Comparison of microwave and conventional carbothermal reduction of red mud for recovery of iron values

[Display omitted] •Recovery of iron values from Indian red mud through different routes.•Conventional beneficiation processes inefficient to recover iron values.•Concentrate with ∼47% grade, 88% recovery at 72% yield is attained in microwave route.•Microwave route better than conventional route and...

Full description

Saved in:
Bibliographic Details
Published inMinerals engineering Vol. 132; pp. 202 - 210
Main Authors Agrawal, Shrey, Rayapudi, Veeranjaneyulu, Dhawan, Nikhil
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Recovery of iron values from Indian red mud through different routes.•Conventional beneficiation processes inefficient to recover iron values.•Concentrate with ∼47% grade, 88% recovery at 72% yield is attained in microwave route.•Microwave route better than conventional route and employs lower time and reductant.•Ferrite balls (∼92% iron content with 94% purity) are observed in the microwave route. This study investigates the recovery of iron values from Indian red mud through different routes. The conventional beneficiation was found futile to recover iron values from the red mud due to complex structure. The carbothermal reduction is carried out in both muffle and microwave furnace using statistical design. The XRD quantitative phase analysis of the magnetic concentrate indicates distinct phase transformation of hematite to ferrite as a function of temperature and in the sequence Fe2O3 → Fe3O4 → FeO → Fe. In microwave furnace, concentrate with ∼47% grade and 88% recovery at a yield of 72% is attained at optimal conditions of 1000 °C, 10 min with 11% C whereas in muffle furnace, optimal conditions of 1000 °C, 50 min reduction time with 16.5% C yields a concentrate ∼49% iron, 87% iron recovery with a yield of 56%. On comparison of carbothermal reduction in muffle and microwave routes, the microwave route provides a significant improvement in iron grade and recovery at comparatively lower levels of time and reductant dosage. Along with enhanced iron grade-recovery, significant ferrite balls of 1 ± 0.5 mm (∼92% iron content with 94% purity) are observed in the microwave route and were handpicked from the product. Nevertheless, the ferrite phase is forming in both the routes, but in microwave route, ferrite balls of appreciable size and purity accounting ∼8–10% of total iron values in the feed are also observed. In addition, the microwave assisted carbothermal reduction offers a faster reduction rate, cleaner processing and relatively economical in terms of energy and reductant consumption. The product obtained is rich in magnetite, wustite and ferrite phase which can be further used in alternate iron making units.
AbstractList [Display omitted] •Recovery of iron values from Indian red mud through different routes.•Conventional beneficiation processes inefficient to recover iron values.•Concentrate with ∼47% grade, 88% recovery at 72% yield is attained in microwave route.•Microwave route better than conventional route and employs lower time and reductant.•Ferrite balls (∼92% iron content with 94% purity) are observed in the microwave route. This study investigates the recovery of iron values from Indian red mud through different routes. The conventional beneficiation was found futile to recover iron values from the red mud due to complex structure. The carbothermal reduction is carried out in both muffle and microwave furnace using statistical design. The XRD quantitative phase analysis of the magnetic concentrate indicates distinct phase transformation of hematite to ferrite as a function of temperature and in the sequence Fe2O3 → Fe3O4 → FeO → Fe. In microwave furnace, concentrate with ∼47% grade and 88% recovery at a yield of 72% is attained at optimal conditions of 1000 °C, 10 min with 11% C whereas in muffle furnace, optimal conditions of 1000 °C, 50 min reduction time with 16.5% C yields a concentrate ∼49% iron, 87% iron recovery with a yield of 56%. On comparison of carbothermal reduction in muffle and microwave routes, the microwave route provides a significant improvement in iron grade and recovery at comparatively lower levels of time and reductant dosage. Along with enhanced iron grade-recovery, significant ferrite balls of 1 ± 0.5 mm (∼92% iron content with 94% purity) are observed in the microwave route and were handpicked from the product. Nevertheless, the ferrite phase is forming in both the routes, but in microwave route, ferrite balls of appreciable size and purity accounting ∼8–10% of total iron values in the feed are also observed. In addition, the microwave assisted carbothermal reduction offers a faster reduction rate, cleaner processing and relatively economical in terms of energy and reductant consumption. The product obtained is rich in magnetite, wustite and ferrite phase which can be further used in alternate iron making units.
Author Rayapudi, Veeranjaneyulu
Agrawal, Shrey
Dhawan, Nikhil
Author_xml – sequence: 1
  givenname: Shrey
  surname: Agrawal
  fullname: Agrawal, Shrey
– sequence: 2
  givenname: Veeranjaneyulu
  surname: Rayapudi
  fullname: Rayapudi, Veeranjaneyulu
– sequence: 3
  givenname: Nikhil
  surname: Dhawan
  fullname: Dhawan, Nikhil
  email: ndhawan.fmt@iitr.ac.in
BookMark eNqFkMtKxDAUhoOM4MzoG7joC7Qm6S1xIcjgDQbc6DqcJqeaoU2GtFOZtzdlXLnQ1bnxHfi_FVk475CQa0YzRll1s8t669B9ZJwykTGeUcbPyJKJmqeyKIoFWVIheVqJurwgq2HYUUrLWsglaTe-30Owg3eJb5Pe6uC_YMIEnEm0dxO60XoHXaIhNH78xNDHIaA56PkwQ3FI-oNJWh9ir_2E4TjvbYj3CboDDpfkvIVuwKufuibvjw9vm-d0-_r0srnfpjqn1ZjmrYCaIhMyZ2XDoQEjDdQoGllXbQ1NTGDyos6l4WXVSsm5qbAQJTMgtYR8TYrT3xhjGAK2ah9sD-GoGFWzK7VTJ1dqdqUYV9FVxG5_YdqOMOcbA9juP_juBGMMNlkMatAWnUZjo41RGW__fvANMSOMZA
CitedBy_id crossref_primary_10_3390_min11020222
crossref_primary_10_1016_j_jclepro_2022_132181
crossref_primary_10_1016_j_susmat_2020_e00201
crossref_primary_10_1007_s11837_019_03523_7
crossref_primary_10_1016_j_mineng_2023_108426
crossref_primary_10_1016_j_mineng_2021_107216
crossref_primary_10_1016_j_scp_2024_101866
crossref_primary_10_1016_j_mineng_2020_106686
crossref_primary_10_4028_www_scientific_net_SSP_304_91
crossref_primary_10_1007_s11837_021_05076_0
crossref_primary_10_1007_s12666_023_03141_7
crossref_primary_10_1007_s40831_023_00655_8
crossref_primary_10_1007_s11356_022_20279_x
crossref_primary_10_1007_s11837_023_05896_2
crossref_primary_10_3390_cryst13010001
crossref_primary_10_1016_j_psep_2023_12_057
crossref_primary_10_1007_s11837_024_06487_5
crossref_primary_10_1016_j_cherd_2023_04_036
crossref_primary_10_1007_s40831_019_00244_8
crossref_primary_10_1016_j_jhazmat_2021_126542
crossref_primary_10_1007_s40831_024_00986_0
crossref_primary_10_1007_s42461_020_00304_8
crossref_primary_10_1016_j_jece_2023_109770
crossref_primary_10_1016_j_hydromet_2020_105524
crossref_primary_10_1016_j_mineng_2020_106653
crossref_primary_10_1016_j_hydromet_2021_105704
crossref_primary_10_1590_1980_5373_mr_2021_0446
crossref_primary_10_1007_s11837_024_06605_3
crossref_primary_10_1007_s11663_024_03110_5
crossref_primary_10_1016_j_mineng_2022_107394
crossref_primary_10_1016_j_mineng_2024_108954
crossref_primary_10_1007_s40831_023_00686_1
crossref_primary_10_1016_j_scitotenv_2023_166686
crossref_primary_10_1007_s12205_024_2475_4
crossref_primary_10_1007_s12613_021_2408_x
crossref_primary_10_1016_j_susmat_2021_e00246
crossref_primary_10_1007_s11837_020_04222_4
crossref_primary_10_1007_s11837_024_06788_9
crossref_primary_10_1016_j_envpol_2023_123140
crossref_primary_10_3390_su14031258
crossref_primary_10_1016_j_matchemphys_2024_129950
crossref_primary_10_1016_j_partic_2024_07_010
crossref_primary_10_3390_ma17215152
crossref_primary_10_3390_met10050676
crossref_primary_10_1016_j_jenvman_2025_124669
crossref_primary_10_1016_j_jhazmat_2020_122579
crossref_primary_10_1016_j_apt_2021_05_001
crossref_primary_10_1007_s40831_020_00279_2
crossref_primary_10_1080_08827508_2024_2347476
crossref_primary_10_1016_j_mineng_2021_107084
crossref_primary_10_1016_j_mineng_2023_108131
crossref_primary_10_3390_min14101044
crossref_primary_10_1016_j_jhazmat_2023_131255
crossref_primary_10_1080_08827508_2020_1837126
crossref_primary_10_3390_en15103830
crossref_primary_10_1007_s00128_022_03496_5
crossref_primary_10_3390_ma16186178
crossref_primary_10_1007_s11663_020_01882_0
crossref_primary_10_1016_j_jenvman_2024_121303
crossref_primary_10_1016_j_hydromet_2023_106057
crossref_primary_10_1007_s40831_024_00924_0
crossref_primary_10_1080_10426507_2020_1802274
crossref_primary_10_1007_s11663_020_01883_z
crossref_primary_10_1016_j_powtec_2020_05_112
crossref_primary_10_1007_s12666_023_03024_x
crossref_primary_10_1016_j_jclepro_2021_129853
crossref_primary_10_1016_j_mineng_2024_109155
crossref_primary_10_1016_j_mineng_2020_106553
crossref_primary_10_1007_s11663_021_02285_5
crossref_primary_10_3390_min14020124
crossref_primary_10_1016_j_susmat_2024_e01053
crossref_primary_10_1051_metal_2020034
crossref_primary_10_1016_j_powtec_2020_04_047
crossref_primary_10_1016_j_seppur_2023_123882
crossref_primary_10_1007_s11356_022_20244_8
crossref_primary_10_3390_pr10112323
crossref_primary_10_1007_s12666_020_01956_2
crossref_primary_10_1016_j_ceramint_2022_09_167
Cites_doi 10.1016/S0301-7516(99)00009-5
10.1016/j.jhazmat.2011.03.004
10.1016/j.jhazmat.2006.12.015
10.1016/j.hydromet.2012.06.002
10.1016/j.physc.2010.12.003
10.1016/j.tca.2014.04.027
10.1016/j.powtec.2016.06.013
10.1134/S0036029513010114
10.1016/j.mineng.2012.05.021
10.1007/s12613-012-0613-3
10.1007/s11705-017-1653-z
10.1016/j.mineng.2017.01.004
10.1007/s40831-018-0183-3
10.1016/j.mineng.2006.08.002
10.1007/s11837-013-0560-0
10.1016/j.mineng.2015.01.005
10.1007/s11837-001-0011-1
10.1016/0892-6875(90)90129-Y
10.1007/s40831-016-0060-x
10.1016/j.jhazmat.2008.01.054
10.1016/S1003-6326(11)61198-9
10.1016/j.jhazmat.2013.03.059
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.mineng.2018.12.012
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-9444
EndPage 210
ExternalDocumentID 10_1016_j_mineng_2018_12_012
S0892687518305545
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABJNI
ABMAC
ABNUV
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LY3
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSE
SSG
SSZ
T5K
~02
~G-
29M
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMA
HVGLF
HZ~
R2-
SEP
SET
SEW
SSH
WUQ
XPP
ZMT
ID FETCH-LOGICAL-c306t-3f8a70e189315b2abad9da7e8b976f7ab687d34739d256f9922d6e4851da9c9a3
IEDL.DBID .~1
ISSN 0892-6875
IngestDate Thu Apr 24 23:07:46 EDT 2025
Tue Jul 01 01:13:25 EDT 2025
Fri Feb 23 02:35:41 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Microwave
Statistical design
Reduction
Ferrite
Red mud
Magnetic separation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-3f8a70e189315b2abad9da7e8b976f7ab687d34739d256f9922d6e4851da9c9a3
PageCount 9
ParticipantIDs crossref_primary_10_1016_j_mineng_2018_12_012
crossref_citationtrail_10_1016_j_mineng_2018_12_012
elsevier_sciencedirect_doi_10_1016_j_mineng_2018_12_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-01
2019-03-00
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationTitle Minerals engineering
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kauben, Freidrich (b0055) 2015; 87
Yu, Shi, Chen, Niu, Wang, Wan (b0125) 2012; 22
Liu, Lin, Wu (b0080) 2007; 146
Mishra, Gostu (b0095) 2017; 11
Agatzini-Leonardo, Oustadakis, Tsakiridis, Markopoulos (b0005) 2008; 157
Samouhos, Taxiarchou, Pilatos, Tsakiridis, Devlin, Pissas (b0115) 2017; 105
Agrawal, Rayapudi, Dhawan (b0010) 2018; 4
Jamieson, Jones, Cooling, Stockton (b0045) 2006; 19
Samouhos, Taxiarchou, Tsakiridis, Potiriadis (b0120) 2013; 254
Borra, Pontikes, Binnemans, Van Gerven (b0020) 2015; 76
Mukherjee, Chakraborty, Bidaye, Gupta (b0100) 1990; 3
Li, Wang, Wang, Wang, Luan (b0060) 2011; 471
Liu, Sun, Zhang, Jahanshahi, Yang (b0065) 2012; 39
IBM, 2017. Bauxite-Indian Bureau of Mines, Indian Minerals Yearbook (Part-III: Mineral Reviews), 56th ed.
Zhang, Zheng, Ma, Zhang (b0130) 2011; 189
Zhao, Yang, Xiao, Fan (b0135) 2012; 125
Hammond, Mishra, Apelian, Blanpain (b0030) 2013; 65
Raspopov, Korneev, Averin, Lainer, Zinoveev, Dyubanov (b0110) 2013; 2013
Liu, Zhao, Tang, Wan, Chen, Li (b0085) 2014; 588
Man, Feng (b0090) 2016; 301
Evans (b0025) 2016; 2
Jayasankar, Ray, Chaubey, Padhi, Satapathy, Mukherjee (b0050) 2012; 19
Authier-Martin, Forte, Ostap, See (b0015) 2001; 53
Haque (b0035) 1999; 57
Samouhos (10.1016/j.mineng.2018.12.012_b0120) 2013; 254
Man (10.1016/j.mineng.2018.12.012_b0090) 2016; 301
Mukherjee (10.1016/j.mineng.2018.12.012_b0100) 1990; 3
Haque (10.1016/j.mineng.2018.12.012_b0035) 1999; 57
Liu (10.1016/j.mineng.2018.12.012_b0085) 2014; 588
Liu (10.1016/j.mineng.2018.12.012_b0080) 2007; 146
Jamieson (10.1016/j.mineng.2018.12.012_b0045) 2006; 19
Raspopov (10.1016/j.mineng.2018.12.012_b0110) 2013; 2013
Authier-Martin (10.1016/j.mineng.2018.12.012_b0015) 2001; 53
Zhang (10.1016/j.mineng.2018.12.012_b0130) 2011; 189
10.1016/j.mineng.2018.12.012_b0040
Agatzini-Leonardo (10.1016/j.mineng.2018.12.012_b0005) 2008; 157
Evans (10.1016/j.mineng.2018.12.012_b0025) 2016; 2
Mishra (10.1016/j.mineng.2018.12.012_b0095) 2017; 11
Borra (10.1016/j.mineng.2018.12.012_b0020) 2015; 76
Kauben (10.1016/j.mineng.2018.12.012_b0055) 2015; 87
Jayasankar (10.1016/j.mineng.2018.12.012_b0050) 2012; 19
Samouhos (10.1016/j.mineng.2018.12.012_b0115) 2017; 105
Yu (10.1016/j.mineng.2018.12.012_b0125) 2012; 22
Agrawal (10.1016/j.mineng.2018.12.012_b0010) 2018; 4
Zhao (10.1016/j.mineng.2018.12.012_b0135) 2012; 125
Hammond (10.1016/j.mineng.2018.12.012_b0030) 2013; 65
Li (10.1016/j.mineng.2018.12.012_b0060) 2011; 471
Liu (10.1016/j.mineng.2018.12.012_b0065) 2012; 39
References_xml – volume: 4
  start-page: 427
  year: 2018
  end-page: 436
  ident: b0010
  article-title: Microwave reduction of red mud for recovery of iron values
  publication-title: J. Sustain. Metall.
– volume: 471
  start-page: 91
  year: 2011
  end-page: 96
  ident: b0060
  article-title: Feasibility study of iron mineral separation from red mud by high gradient superconducting magnetic separation
  publication-title: Phys. C: Supercond.
– volume: 2
  start-page: 316
  year: 2016
  end-page: 331
  ident: b0025
  article-title: The history, challenges, and new developments in the management and use of bauxite residue
  publication-title: J. Sustain. Metall.
– volume: 301
  start-page: 674
  year: 2016
  end-page: 678
  ident: b0090
  article-title: Effect of gas composition on reduction behavior in red mud and iron ore pellets
  publication-title: Powder Technol.
– volume: 3
  start-page: 345
  year: 1990
  end-page: 353
  ident: b0100
  article-title: Recovery of pure vanadium oxide from bayer sludge
  publication-title: Miner. Eng.
– volume: 254
  start-page: 193
  year: 2013
  end-page: 205
  ident: b0120
  article-title: Greek “red mud” residue: a study of microwave reductive roasting followed by magnetic separation for a metallic iron recovery process
  publication-title: J. Hazard. Mater.
– volume: 22
  start-page: 456
  year: 2012
  end-page: 460
  ident: b0125
  article-title: Red-mud treatment using oxalic acid by UV irradiation assistance
  publication-title: Trans. Nonferr. Met. Soc. China
– volume: 65
  start-page: 340
  year: 2013
  ident: b0030
  article-title: CR
  publication-title: JOM
– volume: 57
  start-page: 1
  year: 1999
  end-page: 24
  ident: b0035
  article-title: Microwave energy for mineral treatment processes—a brief review
  publication-title: Int. J. Miner. Process.
– volume: 125
  start-page: 115
  year: 2012
  end-page: 124
  ident: b0135
  article-title: Recovery of gallium from Bayer liquor: a review
  publication-title: Hydrometallurgy
– volume: 76
  start-page: 20
  year: 2015
  end-page: 27
  ident: b0020
  article-title: Leaching of rare earth from bauxite residue (red mud)
  publication-title: Miner. Eng.
– volume: 189
  start-page: 827
  year: 2011
  end-page: 835
  ident: b0130
  article-title: Recovery of alumina and alkali in Bayer red mud by the formation of andradite-grossular hydrogarnet in a hydrothermal process
  publication-title: J. Hazard. Mater.
– volume: 146
  start-page: 255
  year: 2007
  end-page: 261
  ident: b0080
  article-title: Characterization of red mud derived from a combined Bayer Process and bauxite calcination method
  publication-title: J. Hazard. Mater.
– volume: 87
  start-page: 1535
  year: 2015
  end-page: 1542
  ident: b0055
  article-title: Efficient and complete exploitation of the bauxite residue (red mud) produced in the Bayer’s process
  publication-title: Chem. Ing. Tech.
– volume: 157
  start-page: 579
  year: 2008
  end-page: 586
  ident: b0005
  article-title: Titanium leaching from red mud by diluted sulfuric acid at atmospheric pressure
  publication-title: J. Hazard. Mater.
– volume: 588
  start-page: 11
  year: 2014
  end-page: 15
  ident: b0085
  article-title: Recycling of iron from red mud by magnetic separation after co-roasting with pyrite
  publication-title: Thermochim. Acta
– reference: IBM, 2017. Bauxite-Indian Bureau of Mines, Indian Minerals Yearbook (Part-III: Mineral Reviews), 56th ed.
– volume: 11
  start-page: 483
  year: 2017
  end-page: 496
  ident: b0095
  article-title: Materials sustainability for environment: red-mud treatment
  publication-title: Front. Chem. Sci. Eng.
– volume: 53
  start-page: 36
  year: 2001
  end-page: 40
  ident: b0015
  article-title: The mineralogy of bauxite for producing smelter-grade alumina
  publication-title: JOM
– volume: 39
  start-page: 213
  year: 2012
  end-page: 218
  ident: b0065
  article-title: Experimental and simulative study on phase transformation in Bayer red mud soda-lime roasting system and recovery of Al, Na, and Fe
  publication-title: Miner. Eng.
– volume: 105
  start-page: 36
  year: 2017
  end-page: 43
  ident: b0115
  article-title: Controlled reduction of red mud by H
  publication-title: Miner. Eng.
– volume: 19
  start-page: 1603
  year: 2006
  end-page: 1605
  ident: b0045
  article-title: Magnetic separation of Red Sand to produce value
  publication-title: Miner. Eng.
– volume: 2013
  start-page: 33
  year: 2013
  end-page: 37
  ident: b0110
  article-title: Reduction of iron oxides during the pyrometallurgical processing of red mud
  publication-title: Russian Metall. (Metally)
– volume: 19
  start-page: 679
  year: 2012
  end-page: 684
  ident: b0050
  article-title: Production of pig iron from red mud waste fines using thermal plasma technology
  publication-title: Int. J. Miner. Metall. Mater.
– volume: 57
  start-page: 1
  issue: 1
  year: 1999
  ident: 10.1016/j.mineng.2018.12.012_b0035
  article-title: Microwave energy for mineral treatment processes—a brief review
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/S0301-7516(99)00009-5
– volume: 189
  start-page: 827
  issue: 3
  year: 2011
  ident: 10.1016/j.mineng.2018.12.012_b0130
  article-title: Recovery of alumina and alkali in Bayer red mud by the formation of andradite-grossular hydrogarnet in a hydrothermal process
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2011.03.004
– volume: 146
  start-page: 255
  issue: 1–2
  year: 2007
  ident: 10.1016/j.mineng.2018.12.012_b0080
  article-title: Characterization of red mud derived from a combined Bayer Process and bauxite calcination method
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2006.12.015
– volume: 125
  start-page: 115
  year: 2012
  ident: 10.1016/j.mineng.2018.12.012_b0135
  article-title: Recovery of gallium from Bayer liquor: a review
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2012.06.002
– volume: 471
  start-page: 91
  issue: 3–4
  year: 2011
  ident: 10.1016/j.mineng.2018.12.012_b0060
  article-title: Feasibility study of iron mineral separation from red mud by high gradient superconducting magnetic separation
  publication-title: Phys. C: Supercond.
  doi: 10.1016/j.physc.2010.12.003
– volume: 588
  start-page: 11
  year: 2014
  ident: 10.1016/j.mineng.2018.12.012_b0085
  article-title: Recycling of iron from red mud by magnetic separation after co-roasting with pyrite
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2014.04.027
– volume: 301
  start-page: 674
  year: 2016
  ident: 10.1016/j.mineng.2018.12.012_b0090
  article-title: Effect of gas composition on reduction behavior in red mud and iron ore pellets
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2016.06.013
– volume: 2013
  start-page: 33
  issue: 1
  year: 2013
  ident: 10.1016/j.mineng.2018.12.012_b0110
  article-title: Reduction of iron oxides during the pyrometallurgical processing of red mud
  publication-title: Russian Metall. (Metally)
  doi: 10.1134/S0036029513010114
– volume: 39
  start-page: 213
  year: 2012
  ident: 10.1016/j.mineng.2018.12.012_b0065
  article-title: Experimental and simulative study on phase transformation in Bayer red mud soda-lime roasting system and recovery of Al, Na, and Fe
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2012.05.021
– volume: 19
  start-page: 679
  issue: 8
  year: 2012
  ident: 10.1016/j.mineng.2018.12.012_b0050
  article-title: Production of pig iron from red mud waste fines using thermal plasma technology
  publication-title: Int. J. Miner. Metall. Mater.
  doi: 10.1007/s12613-012-0613-3
– volume: 11
  start-page: 483
  issue: 3
  year: 2017
  ident: 10.1016/j.mineng.2018.12.012_b0095
  article-title: Materials sustainability for environment: red-mud treatment
  publication-title: Front. Chem. Sci. Eng.
  doi: 10.1007/s11705-017-1653-z
– volume: 105
  start-page: 36
  year: 2017
  ident: 10.1016/j.mineng.2018.12.012_b0115
  article-title: Controlled reduction of red mud by H2 followed by magnetic separation
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2017.01.004
– volume: 4
  start-page: 427
  issue: 4
  year: 2018
  ident: 10.1016/j.mineng.2018.12.012_b0010
  article-title: Microwave reduction of red mud for recovery of iron values
  publication-title: J. Sustain. Metall.
  doi: 10.1007/s40831-018-0183-3
– volume: 19
  start-page: 1603
  issue: 15
  year: 2006
  ident: 10.1016/j.mineng.2018.12.012_b0045
  article-title: Magnetic separation of Red Sand to produce value
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2006.08.002
– volume: 65
  start-page: 340
  issue: 3
  year: 2013
  ident: 10.1016/j.mineng.2018.12.012_b0030
  article-title: CR3 Communication: red mud-A resource or a waste?
  publication-title: JOM
  doi: 10.1007/s11837-013-0560-0
– volume: 76
  start-page: 20
  year: 2015
  ident: 10.1016/j.mineng.2018.12.012_b0020
  article-title: Leaching of rare earth from bauxite residue (red mud)
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2015.01.005
– ident: 10.1016/j.mineng.2018.12.012_b0040
– volume: 53
  start-page: 36
  issue: 12
  year: 2001
  ident: 10.1016/j.mineng.2018.12.012_b0015
  article-title: The mineralogy of bauxite for producing smelter-grade alumina
  publication-title: JOM
  doi: 10.1007/s11837-001-0011-1
– volume: 3
  start-page: 345
  issue: 3–4
  year: 1990
  ident: 10.1016/j.mineng.2018.12.012_b0100
  article-title: Recovery of pure vanadium oxide from bayer sludge
  publication-title: Miner. Eng.
  doi: 10.1016/0892-6875(90)90129-Y
– volume: 2
  start-page: 316
  issue: 4
  year: 2016
  ident: 10.1016/j.mineng.2018.12.012_b0025
  article-title: The history, challenges, and new developments in the management and use of bauxite residue
  publication-title: J. Sustain. Metall.
  doi: 10.1007/s40831-016-0060-x
– volume: 157
  start-page: 579
  issue: 2–3
  year: 2008
  ident: 10.1016/j.mineng.2018.12.012_b0005
  article-title: Titanium leaching from red mud by diluted sulfuric acid at atmospheric pressure
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2008.01.054
– volume: 22
  start-page: 456
  year: 2012
  ident: 10.1016/j.mineng.2018.12.012_b0125
  article-title: Red-mud treatment using oxalic acid by UV irradiation assistance
  publication-title: Trans. Nonferr. Met. Soc. China
  doi: 10.1016/S1003-6326(11)61198-9
– volume: 87
  start-page: 1535
  year: 2015
  ident: 10.1016/j.mineng.2018.12.012_b0055
  article-title: Efficient and complete exploitation of the bauxite residue (red mud) produced in the Bayer’s process
  publication-title: Chem. Ing. Tech.
– volume: 254
  start-page: 193
  year: 2013
  ident: 10.1016/j.mineng.2018.12.012_b0120
  article-title: Greek “red mud” residue: a study of microwave reductive roasting followed by magnetic separation for a metallic iron recovery process
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2013.03.059
SSID ssj0005789
Score 2.5041528
Snippet [Display omitted] •Recovery of iron values from Indian red mud through different routes.•Conventional beneficiation processes inefficient to recover iron...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 202
SubjectTerms Ferrite
Magnetic separation
Microwave
Red mud
Reduction
Statistical design
Title Comparison of microwave and conventional carbothermal reduction of red mud for recovery of iron values
URI https://dx.doi.org/10.1016/j.mineng.2018.12.012
Volume 132
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14Xdsk2-zmWIqlKvaihd7CviIVk5baKl787c7kUSKIgsfd7ECYHWa_Tb75hpBLB0duorlkCTcR4yGSAJRxTNhe0OtqqWTeh-x-HI4m_HbamzbIoKqFQVplmfuLnJ5n63KmU3qzs5jNOg9dGfmhxN8GqFrFsdCcc4FRfvVZo3mIvA0eLma4uiqfyzleKSC57AkJXjL_KOj5Px9PtSNnuEd2S6xI-8Xr7JOGyw7ITk1B8JAkg00fQTpPaIr0unf15qjKLK0zyqlRS51XW6UwWKJgKz5AIxjQdG0pwFeK92MI7g-cxwI4imLg7vWITIbXj4MRK1snMAN3gBULEqlE13mARrye9pVWNrJKOKkBfiRCaXCFDbgIIguYJ0FxWhs6DvDLqshEKjgmzWyeuRNCOdxAPC0QWigeOi0NTxz3rTEhJAAbtkhQeSw2pa44trd4iSsC2XNc-DlGP8eeH4OfW4RtrBaFrsYf60W1GfG3-Igh9f9qefpvyzOyDaOoYJydk-ZquXYXAEFWup3HWJts9W_uRuMvETLdIQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60HtSD-MT63IPX0CbZJJujFKXax0UFb8u-IopNS62K_96ZPGoFUfC4j4EwGWa_Tb75BuDM4ZGbaS68jJvU4zGRAJRxXmKjMGproUTRh2wwjLt3_Po-ul-CTl0LQ7TKKveXOb3I1tVMq_Jma_L42LppizSIBf02INUqHi3DCqlTRQ1YOb_qdYdfTI-k6IRH-z0yqCvoCprXCMFc_kAcL1F8F_SDn0-ohVPnchM2KrjIzssn2oIll2_D-oKI4A5knXkrQTbO2IgYdu_qzTGVW7ZIKmdGTXVRcDXCwZQ0W2mBjHDARq-WIYJldEXG-P6geaqBY6QH7l524e7y4rbT9aruCZ7Ba8DMCzOhkrbzEZD4kQ6UVja1KnFCIwLJEqXRFTbkSZhahD0Z6dPa2HFEYFalJlXhHjTyce72gXG8hPg6IXSheOy0MDxzPLDGxJgDbNyEsPaYNJW0OHW4eJY1h-xJln6W5GfpBxL93ARvbjUppTX-2J_UL0N-CxGJ2f9Xy4N_W57Cavd20Jf9q2HvENZwJS0JaEfQmE1f3TEikpk-qSLuE6tB39I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+microwave+and+conventional+carbothermal+reduction+of+red+mud+for+recovery+of+iron+values&rft.jtitle=Minerals+engineering&rft.au=Agrawal%2C+Shrey&rft.au=Rayapudi%2C+Veeranjaneyulu&rft.au=Dhawan%2C+Nikhil&rft.date=2019-03-01&rft.pub=Elsevier+Ltd&rft.issn=0892-6875&rft.eissn=1872-9444&rft.volume=132&rft.spage=202&rft.epage=210&rft_id=info:doi/10.1016%2Fj.mineng.2018.12.012&rft.externalDocID=S0892687518305545
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0892-6875&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0892-6875&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0892-6875&client=summon