Generic semi-supervised adversarial subject translation for sensor-based activity recognition
Performance of Human Activity Recognition (HAR) models, particularly deep neural networks, is highly contingent upon the availability of the massive amount of annotated training data. Though, data collection and manual labeling in the HAR domain are prohibitively expensive due to human resource depe...
Saved in:
Published in | Neurocomputing (Amsterdam) Vol. 500; pp. 649 - 661 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
21.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Performance of Human Activity Recognition (HAR) models, particularly deep neural networks, is highly contingent upon the availability of the massive amount of annotated training data. Though, data collection and manual labeling in the HAR domain are prohibitively expensive due to human resource dependence in both steps. Hence, domain adaptation techniques are proposed to adapt the knowledge from the existing source of data. More recently, adversarial transfer learning methods have shown promising results for visual classification, yet limited for HAR problems, which are still prone to the unfavorable effects of the imbalanced distribution of samples. This paper presents a novel generic semi-supervised approach that takes advantage of the adversarial framework to tackle these shortcomings by leveraging knowledge from annotated samples exclusively from the source subject and unlabeled ones of the target subject. An extensive subject translation experiments is conducted on three large, middle, and small-size datasets with different levels of imbalance to assess the robustness of the proposed model to the scale as well as the imbalance in the data. The results demonstrate the effectiveness of our proposed algorithms over state-of-the-art methods, which led to up to 13%, 4%, and 13% improvement of our high-level activities recognition metrics for Opportunity, LISSI, and PAMAP2 datasets, respectively. |
---|---|
AbstractList | Performance of Human Activity Recognition (HAR) models, particularly deep neural networks, is highly contingent upon the availability of the massive amount of annotated training data. Though, data collection and manual labeling in the HAR domain are prohibitively expensive due to human resource dependence in both steps. Hence, domain adaptation techniques are proposed to adapt the knowledge from the existing source of data. More recently, adversarial transfer learning methods have shown promising results for visual classification, yet limited for HAR problems, which are still prone to the unfavorable effects of the imbalanced distribution of samples. This paper presents a novel generic semi-supervised approach that takes advantage of the adversarial framework to tackle these shortcomings by leveraging knowledge from annotated samples exclusively from the source subject and unlabeled ones of the target subject. An extensive subject translation experiments is conducted on three large, middle, and small-size datasets with different levels of imbalance to assess the robustness of the proposed model to the scale as well as the imbalance in the data. The results demonstrate the effectiveness of our proposed algorithms over state-of-the-art methods, which led to up to 13%, 4%, and 13% improvement of our high-level activities recognition metrics for Opportunity, LISSI, and PAMAP2 datasets, respectively. |
Author | Soleimani, Elnaz Khodabandelou, Ghazaleh Amirat, Yacine Chibani, Abdelghani |
