Generic semi-supervised adversarial subject translation for sensor-based activity recognition

Performance of Human Activity Recognition (HAR) models, particularly deep neural networks, is highly contingent upon the availability of the massive amount of annotated training data. Though, data collection and manual labeling in the HAR domain are prohibitively expensive due to human resource depe...

Full description

Saved in:
Bibliographic Details
Published inNeurocomputing (Amsterdam) Vol. 500; pp. 649 - 661
Main Authors Soleimani, Elnaz, Khodabandelou, Ghazaleh, Chibani, Abdelghani, Amirat, Yacine
Format Journal Article
LanguageEnglish
Published Elsevier B.V 21.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Performance of Human Activity Recognition (HAR) models, particularly deep neural networks, is highly contingent upon the availability of the massive amount of annotated training data. Though, data collection and manual labeling in the HAR domain are prohibitively expensive due to human resource dependence in both steps. Hence, domain adaptation techniques are proposed to adapt the knowledge from the existing source of data. More recently, adversarial transfer learning methods have shown promising results for visual classification, yet limited for HAR problems, which are still prone to the unfavorable effects of the imbalanced distribution of samples. This paper presents a novel generic semi-supervised approach that takes advantage of the adversarial framework to tackle these shortcomings by leveraging knowledge from annotated samples exclusively from the source subject and unlabeled ones of the target subject. An extensive subject translation experiments is conducted on three large, middle, and small-size datasets with different levels of imbalance to assess the robustness of the proposed model to the scale as well as the imbalance in the data. The results demonstrate the effectiveness of our proposed algorithms over state-of-the-art methods, which led to up to 13%, 4%, and 13% improvement of our high-level activities recognition metrics for Opportunity, LISSI, and PAMAP2 datasets, respectively.
AbstractList Performance of Human Activity Recognition (HAR) models, particularly deep neural networks, is highly contingent upon the availability of the massive amount of annotated training data. Though, data collection and manual labeling in the HAR domain are prohibitively expensive due to human resource dependence in both steps. Hence, domain adaptation techniques are proposed to adapt the knowledge from the existing source of data. More recently, adversarial transfer learning methods have shown promising results for visual classification, yet limited for HAR problems, which are still prone to the unfavorable effects of the imbalanced distribution of samples. This paper presents a novel generic semi-supervised approach that takes advantage of the adversarial framework to tackle these shortcomings by leveraging knowledge from annotated samples exclusively from the source subject and unlabeled ones of the target subject. An extensive subject translation experiments is conducted on three large, middle, and small-size datasets with different levels of imbalance to assess the robustness of the proposed model to the scale as well as the imbalance in the data. The results demonstrate the effectiveness of our proposed algorithms over state-of-the-art methods, which led to up to 13%, 4%, and 13% improvement of our high-level activities recognition metrics for Opportunity, LISSI, and PAMAP2 datasets, respectively.
Author Soleimani, Elnaz
Khodabandelou, Ghazaleh
Amirat, Yacine
Chibani, Abdelghani
Author_xml – sequence: 1
  givenname: Elnaz
  surname: Soleimani
  fullname: Soleimani, Elnaz
  email: elnaz.soleimani@lissi.fr
– sequence: 2
  givenname: Ghazaleh
  surname: Khodabandelou
  fullname: Khodabandelou, Ghazaleh
  email: ghazaleh.khodabandelou@u-pec.fr
– sequence: 3
  givenname: Abdelghani
  surname: Chibani
  fullname: Chibani, Abdelghani
  email: chibani@u-pec.fr
– sequence: 4
  givenname: Yacine
  surname: Amirat
  fullname: Amirat, Yacine
  email: amirat@u-pec.fr
BookMark eNqFkM1KAzEURoNUsK2-gYt5gRlvMpP5cSFI0SoU3OhSQpK5IxmmSUnSgb6909aVC13dzT0fnLMgM-ssEnJLIaNAy7s-s7jXbpsxYCwDnkHFL8ic1hVLa1aXMzKHhvGU5ZRdkUUIPQCtKGvm5HONFr3RScCtScN-h340AdtEtiP6IL2RQxL2qkcdk-ilDYOMxtmkc35ibHA-VfIE6GhGEw-JR-2-rDl-XZPLTg4Bb37uknw8P72vXtLN2_p19bhJdQ5lTPOuVLLAGktQUJQNYiFz1dQlVpMQb_NCqk5ipaluaaULJdtOgcQcFOMceL4kxXlXexeCx07svNlKfxAUxDGR6MU5kTgmEsDFlGjC7n9h2sST3mRqhv_ghzOMk9ho0IugDVqNrZkKRNE68_fANx7Yiqo
CitedBy_id crossref_primary_10_1109_JBHI_2023_3298932
crossref_primary_10_1109_TASE_2023_3300821
crossref_primary_10_4236_jst_2024_142002
crossref_primary_10_1016_j_neucom_2024_127316
crossref_primary_10_1109_JSEN_2024_3406727
crossref_primary_10_1109_JSEN_2023_3267243
crossref_primary_10_1016_j_eswa_2022_118807
crossref_primary_10_1016_j_engappai_2022_105702
crossref_primary_10_1145_3717608
Cites_doi 10.1109/TKDE.2009.191
10.1109/TNN.2010.2091281
10.1016/j.pmcj.2019.04.004
10.1016/j.neucom.2020.10.056
10.7551/mitpress/9780262033589.001.0001
10.1007/s12652-019-01380-5
10.1016/j.patrec.2018.02.010
10.1016/j.patrec.2012.12.014
10.1016/j.pmcj.2016.08.017
10.1016/j.patcog.2020.107527
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2022.05.075
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 661
ExternalDocumentID 10_1016_j_neucom_2022_05_075
S0925231222006592
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SEW
SSH
WUQ
XPP
ID FETCH-LOGICAL-c306t-3f6ba4e8e60b0469ee4a3b986e70225d34abfae7c1cd17c4badfb0ae30b255053
IEDL.DBID .~1
ISSN 0925-2312
IngestDate Tue Jul 01 04:24:48 EDT 2025
Thu Apr 24 23:07:39 EDT 2025
Fri Feb 23 02:39:15 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Human activity recognition
Transfer learning
Semi-supervised learning
Cross-subject transfer learning
Adversarial domain adaptation
Generative adversarial network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-3f6ba4e8e60b0469ee4a3b986e70225d34abfae7c1cd17c4badfb0ae30b255053
PageCount 13
ParticipantIDs crossref_primary_10_1016_j_neucom_2022_05_075
crossref_citationtrail_10_1016_j_neucom_2022_05_075
elsevier_sciencedirect_doi_10_1016_j_neucom_2022_05_075
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-21
PublicationDateYYYYMMDD 2022-08-21
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-21
  day: 21
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, X. Chen, Improved techniques for training gans, in: Advances in neural information processing systems, 2016, pp. 2234–2242.
Khan, Roy, Misra (b0020) 2018
Srivastava, Valkov, Russell, Gutmann, Sutton (b0205) 2017
Yasarla, Sindagi, Patel (b0080) 2020
Pan, Yang (b0010) 2010; 22
LISSI Dataset rehabilitation self exercises dataset, http://www.lissi.fr/parkinson-rehabilitation-dataset-2/, accessed: 2019-09-30.
S. Yan, H. Song, N. Li, L. Zou, L. Ren, Improve unsupervised domain adaptation with mixup training, arXiv preprint arXiv:2001.00677.
Reiss, Stricker (b0040) 2012
He, Liu, Fan, You (b0165) 2020
Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette, Marchand, Lempitsky (b0170) 2016; 17
Kouw, Loog (b0015) 2019
R. Shu, H.H. Bui, H. Narui, S. Ermon, A dirt-t approach to unsupervised domain adaptation, arXiv preprint arXiv:1802.08735.
Luo, Zou, Hoffman, Fei-Fei (b0155) 2017
Khan, Roy (b0095) 2017
Soleimani, Nazerfard (b0030) 2021; 426
J. Jiang, A literature survey on domain adaptation of statistical classifiers, URL: http://sifaka. cs. uiuc. edu/jiang4/domainadaptation/survey 3 (2008) 1–12.
Wang, Chen, Gu, Xiao, Pan (b0145) 2018
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative adversarial nets, in: Advances in neural information processing systems, 2014, pp. 2672–2680.
Bengio (b0005) 2013
Wang, Chen, Feng, Yu, Huang, Yang (b0090) 2020; 11
Zhang, Xu, Li, Zhang, Wang, Huang, Metaxas (b0120) 2017
Alzantot, Chakraborty, Srivastava (b0135) 2017
Wang, Chen, Hao, Feng, Shen (b0085) 2017
Wang, Zheng, Chen, Huang (b0060) 2018
Wang, Chen, Hu, Peng, Philip (b0050) 2018
J. Yosinski, J. Clune, Y. Bengio, H. Lipson, How transferable are features in deep neural networks?, in: Advances in neural information processing systems, 2014, pp. 3320–3328.
Gong, Shi, Sha, Grauman (b0065) 2012
Yu, Chen, Cheng, Luo (b0190) 2020
Ueda, Seo, Nishikawa (b0130) 2018
Bousmalis, Silberman, Dohan, Erhan, Krishnan (b0160) 2017
Pan, Tsang, Kwok, Yang (b0075) 2011; 22
O. Chapelle, A. Zien, Semi-supervised classification by low density separation, in: International workshop on artificial intelligence and statistics, PMLR, 2005, pp. 57–64.
Tzeng, Hoffman, Saenko, Darrell (b0150) 2017
Hossain, Khan, Roy (b0070) 2017; 38
Chavarriaga, Sagha, Calatroni, Digumarti, Tröster, Millán, Roggen (b0035) 2013; 34
Saeedi, Sasani, Norgaard, Gebremedhin (b0140) 2018
A. Bidgoli, P. Veloso, Deepcloud. the application of a data-driven, generative model in design, arXiv preprint arXiv:1904.01083.
Nie, Trullo, Lian, Petitjean, Ruan, Wang, Shen (b0105) 2017
Wang, Chen, Hao, Peng, Hu (b0195) 2019; 119
M. Arjovsky, L. Bottou, Towards principled methods for training generative adversarial networks, arXiv preprint arXiv:1701.04862.
P. Asghari, E. Soleimani, E. Nazerfard, Online human activity recognition employing hierarchical hidden markov models, Journal of Ambient Intelligence and Humanized Computing doi:10.1007/s12652-019-01380-5.
Chen, Wang, Huang, Yu (b0055) 2019; 57
S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, H. Lee, Generative adversarial text to image synthesis, arXiv preprint arXiv:1605.05396.
Schlegl, Seeböck, Waldstein, Schmidt-Erfurth, Langs (b0110) 2017
Chiaroni, K., Rahal, Hueber, Dufaux (b9000) 2020
10.1016/j.neucom.2022.05.075_b0025
10.1016/j.neucom.2022.05.075_b0125
Wang (10.1016/j.neucom.2022.05.075_b0145) 2018
Wang (10.1016/j.neucom.2022.05.075_b0085) 2017
Chiaroni (10.1016/j.neucom.2022.05.075_b9000) 2020
Pan (10.1016/j.neucom.2022.05.075_b0010) 2010; 22
Schlegl (10.1016/j.neucom.2022.05.075_b0110) 2017
Reiss (10.1016/j.neucom.2022.05.075_b0040) 2012
Zhang (10.1016/j.neucom.2022.05.075_b0120) 2017
Soleimani (10.1016/j.neucom.2022.05.075_b0030) 2021; 426
Gong (10.1016/j.neucom.2022.05.075_b0065) 2012
Luo (10.1016/j.neucom.2022.05.075_b0155) 2017
Chen (10.1016/j.neucom.2022.05.075_b0055) 2019; 57
He (10.1016/j.neucom.2022.05.075_b0165) 2020
Kouw (10.1016/j.neucom.2022.05.075_b0015) 2019
10.1016/j.neucom.2022.05.075_b0180
Ganin (10.1016/j.neucom.2022.05.075_b0170) 2016; 17
Bengio (10.1016/j.neucom.2022.05.075_b0005) 2013
10.1016/j.neucom.2022.05.075_b0185
Wang (10.1016/j.neucom.2022.05.075_b0050) 2018
Wang (10.1016/j.neucom.2022.05.075_b0060) 2018
10.1016/j.neucom.2022.05.075_b0220
10.1016/j.neucom.2022.05.075_b0045
10.1016/j.neucom.2022.05.075_b0100
10.1016/j.neucom.2022.05.075_b0200
10.1016/j.neucom.2022.05.075_b0115
Tzeng (10.1016/j.neucom.2022.05.075_b0150) 2017
10.1016/j.neucom.2022.05.075_b0215
Saeedi (10.1016/j.neucom.2022.05.075_b0140) 2018
Wang (10.1016/j.neucom.2022.05.075_b0090) 2020; 11
Alzantot (10.1016/j.neucom.2022.05.075_b0135) 2017
Chavarriaga (10.1016/j.neucom.2022.05.075_b0035) 2013; 34
Hossain (10.1016/j.neucom.2022.05.075_b0070) 2017; 38
Yasarla (10.1016/j.neucom.2022.05.075_b0080) 2020
Bousmalis (10.1016/j.neucom.2022.05.075_b0160) 2017
Khan (10.1016/j.neucom.2022.05.075_b0020) 2018
Pan (10.1016/j.neucom.2022.05.075_b0075) 2011; 22
10.1016/j.neucom.2022.05.075_b0175
Yu (10.1016/j.neucom.2022.05.075_b0190) 2020
Wang (10.1016/j.neucom.2022.05.075_b0195) 2019; 119
Srivastava (10.1016/j.neucom.2022.05.075_b0205) 2017
10.1016/j.neucom.2022.05.075_b0210
Khan (10.1016/j.neucom.2022.05.075_b0095) 2017
Nie (10.1016/j.neucom.2022.05.075_b0105) 2017
Ueda (10.1016/j.neucom.2022.05.075_b0130) 2018
References_xml – start-page: 7167
  year: 2017
  end-page: 7176
  ident: b0150
  article-title: Adversarial discriminative domain adaptation
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– reference: J. Yosinski, J. Clune, Y. Bengio, H. Lipson, How transferable are features in deep neural networks?, in: Advances in neural information processing systems, 2014, pp. 3320–3328.
– reference: T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, X. Chen, Improved techniques for training gans, in: Advances in neural information processing systems, 2016, pp. 2234–2242.
– start-page: 964
  year: 2020
  end-page: 965
  ident: b0165
  article-title: Classification-aware semi-supervised domain adaptation
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
– volume: 22
  start-page: 1345
  year: 2010
  end-page: 1359
  ident: b0010
  article-title: A survey on transfer learning
  publication-title: IEEE Transactions on knowledge and data engineering
– reference: R. Shu, H.H. Bui, H. Narui, S. Ermon, A dirt-t approach to unsupervised domain adaptation, arXiv preprint arXiv:1802.08735.
– start-page: 2726
  year: 2020
  end-page: 2736
  ident: b0080
  article-title: Syn2real transfer learning for image deraining using gaussian processes
  publication-title: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition
– volume: 426
  start-page: 26
  year: 2021
  end-page: 34
  ident: b0030
  article-title: Cross-subject transfer learning in human activity recognition systems using generative adversarial networks
  publication-title: Neurocomputing
– start-page: 12856
  year: 2020
  end-page: 12864
  ident: b0190
  article-title: Transmatch: A transfer-learning scheme for semi-supervised few-shot learning, in
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 1193
  year: 2018
  end-page: 1196
  ident: b0140
  article-title: Personalized human activity recognition using wearables: A manifold learning-based knowledge transfer
  publication-title: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
– start-page: 108
  year: 2012
  end-page: 109
  ident: b0040
  article-title: Introducing a new benchmarked dataset for activity monitoring
  publication-title: 2012 16th International Symposium on Wearable Computers
– start-page: 146
  year: 2017
  end-page: 157
  ident: b0110
  article-title: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery
  publication-title: International Conference on Information Processing in Medical Imaging
– year: 2019
  ident: b0015
  article-title: A review of domain adaptation without target labels
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 34
  start-page: 2033
  year: 2013
  end-page: 2042
  ident: b0035
  article-title: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition
  publication-title: Pattern Recognition Letters
– reference: A. Bidgoli, P. Veloso, Deepcloud. the application of a data-driven, generative model in design, arXiv preprint arXiv:1904.01083.
– start-page: 1129
  year: 2017
  end-page: 1134
  ident: b0085
  article-title: Balanced distribution adaptation for transfer learning
  publication-title: 2017 IEEE International Conference on Data Mining (ICDM)
– start-page: 5907
  year: 2017
  end-page: 5915
  ident: b0120
  article-title: Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial networks
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– reference: LISSI Dataset rehabilitation self exercises dataset, http://www.lissi.fr/parkinson-rehabilitation-dataset-2/, accessed: 2019-09-30.
– reference: S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, H. Lee, Generative adversarial text to image synthesis, arXiv preprint arXiv:1605.05396.
– start-page: 165
  year: 2017
  end-page: 177
  ident: b0155
  article-title: Label efficient learning of transferable representations acrosss domains and tasks
  publication-title: Advances in Neural Information Processing Systems
– start-page: 403
  year: 2018
  end-page: 413
  ident: b0130
  article-title: Data correction by a generative model with an encoder and its application to structure design
  publication-title: International Conference on Artificial Neural Networks
– volume: 57
  start-page: 1
  year: 2019
  end-page: 13
  ident: b0055
  article-title: Cross-position activity recognition with stratified transfer learning
  publication-title: Pervasive and Mobile Computing
– start-page: 3722
  year: 2017
  end-page: 3731
  ident: b0160
  article-title: Unsupervised pixel-level domain adaptation with generative adversarial networks
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– reference: S. Yan, H. Song, N. Li, L. Zou, L. Ren, Improve unsupervised domain adaptation with mixup training, arXiv preprint arXiv:2001.00677.
– reference: P. Asghari, E. Soleimani, E. Nazerfard, Online human activity recognition employing hierarchical hidden markov models, Journal of Ambient Intelligence and Humanized Computing doi:10.1007/s12652-019-01380-5.
– year: 2020
  ident: b9000
  article-title: Counter-examples generation from a positive unlabeled image dataset
  publication-title: Pattern Recognition
– volume: 38
  start-page: 312
  year: 2017
  end-page: 330
  ident: b0070
  article-title: Active learning enabled activity recognition
  publication-title: Pervasive and Mobile Computing
– volume: 119
  start-page: 3
  year: 2019
  end-page: 11
  ident: b0195
  article-title: Deep learning for sensor-based activity recognition: A survey
  publication-title: Pattern Recognition Letters
– start-page: 417
  year: 2017
  end-page: 425
  ident: b0105
  article-title: Medical image synthesis with context-aware generative adversarial networks
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 1
  year: 2013
  end-page: 37
  ident: b0005
  article-title: Deep learning of representations: Looking forward
  publication-title: International Conference on Statistical Language and Speech Processing
– start-page: 1
  year: 2018
  end-page: 10
  ident: b0050
  article-title: Stratified transfer learning for cross-domain activity recognition
  publication-title: 2018 IEEE International Conference on Pervasive Computing and Communications (PerCom)
– start-page: 3308
  year: 2017
  end-page: 3318
  ident: b0205
  article-title: Veegan: Reducing mode collapse in gans using implicit variational learning
  publication-title: Advances in Neural Information Processing Systems
– reference: I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative adversarial nets, in: Advances in neural information processing systems, 2014, pp. 2672–2680.
– volume: 11
  start-page: 1
  year: 2020
  end-page: 25
  ident: b0090
  article-title: Transfer learning with dynamic distribution adaptation
  publication-title: ACM Transactions on Intelligent Systems and Technology (TIST)
– reference: M. Arjovsky, L. Bottou, Towards principled methods for training generative adversarial networks, arXiv preprint arXiv:1701.04862.
– start-page: 188
  year: 2017
  end-page: 193
  ident: b0135
  article-title: Sensegen: A deep learning architecture for synthetic sensor data generation
  publication-title: 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)
– volume: 17
  year: 2016
  ident: b0170
  article-title: Domain-adversarial training of neural networks
  publication-title: The journal of machine learning research
– start-page: 16
  year: 2018
  ident: b0060
  article-title: Deep transfer learning for cross-domain activity recognition
  publication-title: Proceedings of the 3rd International Conference on Crowd Science and Engineering
– start-page: 2066
  year: 2012
  end-page: 2073
  ident: b0065
  article-title: Geodesic flow kernel for unsupervised domain adaptation
  publication-title: 2012 IEEE Conference on Computer Vision and Pattern Recognition
– reference: O. Chapelle, A. Zien, Semi-supervised classification by low density separation, in: International workshop on artificial intelligence and statistics, PMLR, 2005, pp. 57–64.
– start-page: 1
  year: 2018
  end-page: 8
  ident: b0145
  article-title: Sensorygans: An effective generative adversarial framework for sensor-based human activity recognition
  publication-title: 2018 International Joint Conference on Neural Networks (IJCNN)
– volume: 22
  start-page: 199
  year: 2011
  end-page: 210
  ident: b0075
  article-title: Domain adaptation via transfer component analysis
  publication-title: IEEE Transactions on Neural Networks
– start-page: 545
  year: 2017
  end-page: 550
  ident: b0095
  article-title: Transact: Transfer learning enabled activity recognition
  publication-title: 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)
– start-page: 1
  year: 2018
  end-page: 9
  ident: b0020
  article-title: Scaling human activity recognition via deep learning-based domain adaptation
  publication-title: 2018 IEEE International Conference on Pervasive Computing and Communications (PerCom)
– reference: J. Jiang, A literature survey on domain adaptation of statistical classifiers, URL: http://sifaka. cs. uiuc. edu/jiang4/domainadaptation/survey 3 (2008) 1–12.
– volume: 22
  start-page: 1345
  issue: 10
  year: 2010
  ident: 10.1016/j.neucom.2022.05.075_b0010
  article-title: A survey on transfer learning
  publication-title: IEEE Transactions on knowledge and data engineering
  doi: 10.1109/TKDE.2009.191
– volume: 22
  start-page: 199
  issue: 2
  year: 2011
  ident: 10.1016/j.neucom.2022.05.075_b0075
  article-title: Domain adaptation via transfer component analysis
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2010.2091281
– start-page: 964
  year: 2020
  ident: 10.1016/j.neucom.2022.05.075_b0165
  article-title: Classification-aware semi-supervised domain adaptation
– ident: 10.1016/j.neucom.2022.05.075_b0115
– start-page: 1
  year: 2013
  ident: 10.1016/j.neucom.2022.05.075_b0005
  article-title: Deep learning of representations: Looking forward
– start-page: 5907
  year: 2017
  ident: 10.1016/j.neucom.2022.05.075_b0120
  article-title: Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial networks
– start-page: 1129
  year: 2017
  ident: 10.1016/j.neucom.2022.05.075_b0085
  article-title: Balanced distribution adaptation for transfer learning
– start-page: 3308
  year: 2017
  ident: 10.1016/j.neucom.2022.05.075_b0205
  article-title: Veegan: Reducing mode collapse in gans using implicit variational learning
  publication-title: Advances in Neural Information Processing Systems
– volume: 57
  start-page: 1
  year: 2019
  ident: 10.1016/j.neucom.2022.05.075_b0055
  article-title: Cross-position activity recognition with stratified transfer learning
  publication-title: Pervasive and Mobile Computing
  doi: 10.1016/j.pmcj.2019.04.004
– start-page: 7167
  year: 2017
  ident: 10.1016/j.neucom.2022.05.075_b0150
  article-title: Adversarial discriminative domain adaptation
– volume: 11
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.neucom.2022.05.075_b0090
  article-title: Transfer learning with dynamic distribution adaptation
  publication-title: ACM Transactions on Intelligent Systems and Technology (TIST)
– ident: 10.1016/j.neucom.2022.05.075_b0025
– volume: 426
  start-page: 26
  year: 2021
  ident: 10.1016/j.neucom.2022.05.075_b0030
  article-title: Cross-subject transfer learning in human activity recognition systems using generative adversarial networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.10.056
– start-page: 417
  year: 2017
  ident: 10.1016/j.neucom.2022.05.075_b0105
  article-title: Medical image synthesis with context-aware generative adversarial networks
– ident: 10.1016/j.neucom.2022.05.075_b0175
– start-page: 1193
  year: 2018
  ident: 10.1016/j.neucom.2022.05.075_b0140
  article-title: Personalized human activity recognition using wearables: A manifold learning-based knowledge transfer
– ident: 10.1016/j.neucom.2022.05.075_b0210
– start-page: 1
  year: 2018
  ident: 10.1016/j.neucom.2022.05.075_b0050
  article-title: Stratified transfer learning for cross-domain activity recognition
– start-page: 3722
  year: 2017
  ident: 10.1016/j.neucom.2022.05.075_b0160
  article-title: Unsupervised pixel-level domain adaptation with generative adversarial networks
– ident: 10.1016/j.neucom.2022.05.075_b0180
  doi: 10.7551/mitpress/9780262033589.001.0001
– start-page: 2726
  year: 2020
  ident: 10.1016/j.neucom.2022.05.075_b0080
  article-title: Syn2real transfer learning for image deraining using gaussian processes
– start-page: 545
  year: 2017
  ident: 10.1016/j.neucom.2022.05.075_b0095
  article-title: Transact: Transfer learning enabled activity recognition
– ident: 10.1016/j.neucom.2022.05.075_b0185
– ident: 10.1016/j.neucom.2022.05.075_b0200
– volume: 17
  issue: 1
  year: 2016
  ident: 10.1016/j.neucom.2022.05.075_b0170
  article-title: Domain-adversarial training of neural networks
  publication-title: The journal of machine learning research
– start-page: 146
  year: 2017
  ident: 10.1016/j.neucom.2022.05.075_b0110
  article-title: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery
– start-page: 12856
  year: 2020
  ident: 10.1016/j.neucom.2022.05.075_b0190
  article-title: Transmatch: A transfer-learning scheme for semi-supervised few-shot learning, in
– ident: 10.1016/j.neucom.2022.05.075_b0220
  doi: 10.1007/s12652-019-01380-5
– volume: 119
  start-page: 3
  year: 2019
  ident: 10.1016/j.neucom.2022.05.075_b0195
  article-title: Deep learning for sensor-based activity recognition: A survey
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2018.02.010
– volume: 34
  start-page: 2033
  issue: 15
  year: 2013
  ident: 10.1016/j.neucom.2022.05.075_b0035
  article-title: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2012.12.014
– start-page: 1
  year: 2018
  ident: 10.1016/j.neucom.2022.05.075_b0145
  article-title: Sensorygans: An effective generative adversarial framework for sensor-based human activity recognition
– start-page: 16
  year: 2018
  ident: 10.1016/j.neucom.2022.05.075_b0060
  article-title: Deep transfer learning for cross-domain activity recognition
– start-page: 188
  year: 2017
  ident: 10.1016/j.neucom.2022.05.075_b0135
  article-title: Sensegen: A deep learning architecture for synthetic sensor data generation
– start-page: 1
  year: 2018
  ident: 10.1016/j.neucom.2022.05.075_b0020
  article-title: Scaling human activity recognition via deep learning-based domain adaptation
– start-page: 403
  year: 2018
  ident: 10.1016/j.neucom.2022.05.075_b0130
  article-title: Data correction by a generative model with an encoder and its application to structure design
– ident: 10.1016/j.neucom.2022.05.075_b0045
– volume: 38
  start-page: 312
  year: 2017
  ident: 10.1016/j.neucom.2022.05.075_b0070
  article-title: Active learning enabled activity recognition
  publication-title: Pervasive and Mobile Computing
  doi: 10.1016/j.pmcj.2016.08.017
– year: 2020
  ident: 10.1016/j.neucom.2022.05.075_b9000
  article-title: Counter-examples generation from a positive unlabeled image dataset
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2020.107527
– start-page: 2066
  year: 2012
  ident: 10.1016/j.neucom.2022.05.075_b0065
  article-title: Geodesic flow kernel for unsupervised domain adaptation
– ident: 10.1016/j.neucom.2022.05.075_b0215
– ident: 10.1016/j.neucom.2022.05.075_b0100
– year: 2019
  ident: 10.1016/j.neucom.2022.05.075_b0015
  article-title: A review of domain adaptation without target labels
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– ident: 10.1016/j.neucom.2022.05.075_b0125
– start-page: 108
  year: 2012
  ident: 10.1016/j.neucom.2022.05.075_b0040
  article-title: Introducing a new benchmarked dataset for activity monitoring
– start-page: 165
  year: 2017
  ident: 10.1016/j.neucom.2022.05.075_b0155
  article-title: Label efficient learning of transferable representations acrosss domains and tasks
  publication-title: Advances in Neural Information Processing Systems
SSID ssj0017129
Score 2.4232407
Snippet Performance of Human Activity Recognition (HAR) models, particularly deep neural networks, is highly contingent upon the availability of the massive amount of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 649
SubjectTerms Adversarial domain adaptation
Cross-subject transfer learning
Generative adversarial network
Human activity recognition
Semi-supervised learning
Transfer learning
Title Generic semi-supervised adversarial subject translation for sensor-based activity recognition
URI https://dx.doi.org/10.1016/j.neucom.2022.05.075
Volume 500
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6mceHCGzEeUw5cw9I0adfjNDENELvApF1QlaSpNATdtLZXfjt2HxNICCSOrWKpdRx_dvLFJuSap4nHExswETnJpDJ4vqs8NnQATtbaKDB4G_lxFkzn8n6hFh0ybu_CIK2y8f21T6-8dfNm0GhzsF4uB088EpBFeQBwvDocxBvsMkQrv_nY0jy80BN1vT2hGI5ur89VHK_MlcgZEQBkVf1OZBv-BE9fIGdyQPaaWJGO6s85JB2XHZH9tg8DbZblMXmpakcvLc3d-5Ll5RrXf-4SqrHbcq7RxmheGtxyoQWCU02AoxCwgkyWrzYM0QwEbN1Mgm55RavshMwnt8_jKWvaJjAL8X_B_DQwWrqhC7jB7Nc5qX0TDQMXwn-qxJfapNqF1rOJF1ppdJIarp3PjcB8xT8l3WyVuTNCha8hPxEwzyoCKFc6sTKBnDFyGnTGTY_4rbZi29QUx9YWb3FLHnuNax3HqOOYqxh03CNsK7Wua2r8MT5sJyL-ZhsxuP1fJc__LXlBdvEJd4-Fd0m6xaZ0VxB-FKZf2Vef7IzuHqazTw_63So
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgO8CFN-JNDlyjpWnTrkeEQAO2XRgSFxQlaSYNQTet2__H7mMCCYHEta2l1nH9xfFnG-BKjLNAZC7mMvURj5Sl_K4KeNcjODnn0thSNfJgGPeeo4cX9bIGN00tDNEqa99f-fTSW9dXOrU2O7PJpPMkUolRVIAAJ8rk4Dq0qTuVakH7-v6xN1wlE5JAVi33pOIk0FTQlTSv3C-JNiIRy8oWnkQ4_AmhvqDO3Q5s1dtFdl290S6s-XwPtptRDKz-M_fhtWwfPXGs8B8TXixn5AIKnzFDA5cLQ2bGiqWlUxe2IHyqOHAM96wokxfTOSdAQwFXzZNgK2rRND-A57vb0U2P15MTuMMQYMHDcWxN5Ls-FpYCYO8jE9q0G_sEv1NlYWTs2PjEBS4LEhdZk42tMD4UVlLIEh5CK5_m_giYDA2GKBKXWqWI5spkLsowbEy9QZ0Jewxhoy3t6rbiNN3iXTf8sTdd6ViTjrVQGnV8DHwlNavaavzxfNIshP5mHho9_6-SJ_-WvISN3mjQ1_374eMpbNIdOkyWwRm0FvOlP8fdyMJe1Nb2CacT39s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generic+semi-supervised+adversarial+subject+translation+for+sensor-based+activity+recognition&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Soleimani%2C+Elnaz&rft.au=Khodabandelou%2C+Ghazaleh&rft.au=Chibani%2C+Abdelghani&rft.au=Amirat%2C+Yacine&rft.date=2022-08-21&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=500&rft.spage=649&rft.epage=661&rft_id=info:doi/10.1016%2Fj.neucom.2022.05.075&rft.externalDocID=S0925231222006592
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon