A novel method: Nickel and cobalt extraction from citric acid leaching solution of nickel laterite ores using oxalate precipitation
•Mixed oxalate precipitate (MOP) was produced from citric acid leaching of nickel laterite ores and direct oxalate precipitation.•The purity of MOP is 78%.•Leaching efficiency of nickel was around 90%; while efficiency of nickel oxalate precipitation was 100%.•This method is an alternative for recov...
Saved in:
Published in | Minerals engineering Vol. 191; p. 107982 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2023
|
Online Access | Get full text |
Cover
Loading…
Abstract | •Mixed oxalate precipitate (MOP) was produced from citric acid leaching of nickel laterite ores and direct oxalate precipitation.•The purity of MOP is 78%.•Leaching efficiency of nickel was around 90%; while efficiency of nickel oxalate precipitation was 100%.•This method is an alternative for recovering nickel from nickel laterite ores that is simpler and ecofriendly.
In this study, an alternative method for recovering nickel and other valuable metals from nickel laterite ores is proposed and evaluated. The proposed method comprises a leaching step using citric acid to dissolve the nickel and cobalt from Indonesian nickel laterite ores, and subsequently, an oxalate precipitation step to precipitate the nickel (and cobalt) from citric acid leach filtrate. The results of the leaching experiments showed that nickel (and cobalt) can be dissolved in the leaching step using 1 M citric acid solution at 80 °C, a pulp density of 100 g/L, and leaching duration of 5 h. The results of the oxalate precipitation experiments showed that complete precipitation of nickel can be achieved at 80 °C, 500 rpm stirring speed, and precipitation duration of 3 h. This proposed method can produce Mixed Oxalate Precipitate (MOP) with a purity of 78 %. |
---|---|
AbstractList | •Mixed oxalate precipitate (MOP) was produced from citric acid leaching of nickel laterite ores and direct oxalate precipitation.•The purity of MOP is 78%.•Leaching efficiency of nickel was around 90%; while efficiency of nickel oxalate precipitation was 100%.•This method is an alternative for recovering nickel from nickel laterite ores that is simpler and ecofriendly.
In this study, an alternative method for recovering nickel and other valuable metals from nickel laterite ores is proposed and evaluated. The proposed method comprises a leaching step using citric acid to dissolve the nickel and cobalt from Indonesian nickel laterite ores, and subsequently, an oxalate precipitation step to precipitate the nickel (and cobalt) from citric acid leach filtrate. The results of the leaching experiments showed that nickel (and cobalt) can be dissolved in the leaching step using 1 M citric acid solution at 80 °C, a pulp density of 100 g/L, and leaching duration of 5 h. The results of the oxalate precipitation experiments showed that complete precipitation of nickel can be achieved at 80 °C, 500 rpm stirring speed, and precipitation duration of 3 h. This proposed method can produce Mixed Oxalate Precipitate (MOP) with a purity of 78 %. |
ArticleNumber | 107982 |
Author | Nurjaman, Fajar Avista, Dira Tri Bayu Murti Petrus, Himawan Sumardi, Slamet Astuti, Widi Rofiek Mufakhir, Fika Cleary Wanta, Kevin |
Author_xml | – sequence: 1 givenname: Widi surname: Astuti fullname: Astuti, Widi email: widi005@brin.go.id organization: Research Center for Mining Technology, National Research and Innovation Agency (BRIN), Jl. Ir. Sutami, Km. 15, Tanjung Bintang, South Lampung, Lampung Province, Indonesia – sequence: 2 givenname: Fajar surname: Nurjaman fullname: Nurjaman, Fajar organization: Research Center for Mining Technology, National Research and Innovation Agency (BRIN), Jl. Ir. Sutami, Km. 15, Tanjung Bintang, South Lampung, Lampung Province, Indonesia – sequence: 3 givenname: Fika surname: Rofiek Mufakhir fullname: Rofiek Mufakhir, Fika organization: Research Center for Mining Technology, National Research and Innovation Agency (BRIN), Jl. Ir. Sutami, Km. 15, Tanjung Bintang, South Lampung, Lampung Province, Indonesia – sequence: 4 givenname: Slamet surname: Sumardi fullname: Sumardi, Slamet organization: Research Center for Mining Technology, National Research and Innovation Agency (BRIN), Jl. Ir. Sutami, Km. 15, Tanjung Bintang, South Lampung, Lampung Province, Indonesia – sequence: 5 givenname: Dira surname: Avista fullname: Avista, Dira organization: Research Center for Mining Technology, National Research and Innovation Agency (BRIN), Jl. Ir. Sutami, Km. 15, Tanjung Bintang, South Lampung, Lampung Province, Indonesia – sequence: 6 givenname: Kevin surname: Cleary Wanta fullname: Cleary Wanta, Kevin organization: Department of Chemical Engineering, Parahyangan Catholic University, Bandung, Indonesia – sequence: 7 givenname: Himawan surname: Tri Bayu Murti Petrus fullname: Tri Bayu Murti Petrus, Himawan organization: Department of Chemical Engineering, Gadjah Mada University, Yogyakarta, Indonesia |
BookMark | eNqFkMtOwzAQRS1UJFrgD1j4B1Ic5-WwQEKIl4RgA2trak9al8SubINgzY_jEFYsYGXNaM6V71mQmXUWCTnJ2TJneX26XQ7Gol0vOeM8rZpW8D0yz0XDs7YsyxmZM9HyrBZNdUAWIWwZY1Uj2jn5vKDWvWFPB4wbp8_og1EvaQSrqXIr6CPF9-hBReMs7bwbqDLRG0VBGU17BLUxdk2D61-_T1xH7RTRQ0RvIlLnMdDXMJ65dxjXdOdRmZ2JMDJHZL-DPuDxz3tInq-vni5vs_vHm7vLi_tMFayOWYHYsBUDXSjUoOvUQIHGWhRt2eUNB1zpCvIKBdNcQFfntRBYVZ0ugTcci0NyNuUq70Lw2En184NU0PQyZ3LUKbdy0ilHnXLSmeDyF7zzZgD_8R92PmGYir0Z9DIogzY1MElBlNqZvwO-ABwll1k |
CitedBy_id | crossref_primary_10_1016_j_seppur_2023_125619 crossref_primary_10_1088_1742_6596_2596_1_012038 crossref_primary_10_1007_s12613_023_2734_2 crossref_primary_10_1007_s40831_024_00847_w crossref_primary_10_1016_j_bej_2024_109564 crossref_primary_10_1007_s11837_024_06470_0 crossref_primary_10_1016_j_mineng_2024_109022 crossref_primary_10_1088_1755_1315_1422_1_012026 crossref_primary_10_1007_s11356_024_31894_1 crossref_primary_10_1080_08827508_2024_2328696 crossref_primary_10_1016_j_seppur_2025_131409 crossref_primary_10_1016_j_seppur_2024_126486 crossref_primary_10_1088_1755_1315_1388_1_012027 crossref_primary_10_3390_ma17174389 crossref_primary_10_1016_j_hydromet_2024_106331 crossref_primary_10_1007_s11837_023_06253_z crossref_primary_10_1016_j_seppur_2024_127758 crossref_primary_10_3390_separations10090477 crossref_primary_10_1051_e3sconf_202450306007 crossref_primary_10_1016_j_jece_2024_112688 crossref_primary_10_1039_D4RA07520J crossref_primary_10_3390_min14030314 crossref_primary_10_3390_su15097147 crossref_primary_10_1080_08827508_2024_2346652 crossref_primary_10_1016_j_scitotenv_2023_165417 crossref_primary_10_1021_acsomega_4c07361 crossref_primary_10_1016_j_mineng_2024_108679 crossref_primary_10_1016_j_seppur_2024_129188 crossref_primary_10_1016_j_matchemphys_2025_130476 crossref_primary_10_1016_j_fuel_2025_134483 crossref_primary_10_1016_j_seppur_2024_128717 crossref_primary_10_1007_s12649_024_02748_1 crossref_primary_10_1016_j_seppur_2024_128634 crossref_primary_10_1016_j_apt_2025_104818 |
Cites_doi | 10.1016/j.mineng.2015.09.018 10.1063/1.4974413 10.3390/min10070613 10.1051/metal/2018006 10.1016/j.mineng.2017.10.019 10.1016/j.hydromet.2008.11.005 10.1016/j.mineng.2009.06.006 10.1016/j.hydromet.2017.08.006 10.1016/j.mineng.2011.05.004 10.14716/ijtech.v13i2.4641 10.1016/j.hydromet.2007.11.010 10.1016/j.hydromet.2013.01.016 10.1016/j.mineng.2006.03.003 10.1016/S1003-6326(18)64808-3 10.1016/0301-7516(87)90059-7 10.14203/metalurgi.v26i1.7 10.1016/j.hydromet.2007.11.009 10.1016/j.mineng.2015.10.001 10.1016/j.hydromet.2015.12.015 10.1016/S0892-6875(03)00006-2 10.1016/j.oregeorev.2010.05.003 10.1063/5.0060750 10.1016/j.mineng.2012.08.007 10.1016/0304-386X(94)90031-0 10.1016/j.ijmst.2014.05.019 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.mineng.2022.107982 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-9444 |
ExternalDocumentID | 10_1016_j_mineng_2022_107982 S0892687522005921 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29M 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNUV ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEWK ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ IHE IMUCA J1W KOM LY3 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SEP SES SET SEW SPC SPCBC SSE SSG SSZ T5K WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-3ee70b0ad3cedad6057cade68394f172aebd5a15e80d28af61688e55fd4a272e3 |
IEDL.DBID | .~1 |
ISSN | 0892-6875 |
IngestDate | Thu Apr 24 22:56:41 EDT 2025 Tue Jul 01 01:13:33 EDT 2025 Fri Feb 23 02:37:34 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-3ee70b0ad3cedad6057cade68394f172aebd5a15e80d28af61688e55fd4a272e3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_mineng_2022_107982 crossref_primary_10_1016_j_mineng_2022_107982 elsevier_sciencedirect_doi_10_1016_j_mineng_2022_107982 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2023 2023-01-00 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: January 2023 |
PublicationDecade | 2020 |
PublicationTitle | Minerals engineering |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Astuti, Hirajima, Sasaki, Okibe (b0010) 2015; 32 Donegan (b0040) 2006; 19 Astuti, Hirajima, Sasaki, Okibe (b0020) 2016; 85 Mohammadreza, Mohammad, Ziaeddin (b0110) 2014; 24 Prasetiyo, P., Nasution, R., 2011. Masih Terbukanya Peluang Penelitian Proses Caron untuk Mengolah Laterit Kadar Rendah di Indonesia. Metalurgi Vol. 26 No. 1 April 2011, 35-44. Readett, D., Sullivan, J., 2016. Ni laterite heap leach PLS neutralization and Fe/Al precipitation. ALTA 2016 Nickel-Cobalt-Copper Proceedings, Perth, Australia, pp. 98-113. Wanta, Astuti, Perdana, Petrus (b0160) 2020; 10 Ma, Nie, Xi, Han (b0075) 2013; 136 Yunita, F. E., Mubarok, M. Z., 2021. Nickel leaching from laterite ores by combination of organic and sulfuric acid. AIP Conference Proceedings Okita, Singhal, Perraud (b0120) 2006 Wanta, Astuti, Petrus, Perdana (b0165) 2022; 13 Sudol (b0140) 2005; 126 Wang, K., Li., J., McDonald, R.G., Browner, R.E., 2013. Characterization of iron-rich precipitates from synthetic atmospheric nickel laterite leach solutions. Miner. Eng. 40, 1-11. 2382, 050003 (2021) Ciftci, Atik, Gurbuz (b0030) 2018; 115 Zainol, Nicol (b0190) 2009; 96 Faris, White, Magazowski, Fischmann, Jones, Tardio, Madapusi, Grocott, Bhargava (b0050) 2021; 202 Faris, Fischmann, Assmann, Jones, Tardio, Madapusi, Grocott, Bhargava (b0045) 2021; 202 Oxley, Smith, Caceres (b0125) 2016; 88 Agatzini-Leonardou, Tsakiridis, Oustadakis, Karidakis, Katsiapi (b0005) 2009; 22 Kose, Topkaya (b0060) 2011; 24 Lanagan, Ibana (b0070) 2003; 16 Kursunoglu, Ichlas, Muammer (b0065) 2018; 28 Wassink, Neuveld, Dreisinger, Freeman (b0170) 2006 McRae, M.E., 2020. Nickel. In: U.S. Geological Survey. Guise, Castro (b0055) 1996 Tzeferis, Agatzini-Leonardou (b0145) 1994; 36 Wang, K., Li., J., McDonald, R.G., Browner, R.E., 2018. Iron, aluminum, and chromium co-removal from atmospheric nickel laterite leach solutions. Miner. Eng. 116. 35-45. White (b0175) 2009 Astuti, Hirajima, Sasaki, Okibe (b0015) 2016; 161 Dalvi, A.D., Bacon, W.G., Osborne, R.C., 2004, The Past and Future of Nickel Laterites, PDAC 2004, International Convention, Trade Show & Investors Exchange, The Prospectors and Developers Association of Canada, Toronto, pp 1-27. Mbedzi, Ibana, Dyer, Browne (b0085) 2017 Mudd (b0115) 2010; 38 https://doi.org/10.1063/5.0060750. McDonald, Whittington (b0095) 2008; 91 McKenzie, Denys, Buchanan (b0100) 1987; 21 McDonald, Whittington (b0090) 2008; 91 Maraboutis, Kontopoulos (b0080) 1988 Chaerun, Sulistyo, Minwal, Mubarok (b0025) 2017; 174 Wirawan, Jayanti, Regna Tri, 2020. Particle Size Analysis of Morowali Nickel Laterite on Atmospheric Citric Acid Leaching. In: Proceedings of the 2nd Faculty of Industrial Technology International Congress International Conference. Mudd (10.1016/j.mineng.2022.107982_b0115) 2010; 38 Sudol (10.1016/j.mineng.2022.107982_b0140) 2005; 126 McDonald (10.1016/j.mineng.2022.107982_b0090) 2008; 91 Oxley (10.1016/j.mineng.2022.107982_b0125) 2016; 88 Chaerun (10.1016/j.mineng.2022.107982_b0025) 2017; 174 10.1016/j.mineng.2022.107982_b0155 10.1016/j.mineng.2022.107982_b0035 Ma (10.1016/j.mineng.2022.107982_b0075) 2013; 136 10.1016/j.mineng.2022.107982_b0135 Ciftci (10.1016/j.mineng.2022.107982_b0030) 2018; 115 10.1016/j.mineng.2022.107982_b0150 Agatzini-Leonardou (10.1016/j.mineng.2022.107982_b0005) 2009; 22 10.1016/j.mineng.2022.107982_b0130 Kursunoglu (10.1016/j.mineng.2022.107982_b0065) 2018; 28 Lanagan (10.1016/j.mineng.2022.107982_b0070) 2003; 16 Mbedzi (10.1016/j.mineng.2022.107982_b0085) 2017 White (10.1016/j.mineng.2022.107982_b0175) 2009 Faris (10.1016/j.mineng.2022.107982_b0050) 2021; 202 Astuti (10.1016/j.mineng.2022.107982_b0010) 2015; 32 Kose (10.1016/j.mineng.2022.107982_b0060) 2011; 24 Maraboutis (10.1016/j.mineng.2022.107982_b0080) 1988 Zainol (10.1016/j.mineng.2022.107982_b0190) 2009; 96 Astuti (10.1016/j.mineng.2022.107982_b0015) 2016; 161 Astuti (10.1016/j.mineng.2022.107982_b0020) 2016; 85 McDonald (10.1016/j.mineng.2022.107982_b0095) 2008; 91 McKenzie (10.1016/j.mineng.2022.107982_b0100) 1987; 21 10.1016/j.mineng.2022.107982_b0180 Donegan (10.1016/j.mineng.2022.107982_b0040) 2006; 19 Mohammadreza (10.1016/j.mineng.2022.107982_b0110) 2014; 24 Wanta (10.1016/j.mineng.2022.107982_b0160) 2020; 10 Tzeferis (10.1016/j.mineng.2022.107982_b0145) 1994; 36 Wanta (10.1016/j.mineng.2022.107982_b0165) 2022; 13 10.1016/j.mineng.2022.107982_b0185 Faris (10.1016/j.mineng.2022.107982_b0045) 2021; 202 Wassink (10.1016/j.mineng.2022.107982_b0170) 2006 10.1016/j.mineng.2022.107982_b0105 Guise (10.1016/j.mineng.2022.107982_b0055) 1996 Okita (10.1016/j.mineng.2022.107982_b0120) 2006 |
References_xml | – volume: 22 start-page: 1181 year: 2009 end-page: 1192 ident: b0005 article-title: Hydrometallurgical process for the separation and recovery of nickel sulphate heap leach liquor of nickeliferrous laterite ores publication-title: Miner. Eng. – start-page: 030002 year: 2017 ident: b0085 article-title: The effect of oxidant addition on ferrour iron removal from Multi-Elements Acidic Sulphate Solutions publication-title: AIP Conference Proceedings. AIP Publishing LLC – reference: Yunita, F. E., Mubarok, M. Z., 2021. Nickel leaching from laterite ores by combination of organic and sulfuric acid. AIP Conference Proceedings – volume: 202 year: 2021 ident: b0050 article-title: An investigation into potential pathways for nickel and cobalt loss during impurity removal from synthetic nickel laterite pressure acid leach solutions via partial neutralisation publication-title: Hydrometall. – volume: 38 start-page: 9 year: 2010 end-page: 26 ident: b0115 article-title: Global trends and environmental issues in nickel mining: sulfides versus laterites publication-title: Ore Geol. Rev. – reference: Prasetiyo, P., Nasution, R., 2011. Masih Terbukanya Peluang Penelitian Proses Caron untuk Mengolah Laterit Kadar Rendah di Indonesia. Metalurgi Vol. 26 No. 1 April 2011, 35-44. – start-page: 351 year: 2009 end-page: 367 ident: b0175 article-title: Commercial development of magnesia mixed hydroxide process for recovery of nickel and cobalt from laterite leach solutions publication-title: Hydrometal. Nickel Cobalt – reference: Wirawan, Jayanti, Regna Tri, 2020. Particle Size Analysis of Morowali Nickel Laterite on Atmospheric Citric Acid Leaching. In: Proceedings of the 2nd Faculty of Industrial Technology International Congress International Conference. – volume: 136 start-page: 1 year: 2013 end-page: 7 ident: b0075 article-title: Cobalt recovery from cobalt-bearing waste in sulphuric and citric acid systems publication-title: Hydrometall. – volume: 13 start-page: 410 year: 2022 end-page: 421 ident: b0165 article-title: Product diffusion-controlled leaching of nickel laterite using low concentration citric acid leachant at atmospheric condition publication-title: Int. J. Technol. – volume: 202 year: 2021 ident: b0045 article-title: A study into the behaviour of nickel, cobalt and metal impurities during partial neutralisation of synthetic nickel laterite pressure leach solutions and pulps publication-title: Hydrometall. – volume: 16 start-page: 237 year: 2003 end-page: 245 ident: b0070 article-title: The solvent extraction and stripping of chromium with Cyanex® 272 publication-title: Miner. Eng. – start-page: 479 year: 1988 end-page: 492 ident: b0080 article-title: Jarosite precipitation from iron-nickel-cobalt sulphate solutions publication-title: Extractive Metallurgy of Nickel and Cobalt: Proceeding of a Symposium – volume: 96 start-page: 283 year: 2009 end-page: 287 ident: b0190 article-title: Comparative study of chelating ion exchange resins for the recovery of nickel and cobalt from laterite leach tailings publication-title: Hydrometall. – year: 2006 ident: b0170 article-title: Toward a resin-in-pulp process for recovery of nickel and cobalt from laterite leach tailings: an iminodiacetic acid ion exchange resin as a prospective resin publication-title: In: Paper IWC-06-33 – volume: 24 start-page: 1188 year: 2011 end-page: 1197 ident: b0060 article-title: High pressure acid leaching of a refractory lateritic nickel ore publication-title: Miner. Eng. – volume: 91 start-page: 35 year: 2008 end-page: 55 ident: b0090 article-title: Atmospheric leaching of nickel laterites review. Part I. Sulphuric acid technologies publication-title: Hydrometallurgy – reference: McRae, M.E., 2020. Nickel. In: U.S. Geological Survey. – volume: 88 start-page: 53 year: 2016 end-page: 60 ident: b0125 article-title: Why heap leach nickel laterites? publication-title: Miner. Eng. – volume: 19 start-page: 1234 year: 2006 end-page: 1245 ident: b0040 article-title: Direct solvent extraction of nickel at Bulong operations publication-title: Miner. Eng. – start-page: 635 year: 2006 end-page: 651 ident: b0120 publication-title: Iron Control the Goro Nickel Process – start-page: 275 year: 1996 end-page: 286 ident: b0055 publication-title: Iron, Aluminium and Chromium Co-elimination by Hydrolytic Precipitation From Nickel-and-cobalt Containing Sulphuric Acid Solutions – volume: 85 start-page: 1 year: 2016 end-page: 16 ident: b0020 article-title: Comparison of effectiveness of citric acid and other acids in leaching of low-grade Indonesian saprolitic ores publication-title: Miner. Eng. – reference: Wang, K., Li., J., McDonald, R.G., Browner, R.E., 2018. Iron, aluminum, and chromium co-removal from atmospheric nickel laterite leach solutions. Miner. Eng. 116. 35-45. – reference: Dalvi, A.D., Bacon, W.G., Osborne, R.C., 2004, The Past and Future of Nickel Laterites, PDAC 2004, International Convention, Trade Show & Investors Exchange, The Prospectors and Developers Association of Canada, Toronto, pp 1-27. – volume: 91 start-page: 56 year: 2008 end-page: 69 ident: b0095 article-title: Atmospheric acid leaching of nickel laterites review. Part II. Chloride and biotechnologies publication-title: Hydrometallurgy – reference: https://doi.org/10.1063/5.0060750. – volume: 32 start-page: 176 year: 2015 end-page: 185 ident: b0010 article-title: Kinetics of nickel extraction from an Indonesian saprolitic ore by citric acid leaching under atmospheric pressure publication-title: Miner. Metall. Process – volume: 115 start-page: 305 year: 2018 ident: b0030 article-title: Biocatalytic and chemical leaching of a low-grade nickel laterite ore publication-title: Metall. Res. Technol. – volume: 10 start-page: 613 year: 2020 ident: b0160 article-title: Kinetic study in atmospheric pressure organic acid leaching: shrinking core versus lump model publication-title: Minerals – reference: Readett, D., Sullivan, J., 2016. Ni laterite heap leach PLS neutralization and Fe/Al precipitation. ALTA 2016 Nickel-Cobalt-Copper Proceedings, Perth, Australia, pp. 98-113. – volume: 24 start-page: 543 year: 2014 end-page: 548 ident: b0110 article-title: Nickel extraction from low grade laterite by agitation leaching at atmospheric pressure publication-title: Int. J. Min. Sci. Technol. – reference: 2382, 050003 (2021); – volume: 21 start-page: 275 year: 1987 end-page: 292 ident: b0100 article-title: The solubilization of nickel, cobalt and iron from laterites by means of organic chelating acids at low pH publication-title: Int. J. Miner. Process. – volume: 174 start-page: 29 year: 2017 end-page: 37 ident: b0025 article-title: Indirect bioleaching of low-grade nickel limonite and saprolite ores using fungal metabolic organic acids generated by publication-title: Hydrometall. – volume: 28 start-page: 1652 year: 2018 end-page: 1659 ident: b0065 article-title: Dissolution of lateritic nickel ore using ascorbic acid as synergistic reagent in sulphuric acid solution publication-title: Trans. Nonferrous Met. Soc. Chin. – volume: 36 start-page: 345 year: 1994 end-page: 360 ident: b0145 article-title: Leaching of nickel and iron from Greek non-sulphide nickeliferous ores by organic acids publication-title: Hydrometall. – volume: 126 start-page: 8 year: 2005 end-page: 11 ident: b0140 article-title: The thunder from down under: Everything you wanted to know about laterites but were afraid to ask publication-title: Can. Min. J. – volume: 161 start-page: 138 year: 2016 end-page: 151 ident: b0015 article-title: Comparison of atmospheric citric acid leaching kinetics of nickel from different Indonesian saprolitic ores publication-title: Hydrometall. – reference: Wang, K., Li., J., McDonald, R.G., Browner, R.E., 2013. Characterization of iron-rich precipitates from synthetic atmospheric nickel laterite leach solutions. Miner. Eng. 40, 1-11. – volume: 88 start-page: 53 year: 2016 ident: 10.1016/j.mineng.2022.107982_b0125 article-title: Why heap leach nickel laterites? publication-title: Miner. Eng. doi: 10.1016/j.mineng.2015.09.018 – ident: 10.1016/j.mineng.2022.107982_b0035 – start-page: 030002 year: 2017 ident: 10.1016/j.mineng.2022.107982_b0085 article-title: The effect of oxidant addition on ferrour iron removal from Multi-Elements Acidic Sulphate Solutions doi: 10.1063/1.4974413 – start-page: 351 year: 2009 ident: 10.1016/j.mineng.2022.107982_b0175 article-title: Commercial development of magnesia mixed hydroxide process for recovery of nickel and cobalt from laterite leach solutions publication-title: Hydrometal. Nickel Cobalt – volume: 10 start-page: 613 issue: 7 year: 2020 ident: 10.1016/j.mineng.2022.107982_b0160 article-title: Kinetic study in atmospheric pressure organic acid leaching: shrinking core versus lump model publication-title: Minerals doi: 10.3390/min10070613 – volume: 115 start-page: 305 year: 2018 ident: 10.1016/j.mineng.2022.107982_b0030 article-title: Biocatalytic and chemical leaching of a low-grade nickel laterite ore publication-title: Metall. Res. Technol. doi: 10.1051/metal/2018006 – ident: 10.1016/j.mineng.2022.107982_b0155 doi: 10.1016/j.mineng.2017.10.019 – volume: 96 start-page: 283 issue: 4 year: 2009 ident: 10.1016/j.mineng.2022.107982_b0190 article-title: Comparative study of chelating ion exchange resins for the recovery of nickel and cobalt from laterite leach tailings publication-title: Hydrometall. doi: 10.1016/j.hydromet.2008.11.005 – volume: 22 start-page: 1181 issue: 14 year: 2009 ident: 10.1016/j.mineng.2022.107982_b0005 article-title: Hydrometallurgical process for the separation and recovery of nickel sulphate heap leach liquor of nickeliferrous laterite ores publication-title: Miner. Eng. doi: 10.1016/j.mineng.2009.06.006 – volume: 174 start-page: 29 year: 2017 ident: 10.1016/j.mineng.2022.107982_b0025 article-title: Indirect bioleaching of low-grade nickel limonite and saprolite ores using fungal metabolic organic acids generated by Aspergillus niger publication-title: Hydrometall. doi: 10.1016/j.hydromet.2017.08.006 – volume: 24 start-page: 1188 year: 2011 ident: 10.1016/j.mineng.2022.107982_b0060 article-title: High pressure acid leaching of a refractory lateritic nickel ore publication-title: Miner. Eng. doi: 10.1016/j.mineng.2011.05.004 – volume: 32 start-page: 176 issue: 3 year: 2015 ident: 10.1016/j.mineng.2022.107982_b0010 article-title: Kinetics of nickel extraction from an Indonesian saprolitic ore by citric acid leaching under atmospheric pressure publication-title: Miner. Metall. Process – volume: 13 start-page: 410 issue: 2 year: 2022 ident: 10.1016/j.mineng.2022.107982_b0165 article-title: Product diffusion-controlled leaching of nickel laterite using low concentration citric acid leachant at atmospheric condition publication-title: Int. J. Technol. doi: 10.14716/ijtech.v13i2.4641 – year: 2006 ident: 10.1016/j.mineng.2022.107982_b0170 article-title: Toward a resin-in-pulp process for recovery of nickel and cobalt from laterite leach tailings: an iminodiacetic acid ion exchange resin as a prospective resin – volume: 202 year: 2021 ident: 10.1016/j.mineng.2022.107982_b0045 article-title: A study into the behaviour of nickel, cobalt and metal impurities during partial neutralisation of synthetic nickel laterite pressure leach solutions and pulps publication-title: Hydrometall. – volume: 91 start-page: 56 year: 2008 ident: 10.1016/j.mineng.2022.107982_b0095 article-title: Atmospheric acid leaching of nickel laterites review. Part II. Chloride and biotechnologies publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2007.11.010 – volume: 136 start-page: 1 year: 2013 ident: 10.1016/j.mineng.2022.107982_b0075 article-title: Cobalt recovery from cobalt-bearing waste in sulphuric and citric acid systems publication-title: Hydrometall. doi: 10.1016/j.hydromet.2013.01.016 – volume: 202 year: 2021 ident: 10.1016/j.mineng.2022.107982_b0050 article-title: An investigation into potential pathways for nickel and cobalt loss during impurity removal from synthetic nickel laterite pressure acid leach solutions via partial neutralisation publication-title: Hydrometall. – start-page: 275 year: 1996 ident: 10.1016/j.mineng.2022.107982_b0055 – ident: 10.1016/j.mineng.2022.107982_b0105 – volume: 19 start-page: 1234 issue: 12 year: 2006 ident: 10.1016/j.mineng.2022.107982_b0040 article-title: Direct solvent extraction of nickel at Bulong operations publication-title: Miner. Eng. doi: 10.1016/j.mineng.2006.03.003 – volume: 28 start-page: 1652 issue: 8 year: 2018 ident: 10.1016/j.mineng.2022.107982_b0065 article-title: Dissolution of lateritic nickel ore using ascorbic acid as synergistic reagent in sulphuric acid solution publication-title: Trans. Nonferrous Met. Soc. Chin. doi: 10.1016/S1003-6326(18)64808-3 – volume: 21 start-page: 275 issue: 3–4 year: 1987 ident: 10.1016/j.mineng.2022.107982_b0100 article-title: The solubilization of nickel, cobalt and iron from laterites by means of organic chelating acids at low pH publication-title: Int. J. Miner. Process. doi: 10.1016/0301-7516(87)90059-7 – ident: 10.1016/j.mineng.2022.107982_b0130 doi: 10.14203/metalurgi.v26i1.7 – volume: 91 start-page: 35 year: 2008 ident: 10.1016/j.mineng.2022.107982_b0090 article-title: Atmospheric leaching of nickel laterites review. Part I. Sulphuric acid technologies publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2007.11.009 – volume: 85 start-page: 1 year: 2016 ident: 10.1016/j.mineng.2022.107982_b0020 article-title: Comparison of effectiveness of citric acid and other acids in leaching of low-grade Indonesian saprolitic ores publication-title: Miner. Eng. doi: 10.1016/j.mineng.2015.10.001 – start-page: 635 year: 2006 ident: 10.1016/j.mineng.2022.107982_b0120 – volume: 161 start-page: 138 year: 2016 ident: 10.1016/j.mineng.2022.107982_b0015 article-title: Comparison of atmospheric citric acid leaching kinetics of nickel from different Indonesian saprolitic ores publication-title: Hydrometall. doi: 10.1016/j.hydromet.2015.12.015 – ident: 10.1016/j.mineng.2022.107982_b0135 – volume: 16 start-page: 237 issue: 3 year: 2003 ident: 10.1016/j.mineng.2022.107982_b0070 article-title: The solvent extraction and stripping of chromium with Cyanex® 272 publication-title: Miner. Eng. doi: 10.1016/S0892-6875(03)00006-2 – volume: 38 start-page: 9 issue: 1–2 year: 2010 ident: 10.1016/j.mineng.2022.107982_b0115 article-title: Global trends and environmental issues in nickel mining: sulfides versus laterites publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2010.05.003 – start-page: 479 year: 1988 ident: 10.1016/j.mineng.2022.107982_b0080 article-title: Jarosite precipitation from iron-nickel-cobalt sulphate solutions – ident: 10.1016/j.mineng.2022.107982_b0185 doi: 10.1063/5.0060750 – volume: 126 start-page: 8 issue: 5 year: 2005 ident: 10.1016/j.mineng.2022.107982_b0140 article-title: The thunder from down under: Everything you wanted to know about laterites but were afraid to ask publication-title: Can. Min. J. – ident: 10.1016/j.mineng.2022.107982_b0150 doi: 10.1016/j.mineng.2012.08.007 – volume: 36 start-page: 345 issue: 3 year: 1994 ident: 10.1016/j.mineng.2022.107982_b0145 article-title: Leaching of nickel and iron from Greek non-sulphide nickeliferous ores by organic acids publication-title: Hydrometall. doi: 10.1016/0304-386X(94)90031-0 – ident: 10.1016/j.mineng.2022.107982_b0180 – volume: 24 start-page: 543 issue: 4 year: 2014 ident: 10.1016/j.mineng.2022.107982_b0110 article-title: Nickel extraction from low grade laterite by agitation leaching at atmospheric pressure publication-title: Int. J. Min. Sci. Technol. doi: 10.1016/j.ijmst.2014.05.019 |
SSID | ssj0005789 |
Score | 2.5042384 |
Snippet | •Mixed oxalate precipitate (MOP) was produced from citric acid leaching of nickel laterite ores and direct oxalate precipitation.•The purity of MOP is... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 107982 |
Title | A novel method: Nickel and cobalt extraction from citric acid leaching solution of nickel laterite ores using oxalate precipitation |
URI | https://dx.doi.org/10.1016/j.mineng.2022.107982 |
Volume | 191 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2IT3wzB69x2_SR1tsiyqrgRQVvZdomsrq2i1Tx5MU_7kzTygqi4LEhKSEzTL4J33wjxGFpQwzSOJIeGVuGNoolBoGWvkXUBOBzH1uW71U8ug0v7qK7OXHS18IwrbKL_S6mt9G6Gxl0pzmYjseDay9JVUxwW_HDSNoWk4ehZi8_ep-heei2DR5Pljy7L59rOV5PhOSqe8oSlaIhnSbq5-tp5so5WxHLHVaEodvOqpgz1ZpYmlEQXBcfQ6jqVzMB1wn6GMiyj_SJVQkFS300QNH32VUvANeSQDFmUX7AYlzCpONSQu-BUFuo3C8myDLOjYGaMnJgfvw91G_IwzBlTYxpJ--9IW7PTm9ORrLrqyALShAaGRijvdzDMqBDxpISGs1c_JiwUmgJ0KDJywj9yCReqRK0sR8niYkiW4aotDLBppiv6spsCQjiEIucksIcKdVKWbzN821EWFhZ4_v5tgj648yKblfc-2KS9eyyh8wZIWMjZM4I20J-rZo60Y0_5uveUtk358noXvh15c6_V-6KRe48715j9sR88_xi9gmfNPlB64AHYmF4fjm6-gQaW-dr |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iB_UgPnF9zsFr3DZ9exNR1udFBW9l2iayuraLVPHkxT_uTNPKCqLgsSEpIZNMvgnffCPEXmF89JIwkA4ZW_omCCV6XiRdgxgRgM9cbFi-V-Hg1j-7C-6mxFGXC8O0ytb3W5_eeOu2pd-uZn88HPavnThRIcFtxQ8jCSeTz_h0fLmMwf77BM8jaurgcW_J3bv8uYbk9URQrrynMFEpaoqSWP18P03cOSeLYqEFi3Bo57MkpnS5LOYnJARXxMchlNWrHoEtBX0AZNpH-sSygJy1Pmog9_ts0xeAk0kgH7IqP2A-LGDUkimh24JQGSjtL0bIOs61hopCcmCC_D1Ub8jNMGZRjHGr770qbk-Ob44Gsi2sIHOKEGrpaR05mYOFR6uMBUU0EZPxQwJLviFEgzorAnQDHTuFitGEbhjHOghM4aOKlPbWxHRZlXpdgBf6mGcUFWZIsVbC6m2OawICw8po1816wuuWM83bWXHxi1Ha0cseUmuElI2QWiP0hPwaNbaqG3_0jzpLpd92T0oXw68jN_49clfMDm4uL9KL06vzTTHHZejt08yWmK6fX_Q2gZU622k24ydyf-j5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+method%3A+Nickel+and+cobalt+extraction+from+citric+acid+leaching+solution+of+nickel+laterite+ores+using+oxalate+precipitation&rft.jtitle=Minerals+engineering&rft.au=Astuti%2C+Widi&rft.au=Nurjaman%2C+Fajar&rft.au=Rofiek+Mufakhir%2C+Fika&rft.au=Sumardi%2C+Slamet&rft.date=2023-01-01&rft.pub=Elsevier+Ltd&rft.issn=0892-6875&rft.eissn=1872-9444&rft.volume=191&rft_id=info:doi/10.1016%2Fj.mineng.2022.107982&rft.externalDocID=S0892687522005921 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0892-6875&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0892-6875&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0892-6875&client=summon |