Author_xml | – sequence: 1 givenname: Elnaz surname: Soleimani fullname: Soleimani, Elnaz email: elnaz.soleimani@lissi.fr – sequence: 2 givenname: Ghazaleh surname: Khodabandelou fullname: Khodabandelou, Ghazaleh email: ghazaleh.khodabandelou@u-pec.fr – sequence: 3 givenname: Abdelghani surname: Chibani fullname: Chibani, Abdelghani email: chibani@u-pec.fr – sequence: 4 givenname: Yacine surname: Amirat fullname: Amirat, Yacine email: amirat@u-pec.fr |
BookMark | eNqFkM1KAzEURoNUsK2-gYt5gRlvMpP5cSFI0SoU3OhSQpK5IxmmSUnSgb6909aVC13dzT0fnLMgM-ssEnJLIaNAy7s-s7jXbpsxYCwDnkHFL8ic1hVLa1aXMzKHhvGU5ZRdkUUIPQCtKGvm5HONFr3RScCtScN-h340AdtEtiP6IL2RQxL2qkcdk-ilDYOMxtmkc35ibHA-VfIE6GhGEw-JR-2-rDl-XZPLTg4Bb37uknw8P72vXtLN2_p19bhJdQ5lTPOuVLLAGktQUJQNYiFz1dQlVpMQb_NCqk5ipaluaaULJdtOgcQcFOMceL4kxXlXexeCx07svNlKfxAUxDGR6MU5kTgmEsDFlGjC7n9h2sST3mRqhv_ghzOMk9ho0IugDVqNrZkKRNE68_fANx7Yiqo |
CitedBy_id | crossref_primary_10_1109_JBHI_2023_3298932 crossref_primary_10_1109_TASE_2023_3300821 crossref_primary_10_4236_jst_2024_142002 crossref_primary_10_1016_j_neucom_2024_127316 crossref_primary_10_1109_JSEN_2024_3406727 crossref_primary_10_1109_JSEN_2023_3267243 crossref_primary_10_1016_j_eswa_2022_118807 crossref_primary_10_1016_j_engappai_2022_105702 crossref_primary_10_1145_3717608 |
Cites_doi | 10.1109/TKDE.2009.191 10.1109/TNN.2010.2091281 10.1016/j.pmcj.2019.04.004 10.1016/j.neucom.2020.10.056 10.7551/mitpress/9780262033589.001.0001 10.1007/s12652-019-01380-5 10.1016/j.patrec.2018.02.010 10.1016/j.patrec.2012.12.014 10.1016/j.pmcj.2016.08.017 10.1016/j.patcog.2020.107527 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.neucom.2022.05.075 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-8286 |
EndPage | 661 |
ExternalDocumentID | 10_1016_j_neucom_2022_05_075 S0925231222006592 |
GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB HLZ HVGLF HZ~ R2- RIG SBC SEW SSH WUQ XPP |
ID | FETCH-LOGICAL-c306t-3f6ba4e8e60b0469ee4a3b986e70225d34abfae7c1cd17c4badfb0ae30b255053 |
IEDL.DBID | .~1 |
ISSN | 0925-2312 |
IngestDate | Tue Jul 01 04:24:48 EDT 2025 Thu Apr 24 23:07:39 EDT 2025 Fri Feb 23 02:39:15 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Human activity recognition Transfer learning Semi-supervised learning Cross-subject transfer learning Adversarial domain adaptation Generative adversarial network |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-3f6ba4e8e60b0469ee4a3b986e70225d34abfae7c1cd17c4badfb0ae30b255053 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1016_j_neucom_2022_05_075 crossref_citationtrail_10_1016_j_neucom_2022_05_075 elsevier_sciencedirect_doi_10_1016_j_neucom_2022_05_075 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-21 |
PublicationDateYYYYMMDD | 2022-08-21 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-21 day: 21 |
PublicationDecade | 2020 |
PublicationTitle | Neurocomputing (Amsterdam) |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, X. Chen, Improved techniques for training gans, in: Advances in neural information processing systems, 2016, pp. 2234–2242. Khan, Roy, Misra (b0020) 2018 Srivastava, Valkov, Russell, Gutmann, Sutton (b0205) 2017 Yasarla, Sindagi, Patel (b0080) 2020 Pan, Yang (b0010) 2010; 22 LISSI Dataset rehabilitation self exercises dataset, http://www.lissi.fr/parkinson-rehabilitation-dataset-2/, accessed: 2019-09-30. S. Yan, H. Song, N. Li, L. Zou, L. Ren, Improve unsupervised domain adaptation with mixup training, arXiv preprint arXiv:2001.00677. Reiss, Stricker (b0040) 2012 He, Liu, Fan, You (b0165) 2020 Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette, Marchand, Lempitsky (b0170) 2016; 17 Kouw, Loog (b0015) 2019 R. Shu, H.H. Bui, H. Narui, S. Ermon, A dirt-t approach to unsupervised domain adaptation, arXiv preprint arXiv:1802.08735. Luo, Zou, Hoffman, Fei-Fei (b0155) 2017 Khan, Roy (b0095) 2017 Soleimani, Nazerfard (b0030) 2021; 426 J. Jiang, A literature survey on domain adaptation of statistical classifiers, URL: http://sifaka. cs. uiuc. edu/jiang4/domainadaptation/survey 3 (2008) 1–12. Wang, Chen, Gu, Xiao, Pan (b0145) 2018 I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative adversarial nets, in: Advances in neural information processing systems, 2014, pp. 2672–2680. Bengio (b0005) 2013 Wang, Chen, Feng, Yu, Huang, Yang (b0090) 2020; 11 Zhang, Xu, Li, Zhang, Wang, Huang, Metaxas (b0120) 2017 Alzantot, Chakraborty, Srivastava (b0135) 2017 Wang, Chen, Hao, Feng, Shen (b0085) 2017 Wang, Zheng, Chen, Huang (b0060) 2018 Wang, Chen, Hu, Peng, Philip (b0050) 2018 J. Yosinski, J. Clune, Y. Bengio, H. Lipson, How transferable are features in deep neural networks?, in: Advances in neural information processing systems, 2014, pp. 3320–3328. Gong, Shi, Sha, Grauman (b0065) 2012 Yu, Chen, Cheng, Luo (b0190) 2020 Ueda, Seo, Nishikawa (b0130) 2018 Bousmalis, Silberman, Dohan, Erhan, Krishnan (b0160) 2017 Pan, Tsang, Kwok, Yang (b0075) 2011; 22 O. Chapelle, A. Zien, Semi-supervised classification by low density separation, in: International workshop on artificial intelligence and statistics, PMLR, 2005, pp. 57–64. Tzeng, Hoffman, Saenko, Darrell (b0150) 2017 Hossain, Khan, Roy (b0070) 2017; 38 Chavarriaga, Sagha, Calatroni, Digumarti, Tröster, Millán, Roggen (b0035) 2013; 34 Saeedi, Sasani, Norgaard, Gebremedhin (b0140) 2018 A. Bidgoli, P. Veloso, Deepcloud. the application of a data-driven, generative model in design, arXiv preprint arXiv:1904.01083. Nie, Trullo, Lian, Petitjean, Ruan, Wang, Shen (b0105) 2017 Wang, Chen, Hao, Peng, Hu (b0195) 2019; 119 M. Arjovsky, L. Bottou, Towards principled methods for training generative adversarial networks, arXiv preprint arXiv:1701.04862. P. Asghari, E. Soleimani, E. Nazerfard, Online human activity recognition employing hierarchical hidden markov models, Journal of Ambient Intelligence and Humanized Computing doi:10.1007/s12652-019-01380-5. Chen, Wang, Huang, Yu (b0055) 2019; 57 S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, H. Lee, Generative adversarial text to image synthesis, arXiv preprint arXiv:1605.05396. Schlegl, Seeböck, Waldstein, Schmidt-Erfurth, Langs (b0110) 2017 Chiaroni, K., Rahal, Hueber, Dufaux (b9000) 2020 10.1016/j.neucom.2022.05.075_b0025 10.1016/j.neucom.2022.05.075_b0125 Wang (10.1016/j.neucom.2022.05.075_b0145) 2018 Wang (10.1016/j.neucom.2022.05.075_b0085) 2017 Chiaroni (10.1016/j.neucom.2022.05.075_b9000) 2020 Pan (10.1016/j.neucom.2022.05.075_b0010) 2010; 22 Schlegl (10.1016/j.neucom.2022.05.075_b0110) 2017 Reiss (10.1016/j.neucom.2022.05.075_b0040) 2012 Zhang (10.1016/j.neucom.2022.05.075_b0120) 2017 Soleimani (10.1016/j.neucom.2022.05.075_b0030) 2021; 426 Gong (10.1016/j.neucom.2022.05.075_b0065) 2012 Luo (10.1016/j.neucom.2022.05.075_b0155) 2017 Chen (10.1016/j.neucom.2022.05.075_b0055) 2019; 57 He (10.1016/j.neucom.2022.05.075_b0165) 2020 Kouw (10.1016/j.neucom.2022.05.075_b0015) 2019 10.1016/j.neucom.2022.05.075_b0180 Ganin (10.1016/j.neucom.2022.05.075_b0170) 2016; 17 Bengio (10.1016/j.neucom.2022.05.075_b0005) 2013 10.1016/j.neucom.2022.05.075_b0185 Wang (10.1016/j.neucom.2022.05.075_b0050) 2018 Wang (10.1016/j.neucom.2022.05.075_b0060) 2018 10.1016/j.neucom.2022.05.075_b0220 10.1016/j.neucom.2022.05.075_b0045 10.1016/j.neucom.2022.05.075_b0100 10.1016/j.neucom.2022.05.075_b0200 10.1016/j.neucom.2022.05.075_b0115 Tzeng (10.1016/j.neucom.2022.05.075_b0150) 2017 10.1016/j.neucom.2022.05.075_b0215 Saeedi (10.1016/j.neucom.2022.05.075_b0140) 2018 Wang (10.1016/j.neucom.2022.05.075_b0090) 2020; 11 Alzantot (10.1016/j.neucom.2022.05.075_b0135) 2017 Chavarriaga (10.1016/j.neucom.2022.05.075_b0035) 2013; 34 Hossain (10.1016/j.neucom.2022.05.075_b0070) 2017; 38 Yasarla (10.1016/j.neucom.2022.05.075_b0080) 2020 Bousmalis (10.1016/j.neucom.2022.05.075_b0160) 2017 Khan (10.1016/j.neucom.2022.05.075_b0020) 2018 Pan (10.1016/j.neucom.2022.05.075_b0075) 2011; 22 10.1016/j.neucom.2022.05.075_b0175 Yu (10.1016/j.neucom.2022.05.075_b0190) 2020 Wang (10.1016/j.neucom.2022.05.075_b0195) 2019; 119 Srivastava (10.1016/j.neucom.2022.05.075_b0205) 2017 10.1016/j.neucom.2022.05.075_b0210 Khan (10.1016/j.neucom.2022.05.075_b0095) 2017 Nie (10.1016/j.neucom.2022.05.075_b0105) 2017 Ueda (10.1016/j.neucom.2022.05.075_b0130) 2018 |
References_xml | – start-page: 7167 year: 2017 end-page: 7176 ident: b0150 article-title: Adversarial discriminative domain adaptation publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – reference: J. Yosinski, J. Clune, Y. Bengio, H. Lipson, How transferable are features in deep neural networks?, in: Advances in neural information processing systems, 2014, pp. 3320–3328. – reference: T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, X. Chen, Improved techniques for training gans, in: Advances in neural information processing systems, 2016, pp. 2234–2242. – start-page: 964 year: 2020 end-page: 965 ident: b0165 article-title: Classification-aware semi-supervised domain adaptation publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops – volume: 22 start-page: 1345 year: 2010 end-page: 1359 ident: b0010 article-title: A survey on transfer learning publication-title: IEEE Transactions on knowledge and data engineering – reference: R. Shu, H.H. Bui, H. Narui, S. Ermon, A dirt-t approach to unsupervised domain adaptation, arXiv preprint arXiv:1802.08735. – start-page: 2726 year: 2020 end-page: 2736 ident: b0080 article-title: Syn2real transfer learning for image deraining using gaussian processes publication-title: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition – volume: 426 start-page: 26 year: 2021 end-page: 34 ident: b0030 article-title: Cross-subject transfer learning in human activity recognition systems using generative adversarial networks publication-title: Neurocomputing – start-page: 12856 year: 2020 end-page: 12864 ident: b0190 article-title: Transmatch: A transfer-learning scheme for semi-supervised few-shot learning, in publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – start-page: 1193 year: 2018 end-page: 1196 ident: b0140 article-title: Personalized human activity recognition using wearables: A manifold learning-based knowledge transfer publication-title: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) – start-page: 108 year: 2012 end-page: 109 ident: b0040 article-title: Introducing a new benchmarked dataset for activity monitoring publication-title: 2012 16th International Symposium on Wearable Computers – start-page: 146 year: 2017 end-page: 157 ident: b0110 article-title: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery publication-title: International Conference on Information Processing in Medical Imaging – year: 2019 ident: b0015 article-title: A review of domain adaptation without target labels publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 34 start-page: 2033 year: 2013 end-page: 2042 ident: b0035 article-title: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition publication-title: Pattern Recognition Letters – reference: A. Bidgoli, P. Veloso, Deepcloud. the application of a data-driven, generative model in design, arXiv preprint arXiv:1904.01083. – start-page: 1129 year: 2017 end-page: 1134 ident: b0085 article-title: Balanced distribution adaptation for transfer learning publication-title: 2017 IEEE International Conference on Data Mining (ICDM) – start-page: 5907 year: 2017 end-page: 5915 ident: b0120 article-title: Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial networks publication-title: Proceedings of the IEEE International Conference on Computer Vision – reference: LISSI Dataset rehabilitation self exercises dataset, http://www.lissi.fr/parkinson-rehabilitation-dataset-2/, accessed: 2019-09-30. – reference: S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, H. Lee, Generative adversarial text to image synthesis, arXiv preprint arXiv:1605.05396. – start-page: 165 year: 2017 end-page: 177 ident: b0155 article-title: Label efficient learning of transferable representations acrosss domains and tasks publication-title: Advances in Neural Information Processing Systems – start-page: 403 year: 2018 end-page: 413 ident: b0130 article-title: Data correction by a generative model with an encoder and its application to structure design publication-title: International Conference on Artificial Neural Networks – volume: 57 start-page: 1 year: 2019 end-page: 13 ident: b0055 article-title: Cross-position activity recognition with stratified transfer learning publication-title: Pervasive and Mobile Computing – start-page: 3722 year: 2017 end-page: 3731 ident: b0160 article-title: Unsupervised pixel-level domain adaptation with generative adversarial networks publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – reference: S. Yan, H. Song, N. Li, L. Zou, L. Ren, Improve unsupervised domain adaptation with mixup training, arXiv preprint arXiv:2001.00677. – reference: P. Asghari, E. Soleimani, E. Nazerfard, Online human activity recognition employing hierarchical hidden markov models, Journal of Ambient Intelligence and Humanized Computing doi:10.1007/s12652-019-01380-5. – year: 2020 ident: b9000 article-title: Counter-examples generation from a positive unlabeled image dataset publication-title: Pattern Recognition – volume: 38 start-page: 312 year: 2017 end-page: 330 ident: b0070 article-title: Active learning enabled activity recognition publication-title: Pervasive and Mobile Computing – volume: 119 start-page: 3 year: 2019 end-page: 11 ident: b0195 article-title: Deep learning for sensor-based activity recognition: A survey publication-title: Pattern Recognition Letters – start-page: 417 year: 2017 end-page: 425 ident: b0105 article-title: Medical image synthesis with context-aware generative adversarial networks publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 1 year: 2013 end-page: 37 ident: b0005 article-title: Deep learning of representations: Looking forward publication-title: International Conference on Statistical Language and Speech Processing – start-page: 1 year: 2018 end-page: 10 ident: b0050 article-title: Stratified transfer learning for cross-domain activity recognition publication-title: 2018 IEEE International Conference on Pervasive Computing and Communications (PerCom) – start-page: 3308 year: 2017 end-page: 3318 ident: b0205 article-title: Veegan: Reducing mode collapse in gans using implicit variational learning publication-title: Advances in Neural Information Processing Systems – reference: I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative adversarial nets, in: Advances in neural information processing systems, 2014, pp. 2672–2680. – volume: 11 start-page: 1 year: 2020 end-page: 25 ident: b0090 article-title: Transfer learning with dynamic distribution adaptation publication-title: ACM Transactions on Intelligent Systems and Technology (TIST) – reference: M. Arjovsky, L. Bottou, Towards principled methods for training generative adversarial networks, arXiv preprint arXiv:1701.04862. – start-page: 188 year: 2017 end-page: 193 ident: b0135 article-title: Sensegen: A deep learning architecture for synthetic sensor data generation publication-title: 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops) – volume: 17 year: 2016 ident: b0170 article-title: Domain-adversarial training of neural networks publication-title: The journal of machine learning research – start-page: 16 year: 2018 ident: b0060 article-title: Deep transfer learning for cross-domain activity recognition publication-title: Proceedings of the 3rd International Conference on Crowd Science and Engineering – start-page: 2066 year: 2012 end-page: 2073 ident: b0065 article-title: Geodesic flow kernel for unsupervised domain adaptation publication-title: 2012 IEEE Conference on Computer Vision and Pattern Recognition – reference: O. Chapelle, A. Zien, Semi-supervised classification by low density separation, in: International workshop on artificial intelligence and statistics, PMLR, 2005, pp. 57–64. – start-page: 1 year: 2018 end-page: 8 ident: b0145 article-title: Sensorygans: An effective generative adversarial framework for sensor-based human activity recognition publication-title: 2018 International Joint Conference on Neural Networks (IJCNN) – volume: 22 start-page: 199 year: 2011 end-page: 210 ident: b0075 article-title: Domain adaptation via transfer component analysis publication-title: IEEE Transactions on Neural Networks – start-page: 545 year: 2017 end-page: 550 ident: b0095 article-title: Transact: Transfer learning enabled activity recognition publication-title: 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops) – start-page: 1 year: 2018 end-page: 9 ident: b0020 article-title: Scaling human activity recognition via deep learning-based domain adaptation publication-title: 2018 IEEE International Conference on Pervasive Computing and Communications (PerCom) – reference: J. Jiang, A literature survey on domain adaptation of statistical classifiers, URL: http://sifaka. cs. uiuc. edu/jiang4/domainadaptation/survey 3 (2008) 1–12. – volume: 22 start-page: 1345 issue: 10 year: 2010 ident: 10.1016/j.neucom.2022.05.075_b0010 article-title: A survey on transfer learning publication-title: IEEE Transactions on knowledge and data engineering doi: 10.1109/TKDE.2009.191 – volume: 22 start-page: 199 issue: 2 year: 2011 ident: 10.1016/j.neucom.2022.05.075_b0075 article-title: Domain adaptation via transfer component analysis publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2010.2091281 – start-page: 964 year: 2020 ident: 10.1016/j.neucom.2022.05.075_b0165 article-title: Classification-aware semi-supervised domain adaptation – ident: 10.1016/j.neucom.2022.05.075_b0115 – start-page: 1 year: 2013 ident: 10.1016/j.neucom.2022.05.075_b0005 article-title: Deep learning of representations: Looking forward – start-page: 5907 year: 2017 ident: 10.1016/j.neucom.2022.05.075_b0120 article-title: Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial networks – start-page: 1129 year: 2017 ident: 10.1016/j.neucom.2022.05.075_b0085 article-title: Balanced distribution adaptation for transfer learning – start-page: 3308 year: 2017 ident: 10.1016/j.neucom.2022.05.075_b0205 article-title: Veegan: Reducing mode collapse in gans using implicit variational learning publication-title: Advances in Neural Information Processing Systems – volume: 57 start-page: 1 year: 2019 ident: 10.1016/j.neucom.2022.05.075_b0055 article-title: Cross-position activity recognition with stratified transfer learning publication-title: Pervasive and Mobile Computing doi: 10.1016/j.pmcj.2019.04.004 – start-page: 7167 year: 2017 ident: 10.1016/j.neucom.2022.05.075_b0150 article-title: Adversarial discriminative domain adaptation – volume: 11 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.neucom.2022.05.075_b0090 article-title: Transfer learning with dynamic distribution adaptation publication-title: ACM Transactions on Intelligent Systems and Technology (TIST) – ident: 10.1016/j.neucom.2022.05.075_b0025 – volume: 426 start-page: 26 year: 2021 ident: 10.1016/j.neucom.2022.05.075_b0030 article-title: Cross-subject transfer learning in human activity recognition systems using generative adversarial networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.10.056 – start-page: 417 year: 2017 ident: 10.1016/j.neucom.2022.05.075_b0105 article-title: Medical image synthesis with context-aware generative adversarial networks – ident: 10.1016/j.neucom.2022.05.075_b0175 – start-page: 1193 year: 2018 ident: 10.1016/j.neucom.2022.05.075_b0140 article-title: Personalized human activity recognition using wearables: A manifold learning-based knowledge transfer – ident: 10.1016/j.neucom.2022.05.075_b0210 – start-page: 1 year: 2018 ident: 10.1016/j.neucom.2022.05.075_b0050 article-title: Stratified transfer learning for cross-domain activity recognition – start-page: 3722 year: 2017 ident: 10.1016/j.neucom.2022.05.075_b0160 article-title: Unsupervised pixel-level domain adaptation with generative adversarial networks – ident: 10.1016/j.neucom.2022.05.075_b0180 doi: 10.7551/mitpress/9780262033589.001.0001 – start-page: 2726 year: 2020 ident: 10.1016/j.neucom.2022.05.075_b0080 article-title: Syn2real transfer learning for image deraining using gaussian processes – start-page: 545 year: 2017 ident: 10.1016/j.neucom.2022.05.075_b0095 article-title: Transact: Transfer learning enabled activity recognition – ident: 10.1016/j.neucom.2022.05.075_b0185 – ident: 10.1016/j.neucom.2022.05.075_b0200 – volume: 17 issue: 1 year: 2016 ident: 10.1016/j.neucom.2022.05.075_b0170 article-title: Domain-adversarial training of neural networks publication-title: The journal of machine learning research – start-page: 146 year: 2017 ident: 10.1016/j.neucom.2022.05.075_b0110 article-title: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery – start-page: 12856 year: 2020 ident: 10.1016/j.neucom.2022.05.075_b0190 article-title: Transmatch: A transfer-learning scheme for semi-supervised few-shot learning, in – ident: 10.1016/j.neucom.2022.05.075_b0220 doi: 10.1007/s12652-019-01380-5 – volume: 119 start-page: 3 year: 2019 ident: 10.1016/j.neucom.2022.05.075_b0195 article-title: Deep learning for sensor-based activity recognition: A survey publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2018.02.010 – volume: 34 start-page: 2033 issue: 15 year: 2013 ident: 10.1016/j.neucom.2022.05.075_b0035 article-title: The opportunity challenge: A benchmark database for on-body sensor-based activity recognition publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2012.12.014 – start-page: 1 year: 2018 ident: 10.1016/j.neucom.2022.05.075_b0145 article-title: Sensorygans: An effective generative adversarial framework for sensor-based human activity recognition – start-page: 16 year: 2018 ident: 10.1016/j.neucom.2022.05.075_b0060 article-title: Deep transfer learning for cross-domain activity recognition – start-page: 188 year: 2017 ident: 10.1016/j.neucom.2022.05.075_b0135 article-title: Sensegen: A deep learning architecture for synthetic sensor data generation – start-page: 1 year: 2018 ident: 10.1016/j.neucom.2022.05.075_b0020 article-title: Scaling human activity recognition via deep learning-based domain adaptation – start-page: 403 year: 2018 ident: 10.1016/j.neucom.2022.05.075_b0130 article-title: Data correction by a generative model with an encoder and its application to structure design – ident: 10.1016/j.neucom.2022.05.075_b0045 – volume: 38 start-page: 312 year: 2017 ident: 10.1016/j.neucom.2022.05.075_b0070 article-title: Active learning enabled activity recognition publication-title: Pervasive and Mobile Computing doi: 10.1016/j.pmcj.2016.08.017 – year: 2020 ident: 10.1016/j.neucom.2022.05.075_b9000 article-title: Counter-examples generation from a positive unlabeled image dataset publication-title: Pattern Recognition doi: 10.1016/j.patcog.2020.107527 – start-page: 2066 year: 2012 ident: 10.1016/j.neucom.2022.05.075_b0065 article-title: Geodesic flow kernel for unsupervised domain adaptation – ident: 10.1016/j.neucom.2022.05.075_b0215 – ident: 10.1016/j.neucom.2022.05.075_b0100 – year: 2019 ident: 10.1016/j.neucom.2022.05.075_b0015 article-title: A review of domain adaptation without target labels publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – ident: 10.1016/j.neucom.2022.05.075_b0125 – start-page: 108 year: 2012 ident: 10.1016/j.neucom.2022.05.075_b0040 article-title: Introducing a new benchmarked dataset for activity monitoring – start-page: 165 year: 2017 ident: 10.1016/j.neucom.2022.05.075_b0155 article-title: Label efficient learning of transferable representations acrosss domains and tasks publication-title: Advances in Neural Information Processing Systems |
SSID | ssj0017129 |
Score | 2.4232407 |
Snippet | Performance of Human Activity Recognition (HAR) models, particularly deep neural networks, is highly contingent upon the availability of the massive amount of... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 649 |
SubjectTerms | Adversarial domain adaptation Cross-subject transfer learning Generative adversarial network Human activity recognition Semi-supervised learning Transfer learning |
Title | Generic semi-supervised adversarial subject translation for sensor-based activity recognition |
URI | https://dx.doi.org/10.1016/j.neucom.2022.05.075 |
Volume | 500 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6mceHCGzEeUw5cw9I0adfjNDENELvApF1QlaSpNATdtLZXfjt2HxNICCSOrWKpdRx_dvLFJuSap4nHExswETnJpDJ4vqs8NnQATtbaKDB4G_lxFkzn8n6hFh0ybu_CIK2y8f21T6-8dfNm0GhzsF4uB088EpBFeQBwvDocxBvsMkQrv_nY0jy80BN1vT2hGI5ur89VHK_MlcgZEQBkVf1OZBv-BE9fIGdyQPaaWJGO6s85JB2XHZH9tg8DbZblMXmpakcvLc3d-5Ll5RrXf-4SqrHbcq7RxmheGtxyoQWCU02AoxCwgkyWrzYM0QwEbN1Mgm55RavshMwnt8_jKWvaJjAL8X_B_DQwWrqhC7jB7Nc5qX0TDQMXwn-qxJfapNqF1rOJF1ppdJIarp3PjcB8xT8l3WyVuTNCha8hPxEwzyoCKFc6sTKBnDFyGnTGTY_4rbZi29QUx9YWb3FLHnuNax3HqOOYqxh03CNsK7Wua2r8MT5sJyL-ZhsxuP1fJc__LXlBdvEJd4-Fd0m6xaZ0VxB-FKZf2Vef7IzuHqazTw_63So |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgO8CFN-JNDlyjpWnTrkeEQAO2XRgSFxQlaSYNQTet2__H7mMCCYHEta2l1nH9xfFnG-BKjLNAZC7mMvURj5Sl_K4KeNcjODnn0thSNfJgGPeeo4cX9bIGN00tDNEqa99f-fTSW9dXOrU2O7PJpPMkUolRVIAAJ8rk4Dq0qTuVakH7-v6xN1wlE5JAVi33pOIk0FTQlTSv3C-JNiIRy8oWnkQ4_AmhvqDO3Q5s1dtFdl290S6s-XwPtptRDKz-M_fhtWwfPXGs8B8TXixn5AIKnzFDA5cLQ2bGiqWlUxe2IHyqOHAM96wokxfTOSdAQwFXzZNgK2rRND-A57vb0U2P15MTuMMQYMHDcWxN5Ls-FpYCYO8jE9q0G_sEv1NlYWTs2PjEBS4LEhdZk42tMD4UVlLIEh5CK5_m_giYDA2GKBKXWqWI5spkLsowbEy9QZ0Jewxhoy3t6rbiNN3iXTf8sTdd6ViTjrVQGnV8DHwlNavaavzxfNIshP5mHho9_6-SJ_-WvISN3mjQ1_374eMpbNIdOkyWwRm0FvOlP8fdyMJe1Nb2CacT39s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generic+semi-supervised+adversarial+subject+translation+for+sensor-based+activity+recognition&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Soleimani%2C+Elnaz&rft.au=Khodabandelou%2C+Ghazaleh&rft.au=Chibani%2C+Abdelghani&rft.au=Amirat%2C+Yacine&rft.date=2022-08-21&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=500&rft.spage=649&rft.epage=661&rft_id=info:doi/10.1016%2Fj.neucom.2022.05.075&rft.externalDocID=S0925231222006592 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |