Comparison of microwave and conventional carbothermal reduction of red mud for recovery of iron values
[Display omitted] •Recovery of iron values from Indian red mud through different routes.•Conventional beneficiation processes inefficient to recover iron values.•Concentrate with ∼47% grade, 88% recovery at 72% yield is attained in microwave route.•Microwave route better than conventional route and...
Saved in:
Published in | Minerals engineering Vol. 132; pp. 202 - 210 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.03.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Recovery of iron values from Indian red mud through different routes.•Conventional beneficiation processes inefficient to recover iron values.•Concentrate with ∼47% grade, 88% recovery at 72% yield is attained in microwave route.•Microwave route better than conventional route and employs lower time and reductant.•Ferrite balls (∼92% iron content with 94% purity) are observed in the microwave route.
This study investigates the recovery of iron values from Indian red mud through different routes. The conventional beneficiation was found futile to recover iron values from the red mud due to complex structure. The carbothermal reduction is carried out in both muffle and microwave furnace using statistical design. The XRD quantitative phase analysis of the magnetic concentrate indicates distinct phase transformation of hematite to ferrite as a function of temperature and in the sequence Fe2O3 → Fe3O4 → FeO → Fe. In microwave furnace, concentrate with ∼47% grade and 88% recovery at a yield of 72% is attained at optimal conditions of 1000 °C, 10 min with 11% C whereas in muffle furnace, optimal conditions of 1000 °C, 50 min reduction time with 16.5% C yields a concentrate ∼49% iron, 87% iron recovery with a yield of 56%. On comparison of carbothermal reduction in muffle and microwave routes, the microwave route provides a significant improvement in iron grade and recovery at comparatively lower levels of time and reductant dosage. Along with enhanced iron grade-recovery, significant ferrite balls of 1 ± 0.5 mm (∼92% iron content with 94% purity) are observed in the microwave route and were handpicked from the product. Nevertheless, the ferrite phase is forming in both the routes, but in microwave route, ferrite balls of appreciable size and purity accounting ∼8–10% of total iron values in the feed are also observed. In addition, the microwave assisted carbothermal reduction offers a faster reduction rate, cleaner processing and relatively economical in terms of energy and reductant consumption. The product obtained is rich in magnetite, wustite and ferrite phase which can be further used in alternate iron making units. |
---|---|
AbstractList | [Display omitted]
•Recovery of iron values from Indian red mud through different routes.•Conventional beneficiation processes inefficient to recover iron values.•Concentrate with ∼47% grade, 88% recovery at 72% yield is attained in microwave route.•Microwave route better than conventional route and employs lower time and reductant.•Ferrite balls (∼92% iron content with 94% purity) are observed in the microwave route.
This study investigates the recovery of iron values from Indian red mud through different routes. The conventional beneficiation was found futile to recover iron values from the red mud due to complex structure. The carbothermal reduction is carried out in both muffle and microwave furnace using statistical design. The XRD quantitative phase analysis of the magnetic concentrate indicates distinct phase transformation of hematite to ferrite as a function of temperature and in the sequence Fe2O3 → Fe3O4 → FeO → Fe. In microwave furnace, concentrate with ∼47% grade and 88% recovery at a yield of 72% is attained at optimal conditions of 1000 °C, 10 min with 11% C whereas in muffle furnace, optimal conditions of 1000 °C, 50 min reduction time with 16.5% C yields a concentrate ∼49% iron, 87% iron recovery with a yield of 56%. On comparison of carbothermal reduction in muffle and microwave routes, the microwave route provides a significant improvement in iron grade and recovery at comparatively lower levels of time and reductant dosage. Along with enhanced iron grade-recovery, significant ferrite balls of 1 ± 0.5 mm (∼92% iron content with 94% purity) are observed in the microwave route and were handpicked from the product. Nevertheless, the ferrite phase is forming in both the routes, but in microwave route, ferrite balls of appreciable size and purity accounting ∼8–10% of total iron values in the feed are also observed. In addition, the microwave assisted carbothermal reduction offers a faster reduction rate, cleaner processing and relatively economical in terms of energy and reductant consumption. The product obtained is rich in magnetite, wustite and ferrite phase which can be further used in alternate iron making units. |
Author | Rayapudi, Veeranjaneyulu Agrawal, Shrey Dhawan, Nikhil |
Author_xml | – sequence: 1 givenname: Shrey surname: Agrawal fullname: Agrawal, Shrey – sequence: 2 givenname: Veeranjaneyulu surname: Rayapudi fullname: Rayapudi, Veeranjaneyulu – sequence: 3 givenname: Nikhil surname: Dhawan fullname: Dhawan, Nikhil email: ndhawan.fmt@iitr.ac.in |
BookMark | eNqFkMtKxDAUhoOM4MzoG7joC7Qm6S1xIcjgDQbc6DqcJqeaoU2GtFOZtzdlXLnQ1bnxHfi_FVk475CQa0YzRll1s8t669B9ZJwykTGeUcbPyJKJmqeyKIoFWVIheVqJurwgq2HYUUrLWsglaTe-30Owg3eJb5Pe6uC_YMIEnEm0dxO60XoHXaIhNH78xNDHIaA56PkwQ3FI-oNJWh9ir_2E4TjvbYj3CboDDpfkvIVuwKufuibvjw9vm-d0-_r0srnfpjqn1ZjmrYCaIhMyZ2XDoQEjDdQoGllXbQ1NTGDyos6l4WXVSsm5qbAQJTMgtYR8TYrT3xhjGAK2ah9sD-GoGFWzK7VTJ1dqdqUYV9FVxG5_YdqOMOcbA9juP_juBGMMNlkMatAWnUZjo41RGW__fvANMSOMZA |
CitedBy_id | crossref_primary_10_3390_min11020222 crossref_primary_10_1016_j_jclepro_2022_132181 crossref_primary_10_1016_j_susmat_2020_e00201 crossref_primary_10_1007_s11837_019_03523_7 crossref_primary_10_1016_j_mineng_2023_108426 crossref_primary_10_1016_j_mineng_2021_107216 crossref_primary_10_1016_j_scp_2024_101866 crossref_primary_10_1016_j_mineng_2020_106686 crossref_primary_10_4028_www_scientific_net_SSP_304_91 crossref_primary_10_1007_s11837_021_05076_0 crossref_primary_10_1007_s12666_023_03141_7 crossref_primary_10_1007_s40831_023_00655_8 crossref_primary_10_1007_s11356_022_20279_x crossref_primary_10_1007_s11837_023_05896_2 crossref_primary_10_3390_cryst13010001 crossref_primary_10_1016_j_psep_2023_12_057 crossref_primary_10_1007_s11837_024_06487_5 crossref_primary_10_1016_j_cherd_2023_04_036 crossref_primary_10_1007_s40831_019_00244_8 crossref_primary_10_1016_j_jhazmat_2021_126542 crossref_primary_10_1007_s40831_024_00986_0 crossref_primary_10_1007_s42461_020_00304_8 crossref_primary_10_1016_j_jece_2023_109770 crossref_primary_10_1016_j_hydromet_2020_105524 crossref_primary_10_1016_j_mineng_2020_106653 crossref_primary_10_1016_j_hydromet_2021_105704 crossref_primary_10_1590_1980_5373_mr_2021_0446 crossref_primary_10_1007_s11837_024_06605_3 crossref_primary_10_1007_s11663_024_03110_5 crossref_primary_10_1016_j_mineng_2022_107394 crossref_primary_10_1016_j_mineng_2024_108954 crossref_primary_10_1007_s40831_023_00686_1 crossref_primary_10_1016_j_scitotenv_2023_166686 crossref_primary_10_1007_s12205_024_2475_4 crossref_primary_10_1007_s12613_021_2408_x crossref_primary_10_1016_j_susmat_2021_e00246 crossref_primary_10_1007_s11837_020_04222_4 crossref_primary_10_1007_s11837_024_06788_9 crossref_primary_10_1016_j_envpol_2023_123140 crossref_primary_10_3390_su14031258 crossref_primary_10_1016_j_matchemphys_2024_129950 crossref_primary_10_1016_j_partic_2024_07_010 crossref_primary_10_3390_ma17215152 crossref_primary_10_3390_met10050676 crossref_primary_10_1016_j_jenvman_2025_124669 crossref_primary_10_1016_j_jhazmat_2020_122579 crossref_primary_10_1016_j_apt_2021_05_001 crossref_primary_10_1007_s40831_020_00279_2 crossref_primary_10_1080_08827508_2024_2347476 crossref_primary_10_1016_j_mineng_2021_107084 crossref_primary_10_1016_j_mineng_2023_108131 crossref_primary_10_3390_min14101044 crossref_primary_10_1016_j_jhazmat_2023_131255 crossref_primary_10_1080_08827508_2020_1837126 crossref_primary_10_3390_en15103830 crossref_primary_10_1007_s00128_022_03496_5 crossref_primary_10_3390_ma16186178 crossref_primary_10_1007_s11663_020_01882_0 crossref_primary_10_1016_j_jenvman_2024_121303 crossref_primary_10_1016_j_hydromet_2023_106057 crossref_primary_10_1007_s40831_024_00924_0 crossref_primary_10_1080_10426507_2020_1802274 crossref_primary_10_1007_s11663_020_01883_z crossref_primary_10_1016_j_powtec_2020_05_112 crossref_primary_10_1007_s12666_023_03024_x crossref_primary_10_1016_j_jclepro_2021_129853 crossref_primary_10_1016_j_mineng_2024_109155 crossref_primary_10_1016_j_mineng_2020_106553 crossref_primary_10_1007_s11663_021_02285_5 crossref_primary_10_3390_min14020124 crossref_primary_10_1016_j_susmat_2024_e01053 crossref_primary_10_1051_metal_2020034 crossref_primary_10_1016_j_powtec_2020_04_047 crossref_primary_10_1016_j_seppur_2023_123882 crossref_primary_10_1007_s11356_022_20244_8 crossref_primary_10_3390_pr10112323 crossref_primary_10_1007_s12666_020_01956_2 crossref_primary_10_1016_j_ceramint_2022_09_167 |
Cites_doi | 10.1016/S0301-7516(99)00009-5 10.1016/j.jhazmat.2011.03.004 10.1016/j.jhazmat.2006.12.015 10.1016/j.hydromet.2012.06.002 10.1016/j.physc.2010.12.003 10.1016/j.tca.2014.04.027 10.1016/j.powtec.2016.06.013 10.1134/S0036029513010114 10.1016/j.mineng.2012.05.021 10.1007/s12613-012-0613-3 10.1007/s11705-017-1653-z 10.1016/j.mineng.2017.01.004 10.1007/s40831-018-0183-3 10.1016/j.mineng.2006.08.002 10.1007/s11837-013-0560-0 10.1016/j.mineng.2015.01.005 10.1007/s11837-001-0011-1 10.1016/0892-6875(90)90129-Y 10.1007/s40831-016-0060-x 10.1016/j.jhazmat.2008.01.054 10.1016/S1003-6326(11)61198-9 10.1016/j.jhazmat.2013.03.059 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd |
Copyright_xml | – notice: 2018 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.mineng.2018.12.012 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-9444 |
EndPage | 210 |
ExternalDocumentID | 10_1016_j_mineng_2018_12_012 S0892687518305545 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABJNI ABMAC ABNUV ABQEM ABQYD ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LY3 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSE SSG SSZ T5K ~02 ~G- 29M AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HMA HVGLF HZ~ R2- SEP SET SEW SSH WUQ XPP ZMT |
ID | FETCH-LOGICAL-c306t-3f8a70e189315b2abad9da7e8b976f7ab687d34739d256f9922d6e4851da9c9a3 |
IEDL.DBID | .~1 |
ISSN | 0892-6875 |
IngestDate | Thu Apr 24 23:07:46 EDT 2025 Tue Jul 01 01:13:25 EDT 2025 Fri Feb 23 02:35:41 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Microwave Statistical design Reduction Ferrite Red mud Magnetic separation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-3f8a70e189315b2abad9da7e8b976f7ab687d34739d256f9922d6e4851da9c9a3 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1016_j_mineng_2018_12_012 crossref_citationtrail_10_1016_j_mineng_2018_12_012 elsevier_sciencedirect_doi_10_1016_j_mineng_2018_12_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-01 2019-03-00 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Minerals engineering |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Kauben, Freidrich (b0055) 2015; 87 Yu, Shi, Chen, Niu, Wang, Wan (b0125) 2012; 22 Liu, Lin, Wu (b0080) 2007; 146 Mishra, Gostu (b0095) 2017; 11 Agatzini-Leonardo, Oustadakis, Tsakiridis, Markopoulos (b0005) 2008; 157 Samouhos, Taxiarchou, Pilatos, Tsakiridis, Devlin, Pissas (b0115) 2017; 105 Agrawal, Rayapudi, Dhawan (b0010) 2018; 4 Jamieson, Jones, Cooling, Stockton (b0045) 2006; 19 Samouhos, Taxiarchou, Tsakiridis, Potiriadis (b0120) 2013; 254 Borra, Pontikes, Binnemans, Van Gerven (b0020) 2015; 76 Mukherjee, Chakraborty, Bidaye, Gupta (b0100) 1990; 3 Li, Wang, Wang, Wang, Luan (b0060) 2011; 471 Liu, Sun, Zhang, Jahanshahi, Yang (b0065) 2012; 39 IBM, 2017. Bauxite-Indian Bureau of Mines, Indian Minerals Yearbook (Part-III: Mineral Reviews), 56th ed. Zhang, Zheng, Ma, Zhang (b0130) 2011; 189 Zhao, Yang, Xiao, Fan (b0135) 2012; 125 Hammond, Mishra, Apelian, Blanpain (b0030) 2013; 65 Raspopov, Korneev, Averin, Lainer, Zinoveev, Dyubanov (b0110) 2013; 2013 Liu, Zhao, Tang, Wan, Chen, Li (b0085) 2014; 588 Man, Feng (b0090) 2016; 301 Evans (b0025) 2016; 2 Jayasankar, Ray, Chaubey, Padhi, Satapathy, Mukherjee (b0050) 2012; 19 Authier-Martin, Forte, Ostap, See (b0015) 2001; 53 Haque (b0035) 1999; 57 Samouhos (10.1016/j.mineng.2018.12.012_b0120) 2013; 254 Man (10.1016/j.mineng.2018.12.012_b0090) 2016; 301 Mukherjee (10.1016/j.mineng.2018.12.012_b0100) 1990; 3 Haque (10.1016/j.mineng.2018.12.012_b0035) 1999; 57 Liu (10.1016/j.mineng.2018.12.012_b0085) 2014; 588 Liu (10.1016/j.mineng.2018.12.012_b0080) 2007; 146 Jamieson (10.1016/j.mineng.2018.12.012_b0045) 2006; 19 Raspopov (10.1016/j.mineng.2018.12.012_b0110) 2013; 2013 Authier-Martin (10.1016/j.mineng.2018.12.012_b0015) 2001; 53 Zhang (10.1016/j.mineng.2018.12.012_b0130) 2011; 189 10.1016/j.mineng.2018.12.012_b0040 Agatzini-Leonardo (10.1016/j.mineng.2018.12.012_b0005) 2008; 157 Evans (10.1016/j.mineng.2018.12.012_b0025) 2016; 2 Mishra (10.1016/j.mineng.2018.12.012_b0095) 2017; 11 Borra (10.1016/j.mineng.2018.12.012_b0020) 2015; 76 Kauben (10.1016/j.mineng.2018.12.012_b0055) 2015; 87 Jayasankar (10.1016/j.mineng.2018.12.012_b0050) 2012; 19 Samouhos (10.1016/j.mineng.2018.12.012_b0115) 2017; 105 Yu (10.1016/j.mineng.2018.12.012_b0125) 2012; 22 Agrawal (10.1016/j.mineng.2018.12.012_b0010) 2018; 4 Zhao (10.1016/j.mineng.2018.12.012_b0135) 2012; 125 Hammond (10.1016/j.mineng.2018.12.012_b0030) 2013; 65 Li (10.1016/j.mineng.2018.12.012_b0060) 2011; 471 Liu (10.1016/j.mineng.2018.12.012_b0065) 2012; 39 |
References_xml | – volume: 4 start-page: 427 year: 2018 end-page: 436 ident: b0010 article-title: Microwave reduction of red mud for recovery of iron values publication-title: J. Sustain. Metall. – volume: 471 start-page: 91 year: 2011 end-page: 96 ident: b0060 article-title: Feasibility study of iron mineral separation from red mud by high gradient superconducting magnetic separation publication-title: Phys. C: Supercond. – volume: 2 start-page: 316 year: 2016 end-page: 331 ident: b0025 article-title: The history, challenges, and new developments in the management and use of bauxite residue publication-title: J. Sustain. Metall. – volume: 301 start-page: 674 year: 2016 end-page: 678 ident: b0090 article-title: Effect of gas composition on reduction behavior in red mud and iron ore pellets publication-title: Powder Technol. – volume: 3 start-page: 345 year: 1990 end-page: 353 ident: b0100 article-title: Recovery of pure vanadium oxide from bayer sludge publication-title: Miner. Eng. – volume: 254 start-page: 193 year: 2013 end-page: 205 ident: b0120 article-title: Greek “red mud” residue: a study of microwave reductive roasting followed by magnetic separation for a metallic iron recovery process publication-title: J. Hazard. Mater. – volume: 22 start-page: 456 year: 2012 end-page: 460 ident: b0125 article-title: Red-mud treatment using oxalic acid by UV irradiation assistance publication-title: Trans. Nonferr. Met. Soc. China – volume: 65 start-page: 340 year: 2013 ident: b0030 article-title: CR publication-title: JOM – volume: 57 start-page: 1 year: 1999 end-page: 24 ident: b0035 article-title: Microwave energy for mineral treatment processes—a brief review publication-title: Int. J. Miner. Process. – volume: 125 start-page: 115 year: 2012 end-page: 124 ident: b0135 article-title: Recovery of gallium from Bayer liquor: a review publication-title: Hydrometallurgy – volume: 76 start-page: 20 year: 2015 end-page: 27 ident: b0020 article-title: Leaching of rare earth from bauxite residue (red mud) publication-title: Miner. Eng. – volume: 189 start-page: 827 year: 2011 end-page: 835 ident: b0130 article-title: Recovery of alumina and alkali in Bayer red mud by the formation of andradite-grossular hydrogarnet in a hydrothermal process publication-title: J. Hazard. Mater. – volume: 146 start-page: 255 year: 2007 end-page: 261 ident: b0080 article-title: Characterization of red mud derived from a combined Bayer Process and bauxite calcination method publication-title: J. Hazard. Mater. – volume: 87 start-page: 1535 year: 2015 end-page: 1542 ident: b0055 article-title: Efficient and complete exploitation of the bauxite residue (red mud) produced in the Bayer’s process publication-title: Chem. Ing. Tech. – volume: 157 start-page: 579 year: 2008 end-page: 586 ident: b0005 article-title: Titanium leaching from red mud by diluted sulfuric acid at atmospheric pressure publication-title: J. Hazard. Mater. – volume: 588 start-page: 11 year: 2014 end-page: 15 ident: b0085 article-title: Recycling of iron from red mud by magnetic separation after co-roasting with pyrite publication-title: Thermochim. Acta – reference: IBM, 2017. Bauxite-Indian Bureau of Mines, Indian Minerals Yearbook (Part-III: Mineral Reviews), 56th ed. – volume: 11 start-page: 483 year: 2017 end-page: 496 ident: b0095 article-title: Materials sustainability for environment: red-mud treatment publication-title: Front. Chem. Sci. Eng. – volume: 53 start-page: 36 year: 2001 end-page: 40 ident: b0015 article-title: The mineralogy of bauxite for producing smelter-grade alumina publication-title: JOM – volume: 39 start-page: 213 year: 2012 end-page: 218 ident: b0065 article-title: Experimental and simulative study on phase transformation in Bayer red mud soda-lime roasting system and recovery of Al, Na, and Fe publication-title: Miner. Eng. – volume: 105 start-page: 36 year: 2017 end-page: 43 ident: b0115 article-title: Controlled reduction of red mud by H publication-title: Miner. Eng. – volume: 19 start-page: 1603 year: 2006 end-page: 1605 ident: b0045 article-title: Magnetic separation of Red Sand to produce value publication-title: Miner. Eng. – volume: 2013 start-page: 33 year: 2013 end-page: 37 ident: b0110 article-title: Reduction of iron oxides during the pyrometallurgical processing of red mud publication-title: Russian Metall. (Metally) – volume: 19 start-page: 679 year: 2012 end-page: 684 ident: b0050 article-title: Production of pig iron from red mud waste fines using thermal plasma technology publication-title: Int. J. Miner. Metall. Mater. – volume: 57 start-page: 1 issue: 1 year: 1999 ident: 10.1016/j.mineng.2018.12.012_b0035 article-title: Microwave energy for mineral treatment processes—a brief review publication-title: Int. J. Miner. Process. doi: 10.1016/S0301-7516(99)00009-5 – volume: 189 start-page: 827 issue: 3 year: 2011 ident: 10.1016/j.mineng.2018.12.012_b0130 article-title: Recovery of alumina and alkali in Bayer red mud by the formation of andradite-grossular hydrogarnet in a hydrothermal process publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2011.03.004 – volume: 146 start-page: 255 issue: 1–2 year: 2007 ident: 10.1016/j.mineng.2018.12.012_b0080 article-title: Characterization of red mud derived from a combined Bayer Process and bauxite calcination method publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2006.12.015 – volume: 125 start-page: 115 year: 2012 ident: 10.1016/j.mineng.2018.12.012_b0135 article-title: Recovery of gallium from Bayer liquor: a review publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2012.06.002 – volume: 471 start-page: 91 issue: 3–4 year: 2011 ident: 10.1016/j.mineng.2018.12.012_b0060 article-title: Feasibility study of iron mineral separation from red mud by high gradient superconducting magnetic separation publication-title: Phys. C: Supercond. doi: 10.1016/j.physc.2010.12.003 – volume: 588 start-page: 11 year: 2014 ident: 10.1016/j.mineng.2018.12.012_b0085 article-title: Recycling of iron from red mud by magnetic separation after co-roasting with pyrite publication-title: Thermochim. Acta doi: 10.1016/j.tca.2014.04.027 – volume: 301 start-page: 674 year: 2016 ident: 10.1016/j.mineng.2018.12.012_b0090 article-title: Effect of gas composition on reduction behavior in red mud and iron ore pellets publication-title: Powder Technol. doi: 10.1016/j.powtec.2016.06.013 – volume: 2013 start-page: 33 issue: 1 year: 2013 ident: 10.1016/j.mineng.2018.12.012_b0110 article-title: Reduction of iron oxides during the pyrometallurgical processing of red mud publication-title: Russian Metall. (Metally) doi: 10.1134/S0036029513010114 – volume: 39 start-page: 213 year: 2012 ident: 10.1016/j.mineng.2018.12.012_b0065 article-title: Experimental and simulative study on phase transformation in Bayer red mud soda-lime roasting system and recovery of Al, Na, and Fe publication-title: Miner. Eng. doi: 10.1016/j.mineng.2012.05.021 – volume: 19 start-page: 679 issue: 8 year: 2012 ident: 10.1016/j.mineng.2018.12.012_b0050 article-title: Production of pig iron from red mud waste fines using thermal plasma technology publication-title: Int. J. Miner. Metall. Mater. doi: 10.1007/s12613-012-0613-3 – volume: 11 start-page: 483 issue: 3 year: 2017 ident: 10.1016/j.mineng.2018.12.012_b0095 article-title: Materials sustainability for environment: red-mud treatment publication-title: Front. Chem. Sci. Eng. doi: 10.1007/s11705-017-1653-z – volume: 105 start-page: 36 year: 2017 ident: 10.1016/j.mineng.2018.12.012_b0115 article-title: Controlled reduction of red mud by H2 followed by magnetic separation publication-title: Miner. Eng. doi: 10.1016/j.mineng.2017.01.004 – volume: 4 start-page: 427 issue: 4 year: 2018 ident: 10.1016/j.mineng.2018.12.012_b0010 article-title: Microwave reduction of red mud for recovery of iron values publication-title: J. Sustain. Metall. doi: 10.1007/s40831-018-0183-3 – volume: 19 start-page: 1603 issue: 15 year: 2006 ident: 10.1016/j.mineng.2018.12.012_b0045 article-title: Magnetic separation of Red Sand to produce value publication-title: Miner. Eng. doi: 10.1016/j.mineng.2006.08.002 – volume: 65 start-page: 340 issue: 3 year: 2013 ident: 10.1016/j.mineng.2018.12.012_b0030 article-title: CR3 Communication: red mud-A resource or a waste? publication-title: JOM doi: 10.1007/s11837-013-0560-0 – volume: 76 start-page: 20 year: 2015 ident: 10.1016/j.mineng.2018.12.012_b0020 article-title: Leaching of rare earth from bauxite residue (red mud) publication-title: Miner. Eng. doi: 10.1016/j.mineng.2015.01.005 – ident: 10.1016/j.mineng.2018.12.012_b0040 – volume: 53 start-page: 36 issue: 12 year: 2001 ident: 10.1016/j.mineng.2018.12.012_b0015 article-title: The mineralogy of bauxite for producing smelter-grade alumina publication-title: JOM doi: 10.1007/s11837-001-0011-1 – volume: 3 start-page: 345 issue: 3–4 year: 1990 ident: 10.1016/j.mineng.2018.12.012_b0100 article-title: Recovery of pure vanadium oxide from bayer sludge publication-title: Miner. Eng. doi: 10.1016/0892-6875(90)90129-Y – volume: 2 start-page: 316 issue: 4 year: 2016 ident: 10.1016/j.mineng.2018.12.012_b0025 article-title: The history, challenges, and new developments in the management and use of bauxite residue publication-title: J. Sustain. Metall. doi: 10.1007/s40831-016-0060-x – volume: 157 start-page: 579 issue: 2–3 year: 2008 ident: 10.1016/j.mineng.2018.12.012_b0005 article-title: Titanium leaching from red mud by diluted sulfuric acid at atmospheric pressure publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2008.01.054 – volume: 22 start-page: 456 year: 2012 ident: 10.1016/j.mineng.2018.12.012_b0125 article-title: Red-mud treatment using oxalic acid by UV irradiation assistance publication-title: Trans. Nonferr. Met. Soc. China doi: 10.1016/S1003-6326(11)61198-9 – volume: 87 start-page: 1535 year: 2015 ident: 10.1016/j.mineng.2018.12.012_b0055 article-title: Efficient and complete exploitation of the bauxite residue (red mud) produced in the Bayer’s process publication-title: Chem. Ing. Tech. – volume: 254 start-page: 193 year: 2013 ident: 10.1016/j.mineng.2018.12.012_b0120 article-title: Greek “red mud” residue: a study of microwave reductive roasting followed by magnetic separation for a metallic iron recovery process publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2013.03.059 |
SSID | ssj0005789 |
Score | 2.5041528 |
Snippet | [Display omitted]
•Recovery of iron values from Indian red mud through different routes.•Conventional beneficiation processes inefficient to recover iron... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 202 |
SubjectTerms | Ferrite Magnetic separation Microwave Red mud Reduction Statistical design |
Title | Comparison of microwave and conventional carbothermal reduction of red mud for recovery of iron values |
URI | https://dx.doi.org/10.1016/j.mineng.2018.12.012 |
Volume | 132 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14Xdsk2-zmWIqlKvaihd7CviIVk5baKl787c7kUSKIgsfd7ECYHWa_Tb75hpBLB0duorlkCTcR4yGSAJRxTNhe0OtqqWTeh-x-HI4m_HbamzbIoKqFQVplmfuLnJ5n63KmU3qzs5jNOg9dGfmhxN8GqFrFsdCcc4FRfvVZo3mIvA0eLma4uiqfyzleKSC57AkJXjL_KOj5Px9PtSNnuEd2S6xI-8Xr7JOGyw7ITk1B8JAkg00fQTpPaIr0unf15qjKLK0zyqlRS51XW6UwWKJgKz5AIxjQdG0pwFeK92MI7g-cxwI4imLg7vWITIbXj4MRK1snMAN3gBULEqlE13mARrye9pVWNrJKOKkBfiRCaXCFDbgIIguYJ0FxWhs6DvDLqshEKjgmzWyeuRNCOdxAPC0QWigeOi0NTxz3rTEhJAAbtkhQeSw2pa44trd4iSsC2XNc-DlGP8eeH4OfW4RtrBaFrsYf60W1GfG3-Igh9f9qefpvyzOyDaOoYJydk-ZquXYXAEFWup3HWJts9W_uRuMvETLdIQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60HtSD-MT63IPX0CbZJJujFKXax0UFb8u-IopNS62K_96ZPGoFUfC4j4EwGWa_Tb75BuDM4ZGbaS68jJvU4zGRAJRxXmKjMGproUTRh2wwjLt3_Po-ul-CTl0LQ7TKKveXOb3I1tVMq_Jma_L42LppizSIBf02INUqHi3DCqlTRQ1YOb_qdYdfTI-k6IRH-z0yqCvoCprXCMFc_kAcL1F8F_SDn0-ohVPnchM2KrjIzssn2oIll2_D-oKI4A5knXkrQTbO2IgYdu_qzTGVW7ZIKmdGTXVRcDXCwZQ0W2mBjHDARq-WIYJldEXG-P6geaqBY6QH7l524e7y4rbT9aruCZ7Ba8DMCzOhkrbzEZD4kQ6UVja1KnFCIwLJEqXRFTbkSZhahD0Z6dPa2HFEYFalJlXhHjTyce72gXG8hPg6IXSheOy0MDxzPLDGxJgDbNyEsPaYNJW0OHW4eJY1h-xJln6W5GfpBxL93ARvbjUppTX-2J_UL0N-CxGJ2f9Xy4N_W57Cavd20Jf9q2HvENZwJS0JaEfQmE1f3TEikpk-qSLuE6tB39I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+microwave+and+conventional+carbothermal+reduction+of+red+mud+for+recovery+of+iron+values&rft.jtitle=Minerals+engineering&rft.au=Agrawal%2C+Shrey&rft.au=Rayapudi%2C+Veeranjaneyulu&rft.au=Dhawan%2C+Nikhil&rft.date=2019-03-01&rft.pub=Elsevier+Ltd&rft.issn=0892-6875&rft.eissn=1872-9444&rft.volume=132&rft.spage=202&rft.epage=210&rft_id=info:doi/10.1016%2Fj.mineng.2018.12.012&rft.externalDocID=S0892687518305545 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0892-6875&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0892-6875&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0892-6875&client=summon |