A stretchable, environmentally tolerant, and photoactive liquid metal/MXene hydrogel for high performance temperature monitoring, human motion detection and self-powered application
Conductive gels have received extensive attention in flexible electronics due to their diverse characteristics. The requirement for versatility and incompatibility of the conductive fillers with the hydrogel matrix remain a challenge for hydrogels. Herein, the cellulose nanofiber stabilized liquid m...
Saved in:
Published in | Nano energy Vol. 117; p. 108875 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Conductive gels have received extensive attention in flexible electronics due to their diverse characteristics. The requirement for versatility and incompatibility of the conductive fillers with the hydrogel matrix remain a challenge for hydrogels. Herein, the cellulose nanofiber stabilized liquid metal droplets are utilized to initiate the polymerization and simultaneously serve as solid conductive fillers to construct the polyacrylamide/MXene/glycerol hydrogel with eligible stretchability (1000%) and high environmental adaptability (−25 to 80 °C) for multifunctional sensing. The hydrogel is utilized as a flexible electrode to construct the triboelectric nanogenerator for mechanical energy harvesting and conversion as well as self-powered sensing. Importantly, as a versatile sensor, it combines temperature sensing and deformation sensing with a wide range of stimulus responses and exceptional sensing performance. The flexible temperature and strain sensors are realized with superior thermosensitivity and strain sensitivity. In addition, the hydrogel exhibits favorable photothermal antibacterial ability. This work opens new avenues for the preparation of photothermal, conductive, stress and thermal sensitive hydrogels for multimodal sensors, sketching a promising future for them in flexible and wearable electronics.
[Display omitted]
•CNF stabilized liquid metal droplets initiate the gelation process within two minutes.•Ti3C2Tx MXene nanosheets were introduced to establish more efficient conductive pathways.•Glycerol-water binary solvent enhanced adaptability of hydrogels in extreme environments.•The hydrogel achieves self-power and provide continuous human motion and temperature detection.•The hydrogel present remarkable photothermal synergistic antibacterial capabilities. |
---|---|
AbstractList | Conductive gels have received extensive attention in flexible electronics due to their diverse characteristics. The requirement for versatility and incompatibility of the conductive fillers with the hydrogel matrix remain a challenge for hydrogels. Herein, the cellulose nanofiber stabilized liquid metal droplets are utilized to initiate the polymerization and simultaneously serve as solid conductive fillers to construct the polyacrylamide/MXene/glycerol hydrogel with eligible stretchability (1000%) and high environmental adaptability (−25 to 80 °C) for multifunctional sensing. The hydrogel is utilized as a flexible electrode to construct the triboelectric nanogenerator for mechanical energy harvesting and conversion as well as self-powered sensing. Importantly, as a versatile sensor, it combines temperature sensing and deformation sensing with a wide range of stimulus responses and exceptional sensing performance. The flexible temperature and strain sensors are realized with superior thermosensitivity and strain sensitivity. In addition, the hydrogel exhibits favorable photothermal antibacterial ability. This work opens new avenues for the preparation of photothermal, conductive, stress and thermal sensitive hydrogels for multimodal sensors, sketching a promising future for them in flexible and wearable electronics.
[Display omitted]
•CNF stabilized liquid metal droplets initiate the gelation process within two minutes.•Ti3C2Tx MXene nanosheets were introduced to establish more efficient conductive pathways.•Glycerol-water binary solvent enhanced adaptability of hydrogels in extreme environments.•The hydrogel achieves self-power and provide continuous human motion and temperature detection.•The hydrogel present remarkable photothermal synergistic antibacterial capabilities. |
ArticleNumber | 108875 |
Author | Huang, Ling-Zhi Zhao, Jinjin Guo, Wen-Yan Ma, Ming-Guo Wang, Pei-Lin Zhang, Wei |
Author_xml | – sequence: 1 givenname: Wei surname: Zhang fullname: Zhang, Wei organization: MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China – sequence: 2 givenname: Pei-Lin surname: Wang fullname: Wang, Pei-Lin organization: MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China – sequence: 3 givenname: Ling-Zhi surname: Huang fullname: Huang, Ling-Zhi organization: MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China – sequence: 4 givenname: Wen-Yan surname: Guo fullname: Guo, Wen-Yan organization: MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China – sequence: 5 givenname: Jinjin surname: Zhao fullname: Zhao, Jinjin organization: Hebei Key Laboratory of Inorganic Nano-materials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China – sequence: 6 givenname: Ming-Guo surname: Ma fullname: Ma, Ming-Guo email: mg_ma@bjfu.edu.cn organization: MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Research Center of Biomass Clean Utilization, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China |
BookMark | eNqFkElOwzAUhr0Aiak3YOEDNG3sNE7KAglVTFIRG5DYWR5eGleOHRy3qAfjfriUFQt4G7_p_21_Z-jIeQcIXZJ8QnLCpuuJE86Dm9CcFqlV11V5hE4pJSSjdVmeoNEwrPMUrCQVoafo8wYPMUBUrZAWxhjc1gTvOnBRWLvD0VsIwsUxFk7jvvXRCxXNFrA17xujcQdpcfr0Bg5wu9PBr8DixgfcmlWLewgp74RTgCN0qRRxEwB33pnog3GrMW43aZ460XiHNURQ39n-vgFsk_X-AwJoLPreGiX2wwt03Ag7wOjnPEevd7cvi4ds-Xz_uLhZZqrIWcwKkBoKWko2b6oZkayiREolKSvKpphVMhd1AkWYqOdSzwlrSj1rmKYAkom5LM7R7OCrgh-GAA3vg-lE2HGS8z1xvuYH4nxPnB-IJ9nVL5ky8fvhMQhj_xNfH8SQPrY1EPigDCSA2oSEhmtv_jb4AuzbqXE |
CitedBy_id | crossref_primary_10_1016_j_nanoen_2024_109960 crossref_primary_10_1021_acssensors_4c00799 crossref_primary_10_1016_j_cej_2025_161192 crossref_primary_10_1021_acs_nanolett_5c00664 crossref_primary_10_1016_j_cej_2024_156161 crossref_primary_10_1016_j_cej_2025_159872 crossref_primary_10_1016_j_ijbiomac_2024_133897 crossref_primary_10_1007_s42765_024_00418_4 crossref_primary_10_1016_j_compositesb_2024_111559 crossref_primary_10_1016_j_ijbiomac_2025_141718 crossref_primary_10_1039_D4TC02897J crossref_primary_10_1016_j_cej_2024_156883 crossref_primary_10_1016_j_cjsc_2025_100518 crossref_primary_10_1021_acsami_4c08984 crossref_primary_10_1016_j_carbpol_2024_122849 crossref_primary_10_1039_D4TC00775A crossref_primary_10_1016_j_cossms_2024_101213 crossref_primary_10_1016_j_cej_2025_160222 crossref_primary_10_1039_D4TA03778B crossref_primary_10_1016_j_mtcomm_2025_111715 crossref_primary_10_3390_s24165091 crossref_primary_10_1021_acsami_4c20994 crossref_primary_10_1021_acsnano_4c18529 crossref_primary_10_1016_j_eurpolymj_2024_113640 crossref_primary_10_1016_j_cej_2024_151798 crossref_primary_10_1021_acsami_4c17983 crossref_primary_10_1016_j_ijbiomac_2024_131541 crossref_primary_10_1016_j_jcis_2024_05_039 crossref_primary_10_1080_10601325_2024_2328733 crossref_primary_10_1002_smll_202405126 crossref_primary_10_1016_j_cej_2024_151231 crossref_primary_10_1002_smll_202404872 crossref_primary_10_1016_j_cej_2024_153485 crossref_primary_10_1016_j_jcis_2024_01_170 crossref_primary_10_1016_j_ijbiomac_2024_134383 crossref_primary_10_1016_j_ijbiomac_2024_138813 crossref_primary_10_1021_acssuschemeng_4c02721 crossref_primary_10_1016_j_indcrop_2023_117609 crossref_primary_10_1039_D4TA04211E crossref_primary_10_1039_D4TA06181K crossref_primary_10_1016_j_cej_2024_148863 crossref_primary_10_1039_D4TC05163G crossref_primary_10_1016_j_carbpol_2025_123278 crossref_primary_10_1016_j_ijbiomac_2025_141261 crossref_primary_10_1039_D4LC00935E crossref_primary_10_1002_admt_202400322 crossref_primary_10_1002_adhm_202403983 crossref_primary_10_1016_j_carbpol_2024_122943 crossref_primary_10_1016_j_polymer_2025_128171 crossref_primary_10_1016_j_carbpol_2024_122788 crossref_primary_10_1016_j_cej_2024_150197 crossref_primary_10_1016_j_carbpol_2024_122028 crossref_primary_10_1002_adfm_202412244 crossref_primary_10_1016_j_cej_2024_153674 crossref_primary_10_1021_acsapm_4c01335 crossref_primary_10_1039_D4QM00784K crossref_primary_10_1039_D4TC03905J crossref_primary_10_1021_acsapm_4c00761 crossref_primary_10_1002_adma_202415761 crossref_primary_10_1016_j_ijbiomac_2025_141653 crossref_primary_10_1016_j_nanoen_2023_109107 crossref_primary_10_1016_j_device_2024_100331 crossref_primary_10_1016_j_ijbiomac_2024_129225 crossref_primary_10_1002_apxr_202400182 crossref_primary_10_1016_j_sna_2023_114993 crossref_primary_10_1002_adma_202403791 crossref_primary_10_1016_j_energy_2025_134962 crossref_primary_10_1016_j_ijbiomac_2024_134956 crossref_primary_10_1039_D3CC04198K crossref_primary_10_3390_ijms25052675 crossref_primary_10_1016_j_polymer_2024_127105 crossref_primary_10_3390_nano15060459 crossref_primary_10_1007_s40843_024_3034_6 crossref_primary_10_1016_j_ijbiomac_2024_132494 crossref_primary_10_1016_j_cej_2024_152695 crossref_primary_10_1016_j_ijbiomac_2024_138557 crossref_primary_10_1021_acsaelm_4c02349 crossref_primary_10_1016_j_colsurfb_2024_114384 crossref_primary_10_1007_s10570_024_05955_0 crossref_primary_10_1016_j_compositesa_2023_107957 crossref_primary_10_1088_2752_5724_ad305e crossref_primary_10_1016_j_nanoen_2024_109974 crossref_primary_10_1021_acsnano_4c11127 |
Cites_doi | 10.1016/j.cej.2021.134406 10.1016/j.compositesb.2022.110116 10.1016/j.nanoen.2022.106967 10.1021/acsnano.6b00181 10.1021/acsnano.7b06909 10.1021/acs.nanolett.6b04339 10.1002/adfm.202211056 10.1002/adfm.202070314 10.1002/smll.202303612 10.1021/acsnano.2c04863 10.1016/j.ccr.2022.214731 10.1002/advs.202301713 10.1021/acsami.0c04219 10.1016/j.nanoen.2020.105035 10.1039/D0TA03215H 10.1002/smll.202203956 10.1039/D1TA05262D 10.1007/s40843-022-2328-8 10.1016/j.cej.2022.138675 10.1016/j.nanoen.2021.106700 10.1007/s40820-023-01043-3 10.1002/adfm.202105264 10.1016/j.cej.2022.140459 10.1016/j.nanoen.2019.05.041 10.1002/adfm.201504755 10.1039/C9TA13196E 10.1039/C8MH01561A 10.1016/j.cej.2022.137259 10.1002/adfm.202304625 10.1016/j.cej.2022.135018 10.1016/j.ccr.2023.215275 10.1002/adfm.202302840 10.1038/s41467-019-11466-5 10.1016/j.cej.2022.139314 10.1016/j.cej.2023.141787 10.1038/s41467-022-34168-x 10.1021/acsnano.9b07874 10.1016/j.cej.2020.127306 10.1002/adma.202300109 10.1016/j.nanoen.2022.108078 10.1039/D2TA06072H 10.1021/acs.nanolett.1c04976 10.1016/j.nanoen.2022.107374 10.1021/acsami.9b03007 10.1016/j.carbpol.2022.120330 10.1016/j.compositesb.2022.110332 10.1016/j.bios.2023.115288 10.1126/sciadv.aaz7328 10.1002/anie.201803366 10.1007/s42114-023-00693-6 10.1007/s12274-023-5400-0 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.nanoen.2023.108875 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_nanoen_2023_108875 S2211285523007127 |
GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABMAC ABXRA ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC EBS EFJIC EFLBG FDB FIRID FNPLU FYGXN GBLVA JARJE KOM M41 MAGPM MO0 O-L O9- OAUVE P-8 P-9 PC. Q38 ROL SDF SPC SPCBC SSM SSR SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION EJD HZ~ RIG SSH |
ID | FETCH-LOGICAL-c306t-3ebde325b69f741b6721bbcb2635f347b0a802316a89bd916f5d4f6d2eeb6a9b3 |
IEDL.DBID | .~1 |
ISSN | 2211-2855 |
IngestDate | Thu Apr 24 22:57:02 EDT 2025 Tue Jul 01 00:57:06 EDT 2025 Fri Feb 23 02:35:43 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Triboelectric nanogenerator Multifunctional sensor Liquid metal Conductive hydrogel Photothermal conversion MXene |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-3ebde325b69f741b6721bbcb2635f347b0a802316a89bd916f5d4f6d2eeb6a9b3 |
ParticipantIDs | crossref_primary_10_1016_j_nanoen_2023_108875 crossref_citationtrail_10_1016_j_nanoen_2023_108875 elsevier_sciencedirect_doi_10_1016_j_nanoen_2023_108875 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 2023-12-00 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Nano energy |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Chen, Zhou, Wang, Li, Zhou, Gan, Handschuh-Wang, Zhou (bib39) 2018; 57 Liu, Huyan, Wang, Guo, Zhang, Torun, Mulvihill, Xu, Chen (bib9) 2023 Rasool, Helal, Ali, Ren, Gogotsi, Mahmoud (bib59) 2016; 10 Wang, Qin, Yang, Tian, Guo, Sun, Zhou, Fei, An, Sun, Yin, Liu (bib12) 2023 Li, Li, Xu, You, Yang, Li (bib35) 2019; 10 Zhao, Bai, Lv, Yan, Du, Guo, Zhang, Wu, Deng, Zhang, Che (bib4) 2023; 15 Yu, Hu, Guan, Zhang, Gu (bib24) 2020; 8 Sun, Li, Qin, Liu, Ma, Zhang, Li, Lu, Pan, Wu (bib14) 2023; 454 Wu, Wang, Ding, Guo, Wang (bib32) 2019; 9 Wang, Rojas, Ning, Li, Niu, Shi, Qi (bib18) 2023; 301 Wang, Ling, Liang, Wang, Lu, Zhang (bib42) 2019; 29 Zhu, Xu, Sun, Guo, Guo, Jiang, Wu, Cai, Qian (bib44) 2022; 10 Jiang, Wang, Zhang, Tan, Hu (bib16) 2023 Hao, Fu, Meng, Xu, Yang (bib43) 2022; 13 Deng, Wen, Liu, Zhang, Wang, Huang, Kim, Zhang (bib45) 2023; 16 Wang, Lai, Jin, Sun, Liu, Qi (bib36) 2021; 31 Feng, Li, Zheng, Li, Wei, Wu, Ma, Yang (bib10) 2022; 432 Ge, Cao, Yang, Rojas, Wang (bib38) 2021; 408 Bao, Wen, Shi, Xie, Jiang, Jiang, Yang, Liao, Sun (bib33) 2020; 8 Hao, Dai, Fu, Wang, Zhang, li, liu, Yang (bib47) 2023 Li, Li, Shou, Zhou, Ge, Pei, Li (bib20) 2020; 32 Zhu, Li, Deng, Yu, Shui, Yu, Pan, Liu (bib49) 2022; 92 Shi, Peng, Zeng, Zhong, Sun, Yang, Zhong, Zhu, Zou, Admassie, Liu, Liu, Iwuoha, Lu (bib37) 2023; 35 Long, Jiang, Huang, Liu, Niu, Wang, Hu (bib1) 2023 Xu, Li, Li, Wang (bib58) 2020; 30 Li, Cui, Zhang, Li, Li, Si, Sun, Yu, Huang (bib21) 2022; 22 Lin, Wang, Yu, Chen, Shi (bib57) 2017; 17 Xie, Lu, Tian, Zhang, Wang, Zheng, Gao (bib63) 2023 He, Koo, Obeng, Sharma, Shen, Kim (bib61) 2023; 492 Feng, Liu, Zhu, Guan, Yang, Zvyagin, Zhao, Shen, Yang, Lin (bib6) 2021; 31 Mattos, Tardy, Greca, Kämäräinen, Xiang, Cusola, Magalhães, Rojas (bib23) 2020; 6 Ma, Yue, Zhang, Cheng, Zhao, Rao, Luo, Wang, Jiang, Liu, Liu, Gao (bib5) 2018; 12 Zhao, Yan, Long, Qiu, Meng, Zeng, Huang, Wang, Lin, Liu (bib11) 2023; 10 Zhou, Qiao, Yang, Wu, Xin, Xiao, Liu, Wu, Wei, Sun, Fan (bib30) 2023; 231 Liu, Liu, Zhong, Chen, Xu (bib50) 2023; 452 Han, Tan, Wei, Yuan, Li, Yang, Mi, Liu, Shen (bib62) 2023 Lan, Yin, Jiang, Li, Yao, Wang, Qu, Ye, Ping, Ying (bib54) 2019; 62 Fu, Tang, Miao, Xu, Nilghaz, Xu, Dong, Su, Xia (bib15) 2023; 106 Peng, Xin, Xu, Liu, Zhang (bib13) 2019; 6 Yi, Zou, Yu, Li, Li, Deng, Chen, Fang, He, Sun, Liu, Shui, Yu (bib22) 2022; 16 Wu, Wang, Chen, Liu, Wang, Song, Yu, Li, Ge, Liu (bib26) 2023; 66 Ye, Jiang (bib19) 2022; 99 Wu, Wang, Xia, Zhu, Zhu, Jia, Guo, Li, Yan (bib28) 2022; 95 Di, Li, Yang, Zhao, Wu, Sun (bib51) 2021; 9 Wang, Zhang, Fan, Xing, Wei, Xu, Feng, Wei (bib53) 2022; 243 Amjadi, Kyung, Park, Sitti (bib48) 2016; 26 Leng, Zhu, Wang, Wang, Li, Huang, Li, Jin, Han, Wu, Mao (bib40) 2023; 33 Long, Wang, Xu, Jiang, Xiao, Yang, Wang, Hu (bib2) 2022; 18 Liu, Jiang, Yue, Feng, Zeng, Wu, Wang, Wang, Zhao, Wang, Shao, Wu, Sun (bib3) 2023; 6 Sun, Zhao, Wang, Zhou, Yan, Zheng, Huang, Dai, Liu, Shen (bib55) 2020; 76 Jing, Li, Mi, Feng, Tao, Liu, Liu, Shen (bib34) 2020; 12 Lin, Wei, Yan, Xie, Fan, Wu, Chen, Cheng (bib56) 2019; 11 Zhou, Zhuo, Long, Liu, Lu, Luo, Chen, Dong, Fu, Duan (bib7) 2022; 447 Bei, Chen, Li, Zhu, Xiong, He, Zhu, Cao, Qian (bib41) 2023; 451 Long, Jiang, Huang, Liu, Niu, Wang, Hu (bib27) 2023 Qin, Sun, Zhang, Yu, Wang, He, Yao, Li (bib52) 2020; 8 Su, Zhao, Zhan, Yuan, Wu, Sui, Zhang (bib17) 2022; 435 Zheng, Zhu, Yu, Zhu, Zhang, Ye, Zheng, Jiang (bib25) 2022; 247 Yang, Gong, Zhou, Yu, Cheng (bib60) 2022; 471 Sun, Dong, Chen, Li, Hu, Zhou, Li, Huang (bib8) 2023 Gao, Chang, Li, Li, Zhou, Hou, Long, Zhao, Yuan (bib29) 2023 Ge, Lu, Qu, Zhao, Ren, Wang, Wang, Huang, Dong (bib46) 2020; 14 Liu, Zeng, Jiang, Wu, Wang, Wang, Wu, Sun (bib31) 2023; 460 Ge (10.1016/j.nanoen.2023.108875_bib46) 2020; 14 Long (10.1016/j.nanoen.2023.108875_bib1) 2023 Han (10.1016/j.nanoen.2023.108875_bib62) 2023 Long (10.1016/j.nanoen.2023.108875_bib27) 2023 Qin (10.1016/j.nanoen.2023.108875_bib52) 2020; 8 Xie (10.1016/j.nanoen.2023.108875_bib63) 2023 Fu (10.1016/j.nanoen.2023.108875_bib15) 2023; 106 Leng (10.1016/j.nanoen.2023.108875_bib40) 2023; 33 Zhou (10.1016/j.nanoen.2023.108875_bib30) 2023; 231 Peng (10.1016/j.nanoen.2023.108875_bib13) 2019; 6 Yang (10.1016/j.nanoen.2023.108875_bib60) 2022; 471 Li (10.1016/j.nanoen.2023.108875_bib35) 2019; 10 Amjadi (10.1016/j.nanoen.2023.108875_bib48) 2016; 26 Sun (10.1016/j.nanoen.2023.108875_bib8) 2023 Feng (10.1016/j.nanoen.2023.108875_bib10) 2022; 432 Sun (10.1016/j.nanoen.2023.108875_bib55) 2020; 76 Liu (10.1016/j.nanoen.2023.108875_bib50) 2023; 452 Sun (10.1016/j.nanoen.2023.108875_bib14) 2023; 454 Bao (10.1016/j.nanoen.2023.108875_bib33) 2020; 8 Di (10.1016/j.nanoen.2023.108875_bib51) 2021; 9 Zhao (10.1016/j.nanoen.2023.108875_bib11) 2023; 10 Li (10.1016/j.nanoen.2023.108875_bib21) 2022; 22 Liu (10.1016/j.nanoen.2023.108875_bib31) 2023; 460 Wu (10.1016/j.nanoen.2023.108875_bib28) 2022; 95 Zhu (10.1016/j.nanoen.2023.108875_bib44) 2022; 10 Wang (10.1016/j.nanoen.2023.108875_bib12) 2023 Lan (10.1016/j.nanoen.2023.108875_bib54) 2019; 62 Lin (10.1016/j.nanoen.2023.108875_bib57) 2017; 17 Lin (10.1016/j.nanoen.2023.108875_bib56) 2019; 11 Xu (10.1016/j.nanoen.2023.108875_bib58) 2020; 30 Rasool (10.1016/j.nanoen.2023.108875_bib59) 2016; 10 Gao (10.1016/j.nanoen.2023.108875_bib29) 2023 Bei (10.1016/j.nanoen.2023.108875_bib41) 2023; 451 Mattos (10.1016/j.nanoen.2023.108875_bib23) 2020; 6 Hao (10.1016/j.nanoen.2023.108875_bib43) 2022; 13 Wang (10.1016/j.nanoen.2023.108875_bib53) 2022; 243 Li (10.1016/j.nanoen.2023.108875_bib20) 2020; 32 Shi (10.1016/j.nanoen.2023.108875_bib37) 2023; 35 Wang (10.1016/j.nanoen.2023.108875_bib36) 2021; 31 Hao (10.1016/j.nanoen.2023.108875_bib47) 2023 Liu (10.1016/j.nanoen.2023.108875_bib9) 2023 He (10.1016/j.nanoen.2023.108875_bib61) 2023; 492 Liu (10.1016/j.nanoen.2023.108875_bib3) 2023; 6 Wu (10.1016/j.nanoen.2023.108875_bib26) 2023; 66 Wu (10.1016/j.nanoen.2023.108875_bib32) 2019; 9 Ge (10.1016/j.nanoen.2023.108875_bib38) 2021; 408 Feng (10.1016/j.nanoen.2023.108875_bib6) 2021; 31 Ma (10.1016/j.nanoen.2023.108875_bib5) 2018; 12 Wang (10.1016/j.nanoen.2023.108875_bib18) 2023; 301 Ye (10.1016/j.nanoen.2023.108875_bib19) 2022; 99 Zhou (10.1016/j.nanoen.2023.108875_bib7) 2022; 447 Yi (10.1016/j.nanoen.2023.108875_bib22) 2022; 16 Wang (10.1016/j.nanoen.2023.108875_bib42) 2019; 29 Jiang (10.1016/j.nanoen.2023.108875_bib16) 2023 Zhao (10.1016/j.nanoen.2023.108875_bib4) 2023; 15 Long (10.1016/j.nanoen.2023.108875_bib2) 2022; 18 Yu (10.1016/j.nanoen.2023.108875_bib24) 2020; 8 Deng (10.1016/j.nanoen.2023.108875_bib45) 2023; 16 Zhu (10.1016/j.nanoen.2023.108875_bib49) 2022; 92 Su (10.1016/j.nanoen.2023.108875_bib17) 2022; 435 Zheng (10.1016/j.nanoen.2023.108875_bib25) 2022; 247 Chen (10.1016/j.nanoen.2023.108875_bib39) 2018; 57 Jing (10.1016/j.nanoen.2023.108875_bib34) 2020; 12 |
References_xml | – volume: 454 year: 2023 ident: bib14 article-title: Liquid metal/CNTs hydrogel-based transparent strain sensor for wireless health monitoring of aquatic animals publication-title: Chem. Eng. J. – volume: 8 start-page: 12713 year: 2020 end-page: 12721 ident: bib24 article-title: Green synthesis of cellulose nanofibrils decorated with Ag nanoparticles and their application in colorimetric detection of l-cysteine, ACS Sustain publication-title: Chem. Eng. – volume: 16 start-page: 14490 year: 2022 end-page: 14502 ident: bib22 article-title: MXene-reinforced liquid metal/polymer fibers via interface engineering for wearable multifunctional textiles publication-title: ACS Nano – year: 2023 ident: bib47 article-title: A robust and adhesive hydrogel enables interfacial coupling for continuous temperature monitoring publication-title: Adv. Funct. Mater. – volume: 30 year: 2020 ident: bib58 article-title: Insights into the photothermal conversion of 2D MXene nanomaterials: synthesis, mechanism, and applications publication-title: Adv. Funct. Mater. – year: 2023 ident: bib16 article-title: One stone, two birds: spidroin-inspired nanogels for high-performance fibers and photothermal actuators publication-title: Adv. Funct. Mater. – volume: 14 start-page: 218 year: 2020 end-page: 228 ident: bib46 article-title: Muscle-inspired self-healing hydrogels for strain and temperature sensor publication-title: ACS Nano – volume: 17 start-page: 384 year: 2017 end-page: 391 ident: bib57 article-title: Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion publication-title: Nano Lett. – volume: 31 year: 2021 ident: bib6 article-title: Muscle-inspired MXene conductive hydrogels with anisotropy and low-temperature tolerance for wearable flexible sensors and arrays publication-title: Adv. Funct. Mater. – volume: 452 year: 2023 ident: bib50 article-title: Tough, antifreezing, and conductive double network zwitterionic-based hydrogel for flexible sensors publication-title: Chem. Eng. J. – volume: 33 year: 2023 ident: bib40 article-title: Sebum-membrane-inspired protein-based bioprotonic hydrogel for artificial skin and human-machine merging interface publication-title: Adv. Funct. Mater. – volume: 9 start-page: 20703 year: 2021 end-page: 20713 ident: bib51 article-title: Bioinspired, nucleobase-driven, highly resilient, and fast-responsive antifreeze ionic conductive hydrogels for durable pressure and strain sensors publication-title: J. Mater. Chem. A – volume: 22 start-page: 2817 year: 2022 end-page: 2825 ident: bib21 article-title: Ultrasensitive pressure sensor sponge using liquid metal modulated nitrogen-doped graphene nanosheets publication-title: Nano Lett. – year: 2023 ident: bib12 article-title: High linearity, low hysteresis Ti publication-title: Adv. Funct. Mater. N./a – volume: 92 year: 2022 ident: bib49 article-title: Anisotropic magnetic liquid metal film for wearable wireless electromagnetic sensing and smart electromagnetic interference shielding publication-title: Nano Energy – volume: 471 year: 2022 ident: bib60 article-title: Liquid metals: Preparation, surface engineering, and biomedical applications publication-title: Coord. Chem. Rev. – volume: 13 start-page: 6472 year: 2022 ident: bib43 article-title: A biomimetic laminated strategy enabled strain-interference free and durable flexible thermistor electronics publication-title: Nat. Commun. – volume: 243 year: 2022 ident: bib53 article-title: A strong, ultrastretchable, antifreezing and high sensitive strain sensor based on ionic conductive fiber reinforced organohydrogel publication-title: Compos. B Eng. – year: 2023 ident: bib27 article-title: Super-stretchable, anti-freezing, anti-drying organogel ionic conductor for multi-mode flexible electronics publication-title: Adv. Funct. Mater. – volume: 62 start-page: 319 year: 2019 end-page: 328 ident: bib54 article-title: Highly conductive 1D–2D composite film for skin-mountable strain sensor and stretchable triboelectric nanogenerator publication-title: Nano Energy – volume: 451 year: 2023 ident: bib41 article-title: A self-adhesive and low-temperature-tolerant strain sensor based on organohydrogel for extreme ice and snow motion monitoring publication-title: Chem. Eng. J. – volume: 492 year: 2023 ident: bib61 article-title: Emerging 2D MXenes for antibacterial applications: current status, challenges, and prospects publication-title: Coord. Chem. Rev. – volume: 460 year: 2023 ident: bib31 article-title: Tough and self-healable double-network hydrogel for environmentally resistant all-in-one supercapacitors and strain sensors publication-title: Chem. Eng. J. – year: 2023 ident: bib9 article-title: Conductive polymer based hydrogels and their application in wearable sensors: a review publication-title: Mater. Horiz. – volume: 106 year: 2023 ident: bib15 article-title: Large-scalable fabrication of liquid metal-based double helix core-spun yarns for capacitive sensing, energy harvesting, and thermal management publication-title: Nano Energy – volume: 10 year: 2023 ident: bib11 article-title: Bioinspired conductive enhanced polyurethane ionic skin as reliable multifunctional sensors publication-title: Adv. Sci. – volume: 6 start-page: 618 year: 2019 end-page: 625 ident: bib13 article-title: Ultra-stretchable hydrogels with reactive liquid metals as asymmetric force-sensors publication-title: Mater. Horiz. – volume: 247 year: 2022 ident: bib25 article-title: Passive thermal regulation with 3D printed phase change material/cellulose nanofibrils composites publication-title: Compos. B Eng. – volume: 10 start-page: 23366 year: 2022 end-page: 23374 ident: bib44 article-title: Wearable, fast-healing, and self-adhesive multifunctional photoactive hydrogel for strain and temperature sensing publication-title: J. Mater. Chem. A – volume: 8 start-page: 4447 year: 2020 end-page: 4456 ident: bib52 article-title: A transparent, ultrastretchable and fully recyclable gelatin organohydrogel based electronic sensor with broad operating temperature publication-title: J. Mater. Chem. A – volume: 231 year: 2023 ident: bib30 article-title: Hydrogen-bonding topological remodeling modulated ultra-fine bacterial cellulose nanofibril-reinforced hydrogels for sustainable bioelectronics publication-title: Biosens. Bioelectron. – year: 2023 ident: bib1 article-title: Super-stretchable, anti-freezing, anti-drying organogel ionic conductor for multi-mode flexible electronics publication-title: Adv. Funct. Mater. – volume: 16 start-page: 7618 year: 2023 end-page: 7626 ident: bib45 article-title: Stretchable multifunctional sensor based on porous silver nanowire/silicone rubber conductive film publication-title: Nano Res. – volume: 76 year: 2020 ident: bib55 article-title: Ultra-stretchable, durable and conductive hydrogel with hybrid double network as high performance strain sensor and stretchable triboelectric nanogenerator publication-title: Nano Energy – volume: 10 start-page: 3514 year: 2019 ident: bib35 article-title: Evaporation-induced sintering of liquid metal droplets with biological nanofibrils for flexible conductivity and responsive actuation publication-title: Nat. Commun. – year: 2023 ident: bib8 article-title: Strong, tough, and anti-swelling supramolecular conductive hydrogels for amphibious motion sensors publication-title: Small – volume: 447 year: 2022 ident: bib7 article-title: Bio-inspired, super-stretchable and self-adhesive hybrid hydrogel with SC-PDA/GO-Ca publication-title: Chem. Eng. J. – year: 2023 ident: bib29 article-title: A quenched double-hydrophilic coating for the enhancement of water retention of hydrogels publication-title: Adv. Funct. Mater. – volume: 66 start-page: 1923 year: 2023 end-page: 1933 ident: bib26 article-title: Highly sensitive and self-healing conductive hydrogels fabricated from cationic cellulose nanofiber-dispersed liquid metal for strain sensors publication-title: Sci. China Mater. – volume: 6 start-page: 112 year: 2023 ident: bib3 article-title: Thermal enhancement of gelatin hydrogels for a multimodal sensor and self-powered triboelectric nanogenerator at low temperatures publication-title: Adv. Compos. Hybrid. Mater. – volume: 29 year: 2019 ident: bib42 article-title: Self-healable multifunctional electronic tattoos based on silk and graphene publication-title: Adv. Funct. Mater. – volume: 95 year: 2022 ident: bib28 article-title: Stretchable freezing-tolerant triboelectric nanogenerator and strain sensor based on transparent, long-term stable, and highly conductive gelatin-based organohydrogel publication-title: Nano Energy – volume: 15 start-page: 79 year: 2023 ident: bib4 article-title: Self-healing liquid metal magnetic hydrogels for smart feedback sensors and high-performance electromagnetic shielding publication-title: Nano-Micro Lett. – volume: 32 year: 2020 ident: bib20 article-title: Liquid metal initiator of ring-opening polymerization: self-capsulation into thermal/photomoldable powder for multifunctional composites publication-title: Adv. Mater. – volume: 12 start-page: 23474 year: 2020 end-page: 23483 ident: bib34 article-title: Enhancing the performance of a stretchable and transparent triboelectric nanogenerator by optimizing the hydrogel ionic electrode property publication-title: ACS Appl. Mater. Interfaces – volume: 408 year: 2021 ident: bib38 article-title: Nanocellulose/LiCl systems enable conductive and stretchable electrolyte hydrogels with tolerance to dehydration and extreme cold conditions publication-title: Chem. Eng. J. – volume: 12 start-page: 3209 year: 2018 end-page: 3216 ident: bib5 article-title: 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor publication-title: ACS Nano – volume: 6 start-page: eaaz7328 year: 2020 ident: bib23 article-title: Nanofibrillar networks enable universal assembly of superstructured particle constructs publication-title: Sci. Adv. – volume: 26 start-page: 1678 year: 2016 end-page: 1698 ident: bib48 article-title: Stretchable, skin-mountable, and wearable strain sensors and their potential applications: A review publication-title: Adv. Funct. Mater. – volume: 11 start-page: 25295 year: 2019 end-page: 25305 ident: bib56 article-title: Capillary-based microfluidic fabrication of liquid metal microspheres toward functional microelectrodes and photothermal medium publication-title: ACS Appl. Mater. Interfaces – year: 2023 ident: bib62 article-title: Surface modification of super arborized silica for flexible and wearable ultrafast-response strain sensors with low hysteresis publication-title: Adv. Sci. – volume: 432 year: 2022 ident: bib10 article-title: Mechanically toughened conductive hydrogels with shape memory behavior toward self-healable, multi-environmental tolerant and bidirectional sensors publication-title: Chem. Eng. J. – volume: 18 year: 2022 ident: bib2 article-title: Mechanically ultra-robust, elastic, conductive, and multifunctional hybrid hydrogel for a triboelectric nanogenerator and flexible/wearable sensor publication-title: Small – volume: 10 start-page: 3674 year: 2016 end-page: 3684 ident: bib59 article-title: Antibacterial activity of Ti publication-title: ACS Nano – volume: 35 year: 2023 ident: bib37 article-title: A liquid metal microdroplets initialized hemicellulose composite for 3D printing anode host in Zn-Ion battery publication-title: Adv. Mater. – volume: 9 year: 2019 ident: bib32 article-title: Triboelectric nanogenerator: a foundation of the energy for the new era publication-title: Adv. Energy Mater. – volume: 31 year: 2021 ident: bib36 article-title: Multifunctional liquid-free ionic conductive elastomer fabricated by liquid metal induced polymerization publication-title: Adv. Funct. Mater. – volume: 99 year: 2022 ident: bib19 article-title: Highly stretchable, durable, and transient conductive hydrogel for multi-functional sensor and signal transmission applications publication-title: Nano Energy – volume: 8 start-page: 13787 year: 2020 end-page: 13794 ident: bib33 article-title: An anti-freezing hydrogel based stretchable triboelectric nanogenerator for biomechanical energy harvesting at sub-zero temperature publication-title: J. Mater. Chem. A – volume: 57 start-page: 6568 year: 2018 end-page: 6571 ident: bib39 article-title: Rational fabrication of anti-freezing, non-drying tough organohydrogels by one-pot solvent displacement publication-title: Angew. Chem. Int. Ed. – volume: 435 year: 2022 ident: bib17 article-title: A multifunctional hydrogel fabricated via ultra-fast polymerization by graphene oxide-adsorbed liquid metal nanodroplets publication-title: Chem. Eng. J. – volume: 301 year: 2023 ident: bib18 article-title: Liquid metal and MXene enable self-healing soft electronics based on double networks of bacterial cellulose hydrogels publication-title: Carbohydr. Polym. – year: 2023 ident: bib63 article-title: Thermochromic-based bimodal sensor for strain-insensitive temperature sensing and synchronous strain sensing publication-title: Chem. Eng. J. – volume: 432 year: 2022 ident: 10.1016/j.nanoen.2023.108875_bib10 article-title: Mechanically toughened conductive hydrogels with shape memory behavior toward self-healable, multi-environmental tolerant and bidirectional sensors publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.134406 – volume: 243 year: 2022 ident: 10.1016/j.nanoen.2023.108875_bib53 article-title: A strong, ultrastretchable, antifreezing and high sensitive strain sensor based on ionic conductive fiber reinforced organohydrogel publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2022.110116 – volume: 95 year: 2022 ident: 10.1016/j.nanoen.2023.108875_bib28 article-title: Stretchable freezing-tolerant triboelectric nanogenerator and strain sensor based on transparent, long-term stable, and highly conductive gelatin-based organohydrogel publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.106967 – volume: 10 start-page: 3674 year: 2016 ident: 10.1016/j.nanoen.2023.108875_bib59 article-title: Antibacterial activity of Ti3C2Tx MXene publication-title: ACS Nano doi: 10.1021/acsnano.6b00181 – volume: 12 start-page: 3209 year: 2018 ident: 10.1016/j.nanoen.2023.108875_bib5 article-title: 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor publication-title: ACS Nano doi: 10.1021/acsnano.7b06909 – volume: 8 start-page: 12713 year: 2020 ident: 10.1016/j.nanoen.2023.108875_bib24 article-title: Green synthesis of cellulose nanofibrils decorated with Ag nanoparticles and their application in colorimetric detection of l-cysteine, ACS Sustain publication-title: Chem. Eng. – year: 2023 ident: 10.1016/j.nanoen.2023.108875_bib9 article-title: Conductive polymer based hydrogels and their application in wearable sensors: a review publication-title: Mater. Horiz. – volume: 17 start-page: 384 year: 2017 ident: 10.1016/j.nanoen.2023.108875_bib57 article-title: Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04339 – volume: 33 year: 2023 ident: 10.1016/j.nanoen.2023.108875_bib40 article-title: Sebum-membrane-inspired protein-based bioprotonic hydrogel for artificial skin and human-machine merging interface publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202211056 – volume: 30 year: 2020 ident: 10.1016/j.nanoen.2023.108875_bib58 article-title: Insights into the photothermal conversion of 2D MXene nanomaterials: synthesis, mechanism, and applications publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202070314 – year: 2023 ident: 10.1016/j.nanoen.2023.108875_bib8 article-title: Strong, tough, and anti-swelling supramolecular conductive hydrogels for amphibious motion sensors publication-title: Small doi: 10.1002/smll.202303612 – volume: 16 start-page: 14490 year: 2022 ident: 10.1016/j.nanoen.2023.108875_bib22 article-title: MXene-reinforced liquid metal/polymer fibers via interface engineering for wearable multifunctional textiles publication-title: ACS Nano doi: 10.1021/acsnano.2c04863 – volume: 471 year: 2022 ident: 10.1016/j.nanoen.2023.108875_bib60 article-title: Liquid metals: Preparation, surface engineering, and biomedical applications publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2022.214731 – year: 2023 ident: 10.1016/j.nanoen.2023.108875_bib62 article-title: Surface modification of super arborized silica for flexible and wearable ultrafast-response strain sensors with low hysteresis publication-title: Adv. Sci. doi: 10.1002/advs.202301713 – volume: 12 start-page: 23474 year: 2020 ident: 10.1016/j.nanoen.2023.108875_bib34 article-title: Enhancing the performance of a stretchable and transparent triboelectric nanogenerator by optimizing the hydrogel ionic electrode property publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c04219 – volume: 10 year: 2023 ident: 10.1016/j.nanoen.2023.108875_bib11 article-title: Bioinspired conductive enhanced polyurethane ionic skin as reliable multifunctional sensors publication-title: Adv. Sci. – volume: 76 year: 2020 ident: 10.1016/j.nanoen.2023.108875_bib55 article-title: Ultra-stretchable, durable and conductive hydrogel with hybrid double network as high performance strain sensor and stretchable triboelectric nanogenerator publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105035 – volume: 8 start-page: 13787 year: 2020 ident: 10.1016/j.nanoen.2023.108875_bib33 article-title: An anti-freezing hydrogel based stretchable triboelectric nanogenerator for biomechanical energy harvesting at sub-zero temperature publication-title: J. Mater. Chem. A doi: 10.1039/D0TA03215H – volume: 18 year: 2022 ident: 10.1016/j.nanoen.2023.108875_bib2 article-title: Mechanically ultra-robust, elastic, conductive, and multifunctional hybrid hydrogel for a triboelectric nanogenerator and flexible/wearable sensor publication-title: Small doi: 10.1002/smll.202203956 – volume: 9 start-page: 20703 year: 2021 ident: 10.1016/j.nanoen.2023.108875_bib51 article-title: Bioinspired, nucleobase-driven, highly resilient, and fast-responsive antifreeze ionic conductive hydrogels for durable pressure and strain sensors publication-title: J. Mater. Chem. A doi: 10.1039/D1TA05262D – volume: 66 start-page: 1923 year: 2023 ident: 10.1016/j.nanoen.2023.108875_bib26 article-title: Highly sensitive and self-healing conductive hydrogels fabricated from cationic cellulose nanofiber-dispersed liquid metal for strain sensors publication-title: Sci. China Mater. doi: 10.1007/s40843-022-2328-8 – volume: 451 year: 2023 ident: 10.1016/j.nanoen.2023.108875_bib41 article-title: A self-adhesive and low-temperature-tolerant strain sensor based on organohydrogel for extreme ice and snow motion monitoring publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.138675 – volume: 92 year: 2022 ident: 10.1016/j.nanoen.2023.108875_bib49 article-title: Anisotropic magnetic liquid metal film for wearable wireless electromagnetic sensing and smart electromagnetic interference shielding publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106700 – volume: 15 start-page: 79 year: 2023 ident: 10.1016/j.nanoen.2023.108875_bib4 article-title: Self-healing liquid metal magnetic hydrogels for smart feedback sensors and high-performance electromagnetic shielding publication-title: Nano-Micro Lett. doi: 10.1007/s40820-023-01043-3 – volume: 31 year: 2021 ident: 10.1016/j.nanoen.2023.108875_bib6 article-title: Muscle-inspired MXene conductive hydrogels with anisotropy and low-temperature tolerance for wearable flexible sensors and arrays publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202105264 – volume: 454 year: 2023 ident: 10.1016/j.nanoen.2023.108875_bib14 article-title: Liquid metal/CNTs hydrogel-based transparent strain sensor for wireless health monitoring of aquatic animals publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.140459 – year: 2023 ident: 10.1016/j.nanoen.2023.108875_bib63 article-title: Thermochromic-based bimodal sensor for strain-insensitive temperature sensing and synchronous strain sensing publication-title: Chem. Eng. J. – volume: 62 start-page: 319 year: 2019 ident: 10.1016/j.nanoen.2023.108875_bib54 article-title: Highly conductive 1D–2D composite film for skin-mountable strain sensor and stretchable triboelectric nanogenerator publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.05.041 – volume: 26 start-page: 1678 year: 2016 ident: 10.1016/j.nanoen.2023.108875_bib48 article-title: Stretchable, skin-mountable, and wearable strain sensors and their potential applications: A review publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201504755 – volume: 8 start-page: 4447 year: 2020 ident: 10.1016/j.nanoen.2023.108875_bib52 article-title: A transparent, ultrastretchable and fully recyclable gelatin organohydrogel based electronic sensor with broad operating temperature publication-title: J. Mater. Chem. A doi: 10.1039/C9TA13196E – volume: 6 start-page: 618 year: 2019 ident: 10.1016/j.nanoen.2023.108875_bib13 article-title: Ultra-stretchable hydrogels with reactive liquid metals as asymmetric force-sensors publication-title: Mater. Horiz. doi: 10.1039/C8MH01561A – volume: 447 year: 2022 ident: 10.1016/j.nanoen.2023.108875_bib7 article-title: Bio-inspired, super-stretchable and self-adhesive hybrid hydrogel with SC-PDA/GO-Ca2+/PAM framework for high precision wearable sensors publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.137259 – year: 2023 ident: 10.1016/j.nanoen.2023.108875_bib27 article-title: Super-stretchable, anti-freezing, anti-drying organogel ionic conductor for multi-mode flexible electronics publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202304625 – volume: 435 year: 2022 ident: 10.1016/j.nanoen.2023.108875_bib17 article-title: A multifunctional hydrogel fabricated via ultra-fast polymerization by graphene oxide-adsorbed liquid metal nanodroplets publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.135018 – volume: 492 year: 2023 ident: 10.1016/j.nanoen.2023.108875_bib61 article-title: Emerging 2D MXenes for antibacterial applications: current status, challenges, and prospects publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2023.215275 – year: 2023 ident: 10.1016/j.nanoen.2023.108875_bib47 article-title: A robust and adhesive hydrogel enables interfacial coupling for continuous temperature monitoring publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202302840 – volume: 10 start-page: 3514 year: 2019 ident: 10.1016/j.nanoen.2023.108875_bib35 article-title: Evaporation-induced sintering of liquid metal droplets with biological nanofibrils for flexible conductivity and responsive actuation publication-title: Nat. Commun. doi: 10.1038/s41467-019-11466-5 – volume: 452 year: 2023 ident: 10.1016/j.nanoen.2023.108875_bib50 article-title: Tough, antifreezing, and conductive double network zwitterionic-based hydrogel for flexible sensors publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.139314 – volume: 460 year: 2023 ident: 10.1016/j.nanoen.2023.108875_bib31 article-title: Tough and self-healable double-network hydrogel for environmentally resistant all-in-one supercapacitors and strain sensors publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.141787 – volume: 13 start-page: 6472 year: 2022 ident: 10.1016/j.nanoen.2023.108875_bib43 article-title: A biomimetic laminated strategy enabled strain-interference free and durable flexible thermistor electronics publication-title: Nat. Commun. doi: 10.1038/s41467-022-34168-x – volume: 14 start-page: 218 year: 2020 ident: 10.1016/j.nanoen.2023.108875_bib46 article-title: Muscle-inspired self-healing hydrogels for strain and temperature sensor publication-title: ACS Nano doi: 10.1021/acsnano.9b07874 – volume: 408 year: 2021 ident: 10.1016/j.nanoen.2023.108875_bib38 article-title: Nanocellulose/LiCl systems enable conductive and stretchable electrolyte hydrogels with tolerance to dehydration and extreme cold conditions publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127306 – volume: 35 year: 2023 ident: 10.1016/j.nanoen.2023.108875_bib37 article-title: A liquid metal microdroplets initialized hemicellulose composite for 3D printing anode host in Zn-Ion battery publication-title: Adv. Mater. doi: 10.1002/adma.202300109 – volume: 106 year: 2023 ident: 10.1016/j.nanoen.2023.108875_bib15 article-title: Large-scalable fabrication of liquid metal-based double helix core-spun yarns for capacitive sensing, energy harvesting, and thermal management publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.108078 – volume: 10 start-page: 23366 year: 2022 ident: 10.1016/j.nanoen.2023.108875_bib44 article-title: Wearable, fast-healing, and self-adhesive multifunctional photoactive hydrogel for strain and temperature sensing publication-title: J. Mater. Chem. A doi: 10.1039/D2TA06072H – volume: 22 start-page: 2817 year: 2022 ident: 10.1016/j.nanoen.2023.108875_bib21 article-title: Ultrasensitive pressure sensor sponge using liquid metal modulated nitrogen-doped graphene nanosheets publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c04976 – volume: 99 year: 2022 ident: 10.1016/j.nanoen.2023.108875_bib19 article-title: Highly stretchable, durable, and transient conductive hydrogel for multi-functional sensor and signal transmission applications publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107374 – year: 2023 ident: 10.1016/j.nanoen.2023.108875_bib16 article-title: One stone, two birds: spidroin-inspired nanogels for high-performance fibers and photothermal actuators publication-title: Adv. Funct. Mater. – volume: 29 year: 2019 ident: 10.1016/j.nanoen.2023.108875_bib42 article-title: Self-healable multifunctional electronic tattoos based on silk and graphene publication-title: Adv. Funct. Mater. – volume: 11 start-page: 25295 year: 2019 ident: 10.1016/j.nanoen.2023.108875_bib56 article-title: Capillary-based microfluidic fabrication of liquid metal microspheres toward functional microelectrodes and photothermal medium publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b03007 – year: 2023 ident: 10.1016/j.nanoen.2023.108875_bib1 article-title: Super-stretchable, anti-freezing, anti-drying organogel ionic conductor for multi-mode flexible electronics publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202304625 – volume: 301 year: 2023 ident: 10.1016/j.nanoen.2023.108875_bib18 article-title: Liquid metal and MXene enable self-healing soft electronics based on double networks of bacterial cellulose hydrogels publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2022.120330 – year: 2023 ident: 10.1016/j.nanoen.2023.108875_bib29 article-title: A quenched double-hydrophilic coating for the enhancement of water retention of hydrogels publication-title: Adv. Funct. Mater. – volume: 247 year: 2022 ident: 10.1016/j.nanoen.2023.108875_bib25 article-title: Passive thermal regulation with 3D printed phase change material/cellulose nanofibrils composites publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2022.110332 – volume: 231 year: 2023 ident: 10.1016/j.nanoen.2023.108875_bib30 article-title: Hydrogen-bonding topological remodeling modulated ultra-fine bacterial cellulose nanofibril-reinforced hydrogels for sustainable bioelectronics publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2023.115288 – volume: 6 start-page: eaaz7328 year: 2020 ident: 10.1016/j.nanoen.2023.108875_bib23 article-title: Nanofibrillar networks enable universal assembly of superstructured particle constructs publication-title: Sci. Adv. doi: 10.1126/sciadv.aaz7328 – volume: 31 year: 2021 ident: 10.1016/j.nanoen.2023.108875_bib36 article-title: Multifunctional liquid-free ionic conductive elastomer fabricated by liquid metal induced polymerization publication-title: Adv. Funct. Mater. – volume: 57 start-page: 6568 year: 2018 ident: 10.1016/j.nanoen.2023.108875_bib39 article-title: Rational fabrication of anti-freezing, non-drying tough organohydrogels by one-pot solvent displacement publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201803366 – volume: 6 start-page: 112 year: 2023 ident: 10.1016/j.nanoen.2023.108875_bib3 article-title: Thermal enhancement of gelatin hydrogels for a multimodal sensor and self-powered triboelectric nanogenerator at low temperatures publication-title: Adv. Compos. Hybrid. Mater. doi: 10.1007/s42114-023-00693-6 – volume: 9 year: 2019 ident: 10.1016/j.nanoen.2023.108875_bib32 article-title: Triboelectric nanogenerator: a foundation of the energy for the new era publication-title: Adv. Energy Mater. – volume: 16 start-page: 7618 year: 2023 ident: 10.1016/j.nanoen.2023.108875_bib45 article-title: Stretchable multifunctional sensor based on porous silver nanowire/silicone rubber conductive film publication-title: Nano Res. doi: 10.1007/s12274-023-5400-0 – year: 2023 ident: 10.1016/j.nanoen.2023.108875_bib12 article-title: High linearity, low hysteresis Ti3C2Tx MXene/AgNW/liquid metal self-healing strain sensor modulated by dynamic disulfide and hydrogen bonds publication-title: Adv. Funct. Mater. N./a – volume: 32 year: 2020 ident: 10.1016/j.nanoen.2023.108875_bib20 article-title: Liquid metal initiator of ring-opening polymerization: self-capsulation into thermal/photomoldable powder for multifunctional composites publication-title: Adv. Mater. |
SSID | ssj0000651712 |
Score | 2.638403 |
Snippet | Conductive gels have received extensive attention in flexible electronics due to their diverse characteristics. The requirement for versatility and... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 108875 |
SubjectTerms | Conductive hydrogel Liquid metal Multifunctional sensor MXene Photothermal conversion Triboelectric nanogenerator |
Title | A stretchable, environmentally tolerant, and photoactive liquid metal/MXene hydrogel for high performance temperature monitoring, human motion detection and self-powered application |
URI | https://dx.doi.org/10.1016/j.nanoen.2023.108875 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BTuMwELUQe4EDgl0QsIDmwLGmbuIkzbGqqMoiuCxIvUV2PIGikIRuOHDhr_g_PE7CFgmBxDFRRrE81szYfu8NY8dBbDCLtMeF0YpLFILrSHk8lUIpFCaQAyI4X1yG02v5ZxbMVti448IQrLKN_U1Md9G6fdNvZ7Nfzef9v57du3jDgI41bZ70iFEuZUSr_OR58HbOYlPsIHKXnvQ9J4OOQedgXoUqSiQhVM8nvJ0DHH6UoZayzmSTbbTlIoyaEW2xFSx-svUlEcFf7GUERPiws08sqB4sUddUnj9BXeZoE1LdA1UYqG7LulQuyEE-f3icG7hHwpJezGzUg9snsyhvMAdbywJJGUP1n1kApGPVijDDvQsGNIQeuEZ_0DQEAoO1g3cV7n__MM94Ra3Y0MDSbfk2u56cXo2nvG3GwFO7q6i5j9qg7wU6jDNbhejQbh21TjWJ2WS-jLRQTksuVMNYG1t0ZoGRWWg8RB2qWPs7bLUoC9xlYKs2YUwcpYaandgiT4TZUEShHvpqoHy5x_zOAUnaKpVTw4w86SBpd0njtoTcljRu22P8zapqlDq--D7qfJu8W3GJTSafWu5_2_I3W6OnBg5zwFbrxSMe2qKm1kdu1R6xH6Oz8-nlK4b__AY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB3R5dByqEo_VCgtc-C41nrzuTmuEGgp7F4AaW-RHU_KViEJEA78sP6_epwEFqmiEtckI1sZa-bZfvMG4CBMDOWx9oQ0WomApBQ6Vp7IAqkUSRMGYy5wni-i2WXwcxkuN-Cwr4VhWmUX-9uY7qJ192TU_c1RvVqNzj27d_EmIR9r2jzpxW9gk9WpwgFsTk9OZ4vHoxabZcexu_dkE8E2fRGdY3qVqqyItVA9nyl3jnP4ryS1lniOP8D7DjHitJ3UNmxQ-RG21nQEP8GfKXLNh3UAF0INca16TRXFAzZVQTYnNUNUpcH6qmoq5eIcFqub-5XBa2I66XxpAx9ePZjb6hcVaOEsspox1k_FBchSVp0OM167eMBTGKLr9YdtTyA01DiGV-nGu6MiFzV3YyODaxfmn-Hy-OjicCa6fgwisxuLRvikDfleqKMkt0BER3b3qHWmWc8m94NYS-Xk5CI1SbSxuDMPTZBHxiPSkUq0_wUGZVXSV0AL3KQxSZwZ7ndicZ6M8omMIz3x1Vj5wQ74vQPSrBMr554ZRdqz0n6nrdtSdlvaum0HxKNV3Yp1_Of7uPdt-mzRpTafvGi5-2rLfXg7u5ifpWcni9Nv8I7ftOyYPRg0t_f03WKcRv_o1vBfG8n-tw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+stretchable%2C+environmentally+tolerant%2C+and+photoactive+liquid+metal%2FMXene+hydrogel+for+high+performance+temperature+monitoring%2C+human+motion+detection+and+self-powered+application&rft.jtitle=Nano+energy&rft.au=Zhang%2C+Wei&rft.au=Wang%2C+Pei-Lin&rft.au=Huang%2C+Ling-Zhi&rft.au=Guo%2C+Wen-Yan&rft.date=2023-12-01&rft.pub=Elsevier+Ltd&rft.issn=2211-2855&rft.volume=117&rft_id=info:doi/10.1016%2Fj.nanoen.2023.108875&rft.externalDocID=S2211285523007127 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon |