Ionic liquid as electrostatic shielding additive for dendrite-free lithium metal battery
[Display omitted] •0.5 M Pyr1(10)TFSI is introduced as a non-consuming electrolyte additive and uniform lithium deposition by electrostatic shielding mechanism.•The adsorption of Pyr1(10)+ cation is explored by Surface-enhanced Raman spectroscopy and EIS.•Outstanding cyclability is demonstrated in L...
Saved in:
Published in | Applied surface science Vol. 622; p. 156968 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•0.5 M Pyr1(10)TFSI is introduced as a non-consuming electrolyte additive and uniform lithium deposition by electrostatic shielding mechanism.•The adsorption of Pyr1(10)+ cation is explored by Surface-enhanced Raman spectroscopy and EIS.•Outstanding cyclability is demonstrated in LiFePO4||Li full cells with low N/P radio.
Lithium (Li) metal anodes have attracted much attention as their high specific capacity and low electrochemical potential significantly boost the energy density of secondary batteries. Nonetheless, the uncontrolled growth of Li dendrites causing a poor cycle capability restricts the commercialization of Li metal batteries. Herein, an ionic liquid with a long aliphatic chain (N-methyl-N-decyl pyrrolidinium (Pyr1(10)+) bis(trifluoromethanesulphonyl)imide (TFSI−)) is introduced as a non-consuming electrostatic shielding additive into the ether-based electrolyte. The admirable compatibility of Pyr1(10)+ cation with Li metal is verified via electrochemical analysis, and the adsorption of Pyr1(10)+ on the Li-metal/electrolyte interface is confirmed by Surface-enhanced Raman spectroscopy technique. Through redistributing the Li ions on the surface of Li metal, the growth of Li dendrites is suppressed, so as to improve the cycling performance of Li metal anodes in symmetric cells, asymmetric cells and Li||LiFePO4 full cells with low N/P ratio (3:1). This study provides new insights into revealing the electrostatic shielding mechanism of regulating Li metal deposition and prolonging the long-term cycling. |
---|---|
AbstractList | [Display omitted]
•0.5 M Pyr1(10)TFSI is introduced as a non-consuming electrolyte additive and uniform lithium deposition by electrostatic shielding mechanism.•The adsorption of Pyr1(10)+ cation is explored by Surface-enhanced Raman spectroscopy and EIS.•Outstanding cyclability is demonstrated in LiFePO4||Li full cells with low N/P radio.
Lithium (Li) metal anodes have attracted much attention as their high specific capacity and low electrochemical potential significantly boost the energy density of secondary batteries. Nonetheless, the uncontrolled growth of Li dendrites causing a poor cycle capability restricts the commercialization of Li metal batteries. Herein, an ionic liquid with a long aliphatic chain (N-methyl-N-decyl pyrrolidinium (Pyr1(10)+) bis(trifluoromethanesulphonyl)imide (TFSI−)) is introduced as a non-consuming electrostatic shielding additive into the ether-based electrolyte. The admirable compatibility of Pyr1(10)+ cation with Li metal is verified via electrochemical analysis, and the adsorption of Pyr1(10)+ on the Li-metal/electrolyte interface is confirmed by Surface-enhanced Raman spectroscopy technique. Through redistributing the Li ions on the surface of Li metal, the growth of Li dendrites is suppressed, so as to improve the cycling performance of Li metal anodes in symmetric cells, asymmetric cells and Li||LiFePO4 full cells with low N/P ratio (3:1). This study provides new insights into revealing the electrostatic shielding mechanism of regulating Li metal deposition and prolonging the long-term cycling. |
ArticleNumber | 156968 |
Author | Zhong, Jing Guo, Huajun Wang, Zhixing Yan, Guochun Li, Xinhai Wang, Siwu Wang, Jiexi |
Author_xml | – sequence: 1 givenname: Jing surname: Zhong fullname: Zhong, Jing organization: School of Metallurgy & Environment, Central South University, Changsha 410083, China – sequence: 2 givenname: Zhixing surname: Wang fullname: Wang, Zhixing organization: School of Metallurgy & Environment, Central South University, Changsha 410083, China – sequence: 3 givenname: Siwu surname: Wang fullname: Wang, Siwu organization: School of Metallurgy & Environment, Central South University, Changsha 410083, China – sequence: 4 givenname: Xinhai surname: Li fullname: Li, Xinhai organization: School of Metallurgy & Environment, Central South University, Changsha 410083, China – sequence: 5 givenname: Huajun surname: Guo fullname: Guo, Huajun organization: School of Metallurgy & Environment, Central South University, Changsha 410083, China – sequence: 6 givenname: Jiexi surname: Wang fullname: Wang, Jiexi organization: School of Metallurgy & Environment, Central South University, Changsha 410083, China – sequence: 7 givenname: Guochun surname: Yan fullname: Yan, Guochun email: happyygc@csu.edu.cn organization: School of Metallurgy & Environment, Central South University, Changsha 410083, China |
BookMark | eNqFkM9KAzEQh4Mo2FbfwENeYNcku5vd9SBI8U-h4EXBW0iTiZ2y3a1JWujbm7KePOhpYGa-YX7flJz3Qw-E3HCWc8bl7SbXu7APJhdMFDmvZCubMzLhTV1kVdWU52SS1tqsLApxSaYhbBjjIk0n5GMx9Ghoh197tFQHCh2Y6IcQdUz9sEboLPafVFuLEQ9A3eCphd56jJA5D5DguMb9lm4h6o6udIzgj1fkwukuwPVPnZH3p8e3-Uu2fH1ezB-WmSmYjFkpRKMFGCbr2mjrBNONaRk4UUkGbWkluJRHSFfKlhtuuVlJU1Zc1BIsWxUzUo53TXo6eHBq53Gr_VFxpk521EaNdtTJjhrtJOzuF2bwFHnoo9fY_QffjzCkYAcEr4JB6A1Y9MmesgP-feAbZ0WG_w |
CitedBy_id | crossref_primary_10_1002_celc_202400019 crossref_primary_10_1016_j_jcis_2024_06_244 crossref_primary_10_1039_D4CC02983F crossref_primary_10_1016_j_cclet_2024_110669 crossref_primary_10_1002_batt_202400354 crossref_primary_10_1016_j_est_2025_115876 |
Cites_doi | 10.1149/1.1763141 10.1021/jp4127754 10.1021/jp046030w 10.1002/adfm.202111586 10.1002/aenm.201702744 10.1021/jacs.8b08963 10.1021/ja312241y 10.1021/acs.nanolett.1c03106 10.1039/D0NR03833D 10.1038/s41560-021-00910-w 10.1021/j100052a018 10.1016/0378-7753(94)02044-4 10.1021/jp980375v 10.1016/j.jechem.2019.12.024 10.1016/j.ensm.2019.09.020 10.1002/aenm.202000804 10.1021/la1009994 10.1038/s41578-021-00345-5 10.1002/aenm.202103955 10.1016/j.cej.2021.129685 10.1038/s41586-021-04168-w 10.1038/s41560-020-0634-5 10.1016/j.jechem.2020.07.036 10.1039/C9CS00838A 10.1038/s41565-019-0604-x 10.1002/anie.202017124 10.1021/acs.chemrev.6b00504 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. |
Copyright_xml | – notice: 2023 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.apsusc.2023.156968 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-5584 |
ExternalDocumentID | 10_1016_j_apsusc_2023_156968 S016943322300644X |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M38 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCB SDF SDG SDP SES SEW SMS SPC SPCBC SPD SPG SSK SSM SSQ SSZ T5K TN5 WH7 XPP ZMT ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB G-2 HMV HVGLF HZ~ NDZJH R2- RIG SSH WUQ |
ID | FETCH-LOGICAL-c306t-4228a2ec0677cadf20a8c90ef2560e94d6ef56926f4691c1d1cb6c451276ed0b3 |
IEDL.DBID | .~1 |
ISSN | 0169-4332 |
IngestDate | Tue Jul 01 02:18:45 EDT 2025 Thu Apr 24 22:51:52 EDT 2025 Fri Feb 23 02:38:23 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Electrostatic shield Electrolyte additive Lithium metal anode Surface-enhanced Raman spectroscopy Ionic liquid |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-4228a2ec0677cadf20a8c90ef2560e94d6ef56926f4691c1d1cb6c451276ed0b3 |
ParticipantIDs | crossref_primary_10_1016_j_apsusc_2023_156968 crossref_citationtrail_10_1016_j_apsusc_2023_156968 elsevier_sciencedirect_doi_10_1016_j_apsusc_2023_156968 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-15 |
PublicationDateYYYYMMDD | 2023-06-15 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Applied surface science |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Castriota, Caruso, Agostino, Cazzanelli, Henderson, Passerini (b0165) 2005; 109 Wang, Shi, Zhang, Chen, Zhang (b0175) 2020; 69 S. Trasatti, The work function in electrochemistry, in: C.W.T. Heinz Gerischer (Ed.) Advances in Electrochemistry and Electrochemical Engineering, Wiley, 1977, pp. 213–321. Abe, Fukuda, Iriyama, Ogumi (b0140) 2004; 151 Wang, Ge, Li, Yang, Wang, Liu, Fernandez, Chen, Peng (b0010) 2021; 420 Sheng, Zhang, Liu, Han, Li, Sun, Chen, Zhong, Qiu, Zhou (b0085) 2021; 21 Dai, Xi, Liu, Lai, Zhang (b0135) 2018; 140 Rey, Johansson, Lindgren, Lassègues, Grondin, Servant (b0160) 1998; 102 Tan, Li, Liu, Li (b0070) 2020; 463 Yoo, Kim, Choi (b0130) 2018; 8 Huang, Frech, Wheeler (b0155) 2002; 98 Santos, Schmickler (b0105) 2021; 60 Zhang, Su, Zhang (b0050) 2020; 12 Ding, Xu, Chen, Zhang, Shao, Engelhard, Zhang, Blake, Graff, Liu, Zhang (b0115) 2014; 118 Nanda, Gupta, Manthiram (b0015) 2020; 11 Zhang, Yang, Du, Liu, Tang, Zhao, Wang, Chen, Sun, Jia, Li, Geng, Chen, Ye, Wang, Li, Sun, Li, Dai, Tang, Peng, Shen, Zhang, Zhu, Huang (b0045) 2020; 15 Wang, Liu, Shen, Wu, Zhao, Zhong, Hu (b0005) 2021; 8 Luo, Li, Zhang, Yu, Hussain, Yan, Zhang, Li (b0075) 2021; 56 Wang, Cui, Chu, Wu (b0030) 2020; 48 Liu, Xu, Wu, Boyle, Yang, Xu, Zhu, Ye, Yu, Zhang, Xiao, Huang, Wang, Chen, Cui (b0025) 2021; 600 Hobold, Lopez, Guo, Minafra, Banerjee, Shirley Meng, Shao-Horn, Gallant (b0035) 2021; 6 Jang, Shin, Ko, Park, Song, Park, Kang (b0125) 2022; 12 Watanabe, Thomas, Zhang, Ueno, Yasuda, Dokko (b0120) 2017; 117 Xu, von Cresce, Lee (b0145) 2010; 26 He, Bresser, Passerini, Baakes, Krewer, Lopez, Mallia, Shao-Horn, Cekic-Laskovic, Wiemers-Meyer, Soto, Ponce, Seminario, Balbuena, Jia, Xu, Xu, Wang, Horstmann, Amine, Su, Shi, Amine, Winter, Latz, Kostecki (b0040) 2021; 6 Qian, Wei, Tian, Xi, Xiong, Feng, Qian (b0065) 2021; 421 Aurbach, Zaban, Gofer, Ely, Weissman, Chusid, Abramson (b0150) 1995; 54 Tan, Li, Cheng, Liu, Wang, Guo, Yan, Li, Liu, Wang (b0060) 2020; 463 Ding, Xu, Graff, Zhang, Sushko, Chen, Shao, Engelhard, Nie, Xiao, Liu, Sushko, Liu, Zhang (b0110) 2013; 135 Shi, Xi, Liu, Zhang, Song, Chen, Feng, Xiong (b0080) 2022; 32 Zhang, Yang, Zhou (b0020) 2020; 49 Wang, Mai, Guan, Liu, Tu, Li, Kang, Li (b0095) 2020; 4 Reichenbächer, Popp (b0170) 2012 Yasin, Arif, Mehtab, Lu, Yu, Muhammad, Nazir, Song (b0055) 2020; 25 Yu, Wang, Kong, Huang, Tsao, Mackanic, Wang, Wang, Huang, Choudhury, Zheng, Amanchukwu, Hung, Ma, Lomeli, Qin, Cui, Bao (b0090) 2020; 5 Reichenbächer (10.1016/j.apsusc.2023.156968_b0170) 2012 Tan (10.1016/j.apsusc.2023.156968_b0060) 2020; 463 Ding (10.1016/j.apsusc.2023.156968_b0110) 2013; 135 Wang (10.1016/j.apsusc.2023.156968_b0010) 2021; 420 Qian (10.1016/j.apsusc.2023.156968_b0065) 2021; 421 Rey (10.1016/j.apsusc.2023.156968_b0160) 1998; 102 Luo (10.1016/j.apsusc.2023.156968_b0075) 2021; 56 Liu (10.1016/j.apsusc.2023.156968_b0025) 2021; 600 Wang (10.1016/j.apsusc.2023.156968_b0095) 2020; 4 Zhang (10.1016/j.apsusc.2023.156968_b0050) 2020; 12 Tan (10.1016/j.apsusc.2023.156968_b0070) 2020; 463 Huang (10.1016/j.apsusc.2023.156968_b0155) 2002; 98 He (10.1016/j.apsusc.2023.156968_b0040) 2021; 6 Wang (10.1016/j.apsusc.2023.156968_b0030) 2020; 48 Watanabe (10.1016/j.apsusc.2023.156968_b0120) 2017; 117 Wang (10.1016/j.apsusc.2023.156968_b0175) 2020; 69 Abe (10.1016/j.apsusc.2023.156968_b0140) 2004; 151 Sheng (10.1016/j.apsusc.2023.156968_b0085) 2021; 21 10.1016/j.apsusc.2023.156968_b0100 Yoo (10.1016/j.apsusc.2023.156968_b0130) 2018; 8 Wang (10.1016/j.apsusc.2023.156968_b0005) 2021; 8 Yu (10.1016/j.apsusc.2023.156968_b0090) 2020; 5 Santos (10.1016/j.apsusc.2023.156968_b0105) 2021; 60 Dai (10.1016/j.apsusc.2023.156968_b0135) 2018; 140 Castriota (10.1016/j.apsusc.2023.156968_b0165) 2005; 109 Shi (10.1016/j.apsusc.2023.156968_b0080) 2022; 32 Ding (10.1016/j.apsusc.2023.156968_b0115) 2014; 118 Jang (10.1016/j.apsusc.2023.156968_b0125) 2022; 12 Hobold (10.1016/j.apsusc.2023.156968_b0035) 2021; 6 Xu (10.1016/j.apsusc.2023.156968_b0145) 2010; 26 Zhang (10.1016/j.apsusc.2023.156968_b0020) 2020; 49 Yasin (10.1016/j.apsusc.2023.156968_b0055) 2020; 25 Nanda (10.1016/j.apsusc.2023.156968_b0015) 2020; 11 Zhang (10.1016/j.apsusc.2023.156968_b0045) 2020; 15 Aurbach (10.1016/j.apsusc.2023.156968_b0150) 1995; 54 |
References_xml | – volume: 8 start-page: 1702744 year: 2018 ident: b0130 publication-title: Adv. Energy Mater. – volume: 8 year: 2021 ident: b0005 publication-title: Adv. Sci. – volume: 463 year: 2020 ident: b0070 publication-title: J. Power Sources – volume: 21 start-page: 8447 year: 2021 end-page: 8454 ident: b0085 publication-title: Nano Lett. – volume: 140 start-page: 17515 year: 2018 end-page: 17521 ident: b0135 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 1036 year: 2021 end-page: 1052 ident: b0040 publication-title: Nat. Rev. Mater. – volume: 98 start-page: 100 year: 2002 end-page: 110 ident: b0155 publication-title: J. Phys. Chem. C – volume: 102 start-page: 3249 year: 1998 end-page: 3258 ident: b0160 publication-title: J. Phys. Chem. C – volume: 118 start-page: 4043 year: 2014 end-page: 4049 ident: b0115 publication-title: J. Phys. Chem. C – volume: 12 start-page: 15528 year: 2020 end-page: 15559 ident: b0050 publication-title: Nanoscale – volume: 4 start-page: 284 year: 2020 end-page: 292 ident: b0095 publication-title: Energy Environ. Sci. – volume: 109 start-page: 92 year: 2005 end-page: 96 ident: b0165 publication-title: J. Phys. Chem. A – volume: 11 start-page: 2000804 year: 2020 ident: b0015 publication-title: Adv. Energy Mater. – volume: 15 start-page: 94 year: 2020 end-page: 98 ident: b0045 publication-title: Nat. Nanotechnol. – volume: 54 start-page: 76 year: 1995 end-page: 84 ident: b0150 publication-title: J. Power Sources – volume: 12 start-page: 2103955 year: 2022 ident: b0125 publication-title: Adv. Energy Mater. – volume: 60 start-page: 5876 year: 2021 end-page: 5881 ident: b0105 publication-title: Angew. Chem. Int. Ed. – volume: 135 start-page: 4450 year: 2013 end-page: 4456 ident: b0110 publication-title: J. Am. Chem. Soc. – volume: 421 year: 2021 ident: b0065 publication-title: Chem. Eng. J. – volume: 5 start-page: 526 year: 2020 end-page: 533 ident: b0090 publication-title: Nat. Energy – volume: 463 year: 2020 ident: b0060 publication-title: J. Power Sources – reference: S. Trasatti, The work function in electrochemistry, in: C.W.T. Heinz Gerischer (Ed.) Advances in Electrochemistry and Electrochemical Engineering, Wiley, 1977, pp. 213–321. – volume: 49 start-page: 3040 year: 2020 end-page: 3071 ident: b0020 publication-title: Chem. Soc. Rev. – volume: 117 start-page: 7190 year: 2017 end-page: 7239 ident: b0120 publication-title: Chem. Rev. – volume: 151 start-page: A1120 year: 2004 end-page: A1123 ident: b0140 publication-title: J. Electrochem. Soc. – volume: 69 year: 2020 ident: b0175 publication-title: Acta Phys. Sin. – volume: 600 start-page: 659 year: 2021 end-page: 663 ident: b0025 publication-title: Nature – volume: 32 start-page: 2111586 year: 2022 ident: b0080 publication-title: Adv. Funct. Mater. – volume: 25 start-page: 644 year: 2020 end-page: 678 ident: b0055 publication-title: Energy Storage Mater. – volume: 48 start-page: 145 year: 2020 end-page: 159 ident: b0030 publication-title: J Energy Chem – volume: 6 start-page: 951 year: 2021 end-page: 960 ident: b0035 publication-title: Nat. Energy – year: 2012 ident: b0170 article-title: Challenges in Molecular Structure Determination – volume: 420 year: 2021 ident: b0010 publication-title: Chem. Eng. J. – volume: 56 start-page: 14 year: 2021 end-page: 22 ident: b0075 publication-title: J. Energy Chem. – volume: 26 start-page: 11538 year: 2010 end-page: 11543 ident: b0145 publication-title: Langmuir – volume: 151 start-page: A1120 year: 2004 ident: 10.1016/j.apsusc.2023.156968_b0140 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1763141 – year: 2012 ident: 10.1016/j.apsusc.2023.156968_b0170 – volume: 118 start-page: 4043 year: 2014 ident: 10.1016/j.apsusc.2023.156968_b0115 publication-title: J. Phys. Chem. C doi: 10.1021/jp4127754 – volume: 109 start-page: 92 year: 2005 ident: 10.1016/j.apsusc.2023.156968_b0165 publication-title: J. Phys. Chem. A doi: 10.1021/jp046030w – volume: 32 start-page: 2111586 year: 2022 ident: 10.1016/j.apsusc.2023.156968_b0080 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202111586 – volume: 8 start-page: 1702744 year: 2018 ident: 10.1016/j.apsusc.2023.156968_b0130 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702744 – volume: 140 start-page: 17515 year: 2018 ident: 10.1016/j.apsusc.2023.156968_b0135 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b08963 – volume: 4 start-page: 284 year: 2020 ident: 10.1016/j.apsusc.2023.156968_b0095 publication-title: Energy Environ. Sci. – volume: 135 start-page: 4450 year: 2013 ident: 10.1016/j.apsusc.2023.156968_b0110 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja312241y – volume: 21 start-page: 8447 year: 2021 ident: 10.1016/j.apsusc.2023.156968_b0085 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c03106 – volume: 12 start-page: 15528 year: 2020 ident: 10.1016/j.apsusc.2023.156968_b0050 publication-title: Nanoscale doi: 10.1039/D0NR03833D – volume: 6 start-page: 951 year: 2021 ident: 10.1016/j.apsusc.2023.156968_b0035 publication-title: Nat. Energy doi: 10.1038/s41560-021-00910-w – volume: 98 start-page: 100 year: 2002 ident: 10.1016/j.apsusc.2023.156968_b0155 publication-title: J. Phys. Chem. C doi: 10.1021/j100052a018 – volume: 54 start-page: 76 year: 1995 ident: 10.1016/j.apsusc.2023.156968_b0150 publication-title: J. Power Sources doi: 10.1016/0378-7753(94)02044-4 – volume: 102 start-page: 3249 year: 1998 ident: 10.1016/j.apsusc.2023.156968_b0160 publication-title: J. Phys. Chem. C doi: 10.1021/jp980375v – volume: 48 start-page: 145 year: 2020 ident: 10.1016/j.apsusc.2023.156968_b0030 publication-title: J Energy Chem doi: 10.1016/j.jechem.2019.12.024 – ident: 10.1016/j.apsusc.2023.156968_b0100 – volume: 25 start-page: 644 year: 2020 ident: 10.1016/j.apsusc.2023.156968_b0055 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.09.020 – volume: 463 year: 2020 ident: 10.1016/j.apsusc.2023.156968_b0070 publication-title: J. Power Sources – volume: 11 start-page: 2000804 year: 2020 ident: 10.1016/j.apsusc.2023.156968_b0015 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202000804 – volume: 26 start-page: 11538 year: 2010 ident: 10.1016/j.apsusc.2023.156968_b0145 publication-title: Langmuir doi: 10.1021/la1009994 – volume: 6 start-page: 1036 year: 2021 ident: 10.1016/j.apsusc.2023.156968_b0040 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-021-00345-5 – volume: 12 start-page: 2103955 year: 2022 ident: 10.1016/j.apsusc.2023.156968_b0125 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202103955 – volume: 69 year: 2020 ident: 10.1016/j.apsusc.2023.156968_b0175 publication-title: Acta Phys. Sin. – volume: 421 year: 2021 ident: 10.1016/j.apsusc.2023.156968_b0065 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.129685 – volume: 600 start-page: 659 year: 2021 ident: 10.1016/j.apsusc.2023.156968_b0025 publication-title: Nature doi: 10.1038/s41586-021-04168-w – volume: 5 start-page: 526 year: 2020 ident: 10.1016/j.apsusc.2023.156968_b0090 publication-title: Nat. Energy doi: 10.1038/s41560-020-0634-5 – volume: 420 year: 2021 ident: 10.1016/j.apsusc.2023.156968_b0010 publication-title: Chem. Eng. J. – volume: 56 start-page: 14 year: 2021 ident: 10.1016/j.apsusc.2023.156968_b0075 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.07.036 – volume: 49 start-page: 3040 year: 2020 ident: 10.1016/j.apsusc.2023.156968_b0020 publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00838A – volume: 15 start-page: 94 year: 2020 ident: 10.1016/j.apsusc.2023.156968_b0045 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0604-x – volume: 60 start-page: 5876 year: 2021 ident: 10.1016/j.apsusc.2023.156968_b0105 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202017124 – volume: 8 year: 2021 ident: 10.1016/j.apsusc.2023.156968_b0005 publication-title: Adv. Sci. – volume: 117 start-page: 7190 year: 2017 ident: 10.1016/j.apsusc.2023.156968_b0120 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00504 – volume: 463 year: 2020 ident: 10.1016/j.apsusc.2023.156968_b0060 publication-title: J. Power Sources |
SSID | ssj0012873 |
Score | 2.4465191 |
Snippet | [Display omitted]
•0.5 M Pyr1(10)TFSI is introduced as a non-consuming electrolyte additive and uniform lithium deposition by electrostatic shielding... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 156968 |
SubjectTerms | Electrolyte additive Electrostatic shield Ionic liquid Lithium metal anode Surface-enhanced Raman spectroscopy |
Title | Ionic liquid as electrostatic shielding additive for dendrite-free lithium metal battery |
URI | https://dx.doi.org/10.1016/j.apsusc.2023.156968 |
Volume | 622 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXvQgPrE-yh68btvsJpvkWIqlVexFC72FfYVG2lr7OHjxtzuTR6kgCh6z7EAyu3zzLfnmW0LutA60L6xkXAYx8yMlWBxwxXjUVlGgQxPm3p1PQ9kf-Q_jYFwj3aoXBmWVJfYXmJ6jdTnSKrPZWmRZ6xl9RNB9C0g01FV_jB3sfoi7vPm5lXkA_BZ_mWEydgfxqn0u13gpOImu0MiQiyYcZGI0XP2pPO2UnN4xOSq5Iu0Ur3NCam5-Sg53HATPyHiA1rZ0mr1vMkvVipbX2mCfEIyvJihQg5kUdUOIbBRIKgWssUvgmixdOgfB60m2mdGZAyJOdW64-XFORr37l26flZclMAOsf83QyktxZ9ARziibcsi1idsuRU7jYt9Kl8IXcpnCgdgznvWMlsaHeh9KZ9taXJC9-dvcXRIa-dyGMfeMhXVsK09LTyoh4kikwshQ1ImocpSY0kkcL7SYJpVk7DUpMptgZpMis3XCtlGLwknjj_lhlf7k245IAOx_jbz6d-Q1OcAnlIJ5wQ3ZWy837hZIx1o38l3VIPudwWN_-AWt4Nb3 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LS8NAEMcHbQ_qQXzi2z14XdvsJpvkKKK0anvRQm9hX8GIVu3j4Ld3pkmkgih43WQgmSwz_yEzvwU4MyYyoXSKCxWlPEy05GkkNBdJWyeRiW08Z3f2-qozCG-G0XAJLutZGGqrrGJ_GdPn0bpaaVXebL0VReueOCJE30IRjXk1HC5Dk-hUUQOaF93bTv_rZwIWBbJEfKc0ICTqCbp5m5fGYnRCLEMhz7GWSYm5-lOGWsg61xuwXslFdlE-0SYs-dEWrC1ABLdh2CW6LXsu3meFY3rCqpNtaFQI1yeP1KOGdzJqHaLgxlCnMgw3boxyk-dj79F4-ljMXtiLRy3OzJy5-bEDg-urh8sOr85L4BaF_5QTzUsLbwkKZ7XLBbrbpm2fk6zxaeiUz_ENhcqxJg5s4AJrlA0x5cfKu7aRu9AYvY78HrAkFC5ORWAdfsq2DowKlJYyTWQurYrlPsjaR5mtYOJ0psVzVneNPWWlZzPybFZ6dh_4l9VbCdP44_64dn_2bVNkGO9_tTz4t-UprHQeenfZXbd_ewirdIU6w4LoCBrT8cwfowaZmpNqj30CFtfZqA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ionic+liquid+as+electrostatic+shielding+additive+for+dendrite-free+lithium+metal+battery&rft.jtitle=Applied+surface+science&rft.au=Zhong%2C+Jing&rft.au=Wang%2C+Zhixing&rft.au=Wang%2C+Siwu&rft.au=Li%2C+Xinhai&rft.date=2023-06-15&rft.issn=0169-4332&rft.volume=622&rft.spage=156968&rft_id=info:doi/10.1016%2Fj.apsusc.2023.156968&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apsusc_2023_156968 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-4332&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-4332&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-4332&client=summon |