An effective CNN and Transformer complementary network for medical image segmentation
•We design dual encoding paths of CNN and Transformer encoders for producing complementary features..•We propose an effective feature complementary module by cross-wisely fusing features from CNN and Transformer domains.•We propose to compute the cross-domain correlation between CNN and Transformer...
Saved in:
Published in | Pattern recognition Vol. 136; p. 109228 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.04.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0031-3203 1873-5142 |
DOI | 10.1016/j.patcog.2022.109228 |
Cover
Loading…
Abstract | •We design dual encoding paths of CNN and Transformer encoders for producing complementary features..•We propose an effective feature complementary module by cross-wisely fusing features from CNN and Transformer domains.•We propose to compute the cross-domain correlation between CNN and Transformer features, and the channel attention on the self-attention features of Transformers to extract dual attention.•We design a Swin Transformer decoder with multi-level skip connections between the features of the Transformer decoder and the complementary features for jointly extracting contextual and long-range dependency.
The Transformer network was originally proposed for natural language processing. Due to its powerful representation ability for long-range dependency, it has been extended for vision tasks in recent years. To fully utilize the advantages of Transformers and Convolutional Neural Networks (CNNs), we propose a CNN and Transformer Complementary Network (CTCNet) for medical image segmentation. We first design two encoders by Swin Transformers and Residual CNNs to produce complementary features in Transformer and CNN domains, respectively. Then we cross-wisely concatenate these complementary features to propose a Cross-domain Fusion Block (CFB) for effectively blending them. In addition, we compute the correlation between features from the CNN and Transformer domains, and apply channel attention to the self-attention features by Transformers for capturing dual attention information. We incorporate cross-domain fusion, feature correlation and dual attention together to propose a Feature Complementary Module (FCM) for improving the representation ability of features. Finally, we design a Swin Transformer decoder to further improve the representation ability of long-range dependencies, and propose to use skip connections between the Transformer decoded features and the complementary features for extracting spatial details, contextual semantics and long-range information. Skip connections are performed in different levels for enhancing multi-scale invariance. Experimental results show that our CTCNet significantly surpasses the state-of-the-art image segmentation models based on CNNs, Transformers, and even Transformer and CNN combined models designed for medical image segmentation. It achieves superior performance on different medical applications, including multi-organ segmentation and cardiac segmentation. |
---|---|
AbstractList | •We design dual encoding paths of CNN and Transformer encoders for producing complementary features..•We propose an effective feature complementary module by cross-wisely fusing features from CNN and Transformer domains.•We propose to compute the cross-domain correlation between CNN and Transformer features, and the channel attention on the self-attention features of Transformers to extract dual attention.•We design a Swin Transformer decoder with multi-level skip connections between the features of the Transformer decoder and the complementary features for jointly extracting contextual and long-range dependency.
The Transformer network was originally proposed for natural language processing. Due to its powerful representation ability for long-range dependency, it has been extended for vision tasks in recent years. To fully utilize the advantages of Transformers and Convolutional Neural Networks (CNNs), we propose a CNN and Transformer Complementary Network (CTCNet) for medical image segmentation. We first design two encoders by Swin Transformers and Residual CNNs to produce complementary features in Transformer and CNN domains, respectively. Then we cross-wisely concatenate these complementary features to propose a Cross-domain Fusion Block (CFB) for effectively blending them. In addition, we compute the correlation between features from the CNN and Transformer domains, and apply channel attention to the self-attention features by Transformers for capturing dual attention information. We incorporate cross-domain fusion, feature correlation and dual attention together to propose a Feature Complementary Module (FCM) for improving the representation ability of features. Finally, we design a Swin Transformer decoder to further improve the representation ability of long-range dependencies, and propose to use skip connections between the Transformer decoded features and the complementary features for extracting spatial details, contextual semantics and long-range information. Skip connections are performed in different levels for enhancing multi-scale invariance. Experimental results show that our CTCNet significantly surpasses the state-of-the-art image segmentation models based on CNNs, Transformers, and even Transformer and CNN combined models designed for medical image segmentation. It achieves superior performance on different medical applications, including multi-organ segmentation and cardiac segmentation. |
ArticleNumber | 109228 |
Author | Zhang, Zhengxiao Fang, Zhijun Yuan, Feiniu |
Author_xml | – sequence: 1 givenname: Feiniu orcidid: 0000-0003-3286-1481 surname: Yuan fullname: Yuan, Feiniu email: yfn@ustc.edu organization: College of Information, Mechanical and Electrical Engineering, Shanghai Normal University (SHNU), Shanghai 201418, China – sequence: 2 givenname: Zhengxiao surname: Zhang fullname: Zhang, Zhengxiao organization: College of Information, Mechanical and Electrical Engineering, Shanghai Normal University (SHNU), Shanghai 201418, China – sequence: 3 givenname: Zhijun surname: Fang fullname: Fang, Zhijun organization: School of Computer Science and Technology, Donghua University, Shanghai 201620, China |
BookMark | eNqFkM1KAzEUhYNUsFXfwEVeYGpuMp0fF0Ip_kGpm3YdMsmdktpJSjJU-vamjisXurpw7z2Hc74JGTnvkJA7YFNgUNzvpgfVa7-dcsZ5WtWcVxdkDFUpshnkfETGjAnIBGfiikxi3DEGZTqMyWbuKLYt6t4ekS5WK6qcoeugXGx96DBQ7bvDHjt0vQon6rD_9OGDpiPt0Fit9tR2aos04vb7qbfe3ZDLVu0j3v7Ma7J5flovXrPl-8vbYr7MtGBFnwmTUkDdlg1oLGBmagMiB10XFZYgTM3QNHlVNHWNTM-0ZqbkRcNFxUULuhTX5GHw1cHHGLCV2g4J-qDsXgKTZ0ByJwdA8gxIDoCSOP8lPoRUJZz-kz0OMkzFjhaDjNqi0wlGSBil8fZvgy9VMoSJ |
CitedBy_id | crossref_primary_10_3390_electronics12061490 crossref_primary_10_1016_j_patcog_2024_110776 crossref_primary_10_1109_TIM_2023_3300434 crossref_primary_10_1109_ACCESS_2024_3358448 crossref_primary_10_1016_j_displa_2024_102811 crossref_primary_10_1016_j_compag_2025_109895 crossref_primary_10_1109_JSTARS_2024_3483786 crossref_primary_10_1016_j_arthro_2024_05_027 crossref_primary_10_1016_j_eswa_2023_120861 crossref_primary_10_1016_j_patcog_2023_109701 crossref_primary_10_1007_s00521_024_09963_w crossref_primary_10_1038_s41598_024_71072_4 crossref_primary_10_1109_ACCESS_2024_3451304 crossref_primary_10_1002_cpe_8319 crossref_primary_10_12677_mos_2025_142140 crossref_primary_10_1049_ipr2_13157 crossref_primary_10_1007_s11548_024_03140_z crossref_primary_10_1016_j_compbiomed_2024_108671 crossref_primary_10_1016_j_bspc_2024_106341 crossref_primary_10_1016_j_patcog_2023_110003 crossref_primary_10_1002_mp_17358 crossref_primary_10_1016_j_bspc_2024_106102 crossref_primary_10_1016_j_patcog_2024_110426 crossref_primary_10_1007_s11042_024_18482_8 crossref_primary_10_1016_j_neucom_2025_129987 crossref_primary_10_1016_j_eswa_2023_120877 crossref_primary_10_1016_j_knosys_2024_112170 crossref_primary_10_1109_TMRB_2023_3315479 crossref_primary_10_1007_s10489_025_06448_8 crossref_primary_10_1049_ipr2_12852 crossref_primary_10_1016_j_asoc_2024_111918 crossref_primary_10_1002_cjce_25141 crossref_primary_10_1016_j_compag_2024_109719 crossref_primary_10_1016_j_autcon_2024_105560 crossref_primary_10_1016_j_isci_2024_109442 crossref_primary_10_3390_electronics13040746 crossref_primary_10_1049_ipr2_13166 crossref_primary_10_1007_s12555_024_0089_8 crossref_primary_10_1007_s42235_024_00600_9 crossref_primary_10_1016_j_bspc_2025_107721 crossref_primary_10_3788_LOP240875 crossref_primary_10_1016_j_compbiomed_2023_107866 crossref_primary_10_1016_j_asoc_2025_112950 crossref_primary_10_1016_j_cmpb_2025_108705 crossref_primary_10_3390_agronomy14091998 crossref_primary_10_1364_OE_549573 crossref_primary_10_1117_1_JEI_33_6_063007 crossref_primary_10_1007_s11069_024_06669_z crossref_primary_10_1016_j_eswa_2024_124284 crossref_primary_10_1016_j_eswa_2025_127037 crossref_primary_10_1016_j_imavis_2024_105055 crossref_primary_10_3390_diagnostics13050820 crossref_primary_10_1007_s10278_024_01042_9 crossref_primary_10_3390_electronics13173501 crossref_primary_10_1016_j_eswa_2024_124950 crossref_primary_10_1016_j_patcog_2024_111177 crossref_primary_10_1109_ACCESS_2024_3375497 crossref_primary_10_3390_rs15174215 crossref_primary_10_1016_j_bspc_2024_106568 crossref_primary_10_1109_JBHI_2023_3342195 crossref_primary_10_1109_JBHI_2024_3426074 crossref_primary_10_1016_j_wneu_2023_07_103 crossref_primary_10_3390_electronics13214160 crossref_primary_10_3390_bioengineering10060722 crossref_primary_10_1016_j_patcog_2025_111470 crossref_primary_10_1007_s00530_023_01165_z crossref_primary_10_3390_diagnostics14050543 crossref_primary_10_1016_j_ymssp_2024_111142 crossref_primary_10_1007_s12145_024_01285_8 crossref_primary_10_1016_j_micpro_2023_104946 crossref_primary_10_1109_ACCESS_2023_3267970 crossref_primary_10_1016_j_patcog_2024_110731 crossref_primary_10_1016_j_rico_2023_100273 crossref_primary_10_1016_j_aei_2024_103099 crossref_primary_10_3389_fnins_2023_1288366 crossref_primary_10_1016_j_heliyon_2024_e37072 crossref_primary_10_1007_s11227_024_06357_6 crossref_primary_10_1016_j_jksuci_2023_04_006 crossref_primary_10_1016_j_ultrasmedbio_2024_07_006 crossref_primary_10_1016_j_neucom_2024_128740 crossref_primary_10_3390_electronics13020432 crossref_primary_10_1016_j_neunet_2025_107386 crossref_primary_10_1007_s10278_024_01217_4 crossref_primary_10_1016_j_eswa_2025_126881 crossref_primary_10_1109_TNSRE_2024_3468339 crossref_primary_10_57120_yalvac_1536202 crossref_primary_10_1016_j_engappai_2024_109672 crossref_primary_10_1016_j_imavis_2024_105069 crossref_primary_10_1109_TGRS_2024_3523040 crossref_primary_10_1016_j_neucom_2023_127122 crossref_primary_10_3390_app14198871 crossref_primary_10_1016_j_compeleceng_2024_110043 crossref_primary_10_26599_BDMA_2024_9020057 crossref_primary_10_1016_j_patcog_2024_111274 crossref_primary_10_1109_TIM_2024_3497060 crossref_primary_10_1109_TBIOM_2024_3415484 crossref_primary_10_1007_s11517_025_03304_2 crossref_primary_10_1016_j_eswa_2024_123430 crossref_primary_10_1016_j_eswa_2025_126789 crossref_primary_10_1016_j_jksuci_2024_102261 crossref_primary_10_1109_ACCESS_2023_3307014 crossref_primary_10_1109_JBHI_2024_3469230 crossref_primary_10_1016_j_cmpb_2023_107846 crossref_primary_10_1109_ACCESS_2024_3379886 crossref_primary_10_1109_TMRB_2024_3464748 crossref_primary_10_3390_electronics13204029 crossref_primary_10_1109_JBHI_2024_3506829 crossref_primary_10_1016_j_compeleceng_2024_109654 crossref_primary_10_1016_j_patrec_2024_11_012 crossref_primary_10_1007_s00530_024_01349_1 crossref_primary_10_1049_cit2_12411 crossref_primary_10_1016_j_bspc_2024_106120 crossref_primary_10_1016_j_cropro_2024_107018 crossref_primary_10_1007_s11042_024_19907_0 crossref_primary_10_1016_j_jag_2023_103612 crossref_primary_10_1016_j_compbiomed_2024_108013 crossref_primary_10_1016_j_health_2023_100216 crossref_primary_10_1109_JBHI_2024_3502694 crossref_primary_10_1016_j_bspc_2025_107754 crossref_primary_10_1016_j_patcog_2024_110723 crossref_primary_10_1016_j_bspc_2023_105772 crossref_primary_10_3390_math12182905 crossref_primary_10_1007_s11760_024_03531_4 crossref_primary_10_1016_j_aej_2024_01_018 crossref_primary_10_1007_s11042_024_18544_x crossref_primary_10_1016_j_dsp_2024_104937 crossref_primary_10_1109_JSTARS_2024_3443833 crossref_primary_10_1177_09287329241302736 crossref_primary_10_3390_rs17050858 crossref_primary_10_1016_j_inffus_2024_102631 crossref_primary_10_3390_jimaging10100243 crossref_primary_10_1016_j_eswa_2024_125518 crossref_primary_10_1016_j_engappai_2024_108789 crossref_primary_10_3390_e27010060 crossref_primary_10_1016_j_patcog_2024_110491 crossref_primary_10_1049_cit2_12356 crossref_primary_10_1007_s00371_024_03618_6 crossref_primary_10_1007_s10278_025_01464_z crossref_primary_10_3788_CJL240779 crossref_primary_10_1016_j_energy_2024_132069 crossref_primary_10_3390_electronics14010134 crossref_primary_10_1088_1361_6560_ad14c6 crossref_primary_10_1155_2023_8825587 crossref_primary_10_1002_mp_16662 crossref_primary_10_1007_s10515_024_00418_z crossref_primary_10_3390_app14177953 crossref_primary_10_3390_math12223580 crossref_primary_10_3233_JIFS_235138 crossref_primary_10_3390_stats7010013 crossref_primary_10_1007_s10489_023_05032_2 crossref_primary_10_1016_j_compeleceng_2024_109745 crossref_primary_10_3390_en16010369 crossref_primary_10_1016_j_bspc_2024_106397 crossref_primary_10_3390_e26040284 crossref_primary_10_3390_rs16193590 crossref_primary_10_1016_j_eswa_2024_124329 crossref_primary_10_1016_j_bspc_2024_107249 crossref_primary_10_1016_j_displa_2025_103001 crossref_primary_10_1016_j_patcog_2022_109289 crossref_primary_10_1016_j_jag_2024_103662 crossref_primary_10_1109_TIP_2024_3425048 crossref_primary_10_1016_j_asoc_2024_112399 crossref_primary_10_1016_j_neunet_2024_106914 crossref_primary_10_3390_s23218793 crossref_primary_10_1016_j_patcog_2023_109888 crossref_primary_10_1016_j_patcog_2024_110470 crossref_primary_10_3390_rs16214029 crossref_primary_10_3389_fonc_2024_1255618 crossref_primary_10_56038_oprd_v3i1_309 crossref_primary_10_1016_j_bspc_2025_107791 crossref_primary_10_1016_j_compbiomed_2024_108057 crossref_primary_10_3934_mbe_2024150 crossref_primary_10_1007_s13534_023_00344_1 crossref_primary_10_1016_j_neucom_2024_127912 crossref_primary_10_1007_s11517_025_03333_x crossref_primary_10_1016_j_bspc_2024_106839 crossref_primary_10_1109_JBHI_2024_3504829 crossref_primary_10_1109_JBHI_2024_3468904 crossref_primary_10_3390_buildings15060873 crossref_primary_10_3390_su151813723 crossref_primary_10_3390_computers13110290 crossref_primary_10_1016_j_eswa_2024_124467 crossref_primary_10_1016_j_dsp_2023_104361 crossref_primary_10_3390_rs16224167 crossref_primary_10_1016_j_cmpb_2024_108280 crossref_primary_10_1109_TMM_2024_3428349 crossref_primary_10_1016_j_inffus_2025_102951 crossref_primary_10_1016_j_displa_2025_102971 crossref_primary_10_3390_rs15184406 crossref_primary_10_1016_j_bspc_2024_106658 crossref_primary_10_1016_j_isci_2024_111020 crossref_primary_10_1016_j_bspc_2023_105834 crossref_primary_10_1007_s11760_024_03788_9 crossref_primary_10_1016_j_neucom_2024_127379 crossref_primary_10_1016_j_renene_2024_120437 crossref_primary_10_1007_s40747_024_01574_1 crossref_primary_10_1007_s11227_024_06740_3 crossref_primary_10_1016_j_inffus_2023_102147 crossref_primary_10_1109_TIP_2024_3482864 crossref_primary_10_1016_j_autcon_2023_105217 crossref_primary_10_1016_j_compbiomed_2024_108639 crossref_primary_10_1109_TGRS_2025_3531879 crossref_primary_10_26599_FSAP_2024_9240053 crossref_primary_10_1186_s40538_024_00681_y crossref_primary_10_1016_j_dsp_2023_103968 crossref_primary_10_3390_rs17030402 crossref_primary_10_1038_s41598_024_79090_y crossref_primary_10_1108_ACI_12_2023_0167 crossref_primary_10_1007_s10489_024_06029_1 crossref_primary_10_1016_j_ins_2024_120578 crossref_primary_10_1515_bmt_2023_0121 crossref_primary_10_32604_cmes_2024_048453 crossref_primary_10_1109_TIM_2025_3527526 crossref_primary_10_1016_j_patcog_2024_110553 crossref_primary_10_1016_j_patcog_2024_110554 crossref_primary_10_1186_s12938_024_01209_z crossref_primary_10_1016_j_asoc_2024_112244 crossref_primary_10_1063_5_0195273 crossref_primary_10_1016_j_compbiomed_2023_107268 crossref_primary_10_1016_j_compeleceng_2025_110099 crossref_primary_10_1038_s41598_024_68082_7 crossref_primary_10_1364_BOE_525119 crossref_primary_10_1007_s11517_024_03181_1 crossref_primary_10_1007_s00371_025_03800_4 crossref_primary_10_1016_j_eswa_2025_127249 crossref_primary_10_1016_j_inffus_2025_103013 crossref_primary_10_1007_s00521_024_10353_5 crossref_primary_10_1016_j_compbiomed_2024_108773 crossref_primary_10_1049_cvi2_12246 crossref_primary_10_1109_ACCESS_2025_3538621 crossref_primary_10_1016_j_jag_2023_103332 crossref_primary_10_1016_j_bspc_2023_105927 crossref_primary_10_1016_j_heliyon_2023_e16807 crossref_primary_10_1109_TIM_2025_3548224 crossref_primary_10_1016_j_neunet_2025_107312 crossref_primary_10_1016_j_eswa_2024_126098 crossref_primary_10_1186_s12938_024_01212_4 crossref_primary_10_1007_s10586_024_04644_8 crossref_primary_10_1016_j_patcog_2023_110140 crossref_primary_10_3390_axioms13050335 |
