An effective CNN and Transformer complementary network for medical image segmentation

•We design dual encoding paths of CNN and Transformer encoders for producing complementary features..•We propose an effective feature complementary module by cross-wisely fusing features from CNN and Transformer domains.•We propose to compute the cross-domain correlation between CNN and Transformer...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition Vol. 136; p. 109228
Main Authors Yuan, Feiniu, Zhang, Zhengxiao, Fang, Zhijun
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2023
Subjects
Online AccessGet full text
ISSN0031-3203
1873-5142
DOI10.1016/j.patcog.2022.109228

Cover

Loading…
Abstract •We design dual encoding paths of CNN and Transformer encoders for producing complementary features..•We propose an effective feature complementary module by cross-wisely fusing features from CNN and Transformer domains.•We propose to compute the cross-domain correlation between CNN and Transformer features, and the channel attention on the self-attention features of Transformers to extract dual attention.•We design a Swin Transformer decoder with multi-level skip connections between the features of the Transformer decoder and the complementary features for jointly extracting contextual and long-range dependency. The Transformer network was originally proposed for natural language processing. Due to its powerful representation ability for long-range dependency, it has been extended for vision tasks in recent years. To fully utilize the advantages of Transformers and Convolutional Neural Networks (CNNs), we propose a CNN and Transformer Complementary Network (CTCNet) for medical image segmentation. We first design two encoders by Swin Transformers and Residual CNNs to produce complementary features in Transformer and CNN domains, respectively. Then we cross-wisely concatenate these complementary features to propose a Cross-domain Fusion Block (CFB) for effectively blending them. In addition, we compute the correlation between features from the CNN and Transformer domains, and apply channel attention to the self-attention features by Transformers for capturing dual attention information. We incorporate cross-domain fusion, feature correlation and dual attention together to propose a Feature Complementary Module (FCM) for improving the representation ability of features. Finally, we design a Swin Transformer decoder to further improve the representation ability of long-range dependencies, and propose to use skip connections between the Transformer decoded features and the complementary features for extracting spatial details, contextual semantics and long-range information. Skip connections are performed in different levels for enhancing multi-scale invariance. Experimental results show that our CTCNet significantly surpasses the state-of-the-art image segmentation models based on CNNs, Transformers, and even Transformer and CNN combined models designed for medical image segmentation. It achieves superior performance on different medical applications, including multi-organ segmentation and cardiac segmentation.
AbstractList •We design dual encoding paths of CNN and Transformer encoders for producing complementary features..•We propose an effective feature complementary module by cross-wisely fusing features from CNN and Transformer domains.•We propose to compute the cross-domain correlation between CNN and Transformer features, and the channel attention on the self-attention features of Transformers to extract dual attention.•We design a Swin Transformer decoder with multi-level skip connections between the features of the Transformer decoder and the complementary features for jointly extracting contextual and long-range dependency. The Transformer network was originally proposed for natural language processing. Due to its powerful representation ability for long-range dependency, it has been extended for vision tasks in recent years. To fully utilize the advantages of Transformers and Convolutional Neural Networks (CNNs), we propose a CNN and Transformer Complementary Network (CTCNet) for medical image segmentation. We first design two encoders by Swin Transformers and Residual CNNs to produce complementary features in Transformer and CNN domains, respectively. Then we cross-wisely concatenate these complementary features to propose a Cross-domain Fusion Block (CFB) for effectively blending them. In addition, we compute the correlation between features from the CNN and Transformer domains, and apply channel attention to the self-attention features by Transformers for capturing dual attention information. We incorporate cross-domain fusion, feature correlation and dual attention together to propose a Feature Complementary Module (FCM) for improving the representation ability of features. Finally, we design a Swin Transformer decoder to further improve the representation ability of long-range dependencies, and propose to use skip connections between the Transformer decoded features and the complementary features for extracting spatial details, contextual semantics and long-range information. Skip connections are performed in different levels for enhancing multi-scale invariance. Experimental results show that our CTCNet significantly surpasses the state-of-the-art image segmentation models based on CNNs, Transformers, and even Transformer and CNN combined models designed for medical image segmentation. It achieves superior performance on different medical applications, including multi-organ segmentation and cardiac segmentation.
ArticleNumber 109228
Author Zhang, Zhengxiao
Fang, Zhijun
Yuan, Feiniu
Author_xml – sequence: 1
  givenname: Feiniu
  orcidid: 0000-0003-3286-1481
  surname: Yuan
  fullname: Yuan, Feiniu
  email: yfn@ustc.edu
  organization: College of Information, Mechanical and Electrical Engineering, Shanghai Normal University (SHNU), Shanghai 201418, China
– sequence: 2
  givenname: Zhengxiao
  surname: Zhang
  fullname: Zhang, Zhengxiao
  organization: College of Information, Mechanical and Electrical Engineering, Shanghai Normal University (SHNU), Shanghai 201418, China
– sequence: 3
  givenname: Zhijun
  surname: Fang
  fullname: Fang, Zhijun
  organization: School of Computer Science and Technology, Donghua University, Shanghai 201620, China
BookMark eNqFkM1KAzEUhYNUsFXfwEVeYGpuMp0fF0Ip_kGpm3YdMsmdktpJSjJU-vamjisXurpw7z2Hc74JGTnvkJA7YFNgUNzvpgfVa7-dcsZ5WtWcVxdkDFUpshnkfETGjAnIBGfiikxi3DEGZTqMyWbuKLYt6t4ekS5WK6qcoeugXGx96DBQ7bvDHjt0vQon6rD_9OGDpiPt0Fit9tR2aos04vb7qbfe3ZDLVu0j3v7Ma7J5flovXrPl-8vbYr7MtGBFnwmTUkDdlg1oLGBmagMiB10XFZYgTM3QNHlVNHWNTM-0ZqbkRcNFxUULuhTX5GHw1cHHGLCV2g4J-qDsXgKTZ0ByJwdA8gxIDoCSOP8lPoRUJZz-kz0OMkzFjhaDjNqi0wlGSBil8fZvgy9VMoSJ
CitedBy_id crossref_primary_10_3390_electronics12061490
crossref_primary_10_1016_j_patcog_2024_110776
crossref_primary_10_1109_TIM_2023_3300434
crossref_primary_10_1109_ACCESS_2024_3358448
crossref_primary_10_1016_j_displa_2024_102811
crossref_primary_10_1016_j_compag_2025_109895
crossref_primary_10_1109_JSTARS_2024_3483786
crossref_primary_10_1016_j_arthro_2024_05_027
crossref_primary_10_1016_j_eswa_2023_120861
crossref_primary_10_1016_j_patcog_2023_109701
crossref_primary_10_1007_s00521_024_09963_w
crossref_primary_10_1038_s41598_024_71072_4
crossref_primary_10_1109_ACCESS_2024_3451304
crossref_primary_10_1002_cpe_8319
crossref_primary_10_12677_mos_2025_142140
crossref_primary_10_1049_ipr2_13157
crossref_primary_10_1007_s11548_024_03140_z
crossref_primary_10_1016_j_compbiomed_2024_108671
crossref_primary_10_1016_j_bspc_2024_106341
crossref_primary_10_1016_j_patcog_2023_110003
crossref_primary_10_1002_mp_17358
crossref_primary_10_1016_j_bspc_2024_106102
crossref_primary_10_1016_j_patcog_2024_110426
crossref_primary_10_1007_s11042_024_18482_8
crossref_primary_10_1016_j_neucom_2025_129987
crossref_primary_10_1016_j_eswa_2023_120877
crossref_primary_10_1016_j_knosys_2024_112170
crossref_primary_10_1109_TMRB_2023_3315479
crossref_primary_10_1007_s10489_025_06448_8
crossref_primary_10_1049_ipr2_12852
crossref_primary_10_1016_j_asoc_2024_111918
crossref_primary_10_1002_cjce_25141
crossref_primary_10_1016_j_compag_2024_109719
crossref_primary_10_1016_j_autcon_2024_105560
crossref_primary_10_1016_j_isci_2024_109442
crossref_primary_10_3390_electronics13040746
crossref_primary_10_1049_ipr2_13166
crossref_primary_10_1007_s12555_024_0089_8
crossref_primary_10_1007_s42235_024_00600_9
crossref_primary_10_1016_j_bspc_2025_107721
crossref_primary_10_3788_LOP240875
crossref_primary_10_1016_j_compbiomed_2023_107866
crossref_primary_10_1016_j_asoc_2025_112950
crossref_primary_10_1016_j_cmpb_2025_108705
crossref_primary_10_3390_agronomy14091998
crossref_primary_10_1364_OE_549573
crossref_primary_10_1117_1_JEI_33_6_063007
crossref_primary_10_1007_s11069_024_06669_z
crossref_primary_10_1016_j_eswa_2024_124284
crossref_primary_10_1016_j_eswa_2025_127037
crossref_primary_10_1016_j_imavis_2024_105055
crossref_primary_10_3390_diagnostics13050820
crossref_primary_10_1007_s10278_024_01042_9
crossref_primary_10_3390_electronics13173501
crossref_primary_10_1016_j_eswa_2024_124950
crossref_primary_10_1016_j_patcog_2024_111177
crossref_primary_10_1109_ACCESS_2024_3375497
crossref_primary_10_3390_rs15174215
crossref_primary_10_1016_j_bspc_2024_106568
crossref_primary_10_1109_JBHI_2023_3342195
crossref_primary_10_1109_JBHI_2024_3426074
crossref_primary_10_1016_j_wneu_2023_07_103
crossref_primary_10_3390_electronics13214160
crossref_primary_10_3390_bioengineering10060722
crossref_primary_10_1016_j_patcog_2025_111470
crossref_primary_10_1007_s00530_023_01165_z
crossref_primary_10_3390_diagnostics14050543
crossref_primary_10_1016_j_ymssp_2024_111142
crossref_primary_10_1007_s12145_024_01285_8
crossref_primary_10_1016_j_micpro_2023_104946
crossref_primary_10_1109_ACCESS_2023_3267970
crossref_primary_10_1016_j_patcog_2024_110731
crossref_primary_10_1016_j_rico_2023_100273
crossref_primary_10_1016_j_aei_2024_103099
crossref_primary_10_3389_fnins_2023_1288366
crossref_primary_10_1016_j_heliyon_2024_e37072
crossref_primary_10_1007_s11227_024_06357_6
crossref_primary_10_1016_j_jksuci_2023_04_006
crossref_primary_10_1016_j_ultrasmedbio_2024_07_006
crossref_primary_10_1016_j_neucom_2024_128740
crossref_primary_10_3390_electronics13020432
crossref_primary_10_1016_j_neunet_2025_107386
crossref_primary_10_1007_s10278_024_01217_4
crossref_primary_10_1016_j_eswa_2025_126881
crossref_primary_10_1109_TNSRE_2024_3468339
crossref_primary_10_57120_yalvac_1536202
crossref_primary_10_1016_j_engappai_2024_109672
crossref_primary_10_1016_j_imavis_2024_105069
crossref_primary_10_1109_TGRS_2024_3523040
crossref_primary_10_1016_j_neucom_2023_127122
crossref_primary_10_3390_app14198871
crossref_primary_10_1016_j_compeleceng_2024_110043
crossref_primary_10_26599_BDMA_2024_9020057
crossref_primary_10_1016_j_patcog_2024_111274
crossref_primary_10_1109_TIM_2024_3497060
crossref_primary_10_1109_TBIOM_2024_3415484
crossref_primary_10_1007_s11517_025_03304_2
crossref_primary_10_1016_j_eswa_2024_123430
crossref_primary_10_1016_j_eswa_2025_126789
crossref_primary_10_1016_j_jksuci_2024_102261
crossref_primary_10_1109_ACCESS_2023_3307014
crossref_primary_10_1109_JBHI_2024_3469230
crossref_primary_10_1016_j_cmpb_2023_107846
crossref_primary_10_1109_ACCESS_2024_3379886
crossref_primary_10_1109_TMRB_2024_3464748
crossref_primary_10_3390_electronics13204029
crossref_primary_10_1109_JBHI_2024_3506829
crossref_primary_10_1016_j_compeleceng_2024_109654
crossref_primary_10_1016_j_patrec_2024_11_012
crossref_primary_10_1007_s00530_024_01349_1
crossref_primary_10_1049_cit2_12411
crossref_primary_10_1016_j_bspc_2024_106120
crossref_primary_10_1016_j_cropro_2024_107018
crossref_primary_10_1007_s11042_024_19907_0
crossref_primary_10_1016_j_jag_2023_103612
crossref_primary_10_1016_j_compbiomed_2024_108013
crossref_primary_10_1016_j_health_2023_100216
crossref_primary_10_1109_JBHI_2024_3502694
crossref_primary_10_1016_j_bspc_2025_107754
crossref_primary_10_1016_j_patcog_2024_110723
crossref_primary_10_1016_j_bspc_2023_105772
crossref_primary_10_3390_math12182905
crossref_primary_10_1007_s11760_024_03531_4
crossref_primary_10_1016_j_aej_2024_01_018
crossref_primary_10_1007_s11042_024_18544_x
crossref_primary_10_1016_j_dsp_2024_104937
crossref_primary_10_1109_JSTARS_2024_3443833
crossref_primary_10_1177_09287329241302736
crossref_primary_10_3390_rs17050858
crossref_primary_10_1016_j_inffus_2024_102631
crossref_primary_10_3390_jimaging10100243
crossref_primary_10_1016_j_eswa_2024_125518
crossref_primary_10_1016_j_engappai_2024_108789
crossref_primary_10_3390_e27010060
crossref_primary_10_1016_j_patcog_2024_110491
crossref_primary_10_1049_cit2_12356
crossref_primary_10_1007_s00371_024_03618_6
crossref_primary_10_1007_s10278_025_01464_z
crossref_primary_10_3788_CJL240779
crossref_primary_10_1016_j_energy_2024_132069
crossref_primary_10_3390_electronics14010134
crossref_primary_10_1088_1361_6560_ad14c6
crossref_primary_10_1155_2023_8825587
crossref_primary_10_1002_mp_16662
crossref_primary_10_1007_s10515_024_00418_z
crossref_primary_10_3390_app14177953
crossref_primary_10_3390_math12223580
crossref_primary_10_3233_JIFS_235138
crossref_primary_10_3390_stats7010013
crossref_primary_10_1007_s10489_023_05032_2
crossref_primary_10_1016_j_compeleceng_2024_109745
crossref_primary_10_3390_en16010369
crossref_primary_10_1016_j_bspc_2024_106397
crossref_primary_10_3390_e26040284
crossref_primary_10_3390_rs16193590
crossref_primary_10_1016_j_eswa_2024_124329
crossref_primary_10_1016_j_bspc_2024_107249
crossref_primary_10_1016_j_displa_2025_103001
crossref_primary_10_1016_j_patcog_2022_109289
crossref_primary_10_1016_j_jag_2024_103662
crossref_primary_10_1109_TIP_2024_3425048
crossref_primary_10_1016_j_asoc_2024_112399
crossref_primary_10_1016_j_neunet_2024_106914
crossref_primary_10_3390_s23218793
crossref_primary_10_1016_j_patcog_2023_109888
crossref_primary_10_1016_j_patcog_2024_110470
crossref_primary_10_3390_rs16214029
crossref_primary_10_3389_fonc_2024_1255618
crossref_primary_10_56038_oprd_v3i1_309
crossref_primary_10_1016_j_bspc_2025_107791
crossref_primary_10_1016_j_compbiomed_2024_108057
crossref_primary_10_3934_mbe_2024150
crossref_primary_10_1007_s13534_023_00344_1
crossref_primary_10_1016_j_neucom_2024_127912
crossref_primary_10_1007_s11517_025_03333_x
crossref_primary_10_1016_j_bspc_2024_106839
crossref_primary_10_1109_JBHI_2024_3504829
crossref_primary_10_1109_JBHI_2024_3468904
crossref_primary_10_3390_buildings15060873
crossref_primary_10_3390_su151813723
crossref_primary_10_3390_computers13110290
crossref_primary_10_1016_j_eswa_2024_124467
crossref_primary_10_1016_j_dsp_2023_104361
crossref_primary_10_3390_rs16224167
crossref_primary_10_1016_j_cmpb_2024_108280
crossref_primary_10_1109_TMM_2024_3428349
crossref_primary_10_1016_j_inffus_2025_102951
crossref_primary_10_1016_j_displa_2025_102971
crossref_primary_10_3390_rs15184406
crossref_primary_10_1016_j_bspc_2024_106658
crossref_primary_10_1016_j_isci_2024_111020
crossref_primary_10_1016_j_bspc_2023_105834
crossref_primary_10_1007_s11760_024_03788_9
crossref_primary_10_1016_j_neucom_2024_127379
crossref_primary_10_1016_j_renene_2024_120437
crossref_primary_10_1007_s40747_024_01574_1
crossref_primary_10_1007_s11227_024_06740_3
crossref_primary_10_1016_j_inffus_2023_102147
crossref_primary_10_1109_TIP_2024_3482864
crossref_primary_10_1016_j_autcon_2023_105217
crossref_primary_10_1016_j_compbiomed_2024_108639
crossref_primary_10_1109_TGRS_2025_3531879
crossref_primary_10_26599_FSAP_2024_9240053
crossref_primary_10_1186_s40538_024_00681_y
crossref_primary_10_1016_j_dsp_2023_103968
crossref_primary_10_3390_rs17030402
crossref_primary_10_1038_s41598_024_79090_y
crossref_primary_10_1108_ACI_12_2023_0167
crossref_primary_10_1007_s10489_024_06029_1
crossref_primary_10_1016_j_ins_2024_120578
crossref_primary_10_1515_bmt_2023_0121
crossref_primary_10_32604_cmes_2024_048453
crossref_primary_10_1109_TIM_2025_3527526
crossref_primary_10_1016_j_patcog_2024_110553
crossref_primary_10_1016_j_patcog_2024_110554
crossref_primary_10_1186_s12938_024_01209_z
crossref_primary_10_1016_j_asoc_2024_112244
crossref_primary_10_1063_5_0195273
crossref_primary_10_1016_j_compbiomed_2023_107268
crossref_primary_10_1016_j_compeleceng_2025_110099
crossref_primary_10_1038_s41598_024_68082_7
crossref_primary_10_1364_BOE_525119
crossref_primary_10_1007_s11517_024_03181_1
crossref_primary_10_1007_s00371_025_03800_4
crossref_primary_10_1016_j_eswa_2025_127249
crossref_primary_10_1016_j_inffus_2025_103013
crossref_primary_10_1007_s00521_024_10353_5
crossref_primary_10_1016_j_compbiomed_2024_108773
crossref_primary_10_1049_cvi2_12246
crossref_primary_10_1109_ACCESS_2025_3538621
crossref_primary_10_1016_j_jag_2023_103332
crossref_primary_10_1016_j_bspc_2023_105927
crossref_primary_10_1016_j_heliyon_2023_e16807
crossref_primary_10_1109_TIM_2025_3548224
crossref_primary_10_1016_j_neunet_2025_107312
crossref_primary_10_1016_j_eswa_2024_126098
crossref_primary_10_1186_s12938_024_01212_4
crossref_primary_10_1007_s10586_024_04644_8
crossref_primary_10_1016_j_patcog_2023_110140
crossref_primary_10_3390_axioms13050335
Cites_doi 10.1109/TIP.2021.3069318
10.1109/TMI.2020.3001036
10.1109/TMI.2019.2959609
10.1109/TPAMI.2020.2983686
10.1109/TPAMI.2017.2699184
10.1109/TIP.2020.3042065
10.1109/TII.2018.2849348
10.1016/j.patcog.2021.108076
10.1016/j.patcog.2022.108902
10.1109/TIP.2019.2946126
10.1016/j.media.2019.01.012
10.1016/j.neucom.2019.05.011
10.1109/ICICSP55539.2022.10050624
10.1109/TMI.2020.3034995
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2022.109228
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
ExternalDocumentID 10_1016_j_patcog_2022_109228
S0031320322007075
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-3d17119f7b1ce615d9d1341c968e713d90edb486b99e0c5cc0d726b23823f1c73
IEDL.DBID .~1
ISSN 0031-3203
IngestDate Thu Apr 24 22:54:48 EDT 2025
Tue Jul 01 02:36:40 EDT 2025
Fri Feb 23 02:39:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Convolutional Neural Network
Cross-domain fusion
Transformer
Feature complementary module
Medical image segmentation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-3d17119f7b1ce615d9d1341c968e713d90edb486b99e0c5cc0d726b23823f1c73
ORCID 0000-0003-3286-1481
ParticipantIDs crossref_citationtrail_10_1016_j_patcog_2022_109228
crossref_primary_10_1016_j_patcog_2022_109228
elsevier_sciencedirect_doi_10_1016_j_patcog_2022_109228
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2023
2023-04-00
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: April 2023
PublicationDecade 2020
PublicationTitle Pattern recognition
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Poudel, Bonde, Liwicki, Zach (bib0048) 2018
Zhang, Chen, Wu, Cai, Lu, Li (bib0049) 2019; 15
Milletari, Navab, Ahmadi (bib0027) 2016
2021.
Carion, Massa, Synnaeve, Usunier, Kirillov, Zagoruyko (bib0010) 2020
Han, Wang, Chen, Chen, Guo, Liu, Tang, Xiao, Xu, Xu (bib0031) 2022
Liu, Lin, Cao, Hu, Wei, Zhang, Lin, Guo (bib0011) 2021
Yuan, Zhang, Xia, Huang, Li (bib0035) 2021; 30
Yuan, Zhang, Xia, Huang, Li (bib0023) 2020; 29
Çiçek, Abdulkadir, Lienkamp, Brox, Ronneberger (bib0026) 2016; 9901
Cao, Wang, Chen, Jiang, Zhang, Tian, Wang (bib0006) 2021
Poudel, Stephan, Roberto (bib0053) 2019
Simonyan, Zisserman (bib0018) 2015
Wang, Sun, Cheng, Jiang, Deng, Zhao, Liu, Mu, Tan, Wang, Liu, Xiao (bib0020) 2018; 43
Fu, Lu, Wang, Zhou, Shen, Fishman, Yuille (bib0044) 2020
Chen, Papandreou, Kokkinos, Murphy, Yuille (bib0047) 2018; 40
He, Zhang, Ren, Sun (bib0017) 2016
Srinivas, Lin, Parmar, Shlens, Abbeel, Vaswani (bib0032) 2021
Liu, Yin (bib0052) 2019
Peng, Zhang, Yu, Luo, Sun (bib0014) 2017
Zhou, Siddiquee, Tajbakhsh, Liang (bib0005) 2020; 39
Zhang, Liu, Hu (bib0041) 2021
Alexey, Lucas, Alexander, Dirk (bib0009) 2021
Yuan, Dong, Zhang, Xia, Shi (bib0028) 2022; 131
Wang, Chen, Ding, Yu, Zha, Li (bib0038) 2021
Woo, Park, Lee, Kweon (bib0042) 2018
Ronneberger, Fischer, Brox (bib0003) 2015
Davood, Didenko, Gholipour (bib0007) 2021; 12901
Lo, Hang, Chan, Lin (bib0051) 2019
Huang, Liu, Van Der Maaten, Weinberger (bib0019) 2017
Milletari, Navab, Ahmadi (bib0045) 2016
Wu, Tang, Zhang, Cao, Zhang (bib0054) 2021; 30
Yuan, Zhang, Xia, Wan, Huang, Li (bib0024) 2019; 357
Fisher, Koltun (bib0013) 2016
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (bib0029) 2017; 30
Chen, Lu, Yu, Luo, Adeli, Wang, Lu, Yuille, Zhou (bib0040) 2021
Hatamizadeh, Tang, Nath, Yang, Myronenko, Landman, Roth, Xu (bib0039) 2022
Yuan, Zhou, Xia, Qian, Huang (bib0033) 2021; 119
Carion, Massa, Synnaev, Usunier, Kirillov, Zagoruyko (bib0036) 2020
Wang, Girshick, Gupta, He (bib0016) 2018
Long, Shelhamer, Darrell (bib0002) 2015
Li, Kim (bib0050) 2019
Oktay, Schlemper, Folgoc, Lee, Heinrich, Misawa, Mori, McDonagh, Hammerla, Kainz (bib0025) 2018
Schlemper, Oktay, Schaap, Heinrich, Kainz, Glocker, Rueckert (bib0034) 2019; 53
Xie, Zhang, Shen, Xia (bib0012) 2021; 12903
Touvron, Cord, Matthijs, Massa, Sablayrolles, Jegou (bib0030) 2021
Zhang, Xie, Wang, Xia (bib0004) 2021; 40
Lin, Chen, Xu, Zhang, Lu (bib0008) 2021
Valanarasu, Oza, Hacihaliloglu, Patel (bib0037) 2021
Fang, Yan (bib0001) 2020; 39
C. Yao, M. Hu, G. Zhai, X. Zhang, Transclaw u-net: claw u-net with transformers for medical image segmentation, arXiv preprint arXiv
Zhao, Shi, Qi, Wang, Jia (bib0015) 2017
Xiao, Lian, Luo, Li (bib0022) 2018
Christian, Liu, Jia, Pierre, Scott, Dragomir, Dumitru, Vincent, Andrew (bib0021) 2015
Paszke, Chaurasia, Kim, Culurciello (bib0046) 2017
Wang (10.1016/j.patcog.2022.109228_bib0038) 2021
Liu (10.1016/j.patcog.2022.109228_bib0052) 2019
Xie (10.1016/j.patcog.2022.109228_bib0012) 2021; 12903
Alexey (10.1016/j.patcog.2022.109228_bib0009) 2021
Simonyan (10.1016/j.patcog.2022.109228_bib0018) 2015
Yuan (10.1016/j.patcog.2022.109228_bib0035) 2021; 30
Carion (10.1016/j.patcog.2022.109228_bib0036) 2020
10.1016/j.patcog.2022.109228_bib0043
Zhang (10.1016/j.patcog.2022.109228_bib0004) 2021; 40
Zhao (10.1016/j.patcog.2022.109228_bib0015) 2017
Chen (10.1016/j.patcog.2022.109228_bib0047) 2018; 40
Yuan (10.1016/j.patcog.2022.109228_bib0023) 2020; 29
Hatamizadeh (10.1016/j.patcog.2022.109228_bib0039) 2022
Milletari (10.1016/j.patcog.2022.109228_bib0045) 2016
Fu (10.1016/j.patcog.2022.109228_bib0044) 2020
Cao (10.1016/j.patcog.2022.109228_bib0006) 2021
Poudel (10.1016/j.patcog.2022.109228_bib0048) 2018
Li (10.1016/j.patcog.2022.109228_bib0050) 2019
Lo (10.1016/j.patcog.2022.109228_bib0051) 2019
Han (10.1016/j.patcog.2022.109228_bib0031) 2022
Paszke (10.1016/j.patcog.2022.109228_bib0046) 2017
Oktay (10.1016/j.patcog.2022.109228_bib0025) 2018
Valanarasu (10.1016/j.patcog.2022.109228_bib0037) 2021
Liu (10.1016/j.patcog.2022.109228_bib0011) 2021
Yuan (10.1016/j.patcog.2022.109228_bib0033) 2021; 119
Çiçek (10.1016/j.patcog.2022.109228_bib0026) 2016; 9901
Wang (10.1016/j.patcog.2022.109228_bib0016) 2018
Huang (10.1016/j.patcog.2022.109228_bib0019) 2017
Woo (10.1016/j.patcog.2022.109228_bib0042) 2018
Zhang (10.1016/j.patcog.2022.109228_bib0049) 2019; 15
Chen (10.1016/j.patcog.2022.109228_bib0040) 2021
Davood (10.1016/j.patcog.2022.109228_bib0007) 2021; 12901
Poudel (10.1016/j.patcog.2022.109228_bib0053) 2019
Yuan (10.1016/j.patcog.2022.109228_bib0028) 2022; 131
Long (10.1016/j.patcog.2022.109228_bib0002) 2015
Fang (10.1016/j.patcog.2022.109228_bib0001) 2020; 39
Lin (10.1016/j.patcog.2022.109228_bib0008) 2021
Vaswani (10.1016/j.patcog.2022.109228_bib0029) 2017; 30
Milletari (10.1016/j.patcog.2022.109228_bib0027) 2016
Wang (10.1016/j.patcog.2022.109228_bib0020) 2018; 43
Zhang (10.1016/j.patcog.2022.109228_bib0041) 2021
Yuan (10.1016/j.patcog.2022.109228_bib0024) 2019; 357
Wu (10.1016/j.patcog.2022.109228_bib0054) 2021; 30
Fisher (10.1016/j.patcog.2022.109228_bib0013) 2016
Zhou (10.1016/j.patcog.2022.109228_bib0005) 2020; 39
Xiao (10.1016/j.patcog.2022.109228_bib0022) 2018
Carion (10.1016/j.patcog.2022.109228_bib0010) 2020
Schlemper (10.1016/j.patcog.2022.109228_bib0034) 2019; 53
Srinivas (10.1016/j.patcog.2022.109228_bib0032) 2021
Ronneberger (10.1016/j.patcog.2022.109228_bib0003) 2015
He (10.1016/j.patcog.2022.109228_bib0017) 2016
Peng (10.1016/j.patcog.2022.109228_bib0014) 2017
Touvron (10.1016/j.patcog.2022.109228_bib0030) 2021
Christian (10.1016/j.patcog.2022.109228_bib0021) 2015
References_xml – year: 2021
  ident: bib0009
  article-title: An Image is Worth 16x16 Words: transformers for Image Recognition at Scale
  publication-title: LR2021
– start-page: 565
  year: 2016
  end-page: 571
  ident: bib0045
  article-title: V-Net: fully convolutional neural networks for volumetric medical image segmentation
  publication-title: Fourth International Conference on 3D Vision (3DV)
– year: 2021
  ident: bib0006
  article-title: Swin-unet: unet-like pure transformer for medical image segmentation
  publication-title: 2021 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 187.1
  year: 2019
  end-page: 187.12
  ident: bib0053
  article-title: Fast-SCNN: Fast semantic segmentation network
  publication-title: Proceedings of the British Machine Vision Conference (BMVC)
– volume: 40
  start-page: 661
  year: 2021
  end-page: 672
  ident: bib0004
  article-title: Inter-Slice Context Residual Learning for 3D Medical Image Segmentation
  publication-title: IEEE Trans. Med. Imaging
– volume: 357
  start-page: 248
  year: 2019
  end-page: 260
  ident: bib0024
  article-title: Deep smoke segmentation
  publication-title: Neurocomputing
– year: 2015
  ident: bib0018
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: 2015 International Conference on Learning Representations (ICLR)
– start-page: 36
  year: 2021
  end-page: 46
  ident: bib0037
  article-title: Medical transformer: gated axial-attention for medical image segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)
– volume: 39
  start-page: 1856
  year: 2020
  end-page: 1867
  ident: bib0005
  article-title: UNet++: redesigning skip connections to exploit multiscale features in image segmentation
  publication-title: IEEE Trans. Med. Imaging
– volume: 131
  year: 2022
  ident: bib0028
  article-title: Cubic-cross convolutional attention and count prior embedding for smoke segmentation
  publication-title: Pattern Recognit
– volume: 12901
  year: 2021
  ident: bib0007
  article-title: Convolution-free medical image segmentation using transformers
  publication-title: 2021 International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)
– start-page: 7794
  year: 2018
  end-page: 7803
  ident: bib0016
  article-title: Non-local neural networks
  publication-title: 2018 IEE Conference on Computer Vision and Pattern Recognition(CVPR)
– year: 2021
  ident: bib0008
  article-title: DS-TransUNet: dual Swin Transformer U-Net for medical image segmentation
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 213
  year: 2020
  end-page: 229
  ident: bib0036
  article-title: End-to-end object detection with transformers
  publication-title: European Conference on Computer Vision(ECCV)
– start-page: 574
  year: 2022
  end-page: 584
  ident: bib0039
  article-title: UNETR: transformers for 3D medical image segmentation
  publication-title: IEEE Winter Conference on Applications of Computer Vision (WACV)
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib0017
  article-title: Deep residual learning for image recognition
  publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– year: 2018
  ident: bib0025
  article-title: Attention u-net: learning where to look for the pancreas
  publication-title: MIDL
– volume: 9901
  start-page: 424
  year: 2016
  end-page: 432
  ident: bib0026
  article-title: 3D U-Net: learning dense volumetric segmentation from sparse annotation
  publication-title: International conference on medical image computing and computer-assisted intervention(MICCAI)
– volume: 30
  start-page: 4409
  year: 2021
  end-page: 4422
  ident: bib0035
  article-title: A gated recurrent network with dual classification assistance for smoke semantic segmentation
  publication-title: IEEE Transact. Image Process.
– start-page: 6230
  year: 2017
  end-page: 6239
  ident: bib0015
  article-title: Pyramid scene parsing network
  publication-title: n (CVPR)
– year: 2017
  ident: bib0046
  article-title: ENet: A deep neural network architecture for real-time semantic segmentation
  publication-title: 5th International Conference on Learning Representations, ICLR 2017
– start-page: 9992
  year: 2021
  end-page: 10002
  ident: bib0011
  article-title: Swin Transformer: hierarchical vision transformer using shifted windows
  publication-title: 2021 IEEE/CVF International Conference on Computer Vision (ICCV)
– start-page: 10347
  year: 2021
  end-page: 10357
  ident: bib0030
  article-title: Training data-efficient image transformers & distillation through attention
  publication-title: International Conference on Machine Learning
– volume: 30
  year: 2017
  ident: bib0029
  article-title: Attention is all you need
  publication-title: Adv. Neur. Inf. Process Syst.
– volume: 119
  start-page: 1
  year: 2021
  end-page: 16
  ident: bib0033
  article-title: A confidence prior for image Dehazing
  publication-title: Pattern Recognit.
– year: 2021
  ident: bib0040
  article-title: TransUnet: transformers make strong encoders for medical image segmentation
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 186.1
  year: 2019
  end-page: 186.12
  ident: bib0050
  article-title: DABNet: Depth-wise asymmetric bottleneck for real-time semantic segmentation
  publication-title: Proceedings of the British Machine Vision Conference (BMVC)
– volume: 43
  start-page: 3349
  year: 2018
  end-page: 3364
  ident: bib0020
  article-title: Deep high-resolution representation learning for visual recognition
  publication-title: IEEE Trans. Pattern. Anal. Mach. Intell.
– year: 2022
  ident: bib0031
  article-title: A survey on vision Transformer
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: C. Yao, M. Hu, G. Zhai, X. Zhang, Transclaw u-net: claw u-net with transformers for medical image segmentation, arXiv preprint arXiv:
– start-page: 1743
  year: 2017
  end-page: 1751
  ident: bib0014
  article-title: Large kernel matters — improve semantic segmentation by global convolutional network
  publication-title: n (CVPR)
– start-page: 16514
  year: 2021
  end-page: 16524
  ident: bib0032
  article-title: Bottleneck Transformers for visual recognition
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 29
  start-page: 2301
  year: 2020
  end-page: 2313
  ident: bib0023
  article-title: A wave-shaped deep neural network for smoke density estimation
  publication-title: IEEE Transact. Image Process.
– volume: 30
  start-page: 1169
  year: 2021
  end-page: 1179
  ident: bib0054
  article-title: CGNet: a light-weight context guided network for semantic segmentation
  publication-title: IEEE Transact. Image Process.
– volume: 53
  start-page: 197
  year: 2019
  end-page: 207
  ident: bib0034
  article-title: Attention gated networks: learning to leverage salient regions in medical images
  publication-title: Med. Image Anal.
– start-page: 1
  year: 2015
  end-page: 9
  ident: bib0021
  article-title: Going deeper with convolutions
  publication-title: (CVPR)
– year: 2016
  ident: bib0013
  article-title: Multi-scale context aggregation by dilated convolutions
  publication-title: International Conference on Learning Representations (ICRL)
– start-page: 3
  year: 2018
  end-page: 19
  ident: bib0042
  article-title: CBAM: convolutional block attention module
  publication-title: Proceedings of the European conference on computer vision (ECCV)
– volume: 39
  start-page: 3619
  year: 2020
  end-page: 3629
  ident: bib0001
  article-title: Multi-organ segmentation over partially labeled datasets with multi-scale feature abstraction
  publication-title: IEEE Trans. Med. Imaging
– start-page: 14
  year: 2021
  end-page: 24
  ident: bib0041
  article-title: Transfuse: fusing transformers and cnns for medical image segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention(MICCAI)
– start-page: 213
  year: 2020
  end-page: 229
  ident: bib0010
  article-title: End-to-end object detection with transformers
  publication-title: European Conference on Computer Vision (ECCV)
– start-page: 109
  year: 2021
  end-page: 119
  ident: bib0038
  article-title: Transbts: multimodal brain tumor segmentation using transformer
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)
– start-page: 1
  year: 2019
  end-page: 6
  ident: bib0051
  article-title: Efficient dense modules of asymmetric convolution for real-time semantic segmentation
  publication-title: Proceedings of the ACM Multimedia Asia
– year: 2020
  ident: bib0044
  article-title: Domain adaptive relational reasoning for 3d multi-organ segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)
– volume: 40
  start-page: 834
  year: 2018
  end-page: 848
  ident: bib0047
  article-title: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 327
  year: 2018
  end-page: 331
  ident: bib0022
  article-title: Weighted Res-UNet for high-quality retina vessel segmentation
  publication-title: 9th International Conference on Information Technology in Medicine and Education (ITME)
– start-page: 2261
  year: 2017
  end-page: 2269
  ident: bib0019
  article-title: Densely connected convolutional networks
  publication-title: (CVPR)
– start-page: 146.1
  year: 2018
  end-page: 146.12
  ident: bib0048
  article-title: ContextNet: Exploring context and detail for semantic segmentation in realtime
  publication-title: Proceedings of the British Machine Vision Conference (BMVC)
– start-page: 565
  year: 2016
  end-page: 571
  ident: bib0027
  article-title: V-Net: fully convolutional neural networks for volumetric medical image segmentation
  publication-title: 2016 Fourth International Conference on 3D Vision (3DV)
– start-page: 234
  year: 2015
  end-page: 241
  ident: bib0003
  article-title: U-Net: convolutional network for biomedical image segmentation
  publication-title: International Conference on Medical image computing and computer-assisted intervention (MICCAI)
– start-page: 203.1
  year: 2019
  end-page: 203.13
  ident: bib0052
  article-title: Feature pyramid encoding network for real-time semantic segmentation
  publication-title: Proceedings of the British Machine Vision Conference (BMVC)
– start-page: 3431
  year: 2015
  end-page: 3440
  ident: bib0002
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 12903
  start-page: 171
  year: 2021
  end-page: 180
  ident: bib0012
  article-title: CoTr: efficiently bridging CNN and Transformer for 3D medical image segmentation
  publication-title: Medical Image Computing and Computer Assisted Intervention (MICCAI)
– volume: 15
  start-page: 1183
  year: 2019
  end-page: 1192
  ident: bib0049
  article-title: Fast semantic segmentation for scene perception
  publication-title: IEEE Transact. Ind. Informat.
– reference: , 2021.
– volume: 30
  start-page: 4409
  year: 2021
  ident: 10.1016/j.patcog.2022.109228_bib0035
  article-title: A gated recurrent network with dual classification assistance for smoke semantic segmentation
  publication-title: IEEE Transact. Image Process.
  doi: 10.1109/TIP.2021.3069318
– start-page: 109
  year: 2021
  ident: 10.1016/j.patcog.2022.109228_bib0038
  article-title: Transbts: multimodal brain tumor segmentation using transformer
– volume: 39
  start-page: 3619
  issue: 11
  year: 2020
  ident: 10.1016/j.patcog.2022.109228_bib0001
  article-title: Multi-organ segmentation over partially labeled datasets with multi-scale feature abstraction
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.3001036
– volume: 9901
  start-page: 424
  year: 2016
  ident: 10.1016/j.patcog.2022.109228_bib0026
  article-title: 3D U-Net: learning dense volumetric segmentation from sparse annotation
– start-page: 1
  year: 2019
  ident: 10.1016/j.patcog.2022.109228_bib0051
  article-title: Efficient dense modules of asymmetric convolution for real-time semantic segmentation
– start-page: 327
  year: 2018
  ident: 10.1016/j.patcog.2022.109228_bib0022
  article-title: Weighted Res-UNet for high-quality retina vessel segmentation
– start-page: 3
  year: 2018
  ident: 10.1016/j.patcog.2022.109228_bib0042
  article-title: CBAM: convolutional block attention module
– year: 2020
  ident: 10.1016/j.patcog.2022.109228_bib0044
  article-title: Domain adaptive relational reasoning for 3d multi-organ segmentation
– volume: 30
  year: 2017
  ident: 10.1016/j.patcog.2022.109228_bib0029
  article-title: Attention is all you need
  publication-title: Adv. Neur. Inf. Process Syst.
– start-page: 3431
  year: 2015
  ident: 10.1016/j.patcog.2022.109228_bib0002
  article-title: Fully convolutional networks for semantic segmentation
– start-page: 186.1
  year: 2019
  ident: 10.1016/j.patcog.2022.109228_bib0050
  article-title: DABNet: Depth-wise asymmetric bottleneck for real-time semantic segmentation
– start-page: 16514
  year: 2021
  ident: 10.1016/j.patcog.2022.109228_bib0032
  article-title: Bottleneck Transformers for visual recognition
– year: 2017
  ident: 10.1016/j.patcog.2022.109228_bib0046
  article-title: ENet: A deep neural network architecture for real-time semantic segmentation
– volume: 39
  start-page: 1856
  issue: 6
  year: 2020
  ident: 10.1016/j.patcog.2022.109228_bib0005
  article-title: UNet++: redesigning skip connections to exploit multiscale features in image segmentation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2959609
– start-page: 187.1
  year: 2019
  ident: 10.1016/j.patcog.2022.109228_bib0053
  article-title: Fast-SCNN: Fast semantic segmentation network
– volume: 43
  start-page: 3349
  issue: 10
  year: 2018
  ident: 10.1016/j.patcog.2022.109228_bib0020
  article-title: Deep high-resolution representation learning for visual recognition
  publication-title: IEEE Trans. Pattern. Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2020.2983686
– year: 2015
  ident: 10.1016/j.patcog.2022.109228_bib0018
  article-title: Very deep convolutional networks for large-scale image recognition
– volume: 40
  start-page: 834
  issue: 4
  year: 2018
  ident: 10.1016/j.patcog.2022.109228_bib0047
  article-title: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2699184
– start-page: 9992
  year: 2021
  ident: 10.1016/j.patcog.2022.109228_bib0011
  article-title: Swin Transformer: hierarchical vision transformer using shifted windows
– start-page: 234
  year: 2015
  ident: 10.1016/j.patcog.2022.109228_bib0003
  article-title: U-Net: convolutional network for biomedical image segmentation
– start-page: 10347
  year: 2021
  ident: 10.1016/j.patcog.2022.109228_bib0030
  article-title: Training data-efficient image transformers & distillation through attention
– volume: 12903
  start-page: 171
  year: 2021
  ident: 10.1016/j.patcog.2022.109228_bib0012
  article-title: CoTr: efficiently bridging CNN and Transformer for 3D medical image segmentation
– start-page: 1743
  year: 2017
  ident: 10.1016/j.patcog.2022.109228_bib0014
  article-title: Large kernel matters — improve semantic segmentation by global convolutional network
– year: 2022
  ident: 10.1016/j.patcog.2022.109228_bib0031
  article-title: A survey on vision Transformer
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 6230
  year: 2017
  ident: 10.1016/j.patcog.2022.109228_bib0015
  article-title: Pyramid scene parsing network
– start-page: 1
  year: 2015
  ident: 10.1016/j.patcog.2022.109228_bib0021
  article-title: Going deeper with convolutions
– start-page: 574
  year: 2022
  ident: 10.1016/j.patcog.2022.109228_bib0039
  article-title: UNETR: transformers for 3D medical image segmentation
– start-page: 213
  year: 2020
  ident: 10.1016/j.patcog.2022.109228_bib0010
  article-title: End-to-end object detection with transformers
– year: 2021
  ident: 10.1016/j.patcog.2022.109228_bib0040
  article-title: TransUnet: transformers make strong encoders for medical image segmentation
– start-page: 2261
  year: 2017
  ident: 10.1016/j.patcog.2022.109228_bib0019
  article-title: Densely connected convolutional networks
– start-page: 146.1
  year: 2018
  ident: 10.1016/j.patcog.2022.109228_bib0048
  article-title: ContextNet: Exploring context and detail for semantic segmentation in realtime
– volume: 30
  start-page: 1169
  year: 2021
  ident: 10.1016/j.patcog.2022.109228_bib0054
  article-title: CGNet: a light-weight context guided network for semantic segmentation
  publication-title: IEEE Transact. Image Process.
  doi: 10.1109/TIP.2020.3042065
– start-page: 565
  year: 2016
  ident: 10.1016/j.patcog.2022.109228_bib0045
  article-title: V-Net: fully convolutional neural networks for volumetric medical image segmentation
– year: 2021
  ident: 10.1016/j.patcog.2022.109228_bib0009
  article-title: An Image is Worth 16x16 Words: transformers for Image Recognition at Scale
– volume: 15
  start-page: 1183
  issue: 2
  year: 2019
  ident: 10.1016/j.patcog.2022.109228_bib0049
  article-title: Fast semantic segmentation for scene perception
  publication-title: IEEE Transact. Ind. Informat.
  doi: 10.1109/TII.2018.2849348
– start-page: 213
  year: 2020
  ident: 10.1016/j.patcog.2022.109228_bib0036
  article-title: End-to-end object detection with transformers
– year: 2018
  ident: 10.1016/j.patcog.2022.109228_bib0025
  article-title: Attention u-net: learning where to look for the pancreas
  publication-title: MIDL
– volume: 12901
  year: 2021
  ident: 10.1016/j.patcog.2022.109228_bib0007
  article-title: Convolution-free medical image segmentation using transformers
– year: 2016
  ident: 10.1016/j.patcog.2022.109228_bib0013
  article-title: Multi-scale context aggregation by dilated convolutions
– start-page: 7794
  year: 2018
  ident: 10.1016/j.patcog.2022.109228_bib0016
  article-title: Non-local neural networks
– volume: 119
  start-page: 1
  year: 2021
  ident: 10.1016/j.patcog.2022.109228_bib0033
  article-title: A confidence prior for image Dehazing
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.108076
– start-page: 36
  year: 2021
  ident: 10.1016/j.patcog.2022.109228_bib0037
  article-title: Medical transformer: gated axial-attention for medical image segmentation
– year: 2021
  ident: 10.1016/j.patcog.2022.109228_bib0006
  article-title: Swin-unet: unet-like pure transformer for medical image segmentation
– volume: 131
  year: 2022
  ident: 10.1016/j.patcog.2022.109228_bib0028
  article-title: Cubic-cross convolutional attention and count prior embedding for smoke segmentation
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2022.108902
– volume: 29
  start-page: 2301
  year: 2020
  ident: 10.1016/j.patcog.2022.109228_bib0023
  article-title: A wave-shaped deep neural network for smoke density estimation
  publication-title: IEEE Transact. Image Process.
  doi: 10.1109/TIP.2019.2946126
– start-page: 203.1
  year: 2019
  ident: 10.1016/j.patcog.2022.109228_bib0052
  article-title: Feature pyramid encoding network for real-time semantic segmentation
– volume: 53
  start-page: 197
  year: 2019
  ident: 10.1016/j.patcog.2022.109228_bib0034
  article-title: Attention gated networks: learning to leverage salient regions in medical images
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.01.012
– start-page: 14
  year: 2021
  ident: 10.1016/j.patcog.2022.109228_bib0041
  article-title: Transfuse: fusing transformers and cnns for medical image segmentation
– volume: 357
  start-page: 248
  year: 2019
  ident: 10.1016/j.patcog.2022.109228_bib0024
  article-title: Deep smoke segmentation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.05.011
– start-page: 565
  year: 2016
  ident: 10.1016/j.patcog.2022.109228_bib0027
  article-title: V-Net: fully convolutional neural networks for volumetric medical image segmentation
– year: 2021
  ident: 10.1016/j.patcog.2022.109228_bib0008
  article-title: DS-TransUNet: dual Swin Transformer U-Net for medical image segmentation
– ident: 10.1016/j.patcog.2022.109228_bib0043
  doi: 10.1109/ICICSP55539.2022.10050624
– start-page: 770
  year: 2016
  ident: 10.1016/j.patcog.2022.109228_bib0017
  article-title: Deep residual learning for image recognition
– volume: 40
  start-page: 661
  issue: 2
  year: 2021
  ident: 10.1016/j.patcog.2022.109228_bib0004
  article-title: Inter-Slice Context Residual Learning for 3D Medical Image Segmentation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.3034995
SSID ssj0017142
Score 2.7296658
Snippet •We design dual encoding paths of CNN and Transformer encoders for producing complementary features..•We propose an effective feature complementary module by...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109228
SubjectTerms Convolutional Neural Network
Cross-domain fusion
Feature complementary module
Medical image segmentation
Transformer
Title An effective CNN and Transformer complementary network for medical image segmentation
URI https://dx.doi.org/10.1016/j.patcog.2022.109228
Volume 136
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF1KvXjxW6wfZQ9eY5Nskk2OpShVMacWegvZ2W2p2LTUevDib3cmuykKouAtJLuQTCYvb9k3bxi7jkCqUkjthQrAQ0aMOAgk2wFIIyHiMompUPgpT4bj6GEST1ps0NTCkKzSYb_F9Bqt3Zmei2ZvNZ9TjS_ZDvqYkbVnDRWak3sd5vTNx1bmQf29rWO4CDwa3ZTP1RqvFcLdcoarxDAkX6WQerL_9Hv68su5O2B7jivyvr2dQ9Yy1RHbb_owcPdZHrNxv-JWl4HQxQd5zstK81FDSXFoLRy3OvH1O6-s9JvjRb6wGzV8vkBg4a9mtnDFSNUJG9_djgZDz7VL8AB5_8YTGh82yKZSBWCQqOhMk1sbZElqcCmqM99oFaWJyjLjQwzgaxkmKqSdwGkAUpyydrWszBnjgCRlWioZlUbjCgoPkwR0pMswMFGqRIeJJkoFOC9xamnxUjSisefCxrag2BY2th3mbWetrJfGH-Nl8wKKbzlRINz_OvP83zMv2C41lLfanEvW3qzfzBXSjo3q1nnVZTv9-8dh_gn_UdfZ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gHPTi24jPPXht6GP7OhKiKQI9QcJt031AMFII4sF_72x3SzQxmnhr2p2knW6_fpv95huABypiXgSxdHwuhIOMGHFQaNmOEAkNgrCIQl0oPMqjbEKfp-G0Ab26FkbLKi32G0yv0Nqe6dhsdtaLha7x1baDLs7IyrMm3IOWdqeiTWh1-4Ms320mxB41puGB5-iAuoKuknmtEfFWc1wo-r62VvJ1W_af_lBf_jpPx3Bo6SLpmjs6gYYqT-GobsVA7Jd5BpNuSYw0A9GL9PKcFKUk45qV4tBKO26k4psPUhr1N8GLZGn2ashiidhC3tR8aeuRynOYPD2Oe5ljOyY4Aqn_1gkkPqyXzmLuCYVcRaZSG7aJNEoUrkZl6irJaRLxNFWuCIVwZexH3NebgTNPxMEFNMtVqS6BCOQps4LHtFASF1F4GEVCUln4nqIJD9oQ1FliwtqJ664Wr6zWjb0wk1umc8tMbtvg7KLWxk7jj_Fx_QLYt2nBEPF_jbz6d-Q97Gfj0ZAN-_ngGg50f3kj1bmB5nbzrm6RhWz5nZ1ln3B-2oo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+effective+CNN+and+Transformer+complementary+network+for+medical+image+segmentation&rft.jtitle=Pattern+recognition&rft.au=Yuan%2C+Feiniu&rft.au=Zhang%2C+Zhengxiao&rft.au=Fang%2C+Zhijun&rft.date=2023-04-01&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.eissn=1873-5142&rft.volume=136&rft_id=info:doi/10.1016%2Fj.patcog.2022.109228&rft.externalDocID=S0031320322007075
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon