AudioMNIST: Exploring Explainable Artificial Intelligence for audio analysis on a simple benchmark

Saved in:
Bibliographic Details
Published inJournal of the Franklin Institute Vol. 361; no. 1; pp. 418 - 428
Main Authors Becker, Sören, Vielhaben, Johanna, Ackermann, Marcel, Müller, Klaus-Robert, Lapuschkin, Sebastian, Samek, Wojciech
Format Journal Article
LanguageEnglish
Published 01.01.2024
Online AccessGet full text

Cover

Loading…
Author Becker, Sören
Vielhaben, Johanna
Samek, Wojciech
Lapuschkin, Sebastian
Ackermann, Marcel
Müller, Klaus-Robert
Author_xml – sequence: 1
  givenname: Sören
  surname: Becker
  fullname: Becker, Sören
– sequence: 2
  givenname: Johanna
  surname: Vielhaben
  fullname: Vielhaben, Johanna
– sequence: 3
  givenname: Marcel
  surname: Ackermann
  fullname: Ackermann, Marcel
– sequence: 4
  givenname: Klaus-Robert
  surname: Müller
  fullname: Müller, Klaus-Robert
– sequence: 5
  givenname: Sebastian
  orcidid: 0000-0002-0762-7258
  surname: Lapuschkin
  fullname: Lapuschkin, Sebastian
– sequence: 6
  givenname: Wojciech
  orcidid: 0000-0002-6283-3265
  surname: Samek
  fullname: Samek, Wojciech
BookMark eNqFkMFOwzAMhnMYEtvgGcgLtCTN1rRIHKZpQKUBB8Y5ctNkpMuSKSkSe3syQBy4cLIt-7N-fRM0ct4phK4oySmh5XWf9zqA21nj8oIULKc0J6waoTFJ64wQVpyjSYx9GjklZIzaxXtn_ONT87K5wauPg_XBuO1XB8ZBaxVehMFoIw1Y3LhBWWu2ykmFtQ8YTjQGB_YYTcTeYcDR7A8Ja9PR2x7C7gKdabBRXf7UKXq9W22WD9n6-b5ZLtaZZKQcMqbmKVEN3YzTsqjmbK5r3nVpgILzutRQEQ6zVjFOqZRa1l1dUMk4q7hsu5pNEf_-K4OPMSgtDsGkAEdBiTjpEb341SNOegSlIulJ5O0fUpoBBuPdEMDYf_lP2rR11w
CitedBy_id crossref_primary_10_1016_j_jisa_2024_103720
crossref_primary_10_1007_s00034_024_02656_8
crossref_primary_10_1007_s42979_025_03770_3
crossref_primary_10_1109_ACCESS_2024_3428336
crossref_primary_10_1016_j_patcog_2024_110309
crossref_primary_10_1007_s00521_024_10437_2
crossref_primary_10_1016_j_dib_2024_110678
crossref_primary_10_1016_j_inffus_2024_102923
crossref_primary_10_1038_s41928_024_01169_1
crossref_primary_10_1016_j_pnucene_2025_105722
Cites_doi 10.1038/ncomms13890
10.1145/3474121
10.1016/j.patcog.2016.11.008
10.6028/NIST.IR.4930
10.1109/ICASSP.2017.7952132
10.1038/s42256-023-00711-8
10.1016/j.tics.2022.07.003
10.1109/ICASSP.2017.7952190
10.1109/MSP.2012.2205597
10.1207/s15516709cog0000_76
10.1145/2783258.2788613
10.18653/v1/W17-5221
10.1109/JBHI.2020.3022989
10.1016/j.jneumeth.2016.10.008
10.1103/PhysRevD.101.094507
10.1038/s41467-019-08987-4
10.1146/annurev-pathmechdis-051222-113147
10.1109/JPROC.2021.3060483
10.1371/journal.pone.0130140
10.1109/TNNLS.2016.2599820
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1016/j.jfranklin.2023.11.038
DatabaseName CrossRef
DatabaseTitle CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 428
ExternalDocumentID 10_1016_j_jfranklin_2023_11_038
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29L
4.4
41~
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
AAYXX
ABAOU
ABBOA
ABDPE
ABEFU
ABFRF
ABJNI
ABMAC
ABUCO
ABWVN
ABXDB
ACCUC
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACNNM
ACRLP
ACRPL
ACZNC
ADEZE
ADGUI
ADJOM
ADMUD
ADNMO
ADTZH
ADXHL
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AETEA
AFFNX
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHHHB
AHJVU
AHPAA
AHZHX
AIALX
AIEXJ
AIGVJ
AIIUN
AIKHN
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APLSM
APXCP
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CITATION
CS3
D1Z
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HMJ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY7
M26
M41
MHUIS
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SES
SET
SEW
SME
SPC
SPCBC
SSB
SSD
SSH
SST
SSV
SSW
SSZ
T5K
TN5
UHS
VOH
WH7
WUQ
XOL
XPP
ZCG
ZMT
ZY4
~02
~G-
ID FETCH-LOGICAL-c306t-3e51009ad471628535f97dd716a27796fa807a4be3711ccfc9d921c37387cbd93
ISSN 0016-0032
IngestDate Thu Apr 24 23:02:17 EDT 2025
Tue Jul 01 03:53:23 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-3e51009ad471628535f97dd716a27796fa807a4be3711ccfc9d921c37387cbd93
ORCID 0000-0002-6283-3265
0000-0002-0762-7258
OpenAccessLink https://doi.org/10.1016/j.jfranklin.2023.11.038
PageCount 11
ParticipantIDs crossref_primary_10_1016_j_jfranklin_2023_11_038
crossref_citationtrail_10_1016_j_jfranklin_2023_11_038
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-00
PublicationDecade 2020
PublicationTitle Journal of the Franklin Institute
PublicationYear 2024
References 10.1016/j.jfranklin.2023.11.038_b18
Lapuschkin (10.1016/j.jfranklin.2023.11.038_b29) 2019; 10
(10.1016/j.jfranklin.2023.11.038_b26) 2019; vol. 11700
Strodthoff (10.1016/j.jfranklin.2023.11.038_b11) 2018; 40
Thomas (10.1016/j.jfranklin.2023.11.038_b12) 2022; 26
Traunmüller (10.1016/j.jfranklin.2023.11.038_b44) 1995
Krizhevsky (10.1016/j.jfranklin.2023.11.038_b43) 2012
Anders (10.1016/j.jfranklin.2023.11.038_b33) 2021
Haunschmid (10.1016/j.jfranklin.2023.11.038_b36) 2020
LeCun (10.1016/j.jfranklin.2023.11.038_b24) 1998
Klauschen (10.1016/j.jfranklin.2023.11.038_b13) 2024; 19
10.1016/j.jfranklin.2023.11.038_b1
Powers (10.1016/j.jfranklin.2023.11.038_b48) 2011; 2
Alber (10.1016/j.jfranklin.2023.11.038_b32) 2018; 20
Wullenweber (10.1016/j.jfranklin.2023.11.038_b38) 2022
Achtibat (10.1016/j.jfranklin.2023.11.038_b41) 2023; 5
Hinton (10.1016/j.jfranklin.2023.11.038_b2) 2006; 30
Bach (10.1016/j.jfranklin.2023.11.038_b5) 2015; 10
Hinton (10.1016/j.jfranklin.2023.11.038_b17) 2012; 29
Samek (10.1016/j.jfranklin.2023.11.038_b8) 2021; 109
Parekh (10.1016/j.jfranklin.2023.11.038_b42) 2022
Ribeiro (10.1016/j.jfranklin.2023.11.038_b39) 2016
Rabiner (10.1016/j.jfranklin.2023.11.038_b19) 1993
Strodthoff (10.1016/j.jfranklin.2023.11.038_b27) 2021; 25
Kohlbrenner (10.1016/j.jfranklin.2023.11.038_b30) 2020
Hoffman (10.1016/j.jfranklin.2023.11.038_b46) 2018
Baehrens (10.1016/j.jfranklin.2023.11.038_b4) 2010; 11
Schütt (10.1016/j.jfranklin.2023.11.038_b14) 2017; 8
Jeyakumar (10.1016/j.jfranklin.2023.11.038_b34) 2020
Vielhaben (10.1016/j.jfranklin.2023.11.038_b40) 2023
10.1016/j.jfranklin.2023.11.038_b25
10.1016/j.jfranklin.2023.11.038_b9
Sturm (10.1016/j.jfranklin.2023.11.038_b10) 2016; 274
Becker (10.1016/j.jfranklin.2023.11.038_b47) 2018
10.1016/j.jfranklin.2023.11.038_b22
Slijepcevic (10.1016/j.jfranklin.2023.11.038_b28) 2022; 3
Fong (10.1016/j.jfranklin.2023.11.038_b6) 2017
Panayotov (10.1016/j.jfranklin.2023.11.038_b23) 2015
Lee (10.1016/j.jfranklin.2023.11.038_b16) 2009
Godfrey (10.1016/j.jfranklin.2023.11.038_b21) 1992
Lapuschkin (10.1016/j.jfranklin.2023.11.038_b31) 2016; 17
Schuller (10.1016/j.jfranklin.2023.11.038_b35) 2021
Anusuya (10.1016/j.jfranklin.2023.11.038_b20) 2009; 6
Melchiorre (10.1016/j.jfranklin.2023.11.038_b37) 2021
Montavon (10.1016/j.jfranklin.2023.11.038_b7) 2017; 65
Erhan (10.1016/j.jfranklin.2023.11.038_b3) 2009; 1341
Blücher (10.1016/j.jfranklin.2023.11.038_b15) 2020; 101
Samek (10.1016/j.jfranklin.2023.11.038_b45) 2017; 28
References_xml – start-page: 1097
  year: 2012
  ident: 10.1016/j.jfranklin.2023.11.038_b43
  article-title: ImageNet classification with deep convolutional neural networks
– volume: 11
  start-page: 1803
  issue: Jun
  year: 2010
  ident: 10.1016/j.jfranklin.2023.11.038_b4
  article-title: How to explain individual classification decisions
  publication-title: J. Mach. Learn. Res.
– volume: 8
  start-page: 13890
  year: 2017
  ident: 10.1016/j.jfranklin.2023.11.038_b14
  article-title: Quantum-chemical insights from deep tensor neural networks
  publication-title: Nature Commun.
  doi: 10.1038/ncomms13890
– volume: 3
  start-page: 1
  issue: 2
  year: 2022
  ident: 10.1016/j.jfranklin.2023.11.038_b28
  article-title: Explaining machine learning models for clinical gait analysis
  publication-title: ACM Trans. Comput. Healthc.
  doi: 10.1145/3474121
– start-page: 5206
  year: 2015
  ident: 10.1016/j.jfranklin.2023.11.038_b23
  article-title: Librispeech: An ASR corpus based on public domain audio books
– year: 2020
  ident: 10.1016/j.jfranklin.2023.11.038_b34
  article-title: How can I explain this to you? An empirical study of deep neural network explanation methods
– volume: 65
  start-page: 211
  year: 2017
  ident: 10.1016/j.jfranklin.2023.11.038_b7
  article-title: Explaining NonLinear classification decisions with deep taylor decomposition
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.11.008
– volume: 20
  start-page: 93:1
  year: 2018
  ident: 10.1016/j.jfranklin.2023.11.038_b32
  article-title: Innvestigate neural networks!
  publication-title: J. Mach. Learn. Res.
– start-page: 517
  year: 1992
  ident: 10.1016/j.jfranklin.2023.11.038_b21
  article-title: Switchboard: Telephone speech corpus for research and development
– year: 2020
  ident: 10.1016/j.jfranklin.2023.11.038_b36
– volume: 1341
  start-page: 1
  issue: 3
  year: 2009
  ident: 10.1016/j.jfranklin.2023.11.038_b3
  article-title: Visualizing higher-layer features of a deep network
  publication-title: Univ. Montreal
– ident: 10.1016/j.jfranklin.2023.11.038_b22
  doi: 10.6028/NIST.IR.4930
– ident: 10.1016/j.jfranklin.2023.11.038_b25
  doi: 10.1109/ICASSP.2017.7952132
– year: 2018
  ident: 10.1016/j.jfranklin.2023.11.038_b46
– start-page: 1135
  year: 2016
  ident: 10.1016/j.jfranklin.2023.11.038_b39
  article-title: ”Why should I trust you?”: Explaining the predictions of any classifier
– volume: 2
  start-page: 37
  issue: 1
  year: 2011
  ident: 10.1016/j.jfranklin.2023.11.038_b48
  article-title: Evaluation: From precision, recall and F-measure to ROC, informedness, markedness & correlation
  publication-title: J. Mach. Learn. Technol.
– volume: 5
  start-page: 1006
  issue: 9
  year: 2023
  ident: 10.1016/j.jfranklin.2023.11.038_b41
  article-title: From attribution maps to human-understandable explanations through concept relevance propagation
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-023-00711-8
– start-page: 1
  year: 2020
  ident: 10.1016/j.jfranklin.2023.11.038_b30
  article-title: Towards best practice in explaining neural network decisions with LRP
– start-page: 1342
  year: 2022
  ident: 10.1016/j.jfranklin.2023.11.038_b38
  article-title: Coughlime: Sonified explanations for the predictions of COVID-19 cough classifiers
– volume: 26
  start-page: 972
  issue: 11
  year: 2022
  ident: 10.1016/j.jfranklin.2023.11.038_b12
  article-title: Interpreting mental state decoding with deep learning models
  publication-title: Trends in Cognitive Sciences
  doi: 10.1016/j.tics.2022.07.003
– ident: 10.1016/j.jfranklin.2023.11.038_b18
  doi: 10.1109/ICASSP.2017.7952190
– volume: 17
  start-page: 1
  issue: 114
  year: 2016
  ident: 10.1016/j.jfranklin.2023.11.038_b31
  article-title: The layer-wise relevance propagation toolbox for artificial neural networks
  publication-title: J. Mach. Learn. Res.
– start-page: 1096
  year: 2009
  ident: 10.1016/j.jfranklin.2023.11.038_b16
  article-title: Unsupervised feature learning for audio classification using convolutional deep belief networks
– year: 2018
  ident: 10.1016/j.jfranklin.2023.11.038_b47
– year: 2021
  ident: 10.1016/j.jfranklin.2023.11.038_b33
– year: 2023
  ident: 10.1016/j.jfranklin.2023.11.038_b40
  article-title: Multi-dimensional concept discovery (MCD): A unifying framework with completeness guarantees
  publication-title: Trans. Mach. Learn. Res.
– year: 1993
  ident: 10.1016/j.jfranklin.2023.11.038_b19
– volume: 29
  start-page: 82
  issue: 6
  year: 2012
  ident: 10.1016/j.jfranklin.2023.11.038_b17
  article-title: Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2012.2205597
– volume: 30
  start-page: 725
  issue: 4
  year: 2006
  ident: 10.1016/j.jfranklin.2023.11.038_b2
  article-title: Unsupervised discovery of nonlinear structure using contrastive backpropagation
  publication-title: Cogn. Sci.
  doi: 10.1207/s15516709cog0000_76
– ident: 10.1016/j.jfranklin.2023.11.038_b1
  doi: 10.1145/2783258.2788613
– ident: 10.1016/j.jfranklin.2023.11.038_b9
  doi: 10.18653/v1/W17-5221
– year: 1998
  ident: 10.1016/j.jfranklin.2023.11.038_b24
– volume: 25
  start-page: 1519
  issue: 5
  year: 2021
  ident: 10.1016/j.jfranklin.2023.11.038_b27
  article-title: Deep learning for ECG analysis: Benchmarks and insights from PTB-XL
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2020.3022989
– start-page: 531
  year: 2021
  ident: 10.1016/j.jfranklin.2023.11.038_b37
  article-title: LEMONS: Listenable explanations for music recOmmeNder systems
– start-page: 788
  year: 2021
  ident: 10.1016/j.jfranklin.2023.11.038_b35
  article-title: Towards sonification in multimodal and user-FriendlyExplainable artificial intelligence
– volume: vol. 11700
  start-page: 1
  year: 2019
  ident: 10.1016/j.jfranklin.2023.11.038_b26
  article-title: Explainable AI: Interpreting, explaining and visualizing deep learning
– volume: 274
  start-page: 141
  year: 2016
  ident: 10.1016/j.jfranklin.2023.11.038_b10
  article-title: Interpretable deep neural networks for single-trial eeg classification
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2016.10.008
– volume: 101
  year: 2020
  ident: 10.1016/j.jfranklin.2023.11.038_b15
  article-title: Towards novel insights in lattice field theory with explainable machine learning
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.101.094507
– volume: 40
  year: 2018
  ident: 10.1016/j.jfranklin.2023.11.038_b11
  article-title: Detecting and interpreting myocardial infarction using fully convolutional neural networks
  publication-title: Physiol. Meas.
– start-page: 35270
  year: 2022
  ident: 10.1016/j.jfranklin.2023.11.038_b42
  article-title: Listen to interpret: Post-hoc interpretability for audio networks with NMF
– volume: 10
  start-page: 1096
  issue: 1
  year: 2019
  ident: 10.1016/j.jfranklin.2023.11.038_b29
  article-title: Unmasking clever hans predictors and assessing what machines really learn
  publication-title: Nature Commun.
  doi: 10.1038/s41467-019-08987-4
– volume: 6
  start-page: 181
  issue: 3
  year: 2009
  ident: 10.1016/j.jfranklin.2023.11.038_b20
  article-title: Speech recognition by machine; a review
  publication-title: Int. J. Comput. Sci. Inf. Secur.
– volume: 19
  start-page: 541
  issue: 1
  year: 2024
  ident: 10.1016/j.jfranklin.2023.11.038_b13
  article-title: Toward explainable artificial intelligence for precision pathology
  publication-title: Annu. Rev. Pathol.: Mech. Dis.
  doi: 10.1146/annurev-pathmechdis-051222-113147
– volume: 109
  start-page: 247
  issue: 3
  year: 2021
  ident: 10.1016/j.jfranklin.2023.11.038_b8
  article-title: Explaining deep neural networks and beyond: A review of methods and applications
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2021.3060483
– year: 1995
  ident: 10.1016/j.jfranklin.2023.11.038_b44
– start-page: 3449
  year: 2017
  ident: 10.1016/j.jfranklin.2023.11.038_b6
  article-title: Interpretable explanations of black boxes by meaningful perturbation
– volume: 10
  issue: 7
  year: 2015
  ident: 10.1016/j.jfranklin.2023.11.038_b5
  article-title: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation
  publication-title: Plos One
  doi: 10.1371/journal.pone.0130140
– volume: 28
  start-page: 2660
  issue: 11
  year: 2017
  ident: 10.1016/j.jfranklin.2023.11.038_b45
  article-title: Evaluating the visualization of what a deep neural network has learned
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2599820
SSID ssj0017100
Score 2.5736365
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 418
Title AudioMNIST: Exploring Explainable Artificial Intelligence for audio analysis on a simple benchmark
Volume 361
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09b9swECXcdGmHoukHmn4EHLoZFCSTlqxubtAiTeEscYpsAimSiI1ELhJ76dC_1L_YO1GkmDpAmiyCLJuEzHu4O5LvHgn5qDi4RviG5XpimVB2zGQhxgwii4GIoQrdVsjNjvPDU3F0Nj4bDP5ErKXNWiX1r1vrSh5iVXgGdsUq2XtYNnQKD-Ae7AtXsDBc_8vG041erGbH307mOLHv6XR456uiplctG8hpakTymy17EtsPZdAlaYZyeL1AveChgh-dX_pCnu3sFfNVf-B7zzgIk3vj2RonuBP_OY8qzn4scJNedUUhq3PZNCE0TLHZZXdu8wzLMHvaYtvRga9c_H4hN9fM8cLjlYuRiFYuOm-c5Qy8yg1vzPNsC3bOt4rOUbswLVxN-VYEcIsRy2RpuzFI8ID4BJVa-aQPen6j_59YGBiKnvy2rEJHFXYEM6YKOnpEHo9gXoKONfkdOEUZSiW50O_-2A1C4a1vFKVDUV4zf06edSalU4euXTIwzQvyNJKpfElUj7NPNKCMRiijPcpojDIKKKMtyqhHGV01VFKHMhpQ9oqcfv0yPzhk3dkcrIZJ5ppxA848LaUWKEEGOd_YloXW8EHCwJS5lZO0kEIZXmTgC2xd6nKU1aijVdRKl_w12WlWjXlD6IhbDkl1PUmtEEpAhlqmqRGZNSrVPNd7JPdDVNWdcD2en3JR3WGkPZKGhj-ddstdTd7ev8k78qQH93uys77amA-QqK7VfguOvxOmlgc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AudioMNIST%3A+Exploring+Explainable+Artificial+Intelligence+for+audio+analysis+on+a+simple+benchmark&rft.jtitle=Journal+of+the+Franklin+Institute&rft.au=Becker%2C+S%C3%B6ren&rft.au=Vielhaben%2C+Johanna&rft.au=Ackermann%2C+Marcel&rft.au=M%C3%BCller%2C+Klaus-Robert&rft.date=2024-01-01&rft.issn=0016-0032&rft.volume=361&rft.issue=1&rft.spage=418&rft.epage=428&rft_id=info:doi/10.1016%2Fj.jfranklin.2023.11.038&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jfranklin_2023_11_038
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-0032&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-0032&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-0032&client=summon