Cites_doi | 10.1109/TIP.2021.3069318 10.1109/TMI.2020.3001036 10.1109/TMI.2019.2959609 10.1109/TPAMI.2020.2983686 10.1109/TPAMI.2017.2699184 10.1109/TIP.2020.3042065 10.1109/TII.2018.2849348 10.1016/j.patcog.2021.108076 10.1016/j.patcog.2022.108902 10.1109/TIP.2019.2946126 10.1016/j.media.2019.01.012 10.1016/j.neucom.2019.05.011 10.1109/ICICSP55539.2022.10050624 10.1109/TMI.2020.3034995 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.patcog.2022.109228 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-5142 |
ExternalDocumentID | 10_1016_j_patcog_2022_109228 S0031320322007075 |
GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-3d17119f7b1ce615d9d1341c968e713d90edb486b99e0c5cc0d726b23823f1c73 |
IEDL.DBID | .~1 |
ISSN | 0031-3203 |
IngestDate | Thu Apr 24 22:54:48 EDT 2025 Tue Jul 01 02:36:40 EDT 2025 Fri Feb 23 02:39:24 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Convolutional Neural Network Cross-domain fusion Transformer Feature complementary module Medical image segmentation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-3d17119f7b1ce615d9d1341c968e713d90edb486b99e0c5cc0d726b23823f1c73 |
ORCID | 0000-0003-3286-1481 |
ParticipantIDs | crossref_citationtrail_10_1016_j_patcog_2022_109228 crossref_primary_10_1016_j_patcog_2022_109228 elsevier_sciencedirect_doi_10_1016_j_patcog_2022_109228 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2023 2023-04-00 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: April 2023 |
PublicationDecade | 2020 |
PublicationTitle | Pattern recognition |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Poudel, Bonde, Liwicki, Zach (bib0048) 2018 Zhang, Chen, Wu, Cai, Lu, Li (bib0049) 2019; 15 Milletari, Navab, Ahmadi (bib0027) 2016 2021. Carion, Massa, Synnaeve, Usunier, Kirillov, Zagoruyko (bib0010) 2020 Han, Wang, Chen, Chen, Guo, Liu, Tang, Xiao, Xu, Xu (bib0031) 2022 Liu, Lin, Cao, Hu, Wei, Zhang, Lin, Guo (bib0011) 2021 Yuan, Zhang, Xia, Huang, Li (bib0035) 2021; 30 Yuan, Zhang, Xia, Huang, Li (bib0023) 2020; 29 Çiçek, Abdulkadir, Lienkamp, Brox, Ronneberger (bib0026) 2016; 9901 Cao, Wang, Chen, Jiang, Zhang, Tian, Wang (bib0006) 2021 Poudel, Stephan, Roberto (bib0053) 2019 Simonyan, Zisserman (bib0018) 2015 Wang, Sun, Cheng, Jiang, Deng, Zhao, Liu, Mu, Tan, Wang, Liu, Xiao (bib0020) 2018; 43 Fu, Lu, Wang, Zhou, Shen, Fishman, Yuille (bib0044) 2020 Chen, Papandreou, Kokkinos, Murphy, Yuille (bib0047) 2018; 40 He, Zhang, Ren, Sun (bib0017) 2016 Srinivas, Lin, Parmar, Shlens, Abbeel, Vaswani (bib0032) 2021 Liu, Yin (bib0052) 2019 Peng, Zhang, Yu, Luo, Sun (bib0014) 2017 Zhou, Siddiquee, Tajbakhsh, Liang (bib0005) 2020; 39 Zhang, Liu, Hu (bib0041) 2021 Alexey, Lucas, Alexander, Dirk (bib0009) 2021 Yuan, Dong, Zhang, Xia, Shi (bib0028) 2022; 131 Wang, Chen, Ding, Yu, Zha, Li (bib0038) 2021 Woo, Park, Lee, Kweon (bib0042) 2018 Ronneberger, Fischer, Brox (bib0003) 2015 Davood, Didenko, Gholipour (bib0007) 2021; 12901 Lo, Hang, Chan, Lin (bib0051) 2019 Huang, Liu, Van Der Maaten, Weinberger (bib0019) 2017 Milletari, Navab, Ahmadi (bib0045) 2016 Wu, Tang, Zhang, Cao, Zhang (bib0054) 2021; 30 Yuan, Zhang, Xia, Wan, Huang, Li (bib0024) 2019; 357 Fisher, Koltun (bib0013) 2016 Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (bib0029) 2017; 30 Chen, Lu, Yu, Luo, Adeli, Wang, Lu, Yuille, Zhou (bib0040) 2021 Hatamizadeh, Tang, Nath, Yang, Myronenko, Landman, Roth, Xu (bib0039) 2022 Yuan, Zhou, Xia, Qian, Huang (bib0033) 2021; 119 Carion, Massa, Synnaev, Usunier, Kirillov, Zagoruyko (bib0036) 2020 Wang, Girshick, Gupta, He (bib0016) 2018 Long, Shelhamer, Darrell (bib0002) 2015 Li, Kim (bib0050) 2019 Oktay, Schlemper, Folgoc, Lee, Heinrich, Misawa, Mori, McDonagh, Hammerla, Kainz (bib0025) 2018 Schlemper, Oktay, Schaap, Heinrich, Kainz, Glocker, Rueckert (bib0034) 2019; 53 Xie, Zhang, Shen, Xia (bib0012) 2021; 12903 Touvron, Cord, Matthijs, Massa, Sablayrolles, Jegou (bib0030) 2021 Zhang, Xie, Wang, Xia (bib0004) 2021; 40 Lin, Chen, Xu, Zhang, Lu (bib0008) 2021 Valanarasu, Oza, Hacihaliloglu, Patel (bib0037) 2021 Fang, Yan (bib0001) 2020; 39 C. Yao, M. Hu, G. Zhai, X. Zhang, Transclaw u-net: claw u-net with transformers for medical image segmentation, arXiv preprint arXiv Zhao, Shi, Qi, Wang, Jia (bib0015) 2017 Xiao, Lian, Luo, Li (bib0022) 2018 Christian, Liu, Jia, Pierre, Scott, Dragomir, Dumitru, Vincent, Andrew (bib0021) 2015 Paszke, Chaurasia, Kim, Culurciello (bib0046) 2017 Wang (10.1016/j.patcog.2022.109228_bib0038) 2021 Liu (10.1016/j.patcog.2022.109228_bib0052) 2019 Xie (10.1016/j.patcog.2022.109228_bib0012) 2021; 12903 Alexey (10.1016/j.patcog.2022.109228_bib0009) 2021 Simonyan (10.1016/j.patcog.2022.109228_bib0018) 2015 Yuan (10.1016/j.patcog.2022.109228_bib0035) 2021; 30 Carion (10.1016/j.patcog.2022.109228_bib0036) 2020 10.1016/j.patcog.2022.109228_bib0043 Zhang (10.1016/j.patcog.2022.109228_bib0004) 2021; 40 Zhao (10.1016/j.patcog.2022.109228_bib0015) 2017 Chen (10.1016/j.patcog.2022.109228_bib0047) 2018; 40 Yuan (10.1016/j.patcog.2022.109228_bib0023) 2020; 29 Hatamizadeh (10.1016/j.patcog.2022.109228_bib0039) 2022 Milletari (10.1016/j.patcog.2022.109228_bib0045) 2016 Fu (10.1016/j.patcog.2022.109228_bib0044) 2020 Cao (10.1016/j.patcog.2022.109228_bib0006) 2021 Poudel (10.1016/j.patcog.2022.109228_bib0048) 2018 Li (10.1016/j.patcog.2022.109228_bib0050) 2019 Lo (10.1016/j.patcog.2022.109228_bib0051) 2019 Han (10.1016/j.patcog.2022.109228_bib0031) 2022 Paszke (10.1016/j.patcog.2022.109228_bib0046) 2017 Oktay (10.1016/j.patcog.2022.109228_bib0025) 2018 Valanarasu (10.1016/j.patcog.2022.109228_bib0037) 2021 Liu (10.1016/j.patcog.2022.109228_bib0011) 2021 Yuan (10.1016/j.patcog.2022.109228_bib0033) 2021; 119 Çiçek (10.1016/j.patcog.2022.109228_bib0026) 2016; 9901 Wang (10.1016/j.patcog.2022.109228_bib0016) 2018 Huang (10.1016/j.patcog.2022.109228_bib0019) 2017 Woo (10.1016/j.patcog.2022.109228_bib0042) 2018 Zhang (10.1016/j.patcog.2022.109228_bib0049) 2019; 15 Chen (10.1016/j.patcog.2022.109228_bib0040) 2021 Davood (10.1016/j.patcog.2022.109228_bib0007) 2021; 12901 Poudel (10.1016/j.patcog.2022.109228_bib0053) 2019 Yuan (10.1016/j.patcog.2022.109228_bib0028) 2022; 131 Long (10.1016/j.patcog.2022.109228_bib0002) 2015 Fang (10.1016/j.patcog.2022.109228_bib0001) 2020; 39 Lin (10.1016/j.patcog.2022.109228_bib0008) 2021 Vaswani (10.1016/j.patcog.2022.109228_bib0029) 2017; 30 Milletari (10.1016/j.patcog.2022.109228_bib0027) 2016 Wang (10.1016/j.patcog.2022.109228_bib0020) 2018; 43 Zhang (10.1016/j.patcog.2022.109228_bib0041) 2021 Yuan (10.1016/j.patcog.2022.109228_bib0024) 2019; 357 Wu (10.1016/j.patcog.2022.109228_bib0054) 2021; 30 Fisher (10.1016/j.patcog.2022.109228_bib0013) 2016 Zhou (10.1016/j.patcog.2022.109228_bib0005) 2020; 39 Xiao (10.1016/j.patcog.2022.109228_bib0022) 2018 Carion (10.1016/j.patcog.2022.109228_bib0010) 2020 Schlemper (10.1016/j.patcog.2022.109228_bib0034) 2019; 53 Srinivas (10.1016/j.patcog.2022.109228_bib0032) 2021 Ronneberger (10.1016/j.patcog.2022.109228_bib0003) 2015 He (10.1016/j.patcog.2022.109228_bib0017) 2016 Peng (10.1016/j.patcog.2022.109228_bib0014) 2017 Touvron (10.1016/j.patcog.2022.109228_bib0030) 2021 Christian (10.1016/j.patcog.2022.109228_bib0021) 2015 |
References_xml | – year: 2021 ident: bib0009 article-title: An Image is Worth 16x16 Words: transformers for Image Recognition at Scale publication-title: LR2021 – start-page: 565 year: 2016 end-page: 571 ident: bib0045 article-title: V-Net: fully convolutional neural networks for volumetric medical image segmentation publication-title: Fourth International Conference on 3D Vision (3DV) – year: 2021 ident: bib0006 article-title: Swin-unet: unet-like pure transformer for medical image segmentation publication-title: 2021 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 187.1 year: 2019 end-page: 187.12 ident: bib0053 article-title: Fast-SCNN: Fast semantic segmentation network publication-title: Proceedings of the British Machine Vision Conference (BMVC) – volume: 40 start-page: 661 year: 2021 end-page: 672 ident: bib0004 article-title: Inter-Slice Context Residual Learning for 3D Medical Image Segmentation publication-title: IEEE Trans. Med. Imaging – volume: 357 start-page: 248 year: 2019 end-page: 260 ident: bib0024 article-title: Deep smoke segmentation publication-title: Neurocomputing – year: 2015 ident: bib0018 article-title: Very deep convolutional networks for large-scale image recognition publication-title: 2015 International Conference on Learning Representations (ICLR) – start-page: 36 year: 2021 end-page: 46 ident: bib0037 article-title: Medical transformer: gated axial-attention for medical image segmentation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) – volume: 39 start-page: 1856 year: 2020 end-page: 1867 ident: bib0005 article-title: UNet++: redesigning skip connections to exploit multiscale features in image segmentation publication-title: IEEE Trans. Med. Imaging – volume: 131 year: 2022 ident: bib0028 article-title: Cubic-cross convolutional attention and count prior embedding for smoke segmentation publication-title: Pattern Recognit – volume: 12901 year: 2021 ident: bib0007 article-title: Convolution-free medical image segmentation using transformers publication-title: 2021 International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) – start-page: 7794 year: 2018 end-page: 7803 ident: bib0016 article-title: Non-local neural networks publication-title: 2018 IEE Conference on Computer Vision and Pattern Recognition(CVPR) – year: 2021 ident: bib0008 article-title: DS-TransUNet: dual Swin Transformer U-Net for medical image segmentation publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 213 year: 2020 end-page: 229 ident: bib0036 article-title: End-to-end object detection with transformers publication-title: European Conference on Computer Vision(ECCV) – start-page: 574 year: 2022 end-page: 584 ident: bib0039 article-title: UNETR: transformers for 3D medical image segmentation publication-title: IEEE Winter Conference on Applications of Computer Vision (WACV) – start-page: 770 year: 2016 end-page: 778 ident: bib0017 article-title: Deep residual learning for image recognition publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – year: 2018 ident: bib0025 article-title: Attention u-net: learning where to look for the pancreas publication-title: MIDL – volume: 9901 start-page: 424 year: 2016 end-page: 432 ident: bib0026 article-title: 3D U-Net: learning dense volumetric segmentation from sparse annotation publication-title: International conference on medical image computing and computer-assisted intervention(MICCAI) – volume: 30 start-page: 4409 year: 2021 end-page: 4422 ident: bib0035 article-title: A gated recurrent network with dual classification assistance for smoke semantic segmentation publication-title: IEEE Transact. Image Process. – start-page: 6230 year: 2017 end-page: 6239 ident: bib0015 article-title: Pyramid scene parsing network publication-title: n (CVPR) – year: 2017 ident: bib0046 article-title: ENet: A deep neural network architecture for real-time semantic segmentation publication-title: 5th International Conference on Learning Representations, ICLR 2017 – start-page: 9992 year: 2021 end-page: 10002 ident: bib0011 article-title: Swin Transformer: hierarchical vision transformer using shifted windows publication-title: 2021 IEEE/CVF International Conference on Computer Vision (ICCV) – start-page: 10347 year: 2021 end-page: 10357 ident: bib0030 article-title: Training data-efficient image transformers & distillation through attention publication-title: International Conference on Machine Learning – volume: 30 year: 2017 ident: bib0029 article-title: Attention is all you need publication-title: Adv. Neur. Inf. Process Syst. – volume: 119 start-page: 1 year: 2021 end-page: 16 ident: bib0033 article-title: A confidence prior for image Dehazing publication-title: Pattern Recognit. – year: 2021 ident: bib0040 article-title: TransUnet: transformers make strong encoders for medical image segmentation publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 186.1 year: 2019 end-page: 186.12 ident: bib0050 article-title: DABNet: Depth-wise asymmetric bottleneck for real-time semantic segmentation publication-title: Proceedings of the British Machine Vision Conference (BMVC) – volume: 43 start-page: 3349 year: 2018 end-page: 3364 ident: bib0020 article-title: Deep high-resolution representation learning for visual recognition publication-title: IEEE Trans. Pattern. Anal. Mach. Intell. – year: 2022 ident: bib0031 article-title: A survey on vision Transformer publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: C. Yao, M. Hu, G. Zhai, X. Zhang, Transclaw u-net: claw u-net with transformers for medical image segmentation, arXiv preprint arXiv: – start-page: 1743 year: 2017 end-page: 1751 ident: bib0014 article-title: Large kernel matters — improve semantic segmentation by global convolutional network publication-title: n (CVPR) – start-page: 16514 year: 2021 end-page: 16524 ident: bib0032 article-title: Bottleneck Transformers for visual recognition publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 29 start-page: 2301 year: 2020 end-page: 2313 ident: bib0023 article-title: A wave-shaped deep neural network for smoke density estimation publication-title: IEEE Transact. Image Process. – volume: 30 start-page: 1169 year: 2021 end-page: 1179 ident: bib0054 article-title: CGNet: a light-weight context guided network for semantic segmentation publication-title: IEEE Transact. Image Process. – volume: 53 start-page: 197 year: 2019 end-page: 207 ident: bib0034 article-title: Attention gated networks: learning to leverage salient regions in medical images publication-title: Med. Image Anal. – start-page: 1 year: 2015 end-page: 9 ident: bib0021 article-title: Going deeper with convolutions publication-title: (CVPR) – year: 2016 ident: bib0013 article-title: Multi-scale context aggregation by dilated convolutions publication-title: International Conference on Learning Representations (ICRL) – start-page: 3 year: 2018 end-page: 19 ident: bib0042 article-title: CBAM: convolutional block attention module publication-title: Proceedings of the European conference on computer vision (ECCV) – volume: 39 start-page: 3619 year: 2020 end-page: 3629 ident: bib0001 article-title: Multi-organ segmentation over partially labeled datasets with multi-scale feature abstraction publication-title: IEEE Trans. Med. Imaging – start-page: 14 year: 2021 end-page: 24 ident: bib0041 article-title: Transfuse: fusing transformers and cnns for medical image segmentation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention(MICCAI) – start-page: 213 year: 2020 end-page: 229 ident: bib0010 article-title: End-to-end object detection with transformers publication-title: European Conference on Computer Vision (ECCV) – start-page: 109 year: 2021 end-page: 119 ident: bib0038 article-title: Transbts: multimodal brain tumor segmentation using transformer publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) – start-page: 1 year: 2019 end-page: 6 ident: bib0051 article-title: Efficient dense modules of asymmetric convolution for real-time semantic segmentation publication-title: Proceedings of the ACM Multimedia Asia – year: 2020 ident: bib0044 article-title: Domain adaptive relational reasoning for 3d multi-organ segmentation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) – volume: 40 start-page: 834 year: 2018 end-page: 848 ident: bib0047 article-title: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 327 year: 2018 end-page: 331 ident: bib0022 article-title: Weighted Res-UNet for high-quality retina vessel segmentation publication-title: 9th International Conference on Information Technology in Medicine and Education (ITME) – start-page: 2261 year: 2017 end-page: 2269 ident: bib0019 article-title: Densely connected convolutional networks publication-title: (CVPR) – start-page: 146.1 year: 2018 end-page: 146.12 ident: bib0048 article-title: ContextNet: Exploring context and detail for semantic segmentation in realtime publication-title: Proceedings of the British Machine Vision Conference (BMVC) – start-page: 565 year: 2016 end-page: 571 ident: bib0027 article-title: V-Net: fully convolutional neural networks for volumetric medical image segmentation publication-title: 2016 Fourth International Conference on 3D Vision (3DV) – start-page: 234 year: 2015 end-page: 241 ident: bib0003 article-title: U-Net: convolutional network for biomedical image segmentation publication-title: International Conference on Medical image computing and computer-assisted intervention (MICCAI) – start-page: 203.1 year: 2019 end-page: 203.13 ident: bib0052 article-title: Feature pyramid encoding network for real-time semantic segmentation publication-title: Proceedings of the British Machine Vision Conference (BMVC) – start-page: 3431 year: 2015 end-page: 3440 ident: bib0002 article-title: Fully convolutional networks for semantic segmentation publication-title: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 12903 start-page: 171 year: 2021 end-page: 180 ident: bib0012 article-title: CoTr: efficiently bridging CNN and Transformer for 3D medical image segmentation publication-title: Medical Image Computing and Computer Assisted Intervention (MICCAI) – volume: 15 start-page: 1183 year: 2019 end-page: 1192 ident: bib0049 article-title: Fast semantic segmentation for scene perception publication-title: IEEE Transact. Ind. Informat. – reference: , 2021. – volume: 30 start-page: 4409 year: 2021 ident: 10.1016/j.patcog.2022.109228_bib0035 article-title: A gated recurrent network with dual classification assistance for smoke semantic segmentation publication-title: IEEE Transact. Image Process. doi: 10.1109/TIP.2021.3069318 – start-page: 109 year: 2021 ident: 10.1016/j.patcog.2022.109228_bib0038 article-title: Transbts: multimodal brain tumor segmentation using transformer – volume: 39 start-page: 3619 issue: 11 year: 2020 ident: 10.1016/j.patcog.2022.109228_bib0001 article-title: Multi-organ segmentation over partially labeled datasets with multi-scale feature abstraction publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2020.3001036 – volume: 9901 start-page: 424 year: 2016 ident: 10.1016/j.patcog.2022.109228_bib0026 article-title: 3D U-Net: learning dense volumetric segmentation from sparse annotation – start-page: 1 year: 2019 ident: 10.1016/j.patcog.2022.109228_bib0051 article-title: Efficient dense modules of asymmetric convolution for real-time semantic segmentation – start-page: 327 year: 2018 ident: 10.1016/j.patcog.2022.109228_bib0022 article-title: Weighted Res-UNet for high-quality retina vessel segmentation – start-page: 3 year: 2018 ident: 10.1016/j.patcog.2022.109228_bib0042 article-title: CBAM: convolutional block attention module – year: 2020 ident: 10.1016/j.patcog.2022.109228_bib0044 article-title: Domain adaptive relational reasoning for 3d multi-organ segmentation – volume: 30 year: 2017 ident: 10.1016/j.patcog.2022.109228_bib0029 article-title: Attention is all you need publication-title: Adv. Neur. Inf. Process Syst. – start-page: 3431 year: 2015 ident: 10.1016/j.patcog.2022.109228_bib0002 article-title: Fully convolutional networks for semantic segmentation – start-page: 186.1 year: 2019 ident: 10.1016/j.patcog.2022.109228_bib0050 article-title: DABNet: Depth-wise asymmetric bottleneck for real-time semantic segmentation – start-page: 16514 year: 2021 ident: 10.1016/j.patcog.2022.109228_bib0032 article-title: Bottleneck Transformers for visual recognition – year: 2017 ident: 10.1016/j.patcog.2022.109228_bib0046 article-title: ENet: A deep neural network architecture for real-time semantic segmentation – volume: 39 start-page: 1856 issue: 6 year: 2020 ident: 10.1016/j.patcog.2022.109228_bib0005 article-title: UNet++: redesigning skip connections to exploit multiscale features in image segmentation publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2019.2959609 – start-page: 187.1 year: 2019 ident: 10.1016/j.patcog.2022.109228_bib0053 article-title: Fast-SCNN: Fast semantic segmentation network – volume: 43 start-page: 3349 issue: 10 year: 2018 ident: 10.1016/j.patcog.2022.109228_bib0020 article-title: Deep high-resolution representation learning for visual recognition publication-title: IEEE Trans. Pattern. Anal. Mach. Intell. doi: 10.1109/TPAMI.2020.2983686 – year: 2015 ident: 10.1016/j.patcog.2022.109228_bib0018 article-title: Very deep convolutional networks for large-scale image recognition – volume: 40 start-page: 834 issue: 4 year: 2018 ident: 10.1016/j.patcog.2022.109228_bib0047 article-title: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2699184 – start-page: 9992 year: 2021 ident: 10.1016/j.patcog.2022.109228_bib0011 article-title: Swin Transformer: hierarchical vision transformer using shifted windows – start-page: 234 year: 2015 ident: 10.1016/j.patcog.2022.109228_bib0003 article-title: U-Net: convolutional network for biomedical image segmentation – start-page: 10347 year: 2021 ident: 10.1016/j.patcog.2022.109228_bib0030 article-title: Training data-efficient image transformers & distillation through attention – volume: 12903 start-page: 171 year: 2021 ident: 10.1016/j.patcog.2022.109228_bib0012 article-title: CoTr: efficiently bridging CNN and Transformer for 3D medical image segmentation – start-page: 1743 year: 2017 ident: 10.1016/j.patcog.2022.109228_bib0014 article-title: Large kernel matters — improve semantic segmentation by global convolutional network – year: 2022 ident: 10.1016/j.patcog.2022.109228_bib0031 article-title: A survey on vision Transformer publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 6230 year: 2017 ident: 10.1016/j.patcog.2022.109228_bib0015 article-title: Pyramid scene parsing network – start-page: 1 year: 2015 ident: 10.1016/j.patcog.2022.109228_bib0021 article-title: Going deeper with convolutions – start-page: 574 year: 2022 ident: 10.1016/j.patcog.2022.109228_bib0039 article-title: UNETR: transformers for 3D medical image segmentation – start-page: 213 year: 2020 ident: 10.1016/j.patcog.2022.109228_bib0010 article-title: End-to-end object detection with transformers – year: 2021 ident: 10.1016/j.patcog.2022.109228_bib0040 article-title: TransUnet: transformers make strong encoders for medical image segmentation – start-page: 2261 year: 2017 ident: 10.1016/j.patcog.2022.109228_bib0019 article-title: Densely connected convolutional networks – start-page: 146.1 year: 2018 ident: 10.1016/j.patcog.2022.109228_bib0048 article-title: ContextNet: Exploring context and detail for semantic segmentation in realtime – volume: 30 start-page: 1169 year: 2021 ident: 10.1016/j.patcog.2022.109228_bib0054 article-title: CGNet: a light-weight context guided network for semantic segmentation publication-title: IEEE Transact. Image Process. doi: 10.1109/TIP.2020.3042065 – start-page: 565 year: 2016 ident: 10.1016/j.patcog.2022.109228_bib0045 article-title: V-Net: fully convolutional neural networks for volumetric medical image segmentation – year: 2021 ident: 10.1016/j.patcog.2022.109228_bib0009 article-title: An Image is Worth 16x16 Words: transformers for Image Recognition at Scale – volume: 15 start-page: 1183 issue: 2 year: 2019 ident: 10.1016/j.patcog.2022.109228_bib0049 article-title: Fast semantic segmentation for scene perception publication-title: IEEE Transact. Ind. Informat. doi: 10.1109/TII.2018.2849348 – start-page: 213 year: 2020 ident: 10.1016/j.patcog.2022.109228_bib0036 article-title: End-to-end object detection with transformers – year: 2018 ident: 10.1016/j.patcog.2022.109228_bib0025 article-title: Attention u-net: learning where to look for the pancreas publication-title: MIDL – volume: 12901 year: 2021 ident: 10.1016/j.patcog.2022.109228_bib0007 article-title: Convolution-free medical image segmentation using transformers – year: 2016 ident: 10.1016/j.patcog.2022.109228_bib0013 article-title: Multi-scale context aggregation by dilated convolutions – start-page: 7794 year: 2018 ident: 10.1016/j.patcog.2022.109228_bib0016 article-title: Non-local neural networks – volume: 119 start-page: 1 year: 2021 ident: 10.1016/j.patcog.2022.109228_bib0033 article-title: A confidence prior for image Dehazing publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2021.108076 – start-page: 36 year: 2021 ident: 10.1016/j.patcog.2022.109228_bib0037 article-title: Medical transformer: gated axial-attention for medical image segmentation – year: 2021 ident: 10.1016/j.patcog.2022.109228_bib0006 article-title: Swin-unet: unet-like pure transformer for medical image segmentation – volume: 131 year: 2022 ident: 10.1016/j.patcog.2022.109228_bib0028 article-title: Cubic-cross convolutional attention and count prior embedding for smoke segmentation publication-title: Pattern Recognit doi: 10.1016/j.patcog.2022.108902 – volume: 29 start-page: 2301 year: 2020 ident: 10.1016/j.patcog.2022.109228_bib0023 article-title: A wave-shaped deep neural network for smoke density estimation publication-title: IEEE Transact. Image Process. doi: 10.1109/TIP.2019.2946126 – start-page: 203.1 year: 2019 ident: 10.1016/j.patcog.2022.109228_bib0052 article-title: Feature pyramid encoding network for real-time semantic segmentation – volume: 53 start-page: 197 year: 2019 ident: 10.1016/j.patcog.2022.109228_bib0034 article-title: Attention gated networks: learning to leverage salient regions in medical images publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.01.012 – start-page: 14 year: 2021 ident: 10.1016/j.patcog.2022.109228_bib0041 article-title: Transfuse: fusing transformers and cnns for medical image segmentation – volume: 357 start-page: 248 year: 2019 ident: 10.1016/j.patcog.2022.109228_bib0024 article-title: Deep smoke segmentation publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.05.011 – start-page: 565 year: 2016 ident: 10.1016/j.patcog.2022.109228_bib0027 article-title: V-Net: fully convolutional neural networks for volumetric medical image segmentation – year: 2021 ident: 10.1016/j.patcog.2022.109228_bib0008 article-title: DS-TransUNet: dual Swin Transformer U-Net for medical image segmentation – ident: 10.1016/j.patcog.2022.109228_bib0043 doi: 10.1109/ICICSP55539.2022.10050624 – start-page: 770 year: 2016 ident: 10.1016/j.patcog.2022.109228_bib0017 article-title: Deep residual learning for image recognition – volume: 40 start-page: 661 issue: 2 year: 2021 ident: 10.1016/j.patcog.2022.109228_bib0004 article-title: Inter-Slice Context Residual Learning for 3D Medical Image Segmentation publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2020.3034995 |
SSID | ssj0017142 |
Score | 2.7296658 |
Snippet | •We design dual encoding paths of CNN and Transformer encoders for producing complementary features..•We propose an effective feature complementary module by... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 109228 |
SubjectTerms | Convolutional Neural Network Cross-domain fusion Feature complementary module Medical image segmentation Transformer |
Title | An effective CNN and Transformer complementary network for medical image segmentation |
URI | https://dx.doi.org/10.1016/j.patcog.2022.109228 |
Volume | 136 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEF1KvXjxW6wfZQ9eY5Nskk2OpShVMacWegvZ2W2p2LTUevDib3cmuykKouAtJLuQTCYvb9k3bxi7jkCqUkjthQrAQ0aMOAgk2wFIIyHiMompUPgpT4bj6GEST1ps0NTCkKzSYb_F9Bqt3Zmei2ZvNZ9TjS_ZDvqYkbVnDRWak3sd5vTNx1bmQf29rWO4CDwa3ZTP1RqvFcLdcoarxDAkX6WQerL_9Hv68su5O2B7jivyvr2dQ9Yy1RHbb_owcPdZHrNxv-JWl4HQxQd5zstK81FDSXFoLRy3OvH1O6-s9JvjRb6wGzV8vkBg4a9mtnDFSNUJG9_djgZDz7VL8AB5_8YTGh82yKZSBWCQqOhMk1sbZElqcCmqM99oFaWJyjLjQwzgaxkmKqSdwGkAUpyydrWszBnjgCRlWioZlUbjCgoPkwR0pMswMFGqRIeJJkoFOC9xamnxUjSisefCxrag2BY2th3mbWetrJfGH-Nl8wKKbzlRINz_OvP83zMv2C41lLfanEvW3qzfzBXSjo3q1nnVZTv9-8dh_gn_UdfZ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gHPTi24jPPXht6GP7OhKiKQI9QcJt031AMFII4sF_72x3SzQxmnhr2p2knW6_fpv95huABypiXgSxdHwuhIOMGHFQaNmOEAkNgrCIQl0oPMqjbEKfp-G0Ab26FkbLKi32G0yv0Nqe6dhsdtaLha7x1baDLs7IyrMm3IOWdqeiTWh1-4Ms320mxB41puGB5-iAuoKuknmtEfFWc1wo-r62VvJ1W_af_lBf_jpPx3Bo6SLpmjs6gYYqT-GobsVA7Jd5BpNuSYw0A9GL9PKcFKUk45qV4tBKO26k4psPUhr1N8GLZGn2ashiidhC3tR8aeuRynOYPD2Oe5ljOyY4Aqn_1gkkPqyXzmLuCYVcRaZSG7aJNEoUrkZl6irJaRLxNFWuCIVwZexH3NebgTNPxMEFNMtVqS6BCOQps4LHtFASF1F4GEVCUln4nqIJD9oQ1FliwtqJ664Wr6zWjb0wk1umc8tMbtvg7KLWxk7jj_Fx_QLYt2nBEPF_jbz6d-Q97Gfj0ZAN-_ngGg50f3kj1bmB5nbzrm6RhWz5nZ1ln3B-2oo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+effective+CNN+and+Transformer+complementary+network+for+medical+image+segmentation&rft.jtitle=Pattern+recognition&rft.au=Yuan%2C+Feiniu&rft.au=Zhang%2C+Zhengxiao&rft.au=Fang%2C+Zhijun&rft.date=2023-04-01&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.eissn=1873-5142&rft.volume=136&rft_id=info:doi/10.1016%2Fj.patcog.2022.109228&rft.externalDocID=S0031320322007075 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |