016/j.seppur.2023.124798_b0075) 2003; 215
Alder (10.1016/j.seppur.2023.124798_b0160) 1959; 31
Silva (10.1016/j.seppur.2023.124798_b0190) 2011; 707
Zadymova (10.1016/j.seppur.2023.124798_b0005) 2016; 78
Rebek (10.1016/j.seppur.2023.124798_b0305) 2009; 42
Martínez (10.1016/j.seppur.2023.124798_b0245) 2009; 30
Li (10.1016/j.seppur.2023.124798_b0260) 2022; 628
Humphrey (10.1016/j.seppur.2023.124798_b0255) 1996; 14
Hess (10.1016/j.seppur.2023.124798_b0235) 1997; 18
Li (10.1016/j.seppur.2023.124798_b0145) 2020; 213
Wang (10.1016/j.seppur.2023.124798_b0035) 2012; 116
Wang (10.1016/j.seppur.2023.124798_b0015) 2021; 286
Li (10.1016/j.seppur.2023.124798_b0270) 2021; 333
Li (10.1016/j.seppur.2023.124798_b0185) 2021; 344
Liu (10.1016/j.seppur.2023.124798_b0025) 2017; 31
Yang (10.1016/j.seppur.2023.124798_b0060) 2021; 11
Sun (10.1016/j.seppur.2023.124798_b0070) 2020; 603
Vivacqua (10.1016/j.seppur.2023.124798_b0135) 2016; 114
Umar (10.1016/j.seppur.2023.124798_b0030) 2018; 165
Xie (10.1016/j.seppur.2023.124798_b0110) 2019; 553
Blanchette (10.1016/j.seppur.2023.124798_b0120) 2009; 620
Berendsen (10.1016/j.seppur.2023.124798_b0215) 1984; 81
Yang (10.1016/j.seppur.2023.124798_b0065) 2018; 134
Teigen (10.1016/j.seppur.2023.124798_b0130) 2008
Pillai (10.1016/j.seppur.2023.124798_b0125) 2017; 169
Li (10.1016/j.seppur.2023.124798_b0280) 2022; 632
Zhang (10.1016/j.seppur.2023.124798_b0020) 2016; 32
Zhao (10.1016/j.seppur.2023.124798_b0040) 2021; 35
Li (10.1016/j.seppur.2023.124798_b0195) 2022; 289
Li (10.1016/j.seppur.2023.124798_b0315) 2021; 321
Mousavi (10.1016/j.seppur.2023.124798_b0055) 2013; 10
References_xml – volume: 30
  start-page: 10228
  year: 2016
  end-page: 10235
  ident: b0105
  article-title: Mechanistic understanding of the effect of temperature and salinity on the water/toluene interfacial tension
  publication-title: Energy Fuels
– volume: 628
  start-page: 924
  year: 2022
  end-page: 934
  ident: b0260
  article-title: Molecular dynamics simulation on water/oil interface with model asphaltene subjected to electric field
  publication-title: J. Colloid Interface Sci.
– volume: 10
  start-page: 30
  year: 2013
  end-page: 44
  ident: b0055
  article-title: Electro-coalescence of an aqueous droplet at an oil–water interface with an investigation of secondary droplets formation
  publication-title: Iran Journal of Chemical Engineering
– volume: 620
  start-page: 333
  year: 2009
  end-page: 352
  ident: b0120
  article-title: Dynamics of drop coalescence at fluid interfaces
  publication-title: J. Fluid Mech.
– volume: 36
  start-page: 6051
  year: 2020
  end-page: 6060
  ident: b0320
  article-title: Coalescence, partial coalescence, and noncoalescence of an aqueous drop at an oil-water interface under an electric field
  publication-title: Langmuir
– volume: 213
  start-page: 115360
  year: 2020
  ident: b0145
  article-title: Drop-interface electrocoalescence mode transition under a direct current electric field
  publication-title: Chem. Eng. Sci.
– volume: 57
  start-page: 2027
  year: 1961
  end-page: 2040
  ident: b0115
  article-title: Effects of electric fields on coalescence in liquid+liquid systems
  publication-title: Trans. Faraday Soc.
– volume: 31
  start-page: 7457
  year: 2015
  end-page: 7462
  ident: b0275
  article-title: Molecular dynamics simulations on coalescence and non-coalescence of conducting droplets
  publication-title: Langmuir
– volume: 140
  start-page: 128
  year: 2018
  end-page: 141
  ident: b0100
  article-title: Coalescence characteristics of silica nanoparticle-laden droplets with a planar interface under direct current electric field
  publication-title: Chem. Eng. Res. Des.
– volume: 208
  start-page: 115136
  year: 2019
  ident: b0045
  article-title: Influence of alkali concentration, electric waveform, and frequency on the critical electric field strength of droplet–interface partial coalescence
  publication-title: Chem. Eng. Sci.
– volume: 14
  start-page: 33
  year: 1996
  end-page: 38
  ident: b0255
  article-title: VMD: Visual molecular dynamics
  publication-title: J. Mol. Graph.
– volume: 120
  start-page: 5646
  year: 2016
  end-page: 5654
  ident: b0010
  article-title: Reduction of water/oil interfacial tension by model asphaltenes: The governing role of surface concentration
  publication-title: J. Phys. Chem. B
– volume: 123
  start-page: 22989
  year: 2019
  end-page: 22999
  ident: b0265
  article-title: Molecular dynamics study on the mechanism of graphene oxide to destabilize oil/water emulsion
  publication-title: J. Phys. Chem. C
– volume: 11
  start-page: 1764
  year: 2021
  ident: b0060
  article-title: Study on the effect of nanoparticle used in nano-fluid flooding on droplet-interface electro-coalescence
  publication-title: Nanomaterials
– volume: 344
  start-page: 117875
  year: 2021
  ident: b0185
  article-title: Molecular dynamics simulations of nanoparticle-laden drop–interface electrocoalescence behaviors under direct and alternating current electric fields
  publication-title: J. Mol. Liq.
– volume: 30
  start-page: 2157
  year: 2009
  end-page: 2164
  ident: b0245
  article-title: PACKMOL: A package for building initial configurations for molecular dynamics simulations
  publication-title: J. Comput. Chem.
– volume: 139
  start-page: 103628
  year: 2021
  ident: b0155
  article-title: Coalescence dynamic response of an aqueous droplet at an oil-water interface under a steady electric field
  publication-title: Int. J. Multiph. Flow
– volume: 289
  start-page: 120756
  year: 2022
  ident: b0195
  article-title: Microscopic mechanism for electrocoalescence of water droplets in water-in-oil emulsions containing surfactant: A molecular dynamics study
  publication-title: Sep. Purif. Technol.
– volume: 8
  start-page: e1327
  year: 2018
  ident: b0250
  article-title: Software update: The ORCA program system, version 4.0, WIREs comput
  publication-title: Mol. Sci.
– volume: 333
  start-page: 115995
  year: 2021
  ident: b0270
  article-title: Effect of electric field strength on deformation and breakup behaviors of droplet in oil phase: A molecular dynamics study
  publication-title: J. Mol. Liq.
– volume: 215
  start-page: 101
  year: 2003
  end-page: 123
  ident: b0075
  article-title: The behaviour of a liquid–liquid interface and drop-interface coalescence under the influence of an electric field
  publication-title: Colloids Surf A
– volume: 52
  start-page: 7182
  year: 1981
  end-page: 7190
  ident: b0220
  article-title: Polymorphic transitions in single crystals: A new molecular dynamics method
  publication-title: J. Appl. Phys.
– volume: 286
  start-page: 119390
  year: 2021
  ident: b0015
  article-title: Stabilization mechanism and chemical demulsification of water-in-oil and oil-in-water emulsions in petroleum industry: A review
  publication-title: Fuel 286
– volume: 31
  start-page: 8833
  year: 2017
  end-page: 8842
  ident: b0025
  article-title: Heterogeneous distribution of adsorbed bitumen on fine solids from solvent-based extraction of oil sands probed by AFM
  publication-title: Energy & Fuels: An American Chemical Society Journal
– volume: 114
  start-page: 180
  year: 2016
  end-page: 189
  ident: b0135
  article-title: Analysis of partial electrocoalescence by Level-Set and finite element methods
  publication-title: Chem. Eng. Res. Des.
– volume: 13
  start-page: 952
  year: 1992
  end-page: 962
  ident: b0230
  article-title: Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models
  publication-title: J. Comput. Chem.
– volume: 78
  start-page: 735
  year: 2016
  end-page: 746
  ident: b0005
  article-title: Heavy oil as an emulsion: Composition, structure, and rheological properties
  publication-title: Colloid J.
– volume: 165
  start-page: 673
  year: 2018
  end-page: 690
  ident: b0030
  article-title: A review of petroleum emulsions and recent progress on water-in-crude oil emulsions stabilized by natural surfactants and solids
  publication-title: J. Pet. Sci. Eng.
– volume: 32
  start-page: 4886
  year: 2016
  end-page: 4895
  ident: b0020
  article-title: Probing molecular interactions of asphaltenes in heptol using a surface forces apparatus: implications on stability of water-in-oil emulsions
  publication-title: Langmuir
– volume: 278
  start-page: 119622
  year: 2022
  ident: b0310
  article-title: Molecular dynamics study of droplet electrocoalescence in the oil phase and the gas phase
  publication-title: Sep. Purif. Technol.
– volume: 81
  start-page: 3684
  year: 1984
  ident: b0215
  article-title: Molecular dynamics with coupling to an external bath
  publication-title: J. Chem. Phys.
– volume: 321
  start-page: 114475
  year: 2021
  ident: b0315
  article-title: Understanding the breakup mechanism of a droplet under a DC electric field with molecular dynamics simulations and weak interaction analysis
  publication-title: J. Mol. Liq.
– volume: 25
  start-page: 12460
  year: 2009
  end-page: 12465
  ident: b0085
  article-title: Electrocoalescence: Effects of DC electric fields on coalescence of drops at planar interfaces
  publication-title: Langmuir
– volume: 29
  start-page: 27
  year: 1997
  end-page: 64
  ident: b0080
  article-title: ELECTROHYDRODYNAMICS: The taylor-melcher leaky dielectric model
  publication-title: Annu. Rev. Fluid Mech.
– volume: 80
  start-page: 036301
  year: 2009
  ident: b0150
  article-title: Binary droplet collision at high weber number
  publication-title: Phys. Rev. E
– volume: 553
  start-page: 341
  year: 2019
  end-page: 349
  ident: b0110
  article-title: Interfacial behavior and interaction mechanism of pentol/water interface stabilized with asphaltenes
  publication-title: J. Colloid Interface Sci.
– volume: 169
  start-page: 273
  year: 2017
  end-page: 283
  ident: b0125
  article-title: Electrophoretically mediated partial coalescence of a charged microdrop
  publication-title: Chem. Eng. Sci.
– volume: 35
  start-page: 11835
  year: 2021
  end-page: 11847
  ident: b0040
  article-title: A population balance model for emulsion behavior of alkaline water-heavy oil systems in bulk phase
  publication-title: Energy Fuels
– volume: 134
  start-page: 28
  year: 2018
  end-page: 37
  ident: b0065
  article-title: Coalescence characteristics of droplets at oil–water interface subjected to different electric waveforms
  publication-title: Chem. Eng. Process.
– volume: 91
  start-page: 6269
  year: 1987
  end-page: 6271
  ident: b0205
  article-title: The missing term in effective pair potentials
  publication-title: J. Phys. Chem.
– volume: 632
  start-page: 127746
  year: 2022
  ident: b0280
  article-title: Deformation and breakup mechanism of water droplet in acidic crude oil emulsion under uniform electric field: A molecular dynamics study
  publication-title: Colloids Surf. A
– volume: 103
  start-page: 8577
  year: 1995
  end-page: 8593
  ident: b0225
  article-title: A smooth particle mesh ewald method
  publication-title: J. Chem. Phys.
– volume: 707
  start-page: 18
  year: 2011
  end-page: 37
  ident: b0190
  article-title: Chromatographic and spectroscopic analysis of heavy crude oil mixtures with emphasis in nuclear magnetic resonance spectroscopy: A review
  publication-title: Anal. Chim. Acta
– volume: 116
  start-page: 11187
  year: 2012
  end-page: 11196
  ident: b0035
  article-title: Molecular interactions of a polyaromatic surfactant C5Pe in aqueous solutions studied by a surface forces apparatus
  publication-title: J. Phys. Chem. B
– volume: 36
  start-page: 7277
  year: 2020
  end-page: 7288
  ident: b0165
  article-title: Confinement-mediated phase behavior of hydrocarbon fluids: Insights from monte carlo simulations
  publication-title: Langmuir
– volume: 16
  start-page: 273
  year: 1995
  end-page: 284
  ident: b0295
  article-title: The double cubic lattice method: Efficient approaches to numerical integration of surface area and volume and to dot surface contouring of molecular assemblies
  publication-title: J. Comput. Chem.
– volume: 628
  start-page: 72
  year: 2022
  end-page: 81
  ident: b0175
  article-title: Protein conformational changes at the oil/water-interface induced by premix membrane emulsification
  publication-title: J. Colloid Interface Sci.
– volume: 31
  start-page: 459
  year: 1959
  end-page: 466
  ident: b0160
  article-title: Studies in molecular dynamics. I. General method
  publication-title: J. Chem. Phys.
– volume: 68
  start-page: 512
  year: 2015
  end-page: 525
  ident: b0180
  article-title: Molecular dynamics-continuum hybrid simulation for the impingement of droplet on a liquid film
  publication-title: Numer. Heat Transfer, Part A
– volume: 35
  start-page: 17424
  year: 2021
  end-page: 17433
  ident: b0170
  article-title: Molecular survey of strongly and weakly interfacially active asphaltenes: An intermolecular force field approach
  publication-title: Energy Fuels
– volume: 109
  start-page: 094501
  year: 2012
  ident: b0095
  article-title: Electrically tunable partial coalescence of oppositely charged drops
  publication-title: Phys. Rev. Lett.
– volume: 126
  start-page: 014101
  year: 2007
  ident: b0210
  article-title: Canonical sampling through velocity rescaling
  publication-title: J. Chem. Phys.
– volume: 43
  start-page: 539
  year: 2022
  end-page: 555
  ident: b0285
  article-title: Independent gradient model based on Hirshfeld partition: A new method for visual study of interactions in chemical systems
  publication-title: J. Comput. Chem.
– volume: 136
  start-page: 83
  year: 2018
  end-page: 93
  ident: b0290
  article-title: Critical electric field strength for partial coalescence of droplets on oil–water interface under DC electric field
  publication-title: Chem. Eng. Res. Des.
– volume: 47
  start-page: 1417
  year: 2008
  end-page: 1420
  ident: b0200
  article-title: Picosecond melting of ice by an infrared laser pulse: A simulation study
  publication-title: Angew. Chem. Int. Ed.
– volume: 27
  start-page: 663
  year: 1998
  end-page: 680
  ident: b0140
  article-title: An improved level set method for incompressible two-phase flows
  publication-title: Comput. Fluids
– volume: 142
  start-page: 214
  year: 2019
  end-page: 224
  ident: b0090
  article-title: Partial coalescence of droplets at oil–water interface subjected to different electric waveforms: Effects of non-ionic surfactant on critical electric field strength
  publication-title: Chem. Eng. Res. Des.
– volume: 6
  start-page: 23936
  year: 2016
  ident: b0325
  article-title: Effectiveness of the young-laplace equation at nanoscale
  publication-title: Sci. Rep.
– year: 2008
  ident: b0130
  article-title: a Computationalstudy of the Coalescence Process Between a Drop and an interface in an Electric Field
– volume: 116
  start-page: 7698
  year: 2016
  end-page: 7726
  ident: b0050
  article-title: Water at Interfaces
  publication-title: Chem. Rev.
– volume: 42
  start-page: 1660
  year: 2009
  end-page: 1668
  ident: b0305
  article-title: Molecular behavior in small spaces
  publication-title: Acc. Chem. Res.
– volume: 4
  start-page: 2517
  year: 2013
  ident: b0300
  article-title: Electrostatic charging of jumping droplets
  publication-title: Nat. Commun.
– volume: 18
  start-page: 1463
  year: 1997
  end-page: 1472
  ident: b0235
  article-title: LINCS: A linear constraint solver for molecular simulations
  publication-title: J. Comput. Chem.
– volume: 1
  start-page: 5068
  year: 2018
  ident: b0240
  article-title: From proteins to perturbed hamiltonians: A suite of tutorials for the GROMACS-2018 molecular simulation package [Article v1.0]
  publication-title: Living J. Comp. Mol. Sci.
– volume: 603
  start-page: 125136
  year: 2020
  ident: b0070
  article-title: Experimental study on the falling and coalescence characteristics of droplets under alternating electric fields
  publication-title: Colloids Surf., A
– volume: 134
  start-page: 28
  year: 2018
  ident: 10.1016/j.seppur.2023.124798_b0065
  article-title: Coalescence characteristics of droplets at oil–water interface subjected to different electric waveforms
  publication-title: Chem. Eng. Process.
  doi: 10.1016/j.cep.2018.10.013
– volume: 78
  start-page: 735
  issue: 6
  year: 2016
  ident: 10.1016/j.seppur.2023.124798_b0005
  article-title: Heavy oil as an emulsion: Composition, structure, and rheological properties
  publication-title: Colloid J.
  doi: 10.1134/S1061933X16060211
– volume: 632
  start-page: 127746
  year: 2022
  ident: 10.1016/j.seppur.2023.124798_b0280
  article-title: Deformation and breakup mechanism of water droplet in acidic crude oil emulsion under uniform electric field: A molecular dynamics study
  publication-title: Colloids Surf. A
  doi: 10.1016/j.colsurfa.2021.127746
– volume: 286
  start-page: 119390
  year: 2021
  ident: 10.1016/j.seppur.2023.124798_b0015
  article-title: Stabilization mechanism and chemical demulsification of water-in-oil and oil-in-water emulsions in petroleum industry: A review
  publication-title: Fuel 286
  doi: 10.1016/j.fuel.2020.119390
– volume: 30
  start-page: 2157
  year: 2009
  ident: 10.1016/j.seppur.2023.124798_b0245
  article-title: PACKMOL: A package for building initial configurations for molecular dynamics simulations
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21224
– volume: 6
  start-page: 23936
  year: 2016
  ident: 10.1016/j.seppur.2023.124798_b0325
  article-title: Effectiveness of the young-laplace equation at nanoscale
  publication-title: Sci. Rep.
  doi: 10.1038/srep23936
– volume: 27
  start-page: 663
  year: 1998
  ident: 10.1016/j.seppur.2023.124798_b0140
  article-title: An improved level set method for incompressible two-phase flows
  publication-title: Comput. Fluids
  doi: 10.1016/S0045-7930(97)00053-4
– volume: 116
  start-page: 7698
  issue: 13
  year: 2016
  ident: 10.1016/j.seppur.2023.124798_b0050
  article-title: Water at Interfaces
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00045
– volume: 80
  start-page: 036301
  year: 2009
  ident: 10.1016/j.seppur.2023.124798_b0150
  article-title: Binary droplet collision at high weber number
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.80.036301
– volume: 10
  start-page: 30
  year: 2013
  ident: 10.1016/j.seppur.2023.124798_b0055
  article-title: Electro-coalescence of an aqueous droplet at an oil–water interface with an investigation of secondary droplets formation
  publication-title: Iran Journal of Chemical Engineering
– volume: 213
  start-page: 115360
  year: 2020
  ident: 10.1016/j.seppur.2023.124798_b0145
  article-title: Drop-interface electrocoalescence mode transition under a direct current electric field
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2019.115360
– volume: 36
  start-page: 6051
  year: 2020
  ident: 10.1016/j.seppur.2023.124798_b0320
  article-title: Coalescence, partial coalescence, and noncoalescence of an aqueous drop at an oil-water interface under an electric field
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.9b03969
– volume: 14
  start-page: 33
  year: 1996
  ident: 10.1016/j.seppur.2023.124798_b0255
  article-title: VMD: Visual molecular dynamics
  publication-title: J. Mol. Graph.
  doi: 10.1016/0263-7855(96)00018-5
– volume: 109
  start-page: 094501
  year: 2012
  ident: 10.1016/j.seppur.2023.124798_b0095
  article-title: Electrically tunable partial coalescence of oppositely charged drops
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.094501
– volume: 35
  start-page: 17424
  year: 2021
  ident: 10.1016/j.seppur.2023.124798_b0170
  article-title: Molecular survey of strongly and weakly interfacially active asphaltenes: An intermolecular force field approach
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.1c02266
– volume: 31
  start-page: 8833
  year: 2017
  ident: 10.1016/j.seppur.2023.124798_b0025
  article-title: Heterogeneous distribution of adsorbed bitumen on fine solids from solvent-based extraction of oil sands probed by AFM
  publication-title: Energy & Fuels: An American Chemical Society Journal
  doi: 10.1021/acs.energyfuels.7b00396
– volume: 140
  start-page: 128
  year: 2018
  ident: 10.1016/j.seppur.2023.124798_b0100
  article-title: Coalescence characteristics of silica nanoparticle-laden droplets with a planar interface under direct current electric field
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2018.10.010
– volume: 16
  start-page: 273
  year: 1995
  ident: 10.1016/j.seppur.2023.124798_b0295
  article-title: The double cubic lattice method: Efficient approaches to numerical integration of surface area and volume and to dot surface contouring of molecular assemblies
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.540160303
– volume: 620
  start-page: 333
  year: 2009
  ident: 10.1016/j.seppur.2023.124798_b0120
  article-title: Dynamics of drop coalescence at fluid interfaces
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112008004801
– volume: 103
  start-page: 8577
  year: 1995
  ident: 10.1016/j.seppur.2023.124798_b0225
  article-title: A smooth particle mesh ewald method
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.470117
– year: 2008
  ident: 10.1016/j.seppur.2023.124798_b0130
– volume: 47
  start-page: 1417
  year: 2008
  ident: 10.1016/j.seppur.2023.124798_b0200
  article-title: Picosecond melting of ice by an infrared laser pulse: A simulation study
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200703987
– volume: 18
  start-page: 1463
  year: 1997
  ident: 10.1016/j.seppur.2023.124798_b0235
  article-title: LINCS: A linear constraint solver for molecular simulations
  publication-title: J. Comput. Chem.
  doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
– volume: 57
  start-page: 2027
  year: 1961
  ident: 10.1016/j.seppur.2023.124798_b0115
  article-title: Effects of electric fields on coalescence in liquid+liquid systems
  publication-title: Trans. Faraday Soc.
  doi: 10.1039/tf9615702027
– volume: 42
  start-page: 1660
  issue: 10
  year: 2009
  ident: 10.1016/j.seppur.2023.124798_b0305
  article-title: Molecular behavior in small spaces
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar9001203
– volume: 126
  start-page: 014101
  year: 2007
  ident: 10.1016/j.seppur.2023.124798_b0210
  article-title: Canonical sampling through velocity rescaling
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2408420
– volume: 628
  start-page: 924
  year: 2022
  ident: 10.1016/j.seppur.2023.124798_b0260
  article-title: Molecular dynamics simulation on water/oil interface with model asphaltene subjected to electric field
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2022.08.027
– volume: 116
  start-page: 11187
  year: 2012
  ident: 10.1016/j.seppur.2023.124798_b0035
  article-title: Molecular interactions of a polyaromatic surfactant C5Pe in aqueous solutions studied by a surface forces apparatus
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp304444d
– volume: 333
  start-page: 115995
  year: 2021
  ident: 10.1016/j.seppur.2023.124798_b0270
  article-title: Effect of electric field strength on deformation and breakup behaviors of droplet in oil phase: A molecular dynamics study
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2021.115995
– volume: 628
  start-page: 72
  year: 2022
  ident: 10.1016/j.seppur.2023.124798_b0175
  article-title: Protein conformational changes at the oil/water-interface induced by premix membrane emulsification
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2022.07.132
– volume: 136
  start-page: 83
  year: 2018
  ident: 10.1016/j.seppur.2023.124798_b0290
  article-title: Critical electric field strength for partial coalescence of droplets on oil–water interface under DC electric field
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2018.05.004
– volume: 36
  start-page: 7277
  year: 2020
  ident: 10.1016/j.seppur.2023.124798_b0165
  article-title: Confinement-mediated phase behavior of hydrocarbon fluids: Insights from monte carlo simulations
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.0c00652
– volume: 13
  start-page: 952
  year: 1992
  ident: 10.1016/j.seppur.2023.124798_b0230
  article-title: Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.540130805
– volume: 31
  start-page: 7457
  year: 2015
  ident: 10.1016/j.seppur.2023.124798_b0275
  article-title: Molecular dynamics simulations on coalescence and non-coalescence of conducting droplets
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.5b01574
– volume: 344
  start-page: 117875
  year: 2021
  ident: 10.1016/j.seppur.2023.124798_b0185
  article-title: Molecular dynamics simulations of nanoparticle-laden drop–interface electrocoalescence behaviors under direct and alternating current electric fields
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2021.117875
– volume: 32
  start-page: 4886
  year: 2016
  ident: 10.1016/j.seppur.2023.124798_b0020
  article-title: Probing molecular interactions of asphaltenes in heptol using a surface forces apparatus: implications on stability of water-in-oil emulsions
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.6b01000
– volume: 165
  start-page: 673
  year: 2018
  ident: 10.1016/j.seppur.2023.124798_b0030
  article-title: A review of petroleum emulsions and recent progress on water-in-crude oil emulsions stabilized by natural surfactants and solids
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2018.03.014
– volume: 278
  start-page: 119622
  year: 2022
  ident: 10.1016/j.seppur.2023.124798_b0310
  article-title: Molecular dynamics study of droplet electrocoalescence in the oil phase and the gas phase
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2021.119622
– volume: 289
  start-page: 120756
  year: 2022
  ident: 10.1016/j.seppur.2023.124798_b0195
  article-title: Microscopic mechanism for electrocoalescence of water droplets in water-in-oil emulsions containing surfactant: A molecular dynamics study
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2022.120756
– volume: 25
  start-page: 12460
  year: 2009
  ident: 10.1016/j.seppur.2023.124798_b0085
  article-title: Electrocoalescence: Effects of DC electric fields on coalescence of drops at planar interfaces
  publication-title: Langmuir
  doi: 10.1021/la902758u
– volume: 553
  start-page: 341
  year: 2019
  ident: 10.1016/j.seppur.2023.124798_b0110
  article-title: Interfacial behavior and interaction mechanism of pentol/water interface stabilized with asphaltenes
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2019.06.035
– volume: 707
  start-page: 18
  year: 2011
  ident: 10.1016/j.seppur.2023.124798_b0190
  article-title: Chromatographic and spectroscopic analysis of heavy crude oil mixtures with emphasis in nuclear magnetic resonance spectroscopy: A review
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2011.09.010
– volume: 603
  start-page: 125136
  year: 2020
  ident: 10.1016/j.seppur.2023.124798_b0070
  article-title: Experimental study on the falling and coalescence characteristics of droplets under alternating electric fields
  publication-title: Colloids Surf., A
  doi: 10.1016/j.colsurfa.2020.125136
– volume: 68
  start-page: 512
  year: 2015
  ident: 10.1016/j.seppur.2023.124798_b0180
  article-title: Molecular dynamics-continuum hybrid simulation for the impingement of droplet on a liquid film
  publication-title: Numer. Heat Transfer, Part A
  doi: 10.1080/10407782.2014.986403
– volume: 215
  start-page: 101
  year: 2003
  ident: 10.1016/j.seppur.2023.124798_b0075
  article-title: The behaviour of a liquid–liquid interface and drop-interface coalescence under the influence of an electric field
  publication-title: Colloids Surf A
  doi: 10.1016/S0927-7757(02)00445-4
– volume: 139
  start-page: 103628
  year: 2021
  ident: 10.1016/j.seppur.2023.124798_b0155
  article-title: Coalescence dynamic response of an aqueous droplet at an oil-water interface under a steady electric field
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/j.ijmultiphaseflow.2021.103628
– volume: 31
  start-page: 459
  year: 1959
  ident: 10.1016/j.seppur.2023.124798_b0160
  article-title: Studies in molecular dynamics. I. General method
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1730376
– volume: 35
  start-page: 11835
  year: 2021
  ident: 10.1016/j.seppur.2023.124798_b0040
  article-title: A population balance model for emulsion behavior of alkaline water-heavy oil systems in bulk phase
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.1c00538
– volume: 52
  start-page: 7182
  year: 1981
  ident: 10.1016/j.seppur.2023.124798_b0220
  article-title: Polymorphic transitions in single crystals: A new molecular dynamics method
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.328693
– volume: 29
  start-page: 27
  year: 1997
  ident: 10.1016/j.seppur.2023.124798_b0080
  article-title: ELECTROHYDRODYNAMICS: The taylor-melcher leaky dielectric model
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.29.1.27
– volume: 142
  start-page: 214
  year: 2019
  ident: 10.1016/j.seppur.2023.124798_b0090
  article-title: Partial coalescence of droplets at oil–water interface subjected to different electric waveforms: Effects of non-ionic surfactant on critical electric field strength
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2018.12.019
– volume: 11
  start-page: 1764
  issue: 7
  year: 2021
  ident: 10.1016/j.seppur.2023.124798_b0060
  article-title: Study on the effect of nanoparticle used in nano-fluid flooding on droplet-interface electro-coalescence
  publication-title: Nanomaterials
  doi: 10.3390/nano11071764
– volume: 30
  start-page: 10228
  year: 2016
  ident: 10.1016/j.seppur.2023.124798_b0105
  article-title: Mechanistic understanding of the effect of temperature and salinity on the water/toluene interfacial tension
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.6b01995
– volume: 4
  start-page: 2517
  year: 2013
  ident: 10.1016/j.seppur.2023.124798_b0300
  article-title: Electrostatic charging of jumping droplets
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3517
– volume: 169
  start-page: 273
  year: 2017
  ident: 10.1016/j.seppur.2023.124798_b0125
  article-title: Electrophoretically mediated partial coalescence of a charged microdrop
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2016.07.022
– volume: 321
  start-page: 114475
  year: 2021
  ident: 10.1016/j.seppur.2023.124798_b0315
  article-title: Understanding the breakup mechanism of a droplet under a DC electric field with molecular dynamics simulations and weak interaction analysis
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2020.114475
– volume: 120
  start-page: 5646
  year: 2016
  ident: 10.1016/j.seppur.2023.124798_b0010
  article-title: Reduction of water/oil interfacial tension by model asphaltenes: The governing role of surface concentration
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.6b03691
– volume: 208
  start-page: 115136
  year: 2019
  ident: 10.1016/j.seppur.2023.124798_b0045
  article-title: Influence of alkali concentration, electric waveform, and frequency on the critical electric field strength of droplet–interface partial coalescence
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2019.07.054
– volume: 123
  start-page: 22989
  year: 2019
  ident: 10.1016/j.seppur.2023.124798_b0265
  article-title: Molecular dynamics study on the mechanism of graphene oxide to destabilize oil/water emulsion
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b05906
– volume: 1
  start-page: 5068
  year: 2018
  ident: 10.1016/j.seppur.2023.124798_b0240
  article-title: From proteins to perturbed hamiltonians: A suite of tutorials for the GROMACS-2018 molecular simulation package [Article v1.0]
  publication-title: Living J. Comp. Mol. Sci.
– volume: 114
  start-page: 180
  year: 2016
  ident: 10.1016/j.seppur.2023.124798_b0135
  article-title: Analysis of partial electrocoalescence by Level-Set and finite element methods
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2016.08.019
– volume: 91
  start-page: 6269
  year: 1987
  ident: 10.1016/j.seppur.2023.124798_b0205
  article-title: The missing term in effective pair potentials
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100308a038
– volume: 81
  start-page: 3684
  year: 1984
  ident: 10.1016/j.seppur.2023.124798_b0215
  article-title: Molecular dynamics with coupling to an external bath
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.448118
– volume: 43
  start-page: 539
  year: 2022
  ident: 10.1016/j.seppur.2023.124798_b0285
  article-title: Independent gradient model based on Hirshfeld partition: A new method for visual study of interactions in chemical systems
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.26812
– volume: 8
  start-page: e1327
  year: 2018
  ident: 10.1016/j.seppur.2023.124798_b0250
  article-title: Software update: The ORCA program system, version 4.0, WIREs comput
  publication-title: Mol. Sci.
  doi: 10.1002/wcms.1327
SSID ssj0017182
Score 2.5005655
Snippet [Display omitted] •Droplet-interface electrocoalescence was studied via molecular dynamics.•Dipole-dipole force mainly comes from the charge accumulation...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 124798
SubjectTerms Coalescence
Droplet-interface
Electric field
Intermolecular interaction
Molecular dynamics
Title Probing the coalescence mechanism of water droplet and Oil/Water interface in demulsification process under DC electric field
URI https://dx.doi.org/10.1016/j.seppur.2023.124798
Volume 326
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50vehBfOKbHLzG3aZptznKqqyKD1DRW8m2E6nsdkt3F0_62500rSiIgseGDJRJmPmGzPcNwKHpYBRhKHhHoc8lBoZrozpcaT8VEikHCssdvroO-w_y4il4moNew4WxbZV17HcxvYrW9Uq79ma7yLL2nUfFVRCFlL8rDRg1DwvCV2HQgoXj88v-9edjAoXf6tGT9nNr0DDoqjavCRbFzAqDCv-Icl1XRT9nqC9Z52wFlmu4yI7dH63CHOZrsPRFRHAd3m6tlFL-zAjKsWSsnUBTgmyEltWbTUZsbNgrYcqSpaXtF58ynafsJhu2H6tVKxlRGk0mWc5SHM2GE9tAVJ0ZKxyTgFmyWclOeswNzskSVjW_bcD92el9r8_roQo8oepgyqUvU0mOSzvaDoAVdoDkIDGopEgHKAThB4ykEgQLNUah0YQxpCdpq8Kga_xNaOXjHLeAhcJLvdBYWjRSkZ0MjPZVhFHXUBxAobfBb_wYJ7XguJ17MYybzrKX2Hk_tt6Pnfe3gX9aFU5w44_93eaI4m8XJ6ac8Kvlzr8td2HRfrmulj1oTcsZ7hM2mQ4OYP7o3Tuob-AHfl_krQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9tAEF0FOLQcqgKtCJSyB65L4vX6Y48oJUr5lggqN2tjzyKjxLGcRJzgt3fGayMqVa3EdT0jrWZXM2_lN28YO7J9iGMIpehr8IWCwApjdV9o42dSAdZASb3Dl1fh6E6d3Qf3HTZoe2GIVtnkfpfT62zdrPSaaPbKPO_devi4CuIQ63etAaPX2IYK_Ih4fccvrzwPD5Nv_csTrQWZt_1zNclrAWW5IllQ6R9jpYt0_Pf69KbmDD-zTw1Y5CduP1usA8U223wjIbjDnm9ISKl44AjkeDo3Tp4pBT4D6unNFzM-t_wJEWXFs4rY4ktuioxf59Per3qVBCMqa9AlL3gGs9V0QfSh-sR46foIOLWaVfzHgLuxOXnKa-rbFzYeno4HI9GMVBApvg2WQvkqUxi2rG9o_Kuk8ZGT1IJWMpuAlIgeIFZaIig0EIfWIMJQnkJTDUFk_a9svZgXsMt4KL3MCy01RQM-sdOJNb6OIY4sZgGQpsv8No5J2siN09SLadLyyh4TF_2Eop-46HeZePUqndzGf-yj9oiSP65NghXhn5577_Y8ZB9G48uL5OLn1fk--0hfHL_lG1tfVis4QJSynHyvb-FvbcLleA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probing+the+coalescence+mechanism+of+water+droplet+and+Oil%2FWater+interface+in+demulsification+process+under+DC+electric+field&rft.jtitle=Separation+and+purification+technology&rft.au=Li%2C+Ning&rft.au=Pang%2C+Yunhui&rft.au=Sun%2C+Zhiqian&rft.au=Wang%2C+Zhenbo&rft.date=2023-12-01&rft.pub=Elsevier+B.V&rft.issn=1383-5866&rft.eissn=1873-3794&rft.volume=326&rft_id=info:doi/10.1016%2Fj.seppur.2023.124798&rft.externalDocID=S1383586623017069
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1383-5866&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1383-5866&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1383-5866&client=summon