Construction of nanodiamonds/UiO-66-NH2 heterojunction for boosted visible-light photocatalytic degradation of antibiotics
•NDs/UiO-66-NH2 was prepared by a two-step route consisting of solvothermal and calcination;•Formation of NDs/UiO-66-NH2 heterojunction can enhance separation of photo-generated carriers;•NDs/UiO-66-NH2 exhibits the outstanding photocatalytic degradation activity of antibiotics. Photocatalytic degra...
Saved in:
Published in | Separation and purification technology Vol. 284; p. 120270 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1383-5866 1873-3794 |
DOI | 10.1016/j.seppur.2021.120270 |
Cover
Abstract | •NDs/UiO-66-NH2 was prepared by a two-step route consisting of solvothermal and calcination;•Formation of NDs/UiO-66-NH2 heterojunction can enhance separation of photo-generated carriers;•NDs/UiO-66-NH2 exhibits the outstanding photocatalytic degradation activity of antibiotics.
Photocatalytic degradation of antibiotics is one of promising strategies to lessen environmental pollution and ecological damage. Pitifully, it is still challenging to achieve satisfactory photocatalytic degradation performance. Herein, nanodiamonds (NDs) coated on the surface of UiO-66-NH2 octahedrons to form NDs/UiO-66-NH2 heterojunction photocatalyst via a simple solvothermal method. The synthesized NDs/UiO-66-NH2 composite photocatalysts possess decent antibiotic degradation performance under visible light irradiation. Among all the composites, 3% NDs/UiO-66-NH2 composite exhibits the optimal degradation performance, which degraded more than 90% of TC pollutants within 120 min, 8.81 times higher than pristine UiO-66-NH2. The high photocatalytic performance of NDs/UiO-66-NH2 heterojunction is mainly attributed to the following three factors: (i) the introduction of NDs effectively increased the light absorption capacity of UiO-66-NH2; (ii) the Construction of heterojunction enhanced the separation efficiency of photogenerated carriers over UiO-66-NH2; (iii) The enriched functional groups of NDs could further promote the adsorption capacity of UiO-66-NH2. Our work broadens the application of NDs for the construction and synthesis of high-performance and stable semiconductor composite photocatalysts with visible light response in the area of environmental restoration. |
---|---|
AbstractList | •NDs/UiO-66-NH2 was prepared by a two-step route consisting of solvothermal and calcination;•Formation of NDs/UiO-66-NH2 heterojunction can enhance separation of photo-generated carriers;•NDs/UiO-66-NH2 exhibits the outstanding photocatalytic degradation activity of antibiotics.
Photocatalytic degradation of antibiotics is one of promising strategies to lessen environmental pollution and ecological damage. Pitifully, it is still challenging to achieve satisfactory photocatalytic degradation performance. Herein, nanodiamonds (NDs) coated on the surface of UiO-66-NH2 octahedrons to form NDs/UiO-66-NH2 heterojunction photocatalyst via a simple solvothermal method. The synthesized NDs/UiO-66-NH2 composite photocatalysts possess decent antibiotic degradation performance under visible light irradiation. Among all the composites, 3% NDs/UiO-66-NH2 composite exhibits the optimal degradation performance, which degraded more than 90% of TC pollutants within 120 min, 8.81 times higher than pristine UiO-66-NH2. The high photocatalytic performance of NDs/UiO-66-NH2 heterojunction is mainly attributed to the following three factors: (i) the introduction of NDs effectively increased the light absorption capacity of UiO-66-NH2; (ii) the Construction of heterojunction enhanced the separation efficiency of photogenerated carriers over UiO-66-NH2; (iii) The enriched functional groups of NDs could further promote the adsorption capacity of UiO-66-NH2. Our work broadens the application of NDs for the construction and synthesis of high-performance and stable semiconductor composite photocatalysts with visible light response in the area of environmental restoration. |
ArticleNumber | 120270 |
Author | Shi, Weilong Sun, Haoran Pan, Jingjing Guo, Feng Xu, Zheng Shi, Yuxing Wang, Lijing Li, Lingling |
Author_xml | – sequence: 1 givenname: Jingjing surname: Pan fullname: Pan, Jingjing organization: School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China – sequence: 2 givenname: Lijing surname: Wang fullname: Wang, Lijing organization: Henan Engineering Center of New Energy Battery Materials, Henan D&A Engineering Center of Advanced Battery Materials, College of Chemistry and Chemical Engineering, Institute of Architectural Engineering, Shangqiu Normal University, Shangqiu 476000, China – sequence: 3 givenname: Yuxing surname: Shi fullname: Shi, Yuxing organization: School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China – sequence: 4 givenname: Lingling surname: Li fullname: Li, Lingling organization: School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China – sequence: 5 givenname: Zheng surname: Xu fullname: Xu, Zheng organization: School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China – sequence: 6 givenname: Haoran surname: Sun fullname: Sun, Haoran organization: School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China – sequence: 7 givenname: Feng surname: Guo fullname: Guo, Feng email: gfeng0105@126.com organization: School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China – sequence: 8 givenname: Weilong surname: Shi fullname: Shi, Weilong email: shiwl@just.edu.cn organization: School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China |
BookMark | eNqFkM9KxDAQxoOs4N838NAXaDdp0jT1IMiiriB6cc8hTSduSk1KkhX06e1avXjQy8zAfL-Pme8ELZx3gNAFwQXBhC_7IsI47kJR4pIUZKo1PkDHRNQ0p3XDFtNMBc0rwfkROomxx5jURJTH6GPlXUxhp5P1LvMmc8r5zqpX77q43NinnPP8cV1mW0gQfL9zs9L4kLXexwRd9majbQfIB_uyTdm49clrldTwnqzOOngJqlM_9sol21o_beIZOjRqiHD-3U_R5vbmebXOH57u7lfXD7mmmKeckZKLsm4wYEFboIIILIxhpjGVboimLaeaCVBVUza0VprwqhKMsbZjZtLTU3Q5--rgYwxgpLbp66AUlB0kwXKfouzlnKLcpyjnFCeY_YLHYF9VeP8Pu5oxmB57sxBk1Bachs4G0El23v5t8Al0NpMF |
CitedBy_id | crossref_primary_10_1016_j_apsusc_2022_153281 crossref_primary_10_1016_j_apsusc_2024_160537 crossref_primary_10_1007_s12221_023_00453_9 crossref_primary_10_1007_s10934_022_01387_y crossref_primary_10_1016_j_jece_2022_108352 crossref_primary_10_1007_s10311_022_01390_4 crossref_primary_10_1021_acsanm_3c05511 crossref_primary_10_1016_j_cej_2023_143925 crossref_primary_10_1016_j_seppur_2025_132138 crossref_primary_10_1016_j_mseb_2024_117181 crossref_primary_10_1016_j_jallcom_2024_176315 crossref_primary_10_1016_j_seppur_2024_131034 crossref_primary_10_1016_j_ces_2023_118979 crossref_primary_10_1016_j_diamond_2024_110859 crossref_primary_10_1016_j_matchemphys_2022_126176 crossref_primary_10_1039_D3RA01970E crossref_primary_10_3390_catal14060374 crossref_primary_10_1007_s10854_024_11980_3 crossref_primary_10_1016_j_cej_2023_141455 crossref_primary_10_1007_s11356_025_35922_6 crossref_primary_10_1016_j_jmst_2023_05_018 crossref_primary_10_1039_D3YA00160A crossref_primary_10_1007_s12598_024_02688_8 crossref_primary_10_1016_j_seppur_2022_121502 crossref_primary_10_3390_molecules27206800 crossref_primary_10_1016_j_surfin_2024_105205 crossref_primary_10_1016_j_jcis_2024_03_138 crossref_primary_10_1016_j_chemosphere_2024_141446 crossref_primary_10_1016_j_compositesb_2025_112306 crossref_primary_10_1016_j_jallcom_2022_166288 crossref_primary_10_1016_j_colsurfa_2022_130041 crossref_primary_10_1016_j_foodchem_2024_138966 crossref_primary_10_1016_j_jallcom_2022_165752 crossref_primary_10_1016_j_cej_2024_155450 crossref_primary_10_1016_j_jwpe_2024_106036 crossref_primary_10_1016_j_mtcomm_2022_104354 crossref_primary_10_1016_j_jece_2023_109664 crossref_primary_10_1016_j_snb_2024_135868 crossref_primary_10_3389_fchem_2023_1209264 crossref_primary_10_1016_j_mtchem_2023_101875 crossref_primary_10_1016_j_seppur_2023_123558 crossref_primary_10_1016_j_dyepig_2024_112052 crossref_primary_10_1016_j_mseb_2025_118009 crossref_primary_10_1016_j_jenvman_2023_119349 crossref_primary_10_1039_D4EN00176A crossref_primary_10_1016_j_memsci_2023_121706 crossref_primary_10_1016_j_talanta_2024_126435 crossref_primary_10_1016_j_inoche_2022_110140 crossref_primary_10_1080_10643389_2024_2310350 crossref_primary_10_1016_j_molstruc_2025_141327 crossref_primary_10_1016_j_jphotochem_2025_116343 crossref_primary_10_1039_D3DT00993A crossref_primary_10_1016_j_molstruc_2024_141309 crossref_primary_10_1016_j_inoche_2023_111813 crossref_primary_10_1016_j_cej_2023_146159 crossref_primary_10_1016_j_apsusc_2022_153482 crossref_primary_10_1016_j_chemosphere_2024_142158 crossref_primary_10_1016_j_compositesb_2022_109955 crossref_primary_10_1016_j_cep_2023_109370 crossref_primary_10_1021_acs_iecr_3c02253 crossref_primary_10_1088_1755_1315_1325_1_012001 crossref_primary_10_1016_j_mssp_2024_108636 crossref_primary_10_1016_j_cej_2024_157173 crossref_primary_10_1016_j_jece_2025_115648 crossref_primary_10_1016_j_surfin_2023_103606 crossref_primary_10_1002_slct_202204988 crossref_primary_10_1007_s10854_023_10649_7 crossref_primary_10_1016_j_jcis_2024_07_139 crossref_primary_10_1016_j_seppur_2024_127376 crossref_primary_10_1007_s41742_023_00554_6 crossref_primary_10_1038_s41598_022_11014_0 crossref_primary_10_1016_j_talanta_2024_126034 crossref_primary_10_1016_j_diamond_2024_110935 crossref_primary_10_1016_j_seppur_2022_120987 crossref_primary_10_1016_j_jcis_2023_11_115 crossref_primary_10_1016_j_jhazmat_2022_129141 crossref_primary_10_1016_j_carbon_2023_118621 crossref_primary_10_1021_acs_inorgchem_4c01526 crossref_primary_10_1016_j_electacta_2023_143210 crossref_primary_10_1016_j_jallcom_2022_165507 crossref_primary_10_1016_j_cej_2023_145611 crossref_primary_10_1002_aoc_7600 crossref_primary_10_1016_j_matchemphys_2022_126137 crossref_primary_10_1021_acs_inorgchem_3c01176 crossref_primary_10_1039_D3RA08599F crossref_primary_10_1016_j_inoche_2024_112946 crossref_primary_10_1039_D3RA05475F crossref_primary_10_1016_j_catcom_2023_106775 crossref_primary_10_1016_j_seppur_2024_130495 crossref_primary_10_12677_ms_2024_149145 crossref_primary_10_1016_j_fuproc_2022_107431 crossref_primary_10_1021_acs_inorgchem_4c01917 crossref_primary_10_3390_catal13071028 crossref_primary_10_1016_j_apsusc_2022_154957 crossref_primary_10_1016_j_optmat_2023_113729 crossref_primary_10_1016_j_cjche_2022_04_008 crossref_primary_10_1016_j_memsci_2023_122029 crossref_primary_10_1007_s12598_023_02513_8 crossref_primary_10_3390_molecules29102381 crossref_primary_10_1039_D2EW00985D crossref_primary_10_1515_gps_2024_0150 crossref_primary_10_1007_s10854_022_09285_4 crossref_primary_10_1016_j_materresbull_2022_111789 crossref_primary_10_1016_j_ijbiomac_2024_137158 crossref_primary_10_1016_j_ijbiomac_2024_134296 crossref_primary_10_1016_j_ijhydene_2025_03_173 crossref_primary_10_1016_j_renene_2022_01_107 crossref_primary_10_1016_j_jallcom_2024_175447 crossref_primary_10_1016_j_jallcom_2024_176415 crossref_primary_10_1016_j_microc_2024_111331 crossref_primary_10_3390_molecules29071514 crossref_primary_10_1016_j_jmst_2024_02_012 crossref_primary_10_1016_j_mtnano_2023_100446 crossref_primary_10_1016_j_seppur_2023_125776 crossref_primary_10_1016_j_seppur_2023_124600 crossref_primary_10_1016_j_inoche_2024_112317 crossref_primary_10_1016_j_seppur_2022_122896 crossref_primary_10_1002_jctb_7054 crossref_primary_10_1016_j_jece_2024_113074 crossref_primary_10_1016_j_apsusc_2023_159214 crossref_primary_10_1016_j_envres_2023_117854 crossref_primary_10_1039_D2EW00784C crossref_primary_10_1016_j_mtcomm_2022_104449 crossref_primary_10_1016_j_jece_2023_110501 crossref_primary_10_1016_j_jwpe_2024_106883 crossref_primary_10_1016_j_flatc_2024_100725 crossref_primary_10_1016_j_jcis_2023_12_062 crossref_primary_10_1016_j_inoche_2023_111732 crossref_primary_10_1016_j_jallcom_2023_170761 crossref_primary_10_1016_j_inoche_2023_111576 crossref_primary_10_1016_j_seppur_2024_128839 crossref_primary_10_1016_j_inoche_2024_112329 crossref_primary_10_1016_j_seppur_2022_120875 |
Cites_doi | 10.1002/aenm.201501865 10.1016/j.seppur.2019.115770 10.1016/j.jssc.2017.08.009 10.1016/j.colsurfa.2019.04.026 10.1007/s10853-020-05436-2 10.1016/j.jcis.2021.09.095 10.1016/j.seppur.2021.118398 10.1016/j.cej.2021.130588 10.1016/j.cej.2018.09.084 10.1016/j.cej.2020.126844 10.1016/j.apcatb.2016.07.032 10.1016/j.seppur.2018.08.055 10.1016/j.scitotenv.2017.10.110 10.1016/j.seppur.2021.119223 10.1016/j.jallcom.2019.151976 10.1016/j.cej.2020.125118 10.1002/jctb.6384 10.1016/j.cej.2019.123814 10.3762/bjnano.10.134 10.1016/j.jallcom.2021.160437 10.1002/asia.201601543 10.1016/j.apcatb.2016.05.052 10.1016/j.cej.2019.122960 10.1016/j.jallcom.2019.152883 10.1016/j.apcatb.2019.117880 10.1016/j.apcatb.2018.11.018 10.1007/s10853-019-03692-5 10.1016/j.ceramint.2019.09.247 10.1016/j.jallcom.2021.162667 10.1016/j.cej.2021.130296 10.1002/cplu.201300094 10.1002/jctb.6398 10.1016/j.cej.2019.122842 10.1007/s10853-020-05700-5 10.1016/j.ijhydene.2020.08.193 10.1016/j.jcis.2021.06.074 10.1016/j.apcatb.2018.11.054 10.1016/j.carbon.2018.06.048 10.1016/j.ijhydene.2020.08.080 10.1016/j.jssc.2020.121347 10.1038/nrmicro3439 10.1016/j.jallcom.2021.162251 10.1039/C8CS00688A 10.1016/j.apsusc.2020.146576 10.1002/anie.202002375 10.1016/j.ijhydene.2019.05.135 10.1016/j.apsusc.2016.03.025 10.1007/s10853-020-05542-1 10.1016/j.micromeso.2018.08.003 10.1016/j.aquatox.2014.08.015 10.1016/j.cej.2015.02.070 10.1002/jctb.6864 10.1016/j.cej.2017.12.092 10.1016/j.seppur.2021.118477 10.1016/j.jallcom.2019.06.004 10.1016/j.seppur.2020.116930 10.1016/j.apcatb.2018.07.068 10.1016/j.apcatb.2019.05.006 10.1016/j.jcis.2018.03.114 10.1039/D0NJ02268C 10.1016/j.jhazmat.2020.122961 10.1016/j.renene.2021.06.066 10.1016/j.seppur.2020.117518 10.1021/acsanm.1c00380 10.1016/j.apsusc.2019.06.158 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.seppur.2021.120270 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3794 |
ExternalDocumentID | 10_1016_j_seppur_2021_120270 S1383586621019754 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABJNI ABMAC ABNUV ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSG SSM SSZ T5K ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FGOYB HZ~ R2- RIG SEW SSH |
ID | FETCH-LOGICAL-c306t-412682790e083be381808ff4f9f5c91c3b63c48ea592937ac16558444bd4fbe33 |
IEDL.DBID | AIKHN |
ISSN | 1383-5866 |
IngestDate | Thu Apr 24 22:57:33 EDT 2025 Tue Jul 01 00:32:51 EDT 2025 Fri Feb 23 02:40:56 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | UiO-66-NH2 Photocatalytic Nanodiamonds Antibiotic degradation Heterojunction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-412682790e083be381808ff4f9f5c91c3b63c48ea592937ac16558444bd4fbe33 |
ParticipantIDs | crossref_citationtrail_10_1016_j_seppur_2021_120270 crossref_primary_10_1016_j_seppur_2021_120270 elsevier_sciencedirect_doi_10_1016_j_seppur_2021_120270 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 2022-02-00 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Separation and purification technology |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Hussain, Mehmood, Azhar, Wang, Song (b0110) 2021; 4 Amaratunga (b0180) 2002; 297 Sun, Guo, Pan, Huang, Wangn, Shi (b0225) 2021; 406 Kirchon, Feng, Drake, Joseph, Zhou (b0095) 2018; 47 Chen, Guo, Sun, Shi, Shi (b0300) 2022; 607 Lu, Guo, Yan, Zhang, Li, Wang, Zhou (b0060) 2019; 811 Su, Lou, Shan, Chen, Zang, Liu (b0215) 2020; 525 Guo, Sun, Huang, Shi, Yan (b0305) 2020; 95 Guo, Yang, Sun, Yang, Wang, Lu, Ma, Guo (b0190) 2020; 31 Liu, Wang, Qu, Li, Shi, Zhang (b0235) 2019; 257 Pan, Guo, Sun, Shi, Shi (b0185) 2021; 263 Dang, Guo, Wang, Guo, Shi, Li, Guan (b0315) 2022; 893 Shi, Wang, Yang, Lin, Guo, Shi (b0260) 2020; 95 Lv, Liu, Li, Zhao, Wang, Wang (b0220) 2020; 10 Li, Su, Zhang (b0150) 2016; 375 Su, Huang, Lou, Liu, Sun, Zhang, Qin, Li, Zang, Dong, Shan (b0265) 2018; 139 Ming, Wei, Yang, Chen, Yang, Zhang, Hou (b0155) 2021; 424 Pastrana-Martínez, Morales-Torres, Carabineiro, Buijnsters, Faria, Figueiredo, Silva (b0170) 2013; 78 Guo, Chen, Huang, Cao, Cheng, Shi, Chen (b0295) 2021; 275 Wang, Zhou, Tian, Yan, Deng, Yang, Kang, Sun (b0240) 2019; 244 Zhu, Sun, Na, Wei, Xu, Li, Guo (b0055) 2019; 254 Gothwal, Shashidhar (b0005) 2015; 43 Chen, Xiao, Wang, Lu, Zeng (b0340) 2019; 800 Zhang, Hu, Qin, Yang, Fu (b0210) 2020; 385 Johansson, Janmar, Backhaus (b0040) 2014; 156 Guo, Huang, Chen, Cao, Cheng, Chen, Shi (b0275) 2021; 265 Guo, Sun, Cheng, Shi (b0255) 2020; 44 Guo, Wang, Sun, Li, Shi, Lin (b0270) 2020; 45 Zhu, Feng, Chao, Zheng, Shao (b0135) 2020; 46 Fu, Peng, Zeng, Yang, Song, Shao, Liu, Gu (b0335) 2015; 270 Zhu, Guo, Pan, Sun, Gao, Deng, Zhu, Shi (b0080) 2021; 56 Guo, Li, Ren, Huang, Hou, Wang, Shi, Lu (b0015) 2019; 491 Guo, Huang, Chen, Shi, Sun, Cheng, Shi, Chen (b0285) 2021; 602 Bagheri, Muhd Julkapli (b0175) 2020; 45 Pan, Guo, Sun, Li, Zhu, Gao, Shi (b0200) 2021; 56 Zhao, Jiang, Cai (b0245) 2017; 12 Wen, Shen, Fei, Niu, Lu, Guo, Lu (b0330) 2019; 573 Guo, Fan, Wang, Yu, Laipan, Ren, Zhang, Zhang, Li (b0130) 2021; 425 Shi, Li, Ren, Guo, Huang, Shi, Tang (b0070) 2019; 10 Su, Zhang, Liu, Wang (b0115) 2017; 200 Su, Liu, Ye, Shen, Lou, Shan (b0160) 2019; 4 Wu, Hu, Lin, Zhang, Hu (b0350) 2020; 382 Shakhov, Abyzov, Takai (b0165) 2017; 256 Meng, Sheng, Tang, Sun, Dong, Zhang (b0085) 2019; 244 Phoon, Ong, Mohamed Saheed, Show, Chang, Ling, Lam, Juan (b0025) 2020; 400 Yang, Liu, Wang, Lin, Hong, Guo, Shi (b0140) 2020; 287 Wang, Li, Xu, Zhu, Chen, Cui (b0345) 2019; 54 Du, Yi, Wang, Zheng, Deng, Wang (b0120) 2019; 356 Liu, Liu, Shi, Sun, Lin, Shi, Hong (b0205) 2021; 881 Shi, Yang, Sun, Wang, Lin, Guo, Shi (b0290) 2021; 56 Pi, Li, Xia, Wu, Li, Xiao, Li (b0100) 2018; 337 Chen, Xiao, Wang, Wang, Cai, Li, Qiao, Zhu, Li, Zhang, Lu (b0090) 2020; 59 Shi, Li, Xu, Sun, Guo, Shi (b0325) 2021; 96 Berendonk, Manaia, Merlin, Fatta-Kassinos, Cytryn, Walsh, Bürgmann, Sørum, Norström, Pons, Kreuzinger, Huovinen, Stefani, Schwartz, Kisand, Baquero, Martinez (b0030) 2015; 13 Mamba, Mishra (b0050) 2016; 198 Guo, Huang, Chen, Sun, Shi (b0075) 2020; 253 Guo, Shi, Li, Shi, Wen (b0010) 2019; 210 Xu, Shi, Li, Sun, Amin, Guo, Wen, Shi (b0310) 2022; 895 Shi, Liu, Sun, Hong, Li, Lin, Guo, Shi (b0320) 2021; 29 Shi, Li, Huang, Ren, Yan, Guo (b0045) 2020; 382 Lin, Xiao, Li, Liu, Wang, Yang (b0230) 2016; 6 Jiang, Liu, Caro, Huang (b0105) 2019; 274 Liang, Cui, Liu, Xu, Yao, Li (b0195) 2018; 524 Liu, Lin, Hong, Yang, Luo, Shi, Shi (b0280) 2021; 178 Shi, Shu, Sun, Ren, Li, Chen, Guo (b0250) 2020; 246 Yi, Huang, Qin, Zeng, Lai, Cheng, Ye, Song, Ren, Guo (b0145) 2018; 239 Guo, Li, Ren, Huang, Shu, Shi, Lu (b0020) 2019; 228 Subudhi, Mansingh, Tripathy, Mohanty, Mohapatra, Rath, Parida (b0125) 2019; 9 Tan, Li, Ashbolt, Wang, Cui, Zhu, Xu, Yang, Mao, Luo (b0035) 2018; 621 Shi, Li, Huang, Ren, Guo, Yan (b0065) 2020; 818 Guo, Huang, Chen, Sun, Chen (b0355) 2020; 395 Guo (10.1016/j.seppur.2021.120270_b0285) 2021; 602 Meng (10.1016/j.seppur.2021.120270_b0085) 2019; 244 Su (10.1016/j.seppur.2021.120270_b0115) 2017; 200 Pan (10.1016/j.seppur.2021.120270_b0200) 2021; 56 Mamba (10.1016/j.seppur.2021.120270_b0050) 2016; 198 Shakhov (10.1016/j.seppur.2021.120270_b0165) 2017; 256 Sun (10.1016/j.seppur.2021.120270_b0225) 2021; 406 Subudhi (10.1016/j.seppur.2021.120270_b0125) 2019; 9 Lu (10.1016/j.seppur.2021.120270_b0060) 2019; 811 Shi (10.1016/j.seppur.2021.120270_b0070) 2019; 10 Zhao (10.1016/j.seppur.2021.120270_b0245) 2017; 12 Guo (10.1016/j.seppur.2021.120270_b0305) 2020; 95 Fu (10.1016/j.seppur.2021.120270_b0335) 2015; 270 Johansson (10.1016/j.seppur.2021.120270_b0040) 2014; 156 Jiang (10.1016/j.seppur.2021.120270_b0105) 2019; 274 Chen (10.1016/j.seppur.2021.120270_b0340) 2019; 800 Chen (10.1016/j.seppur.2021.120270_b0300) 2022; 607 Phoon (10.1016/j.seppur.2021.120270_b0025) 2020; 400 Lv (10.1016/j.seppur.2021.120270_b0220) 2020; 10 Tan (10.1016/j.seppur.2021.120270_b0035) 2018; 621 Guo (10.1016/j.seppur.2021.120270_b0130) 2021; 425 Bagheri (10.1016/j.seppur.2021.120270_b0175) 2020; 45 Chen (10.1016/j.seppur.2021.120270_b0090) 2020; 59 Wang (10.1016/j.seppur.2021.120270_b0345) 2019; 54 Zhu (10.1016/j.seppur.2021.120270_b0080) 2021; 56 Li (10.1016/j.seppur.2021.120270_b0150) 2016; 375 Su (10.1016/j.seppur.2021.120270_b0215) 2020; 525 Guo (10.1016/j.seppur.2021.120270_b0015) 2019; 491 Guo (10.1016/j.seppur.2021.120270_b0355) 2020; 395 Wen (10.1016/j.seppur.2021.120270_b0330) 2019; 573 Su (10.1016/j.seppur.2021.120270_b0265) 2018; 139 Shi (10.1016/j.seppur.2021.120270_b0045) 2020; 382 Amaratunga (10.1016/j.seppur.2021.120270_b0180) 2002; 297 Guo (10.1016/j.seppur.2021.120270_b0010) 2019; 210 Liu (10.1016/j.seppur.2021.120270_b0235) 2019; 257 Liu (10.1016/j.seppur.2021.120270_b0205) 2021; 881 Berendonk (10.1016/j.seppur.2021.120270_b0030) 2015; 13 Zhu (10.1016/j.seppur.2021.120270_b0055) 2019; 254 Yang (10.1016/j.seppur.2021.120270_b0140) 2020; 287 Guo (10.1016/j.seppur.2021.120270_b0075) 2020; 253 Guo (10.1016/j.seppur.2021.120270_b0295) 2021; 275 Pan (10.1016/j.seppur.2021.120270_b0185) 2021; 263 Shi (10.1016/j.seppur.2021.120270_b0290) 2021; 56 Dang (10.1016/j.seppur.2021.120270_b0315) 2022; 893 Guo (10.1016/j.seppur.2021.120270_b0255) 2020; 44 Lin (10.1016/j.seppur.2021.120270_b0230) 2016; 6 Shi (10.1016/j.seppur.2021.120270_b0325) 2021; 96 Guo (10.1016/j.seppur.2021.120270_b0020) 2019; 228 Hussain (10.1016/j.seppur.2021.120270_b0110) 2021; 4 Zhang (10.1016/j.seppur.2021.120270_b0210) 2020; 385 Wu (10.1016/j.seppur.2021.120270_b0350) 2020; 382 Yi (10.1016/j.seppur.2021.120270_b0145) 2018; 239 Liu (10.1016/j.seppur.2021.120270_b0280) 2021; 178 Ming (10.1016/j.seppur.2021.120270_b0155) 2021; 424 Shi (10.1016/j.seppur.2021.120270_b0260) 2020; 95 Xu (10.1016/j.seppur.2021.120270_b0310) 2022; 895 Zhu (10.1016/j.seppur.2021.120270_b0135) 2020; 46 Shi (10.1016/j.seppur.2021.120270_b0320) 2021; 29 Gothwal (10.1016/j.seppur.2021.120270_b0005) 2015; 43 Du (10.1016/j.seppur.2021.120270_b0120) 2019; 356 Guo (10.1016/j.seppur.2021.120270_b0190) 2020; 31 Shi (10.1016/j.seppur.2021.120270_b0065) 2020; 818 Su (10.1016/j.seppur.2021.120270_b0160) 2019; 4 Kirchon (10.1016/j.seppur.2021.120270_b0095) 2018; 47 Liang (10.1016/j.seppur.2021.120270_b0195) 2018; 524 Guo (10.1016/j.seppur.2021.120270_b0270) 2020; 45 Pi (10.1016/j.seppur.2021.120270_b0100) 2018; 337 Shi (10.1016/j.seppur.2021.120270_b0250) 2020; 246 Guo (10.1016/j.seppur.2021.120270_b0275) 2021; 265 Wang (10.1016/j.seppur.2021.120270_b0240) 2019; 244 Pastrana-Martínez (10.1016/j.seppur.2021.120270_b0170) 2013; 78 |
References_xml | – volume: 13 start-page: 310 year: 2015 end-page: 317 ident: b0030 article-title: Tackling antibiotic resistance: the environmental framework publication-title: Nat. Rev. Microbiol. – volume: 254 start-page: 541 year: 2019 end-page: 550 ident: b0055 article-title: Fabrication of CdS/titanium-oxo-cluster nanocomposites based on a Ti publication-title: Appl. Catal. B: Environ. – volume: 602 start-page: 889 year: 2021 end-page: 897 ident: b0285 article-title: Formation of unique hollow ZnSnO publication-title: J. Colloid Interface Sci. – volume: 78 start-page: 801 year: 2013 end-page: 807 ident: b0170 article-title: Nanodiamond-TiO publication-title: Chempluschem – volume: 385 year: 2020 ident: b0210 article-title: TiO2-UiO-66-NH publication-title: Chem. Eng. J. – volume: 46 start-page: 2530 year: 2020 end-page: 2537 ident: b0135 article-title: One-pot synthesis of C-dots modified TiO publication-title: Ceram. Int. – volume: 239 start-page: 408 year: 2018 end-page: 424 ident: b0145 article-title: Selective prepared carbon nanomaterials for advanced photocatalytic application in environmental pollutant treatment and hydrogen production publication-title: Appl. Catal. B: Environ. – volume: 382 year: 2020 ident: b0045 article-title: Facile synthesis of 2D/2D Co publication-title: Chem. Eng. J. – volume: 246 year: 2020 ident: b0250 article-title: Dual enhancement of capturing photogenerated electrons by loading CoP nanoparticles on N-deficient graphitic carbon nitride for efficient photocatalytic degradation of tetracycline under visible light publication-title: Sep. Purif. Technol. – volume: 4 start-page: 4037 year: 2021 end-page: 4047 ident: b0110 article-title: BiOCl-Coated UiO-66-NH publication-title: ACS Appl. Nano Mater. – volume: 200 start-page: 448 year: 2017 end-page: 457 ident: b0115 article-title: Cd publication-title: Appl. Catal. B: Environ. – volume: 895 year: 2022 ident: b0310 article-title: Fabrication of 2D/2D Z-scheme highly crystalline carbon nitride/δ-Bi publication-title: J. Alloy. Compd. – volume: 9 start-page: 6585 year: 2019 end-page: 6597 ident: b0125 article-title: The fabrication of Au/Pd plasmonic alloys on UiO-66-NH publication-title: Sci. Technol. – volume: 45 start-page: 30521 year: 2020 end-page: 30532 ident: b0270 article-title: A one-pot sealed ammonia self-etching strategy to synthesis of N-defective g-C publication-title: Int. J. Hydrogen Energy – volume: 43 start-page: 479 year: 2015 end-page: 489 ident: b0005 article-title: Antibiotic Pollution in the Environment: A Review, CLEAN. Soil. Air publication-title: Water. – volume: 54 start-page: 11417 year: 2019 end-page: 11434 ident: b0345 article-title: Synthesis of g-C publication-title: J. Mater. Sci. – volume: 4 start-page: 19805 year: 2019 end-page: 19815 ident: b0160 article-title: Heterostructured boron doped nanodiamonds@g-C publication-title: Int. J. Hydrogen Energy – volume: 607 start-page: 1391 year: 2022 end-page: 1401 ident: b0300 article-title: Well-designed three-dimensional hierarchical hollow tubular g-C publication-title: J. Colloid Interface Sci. – volume: 811 year: 2019 ident: b0060 article-title: Hydrothermal synthesis of type II ZnIn publication-title: J. Alloy. Compd. – volume: 228 year: 2019 ident: b0020 article-title: Facile bottom-up preparation of Cl-doped porous g-C publication-title: Sep. Purif. Technol. – volume: 265 year: 2021 ident: b0275 article-title: Construction of Cu publication-title: Sep. Purif. Technol. – volume: 198 start-page: 347 year: 2016 end-page: 377 ident: b0050 article-title: Graphitic carbon nitride (g-C3N4) nanocomposites: A new and exciting generation of visible light driven photocatalysts for environmental pollution remediation publication-title: Appl. Catal. B: Environ. – volume: 6 start-page: 1501865 year: 2016 ident: b0230 article-title: Nanodiamond-Embedded p-Type Copper(I) Oxide Nanocrystals for Broad-Spectrum Photocatalytic Hydrogen Evolution publication-title: Adv. Energy Mater. – volume: 56 start-page: 6663 year: 2021 end-page: 6675 ident: b0200 article-title: Nanodiamond decorated 2D hexagonal Fe publication-title: J. Mater. Sci. – volume: 45 start-page: 31538 year: 2020 end-page: 31554 ident: b0175 article-title: Nano-diamond based photocatalysis for solar hydrogen production publication-title: Int. J. Hydrogen Energy – volume: 10 start-page: 4703 year: 2020 end-page: 4711 ident: b0220 article-title: In situ growth of benzothiadiazole functionalized UiO-66-NH publication-title: Sci. Technol. – volume: 270 start-page: 631 year: 2015 end-page: 640 ident: b0335 article-title: High efficient removal of tetracycline from solution by degradation and flocculation with nanoscale zerovalent iron publication-title: Chem. Eng. J. – volume: 881 year: 2021 ident: b0205 article-title: Carbon-based quantum dots (QDs) modified ms/tz-BiVO publication-title: J. Alloy. Compd. – volume: 31 start-page: 16746 year: 2020 end-page: 16758 ident: b0190 article-title: Ternary Fe publication-title: J. Mater. Sci.: Mater. El. – volume: 525 year: 2020 ident: b0215 article-title: Ag/Nanodiamond/g-C publication-title: Appl. Surf. Sci. – volume: 425 start-page: 130588 year: 2021 ident: b0130 article-title: Highly efficient and selective recovery of Au (III) from aqueous solution by bisthiourea immobilized UiO-66-NH publication-title: Chem. Eng. J. – volume: 257 year: 2019 ident: b0235 article-title: Nanodiamond-decorated ZnO catalysts with enhanced photocorrosion-resistance for photocatalytic degradation of gaseous toluene publication-title: Appl. Catal. B: Environ. – volume: 573 start-page: 137 year: 2019 end-page: 145 ident: b0330 article-title: Fabrication of a zinc tungstate-based a p-n heterojunction photocatalysts towards refractory pollutants degradation under visible light irradiation publication-title: Colloid. Surface. A. – volume: 210 start-page: 608 year: 2019 end-page: 615 ident: b0010 article-title: 2D/2D Z-scheme heterojunction of CuInS publication-title: Sep. Purif. Technol. – volume: 56 start-page: 2226 year: 2021 end-page: 2240 ident: b0290 article-title: Carbon dots anchored high-crystalline g-C publication-title: J. Mater. Sci. – volume: 244 start-page: 340 year: 2019 end-page: 346 ident: b0085 article-title: Metal-organic framework as nanoreactors to co-incorporate carbon nanodots and CdS quantum dots into the pores for improved H publication-title: Appl. Catal. B: Environ. – volume: 275 year: 2021 ident: b0295 article-title: Cu publication-title: Sep. Purif. Technol. – volume: 96 start-page: 3122 year: 2021 end-page: 3133 ident: b0325 article-title: One-step simple green method to prepare carbon-doped graphitic carbon nitride nanosheets for boosting visible-light photocatalytic degradation of tetracycline publication-title: J. Chem. Technol. Biot. – volume: 95 start-page: 2684 year: 2020 end-page: 2693 ident: b0305 article-title: Fabrication of TiO publication-title: J. Chem. Technol. Biot. – volume: 337 start-page: 351 year: 2018 end-page: 371 ident: b0100 article-title: Adsorptive and photocatalytic removal of Persistent Organic Pollutants (POPs) in water by metal-organic frameworks (MOFs) publication-title: Chem. Eng. J. – volume: 256 start-page: 72 year: 2017 end-page: 92 ident: b0165 article-title: Boron doped diamond synthesized from detonation nanodiamond in a C-O-H fluid at high pressure and high temperature publication-title: J. Solid State Chem. – volume: 524 start-page: 379 year: 2018 end-page: 387 ident: b0195 article-title: Construction of CdS@UIO-66-NH publication-title: J. Colloid Interface Sci. – volume: 800 start-page: 88 year: 2019 end-page: 98 ident: b0340 article-title: Novel AgI/BiOBr/reduced graphene oxide Z-scheme photocatalytic system for efficient degradation of tetracycline publication-title: J. Alloy. Compd. – volume: 424 year: 2021 ident: b0155 article-title: Photocatalytic activation of peroxymonosulfate by carbon quantum dots functionalized carbon nitride for efficient degradation of bisphenol A under visible-light irradiation publication-title: Chem. Eng. J. – volume: 139 start-page: 164 year: 2018 end-page: 171 ident: b0265 article-title: Effective light scattering and charge separation in nanodiamond@g-C publication-title: Carbon – volume: 382 year: 2020 ident: b0350 article-title: Visible light photocatalytic degradation of tetracycline over TiO publication-title: Chem. Eng. J. – volume: 253 start-page: 117518 year: 2020 ident: b0075 article-title: Investigation of visible-light-driven photocatalytic tetracycline degradation via carbon dots modified porous ZnSnO publication-title: Sep. Purif. Technol. – volume: 59 start-page: 17182 year: 2020 end-page: 17186 ident: b0090 article-title: MOFs Conferred with Transient Metal Centers for Enhanced Photocatalytic Activity publication-title: Angew. Chem. Int. Ed. Engl. – volume: 44 start-page: 11215 year: 2020 end-page: 11223 ident: b0255 article-title: Oxygen-defective ZnO porous nanosheets modified by carbon dots to improve their visible-light photocatalytic activity and gain mechanistic insight publication-title: New J. Chem. – volume: 156 start-page: 248 year: 2014 end-page: 258 ident: b0040 article-title: Toxicity of ciprofloxacin and sulfamethoxazole to marine periphytic algae and bacteria publication-title: Aquat Toxicol – volume: 406 year: 2021 ident: b0225 article-title: One-pot thermal polymerization route to prepare N-deficient modified g-C publication-title: Chem. Eng. J. – volume: 29 year: 2021 ident: b0320 article-title: Assembling g-C publication-title: Mater. Today Commun. – volume: 375 start-page: 110 year: 2016 end-page: 117 ident: b0150 article-title: Modification of g-C publication-title: Appl. Surf. Sci. – volume: 491 start-page: 88 year: 2019 end-page: 94 ident: b0015 article-title: Fabrication of p-n CuBi publication-title: Appl. Surf. Sci. – volume: 395 year: 2020 ident: b0355 article-title: Prominent co-catalytic effect of CoP nanoparticles anchored on high-crystalline g-C publication-title: Chem. Eng. J. – volume: 893 year: 2022 ident: b0315 article-title: Construction of Z-scheme Fe publication-title: J. Alloy. Compd. – volume: 10 start-page: 1360 year: 2019 end-page: 1367 ident: b0070 article-title: Construction of a 0D/1D composite based on Au nanoparticles/CuBi publication-title: Beilstein J. Nanotechnol. – volume: 274 start-page: 203 year: 2019 end-page: 211 ident: b0105 article-title: A new UiO-66-NH publication-title: Micropor. Mesopor. Mat. – volume: 56 start-page: 4366 year: 2021 end-page: 4379 ident: b0080 article-title: Fabrication of visible-light-response face-contact ZnSnO publication-title: J. Mater. Sci. – volume: 263 year: 2021 ident: b0185 article-title: Nanodiamonds anchored on porous ZnSnO publication-title: Sep. Purif. Technol. – volume: 621 start-page: 1176 year: 2018 end-page: 1184 ident: b0035 article-title: Arctic antibiotic resistance gene contamination, a result of anthropogenic activities and natural origin publication-title: Sci. Total Environ. – volume: 356 start-page: 393 year: 2019 end-page: 399 ident: b0120 article-title: Robust photocatalytic reduction of Cr(VI) on UiO-66-NH publication-title: Chem. Eng. J. – volume: 244 start-page: 262 year: 2019 end-page: 271 ident: b0240 article-title: Hydroxyl decorated g-C publication-title: Appl. Catal. B: Environ. – volume: 47 start-page: 8611 year: 2018 end-page: 8638 ident: b0095 article-title: From fundamentals to applications: a toolbox for robust and multifunctional MOF materials publication-title: Chem. Soc. Rev. – volume: 818 year: 2020 ident: b0065 article-title: Three-dimensional Z-Scheme Ag publication-title: J. Alloy. Compd. – volume: 12 start-page: 361 year: 2017 end-page: 365 ident: b0245 article-title: Graphitic C3 N4 Decorated with CoP Co-catalyst: Enhanced and Stable Photocatalytic H publication-title: Chem. Asian J. – volume: 95 start-page: 2129 year: 2020 end-page: 2138 ident: b0260 article-title: Fabrication of a ternary carbon dots/CoO/g-C publication-title: J. Chem. Technol. Biot. – volume: 400 year: 2020 ident: b0025 article-title: Conventional and emerging technologies for removal of antibiotics from wastewater publication-title: J. Hazard. Mater. – volume: 297 start-page: 1657 year: 2002 end-page: 1658 ident: b0180 publication-title: Applied physics. A dawn for carbon electronics? – volume: 178 start-page: 757 year: 2021 end-page: 765 ident: b0280 article-title: Rational copolymerization strategy engineered C self-doped g-C publication-title: Renew. Energy – volume: 287 year: 2020 ident: b0140 article-title: Enhanced photocatalytic activity of g-C publication-title: J. Solid State Chem. – volume: 6 start-page: 1501865 year: 2016 ident: 10.1016/j.seppur.2021.120270_b0230 article-title: Nanodiamond-Embedded p-Type Copper(I) Oxide Nanocrystals for Broad-Spectrum Photocatalytic Hydrogen Evolution publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501865 – volume: 10 start-page: 4703 issue: 14 year: 2020 ident: 10.1016/j.seppur.2021.120270_b0220 article-title: In situ growth of benzothiadiazole functionalized UiO-66-NH2 on carboxyl modified g-C3N4 for enhanced photocatalytic degradation of sulfamethoxazole under visible light, Catal publication-title: Sci. Technol. – volume: 228 year: 2019 ident: 10.1016/j.seppur.2021.120270_b0020 article-title: Facile bottom-up preparation of Cl-doped porous g-C3N4 nanosheets for enhanced photocatalytic degradation of tetracycline under visible light publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2019.115770 – volume: 9 start-page: 6585 year: 2019 ident: 10.1016/j.seppur.2021.120270_b0125 article-title: The fabrication of Au/Pd plasmonic alloys on UiO-66-NH2: an efficient visible light-induced photocatalyst towards the Suzuki Miyaura coupling reaction under ambient conditions, Catal publication-title: Sci. Technol. – volume: 256 start-page: 72 year: 2017 ident: 10.1016/j.seppur.2021.120270_b0165 article-title: Boron doped diamond synthesized from detonation nanodiamond in a C-O-H fluid at high pressure and high temperature publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2017.08.009 – volume: 573 start-page: 137 year: 2019 ident: 10.1016/j.seppur.2021.120270_b0330 article-title: Fabrication of a zinc tungstate-based a p-n heterojunction photocatalysts towards refractory pollutants degradation under visible light irradiation publication-title: Colloid. Surface. A. doi: 10.1016/j.colsurfa.2019.04.026 – volume: 56 start-page: 2226 issue: 3 year: 2021 ident: 10.1016/j.seppur.2021.120270_b0290 article-title: Carbon dots anchored high-crystalline g-C3N4 as a metal-free composite photocatalyst for boosted photocatalytic degradation of tetracycline under visible light publication-title: J. Mater. Sci. doi: 10.1007/s10853-020-05436-2 – volume: 607 start-page: 1391 year: 2022 ident: 10.1016/j.seppur.2021.120270_b0300 article-title: Well-designed three-dimensional hierarchical hollow tubular g-C3N4/ZnIn2S4 nanosheets heterostructure for achieving efficient visible-light photocatalytic hydrogen evolution publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.09.095 – volume: 263 year: 2021 ident: 10.1016/j.seppur.2021.120270_b0185 article-title: Nanodiamonds anchored on porous ZnSnO3 cubes as an efficient composite photocatalyst with improved visible-light photocatalytic degradation of tetracycline publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2021.118398 – volume: 425 start-page: 130588 year: 2021 ident: 10.1016/j.seppur.2021.120270_b0130 article-title: Highly efficient and selective recovery of Au (III) from aqueous solution by bisthiourea immobilized UiO-66-NH2: Performance and mechanisms publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.130588 – volume: 356 start-page: 393 year: 2019 ident: 10.1016/j.seppur.2021.120270_b0120 article-title: Robust photocatalytic reduction of Cr(VI) on UiO-66-NH2 (Zr/Hf) metal-organic framework membrane under sunlight irradiation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.09.084 – volume: 406 year: 2021 ident: 10.1016/j.seppur.2021.120270_b0225 article-title: One-pot thermal polymerization route to prepare N-deficient modified g-C3N4 for the degradation of tetracycline by the synergistic effect of photocatalysis and persulfate-based advanced oxidation process publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126844 – volume: 200 start-page: 448 year: 2017 ident: 10.1016/j.seppur.2021.120270_b0115 article-title: Cd0.2Zn0.8S@UiO-66-NH2 nanocomposites as efficient and stable visible-light-driven photocatalyst for H2 evolution and CO2 reduction publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2016.07.032 – volume: 210 start-page: 608 year: 2019 ident: 10.1016/j.seppur.2021.120270_b0010 article-title: 2D/2D Z-scheme heterojunction of CuInS2/g-C3N4 for enhanced visible-light-driven photocatalytic activity towards the degradation of tetracycline publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2018.08.055 – volume: 621 start-page: 1176 year: 2018 ident: 10.1016/j.seppur.2021.120270_b0035 article-title: Arctic antibiotic resistance gene contamination, a result of anthropogenic activities and natural origin publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.10.110 – volume: 275 year: 2021 ident: 10.1016/j.seppur.2021.120270_b0295 article-title: Cu3P nanoparticles decorated hollow tubular carbon nitride as a superior photocatalyst for photodegradation of tetracycline under visible light publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2021.119223 – volume: 811 year: 2019 ident: 10.1016/j.seppur.2021.120270_b0060 article-title: Hydrothermal synthesis of type II ZnIn2S4/BiPO4 heterojunction photocatalyst with dandelion-like microflower structure for enhanced photocatalytic degradation of tetracycline under simulated solar light publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2019.151976 – volume: 395 year: 2020 ident: 10.1016/j.seppur.2021.120270_b0355 article-title: Prominent co-catalytic effect of CoP nanoparticles anchored on high-crystalline g-C3N4 nanosheets for enhanced visible-light photocatalytic degradation of tetracycline in wastewater publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125118 – volume: 95 start-page: 2684 year: 2020 ident: 10.1016/j.seppur.2021.120270_b0305 article-title: Fabrication of TiO2/high-crystalline g-C3N4 composite with enhanced visible-light photocatalytic performance for tetracycline degradation publication-title: J. Chem. Technol. Biot. doi: 10.1002/jctb.6384 – volume: 385 year: 2020 ident: 10.1016/j.seppur.2021.120270_b0210 article-title: TiO2-UiO-66-NH2 nanocomposites as efficient photocatalysts for the oxidation of VOCs publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123814 – volume: 10 start-page: 1360 year: 2019 ident: 10.1016/j.seppur.2021.120270_b0070 article-title: Construction of a 0D/1D composite based on Au nanoparticles/CuBi2O4 microrods for efficient visible-light-driven photocatalytic activity publication-title: Beilstein J. Nanotechnol. doi: 10.3762/bjnano.10.134 – volume: 881 year: 2021 ident: 10.1016/j.seppur.2021.120270_b0205 article-title: Carbon-based quantum dots (QDs) modified ms/tz-BiVO4 heterojunction with enhanced photocatalytic performance for water purification publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2021.160437 – volume: 12 start-page: 361 year: 2017 ident: 10.1016/j.seppur.2021.120270_b0245 article-title: Graphitic C3 N4 Decorated with CoP Co-catalyst: Enhanced and Stable Photocatalytic H2 Evolution Activity from Water under Visible-light Irradiation publication-title: Chem. Asian J. doi: 10.1002/asia.201601543 – volume: 198 start-page: 347 year: 2016 ident: 10.1016/j.seppur.2021.120270_b0050 article-title: Graphitic carbon nitride (g-C3N4) nanocomposites: A new and exciting generation of visible light driven photocatalysts for environmental pollution remediation publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2016.05.052 – volume: 31 start-page: 16746 year: 2020 ident: 10.1016/j.seppur.2021.120270_b0190 article-title: Ternary Fe3O4/MoS2/BiVO4 nanocomposites: novel magnetically separable visible light-driven photocatalyst for efficiently degradation of antibiotic wastewater through p–n heterojunction publication-title: J. Mater. Sci.: Mater. El. – volume: 382 year: 2020 ident: 10.1016/j.seppur.2021.120270_b0045 article-title: Facile synthesis of 2D/2D Co3(PO4)2/g-C3N4 heterojunction for highly photocatalytic overall water splitting under visible light publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122960 – volume: 818 year: 2020 ident: 10.1016/j.seppur.2021.120270_b0065 article-title: Three-dimensional Z-Scheme Ag3PO4/Co3(PO4)2@Ag heterojunction for improved visible-light photocatalytic degradation activity of tetracycline publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2019.152883 – volume: 257 year: 2019 ident: 10.1016/j.seppur.2021.120270_b0235 article-title: Nanodiamond-decorated ZnO catalysts with enhanced photocorrosion-resistance for photocatalytic degradation of gaseous toluene publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2019.117880 – volume: 244 start-page: 340 year: 2019 ident: 10.1016/j.seppur.2021.120270_b0085 article-title: Metal-organic framework as nanoreactors to co-incorporate carbon nanodots and CdS quantum dots into the pores for improved H2 evolution without noble-metal cocatalyst publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2018.11.018 – volume: 54 start-page: 11417 issue: 17 year: 2019 ident: 10.1016/j.seppur.2021.120270_b0345 article-title: Synthesis of g-C3N4/NiO p–n heterojunction materials with ball-flower morphology and enhanced photocatalytic performance for the removal of tetracycline and Cr6+ publication-title: J. Mater. Sci. doi: 10.1007/s10853-019-03692-5 – volume: 46 start-page: 2530 issue: 2 year: 2020 ident: 10.1016/j.seppur.2021.120270_b0135 article-title: One-pot synthesis of C-dots modified TiO2 nanosheets/UiO-66-NH2 with improved photocatalytic activity under visible light publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.09.247 – volume: 895 year: 2022 ident: 10.1016/j.seppur.2021.120270_b0310 article-title: Fabrication of 2D/2D Z-scheme highly crystalline carbon nitride/δ-Bi2O3 heterojunction photocatalyst with enhanced photocatalytic degradation of tetracycline publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2021.162667 – volume: 424 year: 2021 ident: 10.1016/j.seppur.2021.120270_b0155 article-title: Photocatalytic activation of peroxymonosulfate by carbon quantum dots functionalized carbon nitride for efficient degradation of bisphenol A under visible-light irradiation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.130296 – volume: 297 start-page: 1657 year: 2002 ident: 10.1016/j.seppur.2021.120270_b0180 publication-title: Applied physics. A dawn for carbon electronics? – volume: 78 start-page: 801 issue: 8 year: 2013 ident: 10.1016/j.seppur.2021.120270_b0170 article-title: Nanodiamond-TiO2 Composites for Heterogeneous Photocatalysis publication-title: Chempluschem doi: 10.1002/cplu.201300094 – volume: 95 start-page: 2129 year: 2020 ident: 10.1016/j.seppur.2021.120270_b0260 article-title: Fabrication of a ternary carbon dots/CoO/g-C3N4 nanocomposite photocatalyst with enhanced visible-light-driven photocatalytic hydrogen production publication-title: J. Chem. Technol. Biot. doi: 10.1002/jctb.6398 – volume: 382 year: 2020 ident: 10.1016/j.seppur.2021.120270_b0350 article-title: Visible light photocatalytic degradation of tetracycline over TiO2 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122842 – volume: 56 start-page: 6663 issue: 11 year: 2021 ident: 10.1016/j.seppur.2021.120270_b0200 article-title: Nanodiamond decorated 2D hexagonal Fe2O3 nanosheets with a Z-scheme photogenerated electron transfer path for enhanced photocatalytic activity publication-title: J. Mater. Sci. doi: 10.1007/s10853-020-05700-5 – volume: 45 start-page: 31538 issue: 56 year: 2020 ident: 10.1016/j.seppur.2021.120270_b0175 article-title: Nano-diamond based photocatalysis for solar hydrogen production publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.08.193 – volume: 602 start-page: 889 year: 2021 ident: 10.1016/j.seppur.2021.120270_b0285 article-title: Formation of unique hollow ZnSnO3@ZnIn2S4 core-shell heterojunction to boost visible-light-driven photocatalytic water splitting for hydrogen production publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.06.074 – volume: 244 start-page: 262 year: 2019 ident: 10.1016/j.seppur.2021.120270_b0240 article-title: Hydroxyl decorated g-C3N4 nanoparticles with narrowed bandgap for high efficient photocatalyst design publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2018.11.054 – volume: 139 start-page: 164 year: 2018 ident: 10.1016/j.seppur.2021.120270_b0265 article-title: Effective light scattering and charge separation in nanodiamond@g-C3N4 for enhanced visible-light hydrogen evolution publication-title: Carbon doi: 10.1016/j.carbon.2018.06.048 – volume: 45 start-page: 30521 issue: 55 year: 2020 ident: 10.1016/j.seppur.2021.120270_b0270 article-title: A one-pot sealed ammonia self-etching strategy to synthesis of N-defective g-C3N4 for enhanced visible-light photocatalytic hydrogen publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.08.080 – volume: 287 year: 2020 ident: 10.1016/j.seppur.2021.120270_b0140 article-title: Enhanced photocatalytic activity of g-C3N4 quantum dots/Bi3.64Mo0.36O6.55 nanospheres composites publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2020.121347 – volume: 13 start-page: 310 issue: 5 year: 2015 ident: 10.1016/j.seppur.2021.120270_b0030 article-title: Tackling antibiotic resistance: the environmental framework publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro3439 – volume: 893 year: 2022 ident: 10.1016/j.seppur.2021.120270_b0315 article-title: Construction of Z-scheme Fe3O4/BiOCl/BiOI heterojunction with superior recyclability for improved photocatalytic activity towards tetracycline degradation publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2021.162251 – volume: 47 start-page: 8611 year: 2018 ident: 10.1016/j.seppur.2021.120270_b0095 article-title: From fundamentals to applications: a toolbox for robust and multifunctional MOF materials publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00688A – volume: 525 year: 2020 ident: 10.1016/j.seppur.2021.120270_b0215 article-title: Ag/Nanodiamond/g-C3N4 heterostructures with enhanced visible-light photocatalytic performance publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.146576 – volume: 59 start-page: 17182 issue: 39 year: 2020 ident: 10.1016/j.seppur.2021.120270_b0090 article-title: MOFs Conferred with Transient Metal Centers for Enhanced Photocatalytic Activity publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.202002375 – volume: 4 start-page: 19805 year: 2019 ident: 10.1016/j.seppur.2021.120270_b0160 article-title: Heterostructured boron doped nanodiamonds@g-C3N4 nanocomposites with enhanced photocatalytic capability under visible light irradiation publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.05.135 – volume: 375 start-page: 110 year: 2016 ident: 10.1016/j.seppur.2021.120270_b0150 article-title: Modification of g-C3N4 nanosheets by carbon quantum dots for highly efficient photocatalytic generation of hydrogen publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.03.025 – volume: 56 start-page: 4366 issue: 6 year: 2021 ident: 10.1016/j.seppur.2021.120270_b0080 article-title: Fabrication of visible-light-response face-contact ZnSnO3@g-C3N4 core–shell heterojunction for highly efficient photocatalytic degradation of tetracycline contaminant and mechanism insight publication-title: J. Mater. Sci. doi: 10.1007/s10853-020-05542-1 – volume: 274 start-page: 203 year: 2019 ident: 10.1016/j.seppur.2021.120270_b0105 article-title: A new UiO-66-NH2 based mixed-matrix membranes with high CO2/CH4 separation performance publication-title: Micropor. Mesopor. Mat. doi: 10.1016/j.micromeso.2018.08.003 – volume: 156 start-page: 248 year: 2014 ident: 10.1016/j.seppur.2021.120270_b0040 article-title: Toxicity of ciprofloxacin and sulfamethoxazole to marine periphytic algae and bacteria publication-title: Aquat Toxicol doi: 10.1016/j.aquatox.2014.08.015 – volume: 270 start-page: 631 year: 2015 ident: 10.1016/j.seppur.2021.120270_b0335 article-title: High efficient removal of tetracycline from solution by degradation and flocculation with nanoscale zerovalent iron publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.02.070 – volume: 96 start-page: 3122 issue: 11 year: 2021 ident: 10.1016/j.seppur.2021.120270_b0325 article-title: One-step simple green method to prepare carbon-doped graphitic carbon nitride nanosheets for boosting visible-light photocatalytic degradation of tetracycline publication-title: J. Chem. Technol. Biot. doi: 10.1002/jctb.6864 – volume: 337 start-page: 351 year: 2018 ident: 10.1016/j.seppur.2021.120270_b0100 article-title: Adsorptive and photocatalytic removal of Persistent Organic Pollutants (POPs) in water by metal-organic frameworks (MOFs) publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.12.092 – volume: 265 year: 2021 ident: 10.1016/j.seppur.2021.120270_b0275 article-title: Construction of Cu3P-ZnSnO3-g-C3N4 p-n-n heterojunction with multiple built-in electric fields for effectively boosting visible-light photocatalytic degradation of broad-spectrum antibiotics publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2021.118477 – volume: 29 year: 2021 ident: 10.1016/j.seppur.2021.120270_b0320 article-title: Assembling g-C3N4 nanosheets on rod-like CoFe2O4 nanocrystals to boost photocatalytic degradation of ciprofloxacin with peroxymonosulfate activation publication-title: Mater. Today Commun. – volume: 800 start-page: 88 year: 2019 ident: 10.1016/j.seppur.2021.120270_b0340 article-title: Novel AgI/BiOBr/reduced graphene oxide Z-scheme photocatalytic system for efficient degradation of tetracycline publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2019.06.004 – volume: 246 year: 2020 ident: 10.1016/j.seppur.2021.120270_b0250 article-title: Dual enhancement of capturing photogenerated electrons by loading CoP nanoparticles on N-deficient graphitic carbon nitride for efficient photocatalytic degradation of tetracycline under visible light publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2020.116930 – volume: 239 start-page: 408 year: 2018 ident: 10.1016/j.seppur.2021.120270_b0145 article-title: Selective prepared carbon nanomaterials for advanced photocatalytic application in environmental pollutant treatment and hydrogen production publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2018.07.068 – volume: 254 start-page: 541 year: 2019 ident: 10.1016/j.seppur.2021.120270_b0055 article-title: Fabrication of CdS/titanium-oxo-cluster nanocomposites based on a Ti32 framework with enhanced photocatalytic activity for tetracycline hydrochloride degradation under visible light publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2019.05.006 – volume: 524 start-page: 379 year: 2018 ident: 10.1016/j.seppur.2021.120270_b0195 article-title: Construction of CdS@UIO-66-NH2 core-shell nanorods for enhanced photocatalytic activity with excellent photostability publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2018.03.114 – volume: 44 start-page: 11215 issue: 26 year: 2020 ident: 10.1016/j.seppur.2021.120270_b0255 article-title: Oxygen-defective ZnO porous nanosheets modified by carbon dots to improve their visible-light photocatalytic activity and gain mechanistic insight publication-title: New J. Chem. doi: 10.1039/D0NJ02268C – volume: 400 year: 2020 ident: 10.1016/j.seppur.2021.120270_b0025 article-title: Conventional and emerging technologies for removal of antibiotics from wastewater publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.122961 – volume: 178 start-page: 757 year: 2021 ident: 10.1016/j.seppur.2021.120270_b0280 article-title: Rational copolymerization strategy engineered C self-doped g-C3N4 for efficient and robust solar photocatalytic H2 evolution publication-title: Renew. Energy doi: 10.1016/j.renene.2021.06.066 – volume: 43 start-page: 479 issue: 4 year: 2015 ident: 10.1016/j.seppur.2021.120270_b0005 article-title: Antibiotic Pollution in the Environment: A Review, CLEAN. Soil. Air publication-title: Water. – volume: 253 start-page: 117518 year: 2020 ident: 10.1016/j.seppur.2021.120270_b0075 article-title: Investigation of visible-light-driven photocatalytic tetracycline degradation via carbon dots modified porous ZnSnO3 cubes: Mechanism and degradation pathway publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2020.117518 – volume: 4 start-page: 4037 issue: 4 year: 2021 ident: 10.1016/j.seppur.2021.120270_b0110 article-title: BiOCl-Coated UiO-66-NH2 Metal-Organic Framework Nanoparticles for Visible-Light Photocatalytic Cr(VI) Reduction publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.1c00380 – volume: 491 start-page: 88 year: 2019 ident: 10.1016/j.seppur.2021.120270_b0015 article-title: Fabrication of p-n CuBi2O4/MoS2 heterojunction with nanosheets-on-microrods structure for enhanced photocatalytic activity towards tetracycline degradation publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.06.158 |
SSID | ssj0017182 |
Score | 2.6637354 |
Snippet | •NDs/UiO-66-NH2 was prepared by a two-step route consisting of solvothermal and calcination;•Formation of NDs/UiO-66-NH2 heterojunction can enhance separation... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 120270 |
SubjectTerms | Antibiotic degradation Heterojunction Nanodiamonds Photocatalytic UiO-66-NH2 |
Title | Construction of nanodiamonds/UiO-66-NH2 heterojunction for boosted visible-light photocatalytic degradation of antibiotics |
URI | https://dx.doi.org/10.1016/j.seppur.2021.120270 |
Volume | 284 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8RADA66XvQgPvG5zMHruJ3pdNoeRZRVcT3ogrfSmU6xsrQF14Me_O0mfSwKouC1JG1JhuRLJg-AE5dFnkW3QImqmCvrWx6nNO4uJH-sRB5YahS-nejxVF0_Bo9LcN73wlBZZWf7W5veWOvuyaiT5qguitG9wOAqiLTGoEXEYaCWYUX6sQ4GsHJ2dTOeLC4T0Pw2l55Iz4mh76BryrxeXF2_0mBQKU4FZQK8nz3UF69zuQHrHVxkZ-0fbcKSK7dg7csQwW14p52b_RRYVuWsTMsKtY7nK3sZTYs7rjWfjCV7osqX6hkdWUOJaJUhxKZ0J6MOczNzfEahOqufqnnV5HXe8LMso3kS7eolej2qojBFReOdd2B6efFwPubdRgVuMTSYcyWkjmQYew6Rl3Hkrb0oz1Ueo05iYX2jfasilwaImvwwtUIHiFCUMpnKkd7fhUFZlW4PWC6l8YwUWYygz6Y2sp4SBs1FFIQWYcY--L0UE9uNG6etF7Okryt7TlrZJyT7pJX9PvAFV92O2_iDPuwVlHw7Ngl6hF85D_7NeQirknogmtLtIxight0xIpO5GcLy6YcYdufvE6OW470 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qe1AP4hPf7sHr2myyeR2lKKmt9aAFbyG72WCkJAHrQX-9M3mIgih4DTNJmFlmvpmdB8C5SQNLo1ugRFXIpXY0DxMad-eTP5YiczU1Ct_OvGgubx7dxx6Mul4YKqtsbX9j02tr3T4ZttIcVnk-vBcYXLmB52HQIkLflSswkC5Ge30YXI4n0ezzMgHNb33pifScGLoOurrM68VU1SsNBrXFhaBMgPWzh_rida43YaOFi-yy-aMt6JliG9a_DBHcgXfaudlNgWVlxoqkKFHreL7Sl-E8v-Oex2eRzZ6o8qV8RkdWUyJaZQixKd3JqMNcLQxfUKjOqqdyWdZ5nTf8LEtpnkSzeolej6rIVV7SeOddmF9fPYwi3m5U4BpDgyWXwvYC2w8tg8hLGfLWVpBlMgtRJ6HQjvIcLQOTuIiaHD_RwnMRoUipUpkhvbMH_aIszD6wzLaVpWyRhgj6dKIDbUmh0FwErq8RZhyA00kx1u24cdp6sYi7urLnuJF9TLKPG9kfAP_kqppxG3_Q-52C4m_HJkaP8Cvn4b85z2A1eridxtPxbHIEazb1Q9Rl3MfQR22bE0QpS3XansIPGzblrA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+nanodiamonds%2FUiO-66-NH2+heterojunction+for+boosted+visible-light+photocatalytic+degradation+of+antibiotics&rft.jtitle=Separation+and+purification+technology&rft.au=Pan%2C+Jingjing&rft.au=Wang%2C+Lijing&rft.au=Shi%2C+Yuxing&rft.au=Li%2C+Lingling&rft.date=2022-02-01&rft.pub=Elsevier+B.V&rft.issn=1383-5866&rft.eissn=1873-3794&rft.volume=284&rft_id=info:doi/10.1016%2Fj.seppur.2021.120270&rft.externalDocID=S1383586621019754 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1383-5866&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1383-5866&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1383-5866&client=summon |