A stretchable, environmentally tolerant, and photoactive liquid metal/MXene hydrogel for high performance temperature monitoring, human motion detection and self-powered application

Conductive gels have received extensive attention in flexible electronics due to their diverse characteristics. The requirement for versatility and incompatibility of the conductive fillers with the hydrogel matrix remain a challenge for hydrogels. Herein, the cellulose nanofiber stabilized liquid m...

Full description

Saved in:
Bibliographic Details
Published inNano energy Vol. 117; p. 108875
Main Authors Zhang, Wei, Wang, Pei-Lin, Huang, Ling-Zhi, Guo, Wen-Yan, Zhao, Jinjin, Ma, Ming-Guo
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Conductive gels have received extensive attention in flexible electronics due to their diverse characteristics. The requirement for versatility and incompatibility of the conductive fillers with the hydrogel matrix remain a challenge for hydrogels. Herein, the cellulose nanofiber stabilized liquid metal droplets are utilized to initiate the polymerization and simultaneously serve as solid conductive fillers to construct the polyacrylamide/MXene/glycerol hydrogel with eligible stretchability (1000%) and high environmental adaptability (−25 to 80 °C) for multifunctional sensing. The hydrogel is utilized as a flexible electrode to construct the triboelectric nanogenerator for mechanical energy harvesting and conversion as well as self-powered sensing. Importantly, as a versatile sensor, it combines temperature sensing and deformation sensing with a wide range of stimulus responses and exceptional sensing performance. The flexible temperature and strain sensors are realized with superior thermosensitivity and strain sensitivity. In addition, the hydrogel exhibits favorable photothermal antibacterial ability. This work opens new avenues for the preparation of photothermal, conductive, stress and thermal sensitive hydrogels for multimodal sensors, sketching a promising future for them in flexible and wearable electronics. [Display omitted] •CNF stabilized liquid metal droplets initiate the gelation process within two minutes.•Ti3C2Tx MXene nanosheets were introduced to establish more efficient conductive pathways.•Glycerol-water binary solvent enhanced adaptability of hydrogels in extreme environments.•The hydrogel achieves self-power and provide continuous human motion and temperature detection.•The hydrogel present remarkable photothermal synergistic antibacterial capabilities.
AbstractList Conductive gels have received extensive attention in flexible electronics due to their diverse characteristics. The requirement for versatility and incompatibility of the conductive fillers with the hydrogel matrix remain a challenge for hydrogels. Herein, the cellulose nanofiber stabilized liquid metal droplets are utilized to initiate the polymerization and simultaneously serve as solid conductive fillers to construct the polyacrylamide/MXene/glycerol hydrogel with eligible stretchability (1000%) and high environmental adaptability (−25 to 80 °C) for multifunctional sensing. The hydrogel is utilized as a flexible electrode to construct the triboelectric nanogenerator for mechanical energy harvesting and conversion as well as self-powered sensing. Importantly, as a versatile sensor, it combines temperature sensing and deformation sensing with a wide range of stimulus responses and exceptional sensing performance. The flexible temperature and strain sensors are realized with superior thermosensitivity and strain sensitivity. In addition, the hydrogel exhibits favorable photothermal antibacterial ability. This work opens new avenues for the preparation of photothermal, conductive, stress and thermal sensitive hydrogels for multimodal sensors, sketching a promising future for them in flexible and wearable electronics. [Display omitted] •CNF stabilized liquid metal droplets initiate the gelation process within two minutes.•Ti3C2Tx MXene nanosheets were introduced to establish more efficient conductive pathways.•Glycerol-water binary solvent enhanced adaptability of hydrogels in extreme environments.•The hydrogel achieves self-power and provide continuous human motion and temperature detection.•The hydrogel present remarkable photothermal synergistic antibacterial capabilities.
ArticleNumber 108875
Author Huang, Ling-Zhi
Zhao, Jinjin
Guo, Wen-Yan
Ma, Ming-Guo
Wang, Pei-Lin
Zhang, Wei
Author_xml – sequence: 1
  givenname: Wei
  surname: Zhang
  fullname: Zhang, Wei
  organization: MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China
– sequence: 2
  givenname: Pei-Lin
  surname: Wang
  fullname: Wang, Pei-Lin
  organization: MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China
– sequence: 3
  givenname: Ling-Zhi
  surname: Huang
  fullname: Huang, Ling-Zhi
  organization: MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China
– sequence: 4
  givenname: Wen-Yan
  surname: Guo
  fullname: Guo, Wen-Yan
  organization: MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China
– sequence: 5
  givenname: Jinjin
  surname: Zhao
  fullname: Zhao, Jinjin
  organization: Hebei Key Laboratory of Inorganic Nano-materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
– sequence: 6
  givenname: Ming-Guo
  surname: Ma
  fullname: Ma, Ming-Guo
  email: mg_ma@bjfu.edu.cn
  organization: MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China
BookMark eNqFkElOwzAUhr0Aiak3YOEDNG3sNE7KAglVTFIRG5DYWR5eGleOHRy3qAfjfriUFQt4G7_p_21_Z-jIeQcIXZJ8QnLCpuuJE86Dm9CcFqlV11V5hE4pJSSjdVmeoNEwrPMUrCQVoafo8wYPMUBUrZAWxhjc1gTvOnBRWLvD0VsIwsUxFk7jvvXRCxXNFrA17xujcQdpcfr0Bg5wu9PBr8DixgfcmlWLewgp74RTgCN0qRRxEwB33pnog3GrMW43aZ460XiHNURQ39n-vgFsk_X-AwJoLPreGiX2wwt03Ag7wOjnPEevd7cvi4ds-Xz_uLhZZqrIWcwKkBoKWko2b6oZkayiREolKSvKpphVMhd1AkWYqOdSzwlrSj1rmKYAkom5LM7R7OCrgh-GAA3vg-lE2HGS8z1xvuYH4nxPnB-IJ9nVL5ky8fvhMQhj_xNfH8SQPrY1EPigDCSA2oSEhmtv_jb4AuzbqXE
CitedBy_id crossref_primary_10_1016_j_nanoen_2024_109960
crossref_primary_10_1021_acssensors_4c00799
crossref_primary_10_1016_j_cej_2025_161192
crossref_primary_10_1021_acs_nanolett_5c00664
crossref_primary_10_1016_j_cej_2024_156161
crossref_primary_10_1016_j_cej_2025_159872
crossref_primary_10_1016_j_ijbiomac_2024_133897
crossref_primary_10_1007_s42765_024_00418_4
crossref_primary_10_1016_j_compositesb_2024_111559
crossref_primary_10_1016_j_ijbiomac_2025_141718
crossref_primary_10_1039_D4TC02897J
crossref_primary_10_1016_j_cej_2024_156883
crossref_primary_10_1016_j_cjsc_2025_100518
crossref_primary_10_1021_acsami_4c08984
crossref_primary_10_1016_j_carbpol_2024_122849
crossref_primary_10_1039_D4TC00775A
crossref_primary_10_1016_j_cossms_2024_101213
crossref_primary_10_1016_j_cej_2025_160222
crossref_primary_10_1039_D4TA03778B
crossref_primary_10_1016_j_mtcomm_2025_111715
crossref_primary_10_3390_s24165091
crossref_primary_10_1021_acsami_4c20994
crossref_primary_10_1021_acsnano_4c18529
crossref_primary_10_1016_j_eurpolymj_2024_113640
crossref_primary_10_1016_j_cej_2024_151798
crossref_primary_10_1021_acsami_4c17983
crossref_primary_10_1016_j_ijbiomac_2024_131541
crossref_primary_10_1016_j_jcis_2024_05_039
crossref_primary_10_1080_10601325_2024_2328733
crossref_primary_10_1002_smll_202405126
crossref_primary_10_1016_j_cej_2024_151231
crossref_primary_10_1002_smll_202404872
crossref_primary_10_1016_j_cej_2024_153485
crossref_primary_10_1016_j_jcis_2024_01_170
crossref_primary_10_1016_j_ijbiomac_2024_134383
crossref_primary_10_1016_j_ijbiomac_2024_138813
crossref_primary_10_1021_acssuschemeng_4c02721
crossref_primary_10_1016_j_indcrop_2023_117609
crossref_primary_10_1039_D4TA04211E
crossref_primary_10_1039_D4TA06181K
crossref_primary_10_1016_j_cej_2024_148863
crossref_primary_10_1039_D4TC05163G
crossref_primary_10_1016_j_carbpol_2025_123278
crossref_primary_10_1016_j_ijbiomac_2025_141261
crossref_primary_10_1039_D4LC00935E
crossref_primary_10_1002_admt_202400322
crossref_primary_10_1002_adhm_202403983
crossref_primary_10_1016_j_carbpol_2024_122943
crossref_primary_10_1016_j_polymer_2025_128171
crossref_primary_10_1016_j_carbpol_2024_122788
crossref_primary_10_1016_j_cej_2024_150197
crossref_primary_10_1016_j_carbpol_2024_122028
crossref_primary_10_1002_adfm_202412244
crossref_primary_10_1016_j_cej_2024_153674
crossref_primary_10_1021_acsapm_4c01335
crossref_primary_10_1039_D4QM00784K
crossref_primary_10_1039_D4TC03905J
crossref_primary_10_1021_acsapm_4c00761
crossref_primary_10_1002_adma_202415761
crossref_primary_10_1016_j_ijbiomac_2025_141653
crossref_primary_10_1016_j_nanoen_2023_109107
crossref_primary_10_1016_j_device_2024_100331
crossref_primary_10_1016_j_ijbiomac_2024_129225
crossref_primary_10_1002_apxr_202400182
crossref_primary_10_1016_j_sna_2023_114993
crossref_primary_10_1002_adma_202403791
crossref_primary_10_1016_j_energy_2025_134962
crossref_primary_10_1016_j_ijbiomac_2024_134956
crossref_primary_10_1039_D3CC04198K
crossref_primary_10_3390_ijms25052675
crossref_primary_10_1016_j_polymer_2024_127105
crossref_primary_10_3390_nano15060459
crossref_primary_10_1007_s40843_024_3034_6
crossref_primary_10_1016_j_ijbiomac_2024_132494
crossref_primary_10_1016_j_cej_2024_152695
crossref_primary_10_1016_j_ijbiomac_2024_138557
crossref_primary_10_1021_acsaelm_4c02349
crossref_primary_10_1016_j_colsurfb_2024_114384
crossref_primary_10_1007_s10570_024_05955_0
crossref_primary_10_1016_j_compositesa_2023_107957
crossref_primary_10_1088_2752_5724_ad305e
crossref_primary_10_1016_j_nanoen_2024_109974
crossref_primary_10_1021_acsnano_4c11127
Cites_doi 10.1016/j.cej.2021.134406
10.1016/j.compositesb.2022.110116
10.1016/j.nanoen.2022.106967
10.1021/acsnano.6b00181
10.1021/acsnano.7b06909
10.1021/acs.nanolett.6b04339
10.1002/adfm.202211056
10.1002/adfm.202070314
10.1002/smll.202303612
10.1021/acsnano.2c04863
10.1016/j.ccr.2022.214731
10.1002/advs.202301713
10.1021/acsami.0c04219
10.1016/j.nanoen.2020.105035
10.1039/D0TA03215H
10.1002/smll.202203956
10.1039/D1TA05262D
10.1007/s40843-022-2328-8
10.1016/j.cej.2022.138675
10.1016/j.nanoen.2021.106700
10.1007/s40820-023-01043-3
10.1002/adfm.202105264
10.1016/j.cej.2022.140459
10.1016/j.nanoen.2019.05.041
10.1002/adfm.201504755
10.1039/C9TA13196E
10.1039/C8MH01561A
10.1016/j.cej.2022.137259
10.1002/adfm.202304625
10.1016/j.cej.2022.135018
10.1016/j.ccr.2023.215275
10.1002/adfm.202302840
10.1038/s41467-019-11466-5
10.1016/j.cej.2022.139314
10.1016/j.cej.2023.141787
10.1038/s41467-022-34168-x
10.1021/acsnano.9b07874
10.1016/j.cej.2020.127306
10.1002/adma.202300109
10.1016/j.nanoen.2022.108078
10.1039/D2TA06072H
10.1021/acs.nanolett.1c04976
10.1016/j.nanoen.2022.107374
10.1021/acsami.9b03007
10.1016/j.carbpol.2022.120330
10.1016/j.compositesb.2022.110332
10.1016/j.bios.2023.115288
10.1126/sciadv.aaz7328
10.1002/anie.201803366
10.1007/s42114-023-00693-6
10.1007/s12274-023-5400-0
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.nanoen.2023.108875
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_nanoen_2023_108875
S2211285523007127
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
EBS
EFJIC
EFLBG
FDB
FIRID
FNPLU
FYGXN
GBLVA
JARJE
KOM
M41
MAGPM
MO0
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
ROL
SDF
SPC
SPCBC
SSM
SSR
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
EJD
HZ~
RIG
SSH
ID FETCH-LOGICAL-c306t-3ebde325b69f741b6721bbcb2635f347b0a802316a89bd916f5d4f6d2eeb6a9b3
IEDL.DBID .~1
ISSN 2211-2855
IngestDate Thu Apr 24 22:57:02 EDT 2025
Tue Jul 01 00:57:06 EDT 2025
Fri Feb 23 02:35:43 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Triboelectric nanogenerator
Multifunctional sensor
Liquid metal
Conductive hydrogel
Photothermal conversion
MXene
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-3ebde325b69f741b6721bbcb2635f347b0a802316a89bd916f5d4f6d2eeb6a9b3
ParticipantIDs crossref_primary_10_1016_j_nanoen_2023_108875
crossref_citationtrail_10_1016_j_nanoen_2023_108875
elsevier_sciencedirect_doi_10_1016_j_nanoen_2023_108875
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
2023-12-00
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Nano energy
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chen, Zhou, Wang, Li, Zhou, Gan, Handschuh-Wang, Zhou (bib39) 2018; 57
Liu, Huyan, Wang, Guo, Zhang, Torun, Mulvihill, Xu, Chen (bib9) 2023
Rasool, Helal, Ali, Ren, Gogotsi, Mahmoud (bib59) 2016; 10
Wang, Qin, Yang, Tian, Guo, Sun, Zhou, Fei, An, Sun, Yin, Liu (bib12) 2023
Li, Li, Xu, You, Yang, Li (bib35) 2019; 10
Zhao, Bai, Lv, Yan, Du, Guo, Zhang, Wu, Deng, Zhang, Che (bib4) 2023; 15
Yu, Hu, Guan, Zhang, Gu (bib24) 2020; 8
Sun, Li, Qin, Liu, Ma, Zhang, Li, Lu, Pan, Wu (bib14) 2023; 454
Wu, Wang, Ding, Guo, Wang (bib32) 2019; 9
Wang, Rojas, Ning, Li, Niu, Shi, Qi (bib18) 2023; 301
Wang, Ling, Liang, Wang, Lu, Zhang (bib42) 2019; 29
Zhu, Xu, Sun, Guo, Guo, Jiang, Wu, Cai, Qian (bib44) 2022; 10
Jiang, Wang, Zhang, Tan, Hu (bib16) 2023
Hao, Fu, Meng, Xu, Yang (bib43) 2022; 13
Deng, Wen, Liu, Zhang, Wang, Huang, Kim, Zhang (bib45) 2023; 16
Wang, Lai, Jin, Sun, Liu, Qi (bib36) 2021; 31
Feng, Li, Zheng, Li, Wei, Wu, Ma, Yang (bib10) 2022; 432
Ge, Cao, Yang, Rojas, Wang (bib38) 2021; 408
Bao, Wen, Shi, Xie, Jiang, Jiang, Yang, Liao, Sun (bib33) 2020; 8
Hao, Dai, Fu, Wang, Zhang, li, liu, Yang (bib47) 2023
Li, Li, Shou, Zhou, Ge, Pei, Li (bib20) 2020; 32
Zhu, Li, Deng, Yu, Shui, Yu, Pan, Liu (bib49) 2022; 92
Shi, Peng, Zeng, Zhong, Sun, Yang, Zhong, Zhu, Zou, Admassie, Liu, Liu, Iwuoha, Lu (bib37) 2023; 35
Long, Jiang, Huang, Liu, Niu, Wang, Hu (bib1) 2023
Xu, Li, Li, Wang (bib58) 2020; 30
Li, Cui, Zhang, Li, Li, Si, Sun, Yu, Huang (bib21) 2022; 22
Lin, Wang, Yu, Chen, Shi (bib57) 2017; 17
Xie, Lu, Tian, Zhang, Wang, Zheng, Gao (bib63) 2023
He, Koo, Obeng, Sharma, Shen, Kim (bib61) 2023; 492
Feng, Liu, Zhu, Guan, Yang, Zvyagin, Zhao, Shen, Yang, Lin (bib6) 2021; 31
Mattos, Tardy, Greca, Kämäräinen, Xiang, Cusola, Magalhães, Rojas (bib23) 2020; 6
Ma, Yue, Zhang, Cheng, Zhao, Rao, Luo, Wang, Jiang, Liu, Liu, Gao (bib5) 2018; 12
Zhao, Yan, Long, Qiu, Meng, Zeng, Huang, Wang, Lin, Liu (bib11) 2023; 10
Zhou, Qiao, Yang, Wu, Xin, Xiao, Liu, Wu, Wei, Sun, Fan (bib30) 2023; 231
Liu, Liu, Zhong, Chen, Xu (bib50) 2023; 452
Han, Tan, Wei, Yuan, Li, Yang, Mi, Liu, Shen (bib62) 2023
Lan, Yin, Jiang, Li, Yao, Wang, Qu, Ye, Ping, Ying (bib54) 2019; 62
Fu, Tang, Miao, Xu, Nilghaz, Xu, Dong, Su, Xia (bib15) 2023; 106
Peng, Xin, Xu, Liu, Zhang (bib13) 2019; 6
Yi, Zou, Yu, Li, Li, Deng, Chen, Fang, He, Sun, Liu, Shui, Yu (bib22) 2022; 16
Wu, Wang, Chen, Liu, Wang, Song, Yu, Li, Ge, Liu (bib26) 2023; 66
Ye, Jiang (bib19) 2022; 99
Wu, Wang, Xia, Zhu, Zhu, Jia, Guo, Li, Yan (bib28) 2022; 95
Di, Li, Yang, Zhao, Wu, Sun (bib51) 2021; 9
Wang, Zhang, Fan, Xing, Wei, Xu, Feng, Wei (bib53) 2022; 243
Amjadi, Kyung, Park, Sitti (bib48) 2016; 26
Leng, Zhu, Wang, Wang, Li, Huang, Li, Jin, Han, Wu, Mao (bib40) 2023; 33
Long, Wang, Xu, Jiang, Xiao, Yang, Wang, Hu (bib2) 2022; 18
Liu, Jiang, Yue, Feng, Zeng, Wu, Wang, Wang, Zhao, Wang, Shao, Wu, Sun (bib3) 2023; 6
Sun, Zhao, Wang, Zhou, Yan, Zheng, Huang, Dai, Liu, Shen (bib55) 2020; 76
Jing, Li, Mi, Feng, Tao, Liu, Liu, Shen (bib34) 2020; 12
Lin, Wei, Yan, Xie, Fan, Wu, Chen, Cheng (bib56) 2019; 11
Zhou, Zhuo, Long, Liu, Lu, Luo, Chen, Dong, Fu, Duan (bib7) 2022; 447
Bei, Chen, Li, Zhu, Xiong, He, Zhu, Cao, Qian (bib41) 2023; 451
Long, Jiang, Huang, Liu, Niu, Wang, Hu (bib27) 2023
Qin, Sun, Zhang, Yu, Wang, He, Yao, Li (bib52) 2020; 8
Su, Zhao, Zhan, Yuan, Wu, Sui, Zhang (bib17) 2022; 435
Zheng, Zhu, Yu, Zhu, Zhang, Ye, Zheng, Jiang (bib25) 2022; 247
Yang, Gong, Zhou, Yu, Cheng (bib60) 2022; 471
Sun, Dong, Chen, Li, Hu, Zhou, Li, Huang (bib8) 2023
Gao, Chang, Li, Li, Zhou, Hou, Long, Zhao, Yuan (bib29) 2023
Ge, Lu, Qu, Zhao, Ren, Wang, Wang, Huang, Dong (bib46) 2020; 14
Liu, Zeng, Jiang, Wu, Wang, Wang, Wu, Sun (bib31) 2023; 460
Ge (10.1016/j.nanoen.2023.108875_bib46) 2020; 14
Long (10.1016/j.nanoen.2023.108875_bib1) 2023
Han (10.1016/j.nanoen.2023.108875_bib62) 2023
Long (10.1016/j.nanoen.2023.108875_bib27) 2023
Qin (10.1016/j.nanoen.2023.108875_bib52) 2020; 8
Xie (10.1016/j.nanoen.2023.108875_bib63) 2023
Fu (10.1016/j.nanoen.2023.108875_bib15) 2023; 106
Leng (10.1016/j.nanoen.2023.108875_bib40) 2023; 33
Zhou (10.1016/j.nanoen.2023.108875_bib30) 2023; 231
Peng (10.1016/j.nanoen.2023.108875_bib13) 2019; 6
Yang (10.1016/j.nanoen.2023.108875_bib60) 2022; 471
Li (10.1016/j.nanoen.2023.108875_bib35) 2019; 10
Amjadi (10.1016/j.nanoen.2023.108875_bib48) 2016; 26
Sun (10.1016/j.nanoen.2023.108875_bib8) 2023
Feng (10.1016/j.nanoen.2023.108875_bib10) 2022; 432
Sun (10.1016/j.nanoen.2023.108875_bib55) 2020; 76
Liu (10.1016/j.nanoen.2023.108875_bib50) 2023; 452
Sun (10.1016/j.nanoen.2023.108875_bib14) 2023; 454
Bao (10.1016/j.nanoen.2023.108875_bib33) 2020; 8
Di (10.1016/j.nanoen.2023.108875_bib51) 2021; 9
Zhao (10.1016/j.nanoen.2023.108875_bib11) 2023; 10
Li (10.1016/j.nanoen.2023.108875_bib21) 2022; 22
Liu (10.1016/j.nanoen.2023.108875_bib31) 2023; 460
Wu (10.1016/j.nanoen.2023.108875_bib28) 2022; 95
Zhu (10.1016/j.nanoen.2023.108875_bib44) 2022; 10
Wang (10.1016/j.nanoen.2023.108875_bib12) 2023
Lan (10.1016/j.nanoen.2023.108875_bib54) 2019; 62
Lin (10.1016/j.nanoen.2023.108875_bib57) 2017; 17
Lin (10.1016/j.nanoen.2023.108875_bib56) 2019; 11
Xu (10.1016/j.nanoen.2023.108875_bib58) 2020; 30
Rasool (10.1016/j.nanoen.2023.108875_bib59) 2016; 10
Gao (10.1016/j.nanoen.2023.108875_bib29) 2023
Bei (10.1016/j.nanoen.2023.108875_bib41) 2023; 451
Mattos (10.1016/j.nanoen.2023.108875_bib23) 2020; 6
Hao (10.1016/j.nanoen.2023.108875_bib43) 2022; 13
Wang (10.1016/j.nanoen.2023.108875_bib53) 2022; 243
Li (10.1016/j.nanoen.2023.108875_bib20) 2020; 32
Shi (10.1016/j.nanoen.2023.108875_bib37) 2023; 35
Wang (10.1016/j.nanoen.2023.108875_bib36) 2021; 31
Hao (10.1016/j.nanoen.2023.108875_bib47) 2023
Liu (10.1016/j.nanoen.2023.108875_bib9) 2023
He (10.1016/j.nanoen.2023.108875_bib61) 2023; 492
Liu (10.1016/j.nanoen.2023.108875_bib3) 2023; 6
Wu (10.1016/j.nanoen.2023.108875_bib26) 2023; 66
Wu (10.1016/j.nanoen.2023.108875_bib32) 2019; 9
Ge (10.1016/j.nanoen.2023.108875_bib38) 2021; 408
Feng (10.1016/j.nanoen.2023.108875_bib6) 2021; 31
Ma (10.1016/j.nanoen.2023.108875_bib5) 2018; 12
Wang (10.1016/j.nanoen.2023.108875_bib18) 2023; 301
Ye (10.1016/j.nanoen.2023.108875_bib19) 2022; 99
Zhou (10.1016/j.nanoen.2023.108875_bib7) 2022; 447
Yi (10.1016/j.nanoen.2023.108875_bib22) 2022; 16
Wang (10.1016/j.nanoen.2023.108875_bib42) 2019; 29
Jiang (10.1016/j.nanoen.2023.108875_bib16) 2023
Zhao (10.1016/j.nanoen.2023.108875_bib4) 2023; 15
Long (10.1016/j.nanoen.2023.108875_bib2) 2022; 18
Yu (10.1016/j.nanoen.2023.108875_bib24) 2020; 8
Deng (10.1016/j.nanoen.2023.108875_bib45) 2023; 16
Zhu (10.1016/j.nanoen.2023.108875_bib49) 2022; 92
Su (10.1016/j.nanoen.2023.108875_bib17) 2022; 435
Zheng (10.1016/j.nanoen.2023.108875_bib25) 2022; 247
Chen (10.1016/j.nanoen.2023.108875_bib39) 2018; 57
Jing (10.1016/j.nanoen.2023.108875_bib34) 2020; 12
References_xml – volume: 454
  year: 2023
  ident: bib14
  article-title: Liquid metal/CNTs hydrogel-based transparent strain sensor for wireless health monitoring of aquatic animals
  publication-title: Chem. Eng. J.
– volume: 8
  start-page: 12713
  year: 2020
  end-page: 12721
  ident: bib24
  article-title: Green synthesis of cellulose nanofibrils decorated with Ag nanoparticles and their application in colorimetric detection of l-cysteine, ACS Sustain
  publication-title: Chem. Eng.
– volume: 16
  start-page: 14490
  year: 2022
  end-page: 14502
  ident: bib22
  article-title: MXene-reinforced liquid metal/polymer fibers via interface engineering for wearable multifunctional textiles
  publication-title: ACS Nano
– year: 2023
  ident: bib47
  article-title: A robust and adhesive hydrogel enables interfacial coupling for continuous temperature monitoring
  publication-title: Adv. Funct. Mater.
– volume: 30
  year: 2020
  ident: bib58
  article-title: Insights into the photothermal conversion of 2D MXene nanomaterials: synthesis, mechanism, and applications
  publication-title: Adv. Funct. Mater.
– year: 2023
  ident: bib16
  article-title: One stone, two birds: spidroin-inspired nanogels for high-performance fibers and photothermal actuators
  publication-title: Adv. Funct. Mater.
– volume: 14
  start-page: 218
  year: 2020
  end-page: 228
  ident: bib46
  article-title: Muscle-inspired self-healing hydrogels for strain and temperature sensor
  publication-title: ACS Nano
– volume: 17
  start-page: 384
  year: 2017
  end-page: 391
  ident: bib57
  article-title: Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion
  publication-title: Nano Lett.
– volume: 31
  year: 2021
  ident: bib6
  article-title: Muscle-inspired MXene conductive hydrogels with anisotropy and low-temperature tolerance for wearable flexible sensors and arrays
  publication-title: Adv. Funct. Mater.
– volume: 452
  year: 2023
  ident: bib50
  article-title: Tough, antifreezing, and conductive double network zwitterionic-based hydrogel for flexible sensors
  publication-title: Chem. Eng. J.
– volume: 33
  year: 2023
  ident: bib40
  article-title: Sebum-membrane-inspired protein-based bioprotonic hydrogel for artificial skin and human-machine merging interface
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 20703
  year: 2021
  end-page: 20713
  ident: bib51
  article-title: Bioinspired, nucleobase-driven, highly resilient, and fast-responsive antifreeze ionic conductive hydrogels for durable pressure and strain sensors
  publication-title: J. Mater. Chem. A
– volume: 22
  start-page: 2817
  year: 2022
  end-page: 2825
  ident: bib21
  article-title: Ultrasensitive pressure sensor sponge using liquid metal modulated nitrogen-doped graphene nanosheets
  publication-title: Nano Lett.
– year: 2023
  ident: bib12
  article-title: High linearity, low hysteresis Ti
  publication-title: Adv. Funct. Mater. N./a
– volume: 92
  year: 2022
  ident: bib49
  article-title: Anisotropic magnetic liquid metal film for wearable wireless electromagnetic sensing and smart electromagnetic interference shielding
  publication-title: Nano Energy
– volume: 471
  year: 2022
  ident: bib60
  article-title: Liquid metals: Preparation, surface engineering, and biomedical applications
  publication-title: Coord. Chem. Rev.
– volume: 13
  start-page: 6472
  year: 2022
  ident: bib43
  article-title: A biomimetic laminated strategy enabled strain-interference free and durable flexible thermistor electronics
  publication-title: Nat. Commun.
– volume: 243
  year: 2022
  ident: bib53
  article-title: A strong, ultrastretchable, antifreezing and high sensitive strain sensor based on ionic conductive fiber reinforced organohydrogel
  publication-title: Compos. B Eng.
– year: 2023
  ident: bib27
  article-title: Super-stretchable, anti-freezing, anti-drying organogel ionic conductor for multi-mode flexible electronics
  publication-title: Adv. Funct. Mater.
– volume: 62
  start-page: 319
  year: 2019
  end-page: 328
  ident: bib54
  article-title: Highly conductive 1D–2D composite film for skin-mountable strain sensor and stretchable triboelectric nanogenerator
  publication-title: Nano Energy
– volume: 451
  year: 2023
  ident: bib41
  article-title: A self-adhesive and low-temperature-tolerant strain sensor based on organohydrogel for extreme ice and snow motion monitoring
  publication-title: Chem. Eng. J.
– volume: 492
  year: 2023
  ident: bib61
  article-title: Emerging 2D MXenes for antibacterial applications: current status, challenges, and prospects
  publication-title: Coord. Chem. Rev.
– volume: 460
  year: 2023
  ident: bib31
  article-title: Tough and self-healable double-network hydrogel for environmentally resistant all-in-one supercapacitors and strain sensors
  publication-title: Chem. Eng. J.
– year: 2023
  ident: bib9
  article-title: Conductive polymer based hydrogels and their application in wearable sensors: a review
  publication-title: Mater. Horiz.
– volume: 106
  year: 2023
  ident: bib15
  article-title: Large-scalable fabrication of liquid metal-based double helix core-spun yarns for capacitive sensing, energy harvesting, and thermal management
  publication-title: Nano Energy
– volume: 10
  year: 2023
  ident: bib11
  article-title: Bioinspired conductive enhanced polyurethane ionic skin as reliable multifunctional sensors
  publication-title: Adv. Sci.
– volume: 6
  start-page: 618
  year: 2019
  end-page: 625
  ident: bib13
  article-title: Ultra-stretchable hydrogels with reactive liquid metals as asymmetric force-sensors
  publication-title: Mater. Horiz.
– volume: 247
  year: 2022
  ident: bib25
  article-title: Passive thermal regulation with 3D printed phase change material/cellulose nanofibrils composites
  publication-title: Compos. B Eng.
– volume: 10
  start-page: 23366
  year: 2022
  end-page: 23374
  ident: bib44
  article-title: Wearable, fast-healing, and self-adhesive multifunctional photoactive hydrogel for strain and temperature sensing
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 4447
  year: 2020
  end-page: 4456
  ident: bib52
  article-title: A transparent, ultrastretchable and fully recyclable gelatin organohydrogel based electronic sensor with broad operating temperature
  publication-title: J. Mater. Chem. A
– volume: 231
  year: 2023
  ident: bib30
  article-title: Hydrogen-bonding topological remodeling modulated ultra-fine bacterial cellulose nanofibril-reinforced hydrogels for sustainable bioelectronics
  publication-title: Biosens. Bioelectron.
– year: 2023
  ident: bib1
  article-title: Super-stretchable, anti-freezing, anti-drying organogel ionic conductor for multi-mode flexible electronics
  publication-title: Adv. Funct. Mater.
– volume: 16
  start-page: 7618
  year: 2023
  end-page: 7626
  ident: bib45
  article-title: Stretchable multifunctional sensor based on porous silver nanowire/silicone rubber conductive film
  publication-title: Nano Res.
– volume: 76
  year: 2020
  ident: bib55
  article-title: Ultra-stretchable, durable and conductive hydrogel with hybrid double network as high performance strain sensor and stretchable triboelectric nanogenerator
  publication-title: Nano Energy
– volume: 10
  start-page: 3514
  year: 2019
  ident: bib35
  article-title: Evaporation-induced sintering of liquid metal droplets with biological nanofibrils for flexible conductivity and responsive actuation
  publication-title: Nat. Commun.
– year: 2023
  ident: bib8
  article-title: Strong, tough, and anti-swelling supramolecular conductive hydrogels for amphibious motion sensors
  publication-title: Small
– volume: 447
  year: 2022
  ident: bib7
  article-title: Bio-inspired, super-stretchable and self-adhesive hybrid hydrogel with SC-PDA/GO-Ca
  publication-title: Chem. Eng. J.
– year: 2023
  ident: bib29
  article-title: A quenched double-hydrophilic coating for the enhancement of water retention of hydrogels
  publication-title: Adv. Funct. Mater.
– volume: 66
  start-page: 1923
  year: 2023
  end-page: 1933
  ident: bib26
  article-title: Highly sensitive and self-healing conductive hydrogels fabricated from cationic cellulose nanofiber-dispersed liquid metal for strain sensors
  publication-title: Sci. China Mater.
– volume: 6
  start-page: 112
  year: 2023
  ident: bib3
  article-title: Thermal enhancement of gelatin hydrogels for a multimodal sensor and self-powered triboelectric nanogenerator at low temperatures
  publication-title: Adv. Compos. Hybrid. Mater.
– volume: 29
  year: 2019
  ident: bib42
  article-title: Self-healable multifunctional electronic tattoos based on silk and graphene
  publication-title: Adv. Funct. Mater.
– volume: 95
  year: 2022
  ident: bib28
  article-title: Stretchable freezing-tolerant triboelectric nanogenerator and strain sensor based on transparent, long-term stable, and highly conductive gelatin-based organohydrogel
  publication-title: Nano Energy
– volume: 15
  start-page: 79
  year: 2023
  ident: bib4
  article-title: Self-healing liquid metal magnetic hydrogels for smart feedback sensors and high-performance electromagnetic shielding
  publication-title: Nano-Micro Lett.
– volume: 32
  year: 2020
  ident: bib20
  article-title: Liquid metal initiator of ring-opening polymerization: self-capsulation into thermal/photomoldable powder for multifunctional composites
  publication-title: Adv. Mater.
– volume: 12
  start-page: 23474
  year: 2020
  end-page: 23483
  ident: bib34
  article-title: Enhancing the performance of a stretchable and transparent triboelectric nanogenerator by optimizing the hydrogel ionic electrode property
  publication-title: ACS Appl. Mater. Interfaces
– volume: 408
  year: 2021
  ident: bib38
  article-title: Nanocellulose/LiCl systems enable conductive and stretchable electrolyte hydrogels with tolerance to dehydration and extreme cold conditions
  publication-title: Chem. Eng. J.
– volume: 12
  start-page: 3209
  year: 2018
  end-page: 3216
  ident: bib5
  article-title: 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor
  publication-title: ACS Nano
– volume: 6
  start-page: eaaz7328
  year: 2020
  ident: bib23
  article-title: Nanofibrillar networks enable universal assembly of superstructured particle constructs
  publication-title: Sci. Adv.
– volume: 26
  start-page: 1678
  year: 2016
  end-page: 1698
  ident: bib48
  article-title: Stretchable, skin-mountable, and wearable strain sensors and their potential applications: A review
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 25295
  year: 2019
  end-page: 25305
  ident: bib56
  article-title: Capillary-based microfluidic fabrication of liquid metal microspheres toward functional microelectrodes and photothermal medium
  publication-title: ACS Appl. Mater. Interfaces
– year: 2023
  ident: bib62
  article-title: Surface modification of super arborized silica for flexible and wearable ultrafast-response strain sensors with low hysteresis
  publication-title: Adv. Sci.
– volume: 432
  year: 2022
  ident: bib10
  article-title: Mechanically toughened conductive hydrogels with shape memory behavior toward self-healable, multi-environmental tolerant and bidirectional sensors
  publication-title: Chem. Eng. J.
– volume: 18
  year: 2022
  ident: bib2
  article-title: Mechanically ultra-robust, elastic, conductive, and multifunctional hybrid hydrogel for a triboelectric nanogenerator and flexible/wearable sensor
  publication-title: Small
– volume: 10
  start-page: 3674
  year: 2016
  end-page: 3684
  ident: bib59
  article-title: Antibacterial activity of Ti
  publication-title: ACS Nano
– volume: 35
  year: 2023
  ident: bib37
  article-title: A liquid metal microdroplets initialized hemicellulose composite for 3D printing anode host in Zn-Ion battery
  publication-title: Adv. Mater.
– volume: 9
  year: 2019
  ident: bib32
  article-title: Triboelectric nanogenerator: a foundation of the energy for the new era
  publication-title: Adv. Energy Mater.
– volume: 31
  year: 2021
  ident: bib36
  article-title: Multifunctional liquid-free ionic conductive elastomer fabricated by liquid metal induced polymerization
  publication-title: Adv. Funct. Mater.
– volume: 99
  year: 2022
  ident: bib19
  article-title: Highly stretchable, durable, and transient conductive hydrogel for multi-functional sensor and signal transmission applications
  publication-title: Nano Energy
– volume: 8
  start-page: 13787
  year: 2020
  end-page: 13794
  ident: bib33
  article-title: An anti-freezing hydrogel based stretchable triboelectric nanogenerator for biomechanical energy harvesting at sub-zero temperature
  publication-title: J. Mater. Chem. A
– volume: 57
  start-page: 6568
  year: 2018
  end-page: 6571
  ident: bib39
  article-title: Rational fabrication of anti-freezing, non-drying tough organohydrogels by one-pot solvent displacement
  publication-title: Angew. Chem. Int. Ed.
– volume: 435
  year: 2022
  ident: bib17
  article-title: A multifunctional hydrogel fabricated via ultra-fast polymerization by graphene oxide-adsorbed liquid metal nanodroplets
  publication-title: Chem. Eng. J.
– volume: 301
  year: 2023
  ident: bib18
  article-title: Liquid metal and MXene enable self-healing soft electronics based on double networks of bacterial cellulose hydrogels
  publication-title: Carbohydr. Polym.
– year: 2023
  ident: bib63
  article-title: Thermochromic-based bimodal sensor for strain-insensitive temperature sensing and synchronous strain sensing
  publication-title: Chem. Eng. J.
– volume: 432
  year: 2022
  ident: 10.1016/j.nanoen.2023.108875_bib10
  article-title: Mechanically toughened conductive hydrogels with shape memory behavior toward self-healable, multi-environmental tolerant and bidirectional sensors
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.134406
– volume: 243
  year: 2022
  ident: 10.1016/j.nanoen.2023.108875_bib53
  article-title: A strong, ultrastretchable, antifreezing and high sensitive strain sensor based on ionic conductive fiber reinforced organohydrogel
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2022.110116
– volume: 95
  year: 2022
  ident: 10.1016/j.nanoen.2023.108875_bib28
  article-title: Stretchable freezing-tolerant triboelectric nanogenerator and strain sensor based on transparent, long-term stable, and highly conductive gelatin-based organohydrogel
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.106967
– volume: 10
  start-page: 3674
  year: 2016
  ident: 10.1016/j.nanoen.2023.108875_bib59
  article-title: Antibacterial activity of Ti3C2Tx MXene
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b00181
– volume: 12
  start-page: 3209
  year: 2018
  ident: 10.1016/j.nanoen.2023.108875_bib5
  article-title: 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b06909
– volume: 8
  start-page: 12713
  year: 2020
  ident: 10.1016/j.nanoen.2023.108875_bib24
  article-title: Green synthesis of cellulose nanofibrils decorated with Ag nanoparticles and their application in colorimetric detection of l-cysteine, ACS Sustain
  publication-title: Chem. Eng.
– year: 2023
  ident: 10.1016/j.nanoen.2023.108875_bib9
  article-title: Conductive polymer based hydrogels and their application in wearable sensors: a review
  publication-title: Mater. Horiz.
– volume: 17
  start-page: 384
  year: 2017
  ident: 10.1016/j.nanoen.2023.108875_bib57
  article-title: Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b04339
– volume: 33
  year: 2023
  ident: 10.1016/j.nanoen.2023.108875_bib40
  article-title: Sebum-membrane-inspired protein-based bioprotonic hydrogel for artificial skin and human-machine merging interface
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202211056
– volume: 30
  year: 2020
  ident: 10.1016/j.nanoen.2023.108875_bib58
  article-title: Insights into the photothermal conversion of 2D MXene nanomaterials: synthesis, mechanism, and applications
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202070314
– year: 2023
  ident: 10.1016/j.nanoen.2023.108875_bib8
  article-title: Strong, tough, and anti-swelling supramolecular conductive hydrogels for amphibious motion sensors
  publication-title: Small
  doi: 10.1002/smll.202303612
– volume: 16
  start-page: 14490
  year: 2022
  ident: 10.1016/j.nanoen.2023.108875_bib22
  article-title: MXene-reinforced liquid metal/polymer fibers via interface engineering for wearable multifunctional textiles
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c04863
– volume: 471
  year: 2022
  ident: 10.1016/j.nanoen.2023.108875_bib60
  article-title: Liquid metals: Preparation, surface engineering, and biomedical applications
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2022.214731
– year: 2023
  ident: 10.1016/j.nanoen.2023.108875_bib62
  article-title: Surface modification of super arborized silica for flexible and wearable ultrafast-response strain sensors with low hysteresis
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202301713
– volume: 12
  start-page: 23474
  year: 2020
  ident: 10.1016/j.nanoen.2023.108875_bib34
  article-title: Enhancing the performance of a stretchable and transparent triboelectric nanogenerator by optimizing the hydrogel ionic electrode property
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c04219
– volume: 10
  year: 2023
  ident: 10.1016/j.nanoen.2023.108875_bib11
  article-title: Bioinspired conductive enhanced polyurethane ionic skin as reliable multifunctional sensors
  publication-title: Adv. Sci.
– volume: 76
  year: 2020
  ident: 10.1016/j.nanoen.2023.108875_bib55
  article-title: Ultra-stretchable, durable and conductive hydrogel with hybrid double network as high performance strain sensor and stretchable triboelectric nanogenerator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105035
– volume: 8
  start-page: 13787
  year: 2020
  ident: 10.1016/j.nanoen.2023.108875_bib33
  article-title: An anti-freezing hydrogel based stretchable triboelectric nanogenerator for biomechanical energy harvesting at sub-zero temperature
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA03215H
– volume: 18
  year: 2022
  ident: 10.1016/j.nanoen.2023.108875_bib2
  article-title: Mechanically ultra-robust, elastic, conductive, and multifunctional hybrid hydrogel for a triboelectric nanogenerator and flexible/wearable sensor
  publication-title: Small
  doi: 10.1002/smll.202203956
– volume: 9
  start-page: 20703
  year: 2021
  ident: 10.1016/j.nanoen.2023.108875_bib51
  article-title: Bioinspired, nucleobase-driven, highly resilient, and fast-responsive antifreeze ionic conductive hydrogels for durable pressure and strain sensors
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA05262D
– volume: 66
  start-page: 1923
  year: 2023
  ident: 10.1016/j.nanoen.2023.108875_bib26
  article-title: Highly sensitive and self-healing conductive hydrogels fabricated from cationic cellulose nanofiber-dispersed liquid metal for strain sensors
  publication-title: Sci. China Mater.
  doi: 10.1007/s40843-022-2328-8
– volume: 451
  year: 2023
  ident: 10.1016/j.nanoen.2023.108875_bib41
  article-title: A self-adhesive and low-temperature-tolerant strain sensor based on organohydrogel for extreme ice and snow motion monitoring
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.138675
– volume: 92
  year: 2022
  ident: 10.1016/j.nanoen.2023.108875_bib49
  article-title: Anisotropic magnetic liquid metal film for wearable wireless electromagnetic sensing and smart electromagnetic interference shielding
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106700
– volume: 15
  start-page: 79
  year: 2023
  ident: 10.1016/j.nanoen.2023.108875_bib4
  article-title: Self-healing liquid metal magnetic hydrogels for smart feedback sensors and high-performance electromagnetic shielding
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-023-01043-3
– volume: 31
  year: 2021
  ident: 10.1016/j.nanoen.2023.108875_bib6
  article-title: Muscle-inspired MXene conductive hydrogels with anisotropy and low-temperature tolerance for wearable flexible sensors and arrays
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202105264
– volume: 454
  year: 2023
  ident: 10.1016/j.nanoen.2023.108875_bib14
  article-title: Liquid metal/CNTs hydrogel-based transparent strain sensor for wireless health monitoring of aquatic animals
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.140459
– year: 2023
  ident: 10.1016/j.nanoen.2023.108875_bib63
  article-title: Thermochromic-based bimodal sensor for strain-insensitive temperature sensing and synchronous strain sensing
  publication-title: Chem. Eng. J.
– volume: 62
  start-page: 319
  year: 2019
  ident: 10.1016/j.nanoen.2023.108875_bib54
  article-title: Highly conductive 1D–2D composite film for skin-mountable strain sensor and stretchable triboelectric nanogenerator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.05.041
– volume: 26
  start-page: 1678
  year: 2016
  ident: 10.1016/j.nanoen.2023.108875_bib48
  article-title: Stretchable, skin-mountable, and wearable strain sensors and their potential applications: A review
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201504755
– volume: 8
  start-page: 4447
  year: 2020
  ident: 10.1016/j.nanoen.2023.108875_bib52
  article-title: A transparent, ultrastretchable and fully recyclable gelatin organohydrogel based electronic sensor with broad operating temperature
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA13196E
– volume: 6
  start-page: 618
  year: 2019
  ident: 10.1016/j.nanoen.2023.108875_bib13
  article-title: Ultra-stretchable hydrogels with reactive liquid metals as asymmetric force-sensors
  publication-title: Mater. Horiz.
  doi: 10.1039/C8MH01561A
– volume: 447
  year: 2022
  ident: 10.1016/j.nanoen.2023.108875_bib7
  article-title: Bio-inspired, super-stretchable and self-adhesive hybrid hydrogel with SC-PDA/GO-Ca2+/PAM framework for high precision wearable sensors
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.137259
– year: 2023
  ident: 10.1016/j.nanoen.2023.108875_bib27
  article-title: Super-stretchable, anti-freezing, anti-drying organogel ionic conductor for multi-mode flexible electronics
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202304625
– volume: 435
  year: 2022
  ident: 10.1016/j.nanoen.2023.108875_bib17
  article-title: A multifunctional hydrogel fabricated via ultra-fast polymerization by graphene oxide-adsorbed liquid metal nanodroplets
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.135018
– volume: 492
  year: 2023
  ident: 10.1016/j.nanoen.2023.108875_bib61
  article-title: Emerging 2D MXenes for antibacterial applications: current status, challenges, and prospects
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2023.215275
– year: 2023
  ident: 10.1016/j.nanoen.2023.108875_bib47
  article-title: A robust and adhesive hydrogel enables interfacial coupling for continuous temperature monitoring
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202302840
– volume: 10
  start-page: 3514
  year: 2019
  ident: 10.1016/j.nanoen.2023.108875_bib35
  article-title: Evaporation-induced sintering of liquid metal droplets with biological nanofibrils for flexible conductivity and responsive actuation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11466-5
– volume: 452
  year: 2023
  ident: 10.1016/j.nanoen.2023.108875_bib50
  article-title: Tough, antifreezing, and conductive double network zwitterionic-based hydrogel for flexible sensors
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.139314
– volume: 460
  year: 2023
  ident: 10.1016/j.nanoen.2023.108875_bib31
  article-title: Tough and self-healable double-network hydrogel for environmentally resistant all-in-one supercapacitors and strain sensors
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.141787
– volume: 13
  start-page: 6472
  year: 2022
  ident: 10.1016/j.nanoen.2023.108875_bib43
  article-title: A biomimetic laminated strategy enabled strain-interference free and durable flexible thermistor electronics
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-34168-x
– volume: 14
  start-page: 218
  year: 2020
  ident: 10.1016/j.nanoen.2023.108875_bib46
  article-title: Muscle-inspired self-healing hydrogels for strain and temperature sensor
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b07874
– volume: 408
  year: 2021
  ident: 10.1016/j.nanoen.2023.108875_bib38
  article-title: Nanocellulose/LiCl systems enable conductive and stretchable electrolyte hydrogels with tolerance to dehydration and extreme cold conditions
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.127306
– volume: 35
  year: 2023
  ident: 10.1016/j.nanoen.2023.108875_bib37
  article-title: A liquid metal microdroplets initialized hemicellulose composite for 3D printing anode host in Zn-Ion battery
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202300109
– volume: 106
  year: 2023
  ident: 10.1016/j.nanoen.2023.108875_bib15
  article-title: Large-scalable fabrication of liquid metal-based double helix core-spun yarns for capacitive sensing, energy harvesting, and thermal management
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.108078
– volume: 10
  start-page: 23366
  year: 2022
  ident: 10.1016/j.nanoen.2023.108875_bib44
  article-title: Wearable, fast-healing, and self-adhesive multifunctional photoactive hydrogel for strain and temperature sensing
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA06072H
– volume: 22
  start-page: 2817
  year: 2022
  ident: 10.1016/j.nanoen.2023.108875_bib21
  article-title: Ultrasensitive pressure sensor sponge using liquid metal modulated nitrogen-doped graphene nanosheets
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c04976
– volume: 99
  year: 2022
  ident: 10.1016/j.nanoen.2023.108875_bib19
  article-title: Highly stretchable, durable, and transient conductive hydrogel for multi-functional sensor and signal transmission applications
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107374
– year: 2023
  ident: 10.1016/j.nanoen.2023.108875_bib16
  article-title: One stone, two birds: spidroin-inspired nanogels for high-performance fibers and photothermal actuators
  publication-title: Adv. Funct. Mater.
– volume: 29
  year: 2019
  ident: 10.1016/j.nanoen.2023.108875_bib42
  article-title: Self-healable multifunctional electronic tattoos based on silk and graphene
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 25295
  year: 2019
  ident: 10.1016/j.nanoen.2023.108875_bib56
  article-title: Capillary-based microfluidic fabrication of liquid metal microspheres toward functional microelectrodes and photothermal medium
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b03007
– year: 2023
  ident: 10.1016/j.nanoen.2023.108875_bib1
  article-title: Super-stretchable, anti-freezing, anti-drying organogel ionic conductor for multi-mode flexible electronics
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202304625
– volume: 301
  year: 2023
  ident: 10.1016/j.nanoen.2023.108875_bib18
  article-title: Liquid metal and MXene enable self-healing soft electronics based on double networks of bacterial cellulose hydrogels
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2022.120330
– year: 2023
  ident: 10.1016/j.nanoen.2023.108875_bib29
  article-title: A quenched double-hydrophilic coating for the enhancement of water retention of hydrogels
  publication-title: Adv. Funct. Mater.
– volume: 247
  year: 2022
  ident: 10.1016/j.nanoen.2023.108875_bib25
  article-title: Passive thermal regulation with 3D printed phase change material/cellulose nanofibrils composites
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2022.110332
– volume: 231
  year: 2023
  ident: 10.1016/j.nanoen.2023.108875_bib30
  article-title: Hydrogen-bonding topological remodeling modulated ultra-fine bacterial cellulose nanofibril-reinforced hydrogels for sustainable bioelectronics
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2023.115288
– volume: 6
  start-page: eaaz7328
  year: 2020
  ident: 10.1016/j.nanoen.2023.108875_bib23
  article-title: Nanofibrillar networks enable universal assembly of superstructured particle constructs
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaz7328
– volume: 31
  year: 2021
  ident: 10.1016/j.nanoen.2023.108875_bib36
  article-title: Multifunctional liquid-free ionic conductive elastomer fabricated by liquid metal induced polymerization
  publication-title: Adv. Funct. Mater.
– volume: 57
  start-page: 6568
  year: 2018
  ident: 10.1016/j.nanoen.2023.108875_bib39
  article-title: Rational fabrication of anti-freezing, non-drying tough organohydrogels by one-pot solvent displacement
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201803366
– volume: 6
  start-page: 112
  year: 2023
  ident: 10.1016/j.nanoen.2023.108875_bib3
  article-title: Thermal enhancement of gelatin hydrogels for a multimodal sensor and self-powered triboelectric nanogenerator at low temperatures
  publication-title: Adv. Compos. Hybrid. Mater.
  doi: 10.1007/s42114-023-00693-6
– volume: 9
  year: 2019
  ident: 10.1016/j.nanoen.2023.108875_bib32
  article-title: Triboelectric nanogenerator: a foundation of the energy for the new era
  publication-title: Adv. Energy Mater.
– volume: 16
  start-page: 7618
  year: 2023
  ident: 10.1016/j.nanoen.2023.108875_bib45
  article-title: Stretchable multifunctional sensor based on porous silver nanowire/silicone rubber conductive film
  publication-title: Nano Res.
  doi: 10.1007/s12274-023-5400-0
– year: 2023
  ident: 10.1016/j.nanoen.2023.108875_bib12
  article-title: High linearity, low hysteresis Ti3C2Tx MXene/AgNW/liquid metal self-healing strain sensor modulated by dynamic disulfide and hydrogen bonds
  publication-title: Adv. Funct. Mater. N./a
– volume: 32
  year: 2020
  ident: 10.1016/j.nanoen.2023.108875_bib20
  article-title: Liquid metal initiator of ring-opening polymerization: self-capsulation into thermal/photomoldable powder for multifunctional composites
  publication-title: Adv. Mater.
SSID ssj0000651712
Score 2.638403
Snippet Conductive gels have received extensive attention in flexible electronics due to their diverse characteristics. The requirement for versatility and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108875
SubjectTerms Conductive hydrogel
Liquid metal
Multifunctional sensor
MXene
Photothermal conversion
Triboelectric nanogenerator
Title A stretchable, environmentally tolerant, and photoactive liquid metal/MXene hydrogel for high performance temperature monitoring, human motion detection and self-powered application
URI https://dx.doi.org/10.1016/j.nanoen.2023.108875
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BTuMwELUQe4EDgl0QsIDmwLGmbuIkzbGqqMoiuCxIvUV2PIGikIRuOHDhr_g_PE7CFgmBxDFRRrE81szYfu8NY8dBbDCLtMeF0YpLFILrSHk8lUIpFCaQAyI4X1yG02v5ZxbMVti448IQrLKN_U1Md9G6fdNvZ7Nfzef9v57du3jDgI41bZ70iFEuZUSr_OR58HbOYlPsIHKXnvQ9J4OOQedgXoUqSiQhVM8nvJ0DHH6UoZayzmSTbbTlIoyaEW2xFSx-svUlEcFf7GUERPiws08sqB4sUddUnj9BXeZoE1LdA1UYqG7LulQuyEE-f3icG7hHwpJezGzUg9snsyhvMAdbywJJGUP1n1kApGPVijDDvQsGNIQeuEZ_0DQEAoO1g3cV7n__MM94Ra3Y0MDSbfk2u56cXo2nvG3GwFO7q6i5j9qg7wU6jDNbhejQbh21TjWJ2WS-jLRQTksuVMNYG1t0ZoGRWWg8RB2qWPs7bLUoC9xlYKs2YUwcpYaandgiT4TZUEShHvpqoHy5x_zOAUnaKpVTw4w86SBpd0njtoTcljRu22P8zapqlDq--D7qfJu8W3GJTSafWu5_2_I3W6OnBg5zwFbrxSMe2qKm1kdu1R6xH6Oz8-nlK4b__AY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB3R5dByqEo_VCgtc-C41nrzuTmuEGgp7F4AaW-RHU_KViEJEA78sP6_epwEFqmiEtckI1sZa-bZfvMG4CBMDOWx9oQ0WomApBQ6Vp7IAqkUSRMGYy5wni-i2WXwcxkuN-Cwr4VhWmUX-9uY7qJ192TU_c1RvVqNzj27d_EmIR9r2jzpxW9gk9WpwgFsTk9OZ4vHoxabZcexu_dkE8E2fRGdY3qVqqyItVA9nyl3jnP4ryS1lniOP8D7DjHitJ3UNmxQ-RG21nQEP8GfKXLNh3UAF0INca16TRXFAzZVQTYnNUNUpcH6qmoq5eIcFqub-5XBa2I66XxpAx9ePZjb6hcVaOEsspox1k_FBchSVp0OM167eMBTGKLr9YdtTyA01DiGV-nGu6MiFzV3YyODaxfmn-Hy-OjicCa6fgwisxuLRvikDfleqKMkt0BER3b3qHWmWc8m94NYS-Xk5CI1SbSxuDMPTZBHxiPSkUq0_wUGZVXSV0AL3KQxSZwZ7ndicZ6M8omMIz3x1Vj5wQ74vQPSrBMr554ZRdqz0n6nrdtSdlvaum0HxKNV3Yp1_Of7uPdt-mzRpTafvGi5-2rLfXg7u5ifpWcni9Nv8I7ftOyYPRg0t_f03WKcRv_o1vBfG8n-tw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+stretchable%2C+environmentally+tolerant%2C+and+photoactive+liquid+metal%2FMXene+hydrogel+for+high+performance+temperature+monitoring%2C+human+motion+detection+and+self-powered+application&rft.jtitle=Nano+energy&rft.au=Zhang%2C+Wei&rft.au=Wang%2C+Pei-Lin&rft.au=Huang%2C+Ling-Zhi&rft.au=Guo%2C+Wen-Yan&rft.date=2023-12-01&rft.pub=Elsevier+Ltd&rft.issn=2211-2855&rft.volume=117&rft_id=info:doi/10.1016%2Fj.nanoen.2023.108875&rft.externalDocID=S2211285523007127
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon