Moisture-insensitive, self-powered paper-based flexible electronics

The fabrication of multifunctional electronic devices on ubiquitous paper substrates is gaining considerable attention due to their low cost, environmental friendliness, light weight, and flexibility. Unfortunately, the development of paper-based electronics is subject to significant challenges, suc...

Full description

Saved in:
Bibliographic Details
Published inNano energy Vol. 78; p. 105301
Main Authors Sala de Medeiros, Marina, Chanci, Daniela, Martinez, Ramses V.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The fabrication of multifunctional electronic devices on ubiquitous paper substrates is gaining considerable attention due to their low cost, environmental friendliness, light weight, and flexibility. Unfortunately, the development of paper-based electronics is subject to significant challenges, such as rapid degradation with moisture, battery dependence, and limited compatibility with existing mass production technologies. This work describes omniphobic, self-powered paper-based electronics (RF-SPEs), completely wireless paper-based electronic devices insensitive to moisture, liquid stains, and dust. RF-SPEs can be rapidly fabricated through the sequential spray-deposition of alkylated organosilanes, conductive nanoparticles, polytetrafluoroethylene (strong electron affinity), and ethyl cellulose (weak electron affinity) over the surface of cellulose paper. RF-SPEs are lightweight, inexpensive to print (<$0.25 per device), and capable of generating power densities up to 300 μW/cm2. Additionally, RF-SPEs are flexible and exhibit excellent stability upon folding (0.3 mm radius of curvature). The simple printing process and relative low cost of RF-SPEs enable the large-scale production of self-powered paper-based electronics towards the ubiquitous integration of human-machine interfaces. [Display omitted] •All-spray fabrication of waterproof self-powered paper-based electronics (RF-SPEs).•RFSPEs are foldable and insensitive to moisture, liquid stains, and dust.•Triboelectric areas in RF-SPEs enable self-powered Bluetooth wireless communication.•RF-SPEs enable the low-cost manufacturing of reliable human-machine interfaces.
AbstractList The fabrication of multifunctional electronic devices on ubiquitous paper substrates is gaining considerable attention due to their low cost, environmental friendliness, light weight, and flexibility. Unfortunately, the development of paper-based electronics is subject to significant challenges, such as rapid degradation with moisture, battery dependence, and limited compatibility with existing mass production technologies. This work describes omniphobic, self-powered paper-based electronics (RF-SPEs), completely wireless paper-based electronic devices insensitive to moisture, liquid stains, and dust. RF-SPEs can be rapidly fabricated through the sequential spray-deposition of alkylated organosilanes, conductive nanoparticles, polytetrafluoroethylene (strong electron affinity), and ethyl cellulose (weak electron affinity) over the surface of cellulose paper. RF-SPEs are lightweight, inexpensive to print (<$0.25 per device), and capable of generating power densities up to 300 μW/cm2. Additionally, RF-SPEs are flexible and exhibit excellent stability upon folding (0.3 mm radius of curvature). The simple printing process and relative low cost of RF-SPEs enable the large-scale production of self-powered paper-based electronics towards the ubiquitous integration of human-machine interfaces. [Display omitted] •All-spray fabrication of waterproof self-powered paper-based electronics (RF-SPEs).•RFSPEs are foldable and insensitive to moisture, liquid stains, and dust.•Triboelectric areas in RF-SPEs enable self-powered Bluetooth wireless communication.•RF-SPEs enable the low-cost manufacturing of reliable human-machine interfaces.
ArticleNumber 105301
Author Sala de Medeiros, Marina
Chanci, Daniela
Martinez, Ramses V.
Author_xml – sequence: 1
  givenname: Marina
  orcidid: 0000-0003-3800-8705
  surname: Sala de Medeiros
  fullname: Sala de Medeiros, Marina
  organization: School of Industrial Engineering, Purdue University, 315 N. Grant Street, West Lafayette, IN, 47907, USA
– sequence: 2
  givenname: Daniela
  surname: Chanci
  fullname: Chanci, Daniela
  organization: School of Industrial Engineering, Purdue University, 315 N. Grant Street, West Lafayette, IN, 47907, USA
– sequence: 3
  givenname: Ramses V.
  surname: Martinez
  fullname: Martinez, Ramses V.
  email: rmartinez@purdue.edu
  organization: School of Industrial Engineering, Purdue University, 315 N. Grant Street, West Lafayette, IN, 47907, USA
BookMark eNqFkM1OwzAMgHMYEmPsDTjsAUhJ0iUNHJDQxJ80xAXOUZo6kqeSVEkY8PZ0KicO4Isty5_lzydkFmIAQs44qzjj6mJXBRsihEowcWjJmvEZmQvBORVaymOyzHnHxlCSN1zMyeYpYi7vCSiGDCFjwT2crzL0ng7xAxJ0q8EOkGhr81j7Hj6x7WEFPbiSYkCXT8mRt32G5U9ekNe725fNA90-3z9ubrbU1UwVWretF03NRQPCOaa4lZqDEpd67ZzT0CrmRSf1eLSXjWpV7Rvp9TjOwXa6qRdkPe11KeacwJsh4ZtNX4Yzc_A3OzP5m4O_mfxH7OoX5rDYgjGUZLH_D76eYBjF9gjJZIcQHHSYxgeYLuLfC74BWzR9Lg
CitedBy_id crossref_primary_10_1002_eom2_12493
crossref_primary_10_3390_nano11010080
crossref_primary_10_1038_s41598_022_16834_8
crossref_primary_10_1002_er_8270
crossref_primary_10_1002_ente_202300831
crossref_primary_10_3390_ma16103856
crossref_primary_10_3390_ma15062240
crossref_primary_10_1021_acsaelm_3c00673
crossref_primary_10_1016_j_matt_2021_05_009
crossref_primary_10_1002_adfm_202200260
crossref_primary_10_3390_ma15186447
crossref_primary_10_3390_mi14030592
crossref_primary_10_1016_j_nanoen_2021_106236
crossref_primary_10_1002_aesr_202100161
crossref_primary_10_1016_j_nanoen_2023_109224
crossref_primary_10_1016_j_nanoen_2022_108042
crossref_primary_10_1149_2162_8777_ac4389
crossref_primary_10_3390_nano15020089
crossref_primary_10_1007_s40820_023_01094_6
crossref_primary_10_1039_D4MH00753K
crossref_primary_10_1002_advs_202105084
crossref_primary_10_1007_s12274_021_3591_9
crossref_primary_10_1088_2058_8585_ad7b50
crossref_primary_10_1109_JSEN_2022_3158354
crossref_primary_10_3390_nanoenergyadv1010005
crossref_primary_10_1016_j_jallcom_2023_173411
crossref_primary_10_1021_acsanm_2c02026
crossref_primary_10_1016_j_nanoen_2022_107934
crossref_primary_10_1021_acs_langmuir_1c02134
crossref_primary_10_1021_acs_analchem_1c03344
crossref_primary_10_3390_nano12040714
crossref_primary_10_1002_adma_202006792
crossref_primary_10_1016_j_cej_2024_154959
crossref_primary_10_1021_acssuschemeng_3c01943
Cites_doi 10.1002/advs.201801883
10.1016/j.electacta.2017.03.211
10.1021/acsnano.7b00866
10.1039/C5CS00812C
10.1039/C3EE42927J
10.1002/aenm.201601852
10.1016/j.apsusc.2019.04.131
10.1016/j.nanoen.2018.06.019
10.1016/j.eml.2016.02.019
10.1002/aenm.201502566
10.1021/cm501596s
10.1007/s10570-018-1913-1
10.1002/adma.201200150
10.1063/1.4979306
10.1021/nl401006x
10.1021/acsnano.7b05317
10.1016/j.sna.2018.01.054
10.1039/c3lc50371b
10.3390/s19030494
10.1109/JIOT.2014.2313981
10.1016/j.nanoen.2020.105047
10.1016/j.nanoen.2017.05.024
10.1007/s11664-018-6344-0
10.1021/acsami.8b11020
10.1002/adfm.201806798
10.1088/1361-6528/ab6677
10.1002/adma.201401053
10.1016/j.nanoen.2014.12.013
10.1016/j.bios.2016.04.025
10.1002/advs.201500257
10.1002/adma.201801588
10.1016/j.carbon.2017.05.041
10.1002/admt.201700130
10.1002/adfm.201300780
10.1021/acsaem.8b00961
10.1002/solr.201800317
10.1039/C6NR02172G
10.1016/j.nanoen.2018.08.020
10.1021/acsnano.5b00618
10.1016/j.sna.2018.07.043
10.1126/sciadv.1700694
10.1039/C6TA06446A
10.1002/adma.201902151
10.1021/acsami.9b07465
10.1002/adfm.201500636
10.1016/j.nanoen.2018.10.044
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.nanoen.2020.105301
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_nanoen_2020_105301
S2211285520308788
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AATTM
AAXKI
AAXUO
ABMAC
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEZYN
AFJKZ
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BELTK
BKOJK
BLXMC
BNPGV
EBS
EFJIC
EJD
FDB
FIRID
FNPLU
FYGXN
GBLVA
HZ~
JARJE
KOM
M41
MAGPM
MO0
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SPC
SPCBC
SSH
SSM
SSR
SSZ
T5K
~G-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c306t-3bbf273127e2cc061a581e62984ccc8eb60f2d58530f576b63f75f827e1ead873
IEDL.DBID .~1
ISSN 2211-2855
IngestDate Tue Jul 01 00:56:41 EDT 2025
Thu Apr 24 22:57:02 EDT 2025
Sun Apr 06 06:54:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Triboelectric nanogenerators
Self-powered human-machine interfaces
Paper-based electronics
Flexible electronics
Omniphobic paper
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-3bbf273127e2cc061a581e62984ccc8eb60f2d58530f576b63f75f827e1ead873
ORCID 0000-0003-3800-8705
ParticipantIDs crossref_primary_10_1016_j_nanoen_2020_105301
crossref_citationtrail_10_1016_j_nanoen_2020_105301
elsevier_sciencedirect_doi_10_1016_j_nanoen_2020_105301
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2020
2020-12-00
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationTitle Nano energy
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References An, Shin, Kim, Kim, Ji, Park, Lee, Jang, Park, Cho, Jo, Park (bib5) 2017; 9
Lee, Ye, Baik (bib9) 2017; 5
Xia, Zhang, Zhu, Xu (bib39) 2018; 272
Gao, Zhu, Li, Zhang, Liu, Yu, Huang (bib31) 2019; 11
Guo, Yeh, Zi, Wen, Chen, Liu, Hu, Wang (bib38) 2017; 11
Oyola-Reynoso, Tevis, Chen, Chang, Çinar, Bloch, Thuo (bib44) 2016; 4
Invernizzi, Dulio, Patrini, Guizzetti, Mustarelli (bib34) 2016; 45
Sadri, Goswami, Sala de Medeiros, Pal, Castro, Kuang, Martinez (bib13) 2018; 10
Gao, Chao, Hou, Liang, Chen, Yu, Huang (bib22) 2019; 3
Brunetti, Operamolla, Castro‐Hermosa, Lucarelli, Manca, Farinola, Brown (bib10) 2019; 29
Mo, Liang, Huang, Li, Wang, Zhi (bib20) 2020; 32
Pu, Tang, Chen, Huang, Liu, Zeng, Chen, Guo, Xin, Hu (bib52) 2020; 76
Bella, Pugliese, Zolin, Gerbaldi (bib24) 2017; 237
He, Akbari, Sydanheimo, Ukkonen, Virkki (bib7) 2017
Fraiwan, Choi (bib19) 2016; 83
Zhang, Wang, Yang (bib28) 2017; 7
Zhang, Zhang, Cui, Ge, Cheng, Yan, Yu, Liu (bib17) 2018; 30
Liao, Zhang, Liao, Liang, Ou, Xu, Li, Zhang, Zhang (bib14) 2016; 8
Wang, Pan, Sun, Edström, Strømme, Nyholm (bib18) 2018; 1
Thuo, Martinez, Lan, Liu, Barber, Atkinson, Bandarage, Bloch, Whitesides (bib45) 2014; 26
Lou, Chen, Wang, Shi, Li, Jiang, Chen, Shen (bib15) 2017; 38
Lee, Chen, Wang, Cha, Park, Kim, Chou, Wang (bib27) 2012; 24
Xia, Zhu, Zhang, Du, Xu, Wang (bib33) 2018; 50
Águas, Mateus, Vicente, Gaspar, Mendes, Schmidt, Pereira, Fortunato, Martins (bib26) 2015; 25
Chen, Gao, Tang, Zhu, Han, Jiang, Li, Cao, Wang (bib35) 2015; 14
Pu, Guo, Tang, Chen, Feng, Liu, Wang, Xi, Hu, Wang (bib32) 2018; 54
Han, Zhang, Zhang (bib40) 2019
Fan, Chen, Yang, Bai, Li, Wang (bib36) 2015; 9
Glavan, Martinez, Subramaniam, Yoon, Nunes, Lange, Thuo, Whitesides (bib46) 2014; 24
Dong, Wang, Deng, Dai, Zhang, Zou, Gu, Sun, Wang (bib41) 2017; 11
Madaka, Kanneboina, Agarwal (bib25) 2018; 47
Yu, Wang (bib49) 2016; 9
Pu, Guo, Chen, Wang, Xi, Hu, Wang (bib11) 2017; 3
Pal, Cuellar, Kuang, Caurin, Goswami, Martinez (bib12) 2017; 2
Glavan, Martinez, Maxwell, Subramaniam, Nunes, Soh, Whitesides (bib48) 2013; 13
Corchia, Monti, Tarricone (bib6) 2019; 19
Gwon, Hong, Kim, Seo, Jeon, Kang (bib21) 2014; 7
Zhou, Liu, Zhu, Lin, Pan, Jing, Wang (bib47) 2013; 13
Li, Li, Wang, Huang, Li, Lu, Chang, Fang, Song (bib16) 2019; 3
Parwekar (bib1) 2011
Lai, Hsiao, Wu, Wang (bib42) 2019; 6
Amendola, Lodato, Manzari, Occhiuzzi, Marrocco (bib8) 2014; 1
Shi, Wu (bib2) 2019
Zhang, Liao, Zhang, Liang, Zhao, Zheng, Zhang (bib29) 2016; 3
Cheng, Jiang, Li, Li, Zhang, Ding, Wang, Yuan (bib37) 2018; 280
Chang, Boddupalli, Boyer, Orondo, Bloch, Bratlie, Thuo (bib43) 2019; 484
Li, Yang, Huang, Cao, Ni, Huang, Chen, Ouyang (bib23) 2018; 25
Kim, Ahn (bib4) 2017; 120
Zhang, Liao, Ma, Gao, Zhang, Kang, Zhang (bib30) 2018; 52
Lee, Yoon, Jiang, Wen, Seung, Kim, Wang (bib3) 2016; 6
Shu Fang, Tsai, Xu, Wu, Lo, Lu, Fuh (bib51) 2020; 31
Lessing, Glavan, Walker, Keplinger, Lewis, Whitesides (bib50) 2014; 26
Lee (10.1016/j.nanoen.2020.105301_bib3) 2016; 6
Lessing (10.1016/j.nanoen.2020.105301_bib50) 2014; 26
Parwekar (10.1016/j.nanoen.2020.105301_bib1) 2011
He (10.1016/j.nanoen.2020.105301_bib7) 2017
Águas (10.1016/j.nanoen.2020.105301_bib26) 2015; 25
Brunetti (10.1016/j.nanoen.2020.105301_bib10) 2019; 29
Mo (10.1016/j.nanoen.2020.105301_bib20) 2020; 32
Lee (10.1016/j.nanoen.2020.105301_bib27) 2012; 24
Liao (10.1016/j.nanoen.2020.105301_bib14) 2016; 8
Xia (10.1016/j.nanoen.2020.105301_bib33) 2018; 50
Cheng (10.1016/j.nanoen.2020.105301_bib37) 2018; 280
Zhang (10.1016/j.nanoen.2020.105301_bib29) 2016; 3
Wang (10.1016/j.nanoen.2020.105301_bib18) 2018; 1
Madaka (10.1016/j.nanoen.2020.105301_bib25) 2018; 47
Shu Fang (10.1016/j.nanoen.2020.105301_bib51) 2020; 31
Invernizzi (10.1016/j.nanoen.2020.105301_bib34) 2016; 45
Gao (10.1016/j.nanoen.2020.105301_bib31) 2019; 11
Pu (10.1016/j.nanoen.2020.105301_bib52) 2020; 76
Chang (10.1016/j.nanoen.2020.105301_bib43) 2019; 484
Thuo (10.1016/j.nanoen.2020.105301_bib45) 2014; 26
Lee (10.1016/j.nanoen.2020.105301_bib9) 2017; 5
Gao (10.1016/j.nanoen.2020.105301_bib22) 2019; 3
Lou (10.1016/j.nanoen.2020.105301_bib15) 2017; 38
Sadri (10.1016/j.nanoen.2020.105301_bib13) 2018; 10
Shi (10.1016/j.nanoen.2020.105301_bib2) 2019
Glavan (10.1016/j.nanoen.2020.105301_bib46) 2014; 24
Zhang (10.1016/j.nanoen.2020.105301_bib30) 2018; 52
Corchia (10.1016/j.nanoen.2020.105301_bib6) 2019; 19
Glavan (10.1016/j.nanoen.2020.105301_bib48) 2013; 13
Oyola-Reynoso (10.1016/j.nanoen.2020.105301_bib44) 2016; 4
Pu (10.1016/j.nanoen.2020.105301_bib11) 2017; 3
Amendola (10.1016/j.nanoen.2020.105301_bib8) 2014; 1
Pu (10.1016/j.nanoen.2020.105301_bib32) 2018; 54
Fan (10.1016/j.nanoen.2020.105301_bib36) 2015; 9
Lai (10.1016/j.nanoen.2020.105301_bib42) 2019; 6
Pal (10.1016/j.nanoen.2020.105301_bib12) 2017; 2
Li (10.1016/j.nanoen.2020.105301_bib16) 2019; 3
Zhang (10.1016/j.nanoen.2020.105301_bib17) 2018; 30
Gwon (10.1016/j.nanoen.2020.105301_bib21) 2014; 7
Zhang (10.1016/j.nanoen.2020.105301_bib28) 2017; 7
Bella (10.1016/j.nanoen.2020.105301_bib24) 2017; 237
Li (10.1016/j.nanoen.2020.105301_bib23) 2018; 25
Fraiwan (10.1016/j.nanoen.2020.105301_bib19) 2016; 83
Han (10.1016/j.nanoen.2020.105301_bib40) 2019
An (10.1016/j.nanoen.2020.105301_bib5) 2017; 9
Zhou (10.1016/j.nanoen.2020.105301_bib47) 2013; 13
Kim (10.1016/j.nanoen.2020.105301_bib4) 2017; 120
Xia (10.1016/j.nanoen.2020.105301_bib39) 2018; 272
Guo (10.1016/j.nanoen.2020.105301_bib38) 2017; 11
Chen (10.1016/j.nanoen.2020.105301_bib35) 2015; 14
Yu (10.1016/j.nanoen.2020.105301_bib49) 2016; 9
Dong (10.1016/j.nanoen.2020.105301_bib41) 2017; 11
References_xml – volume: 7
  start-page: 538
  year: 2014
  end-page: 551
  ident: bib21
  article-title: Recent progress on flexible lithium rechargeable batteries
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 1700130
  year: 2017
  ident: bib12
  article-title: Self-powered, paper-based electrochemical devices for sensitive point-of-care testing
  publication-title: Adv. Mater. Technol.
– volume: 50
  start-page: 571
  year: 2018
  end-page: 580
  ident: bib33
  article-title: Painting a high-output triboelectric nanogenerator on paper for harvesting energy from human body motion
  publication-title: Nano Energy
– volume: 3
  start-page: 4
  year: 2019
  ident: bib22
  article-title: Flexible, transparent nanocellulose paper-based perovskite solar cells, Npj Flex
  publication-title: Electron
– volume: 11
  start-page: 25034
  year: 2019
  end-page: 25042
  ident: bib31
  article-title: All paper-based flexible and wearable piezoresistive pressure sensor
  publication-title: ACS Appl. Mater. Interfaces
– start-page: 1
  year: 2017
  end-page: 2
  ident: bib7
  article-title: 3D-printed graphene and stretchable antennas for wearable RFID applications
  publication-title: 2017 Int. Symp. Antennas Propagation
– volume: 484
  start-page: 461
  year: 2019
  end-page: 469
  ident: bib43
  article-title: Effect of surface morphologies and chemistry of paper on deposited collagen
  publication-title: Appl. Surf. Sci.
– volume: 7
  start-page: 1601852
  year: 2017
  ident: bib28
  article-title: A one‐structure‐based piezo‐tribo‐pyro‐photoelectric effects coupled nanogenerator for simultaneously scavenging mechanical, thermal, and solar energies
  publication-title: Adv. Energy Mater.
– volume: 24
  start-page: 60
  year: 2014
  end-page: 70
  ident: bib46
  article-title: Omniphobic “R F paper” produced by silanization of paper with fluoroalkyltrichlorosilanes
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 31061
  year: 2018
  end-page: 31068
  ident: bib13
  article-title: Wearable and implantable epidermal paper-based electronics
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 514
  year: 2016
  end-page: 530
  ident: bib49
  article-title: Chemical modification of polymer surfaces for advanced triboelectric nanogenerator development
  publication-title: Extrem. Mech. Lett.
– volume: 14
  start-page: 217
  year: 2015
  end-page: 225
  ident: bib35
  article-title: Self-powered cleaning of air pollution by wind driven triboelectric nanogenerator
  publication-title: Nano Energy
– volume: 11
  start-page: 4475
  year: 2017
  end-page: 4482
  ident: bib38
  article-title: Ultralight cut-paper-based self-charging power unit for self-powered portable electronic and medical systems
  publication-title: ACS Nano
– year: 2019
  ident: bib40
  article-title: Flexible and Stretchable Triboelectric Nanogenerator Devices : toward Self-Powered Systems
– volume: 25
  start-page: 3592
  year: 2015
  end-page: 3598
  ident: bib26
  article-title: Thin film silicon photovoltaic cells on paper for flexible indoor applications
  publication-title: Adv. Funct. Mater.
– volume: 5
  year: 2017
  ident: bib9
  article-title: Research Update: recent progress in the development of effective dielectrics for high-output triboelectric nanogenerator
  publication-title: Apl. Mater.
– start-page: 329
  year: 2011
  end-page: 333
  ident: bib1
  article-title: From Internet of Things towards cloud of things
  publication-title: 2011 2nd Int. Conf. Comput. Commun. Technol.
– volume: 1
  start-page: 144
  year: 2014
  end-page: 152
  ident: bib8
  article-title: RFID technology for IoT-based personal healthcare in smart spaces
  publication-title: IEEE Internet Things J
– volume: 6
  start-page: 1502566
  year: 2016
  ident: bib3
  article-title: Fully packaged self-powered triboelectric pressure sensor using hemispheres-array
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 303
  year: 2017
  ident: bib5
  publication-title: Smart Sensor Systems for Wearable Electronic Devices, Polymers (Basel)
– volume: 30
  start-page: 1801588
  year: 2018
  ident: bib17
  article-title: Flexible electronics based on micro/nanostructured paper
  publication-title: Adv. Mater.
– volume: 45
  start-page: 5455
  year: 2016
  end-page: 5473
  ident: bib34
  article-title: Energy harvesting from human motion: materials and techniques
  publication-title: Chem. Soc. Rev.
– volume: 52
  start-page: 501
  year: 2018
  end-page: 509
  ident: bib30
  article-title: Uniformly assembled vanadium doped ZnO microflowers/bacterial cellulose hybrid paper for flexible piezoelectric nanogenerators and self-powered sensors
  publication-title: Nano Energy
– volume: 3
  start-page: 1800317
  year: 2019
  ident: bib16
  article-title: Highly foldable and efficient paper-based perovskite solar cells
  publication-title: Sol. RRL.
– volume: 76
  start-page: 105047
  year: 2020
  ident: bib52
  article-title: Flexible triboelectric 3D touch pad with unit subdivision structure for effective XY positioning and pressure sensing
  publication-title: Nano Energy
– volume: 11
  start-page: 9490
  year: 2017
  end-page: 9499
  ident: bib41
  article-title: A highly stretchable and washable all-yarn-based self-charging knitting power textile composed of fiber triboelectric nanogenerators and supercapacitors
  publication-title: ACS Nano
– volume: 38
  start-page: 28
  year: 2017
  end-page: 35
  ident: bib15
  article-title: Ultrasensitive and ultraflexible e-skins with dual functionalities for wearable electronics
  publication-title: Nano Energy
– volume: 280
  start-page: 252
  year: 2018
  end-page: 260
  ident: bib37
  article-title: A contact electrification based wind generator
  publication-title: Sens. Actuators, A A.
– volume: 31
  start-page: 155502
  year: 2020
  ident: bib51
  article-title: Hybrid nano-textured nanogenerator and self-powered sensor for on-skin triggered biomechanical motions
  publication-title: Nanotechnology
– volume: 13
  start-page: 2922
  year: 2013
  ident: bib48
  article-title: Rapid fabrication of pressure-driven open-channel microfluidic devices in omniphobic RF paper
  publication-title: Lab Chip
– volume: 120
  start-page: 244
  year: 2017
  end-page: 257
  ident: bib4
  article-title: Graphene for flexible and wearable device applications
  publication-title: Carbon N. Y.
– volume: 3
  start-page: 1500257
  year: 2016
  ident: bib29
  article-title: Novel piezoelectric paper-based flexible nanogenerators composed of BaTiO
  publication-title: Adv. Sci.
– volume: 24
  start-page: 1759
  year: 2012
  end-page: 1764
  ident: bib27
  article-title: A hybrid piezoelectric structure for wearable nanogenerators
  publication-title: Adv. Mater.
– volume: 272
  start-page: 28
  year: 2018
  end-page: 32
  ident: bib39
  article-title: Folding triboelectric nanogenerator on paper based on conductive ink and teflon tape
  publication-title: Sens. Actuators, A A.
– volume: 237
  start-page: 87
  year: 2017
  end-page: 93
  ident: bib24
  article-title: Paper-based quasi-solid dye-sensitized solar cells
  publication-title: Electrochim. Acta
– volume: 54
  start-page: 453
  year: 2018
  end-page: 460
  ident: bib32
  article-title: Rotation sensing and gesture control of a robot joint via triboelectric quantization sensor
  publication-title: Nano Energy
– volume: 4
  start-page: 14729
  year: 2016
  end-page: 14738
  ident: bib44
  article-title: Recruiting physisorbed water in surface polymerization for bio-inspired materials of tunable hydrophobicity
  publication-title: J. Mater. Chem. A.
– start-page: 359
  year: 2019
  end-page: 378
  ident: bib2
  article-title: Applications in Internet of things and artificial intelligence
  publication-title: Flex. Stretchable Triboelectric Nanogenerator Devices
– volume: 29
  start-page: 1806798
  year: 2019
  ident: bib10
  article-title: Printed solar cells and energy storage devices on paper substrates
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 4341
  year: 2018
  end-page: 4350
  ident: bib18
  article-title: Nanocellulose structured paper-based lithium metal batteries
  publication-title: ACS Appl. Energy Mater.
– volume: 3
  year: 2017
  ident: bib11
  article-title: Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator
  publication-title: Sci. Adv.
– volume: 32
  start-page: 1902151
  year: 2020
  ident: bib20
  article-title: An overview of fiber‐shaped batteries with a focus on multifunctionality, scalability, and technical difficulties
  publication-title: Adv. Mater.
– volume: 9
  start-page: 4236
  year: 2015
  end-page: 4243
  ident: bib36
  article-title: Ultrathin, rollable, paper-based triboelectric nanogenerator for acoustic energy harvesting and self-powered sound recording
  publication-title: ACS Nano
– volume: 26
  start-page: 4677
  year: 2014
  end-page: 4682
  ident: bib50
  article-title: Inkjet printing of conductive inks with high lateral resolution on omniphobic “R F paper” for paper-based electronics and MEMS
  publication-title: Adv. Mater.
– volume: 25
  start-page: 5113
  year: 2018
  end-page: 5122
  ident: bib23
  article-title: Conductive regenerated cellulose film as counter electrode for efficient dye-sensitized solar cells
  publication-title: Cellulose
– volume: 26
  start-page: 4230
  year: 2014
  end-page: 4237
  ident: bib45
  article-title: Fabrication of low-cost paper-based microfluidic devices by embossing or cut-and-stack methods
  publication-title: Chem. Mater.
– volume: 6
  start-page: 1801883
  year: 2019
  ident: bib42
  article-title: Waterproof fabric-based multifunctional triboelectric nanogenerator for universally harvesting energy from raindrops, wind, and human motions and as self-powered sensors
  publication-title: Adv. Sci.
– volume: 13
  start-page: 2771
  year: 2013
  end-page: 2776
  ident: bib47
  article-title: In situ quantitative study of nanoscale triboelectrification and patterning
  publication-title: Nano Lett.
– volume: 47
  start-page: 4710
  year: 2018
  end-page: 4720
  ident: bib25
  article-title: Low-temperature growth of amorphous silicon films and direct fabrication of solar cells on flexible polyimide and photo-paper substrates
  publication-title: J. Electron. Mater.
– volume: 8
  start-page: 13025
  year: 2016
  end-page: 13032
  ident: bib14
  article-title: Flexible and printable paper-based strain sensors for wearable and large-area green electronics
  publication-title: Nanoscale
– volume: 19
  start-page: 494
  year: 2019
  ident: bib6
  article-title: A frequency signature RFID chipless tag for wearable applications
  publication-title: Sensors
– volume: 83
  start-page: 27
  year: 2016
  end-page: 32
  ident: bib19
  article-title: A stackable, two-chambered, paper-based microbial fuel cell
  publication-title: Biosens. Bioelectron.
– volume: 6
  start-page: 1801883
  year: 2019
  ident: 10.1016/j.nanoen.2020.105301_bib42
  article-title: Waterproof fabric-based multifunctional triboelectric nanogenerator for universally harvesting energy from raindrops, wind, and human motions and as self-powered sensors
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201801883
– volume: 237
  start-page: 87
  year: 2017
  ident: 10.1016/j.nanoen.2020.105301_bib24
  article-title: Paper-based quasi-solid dye-sensitized solar cells
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.03.211
– volume: 11
  start-page: 4475
  year: 2017
  ident: 10.1016/j.nanoen.2020.105301_bib38
  article-title: Ultralight cut-paper-based self-charging power unit for self-powered portable electronic and medical systems
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b00866
– volume: 45
  start-page: 5455
  year: 2016
  ident: 10.1016/j.nanoen.2020.105301_bib34
  article-title: Energy harvesting from human motion: materials and techniques
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00812C
– volume: 7
  start-page: 538
  year: 2014
  ident: 10.1016/j.nanoen.2020.105301_bib21
  article-title: Recent progress on flexible lithium rechargeable batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C3EE42927J
– volume: 7
  start-page: 1601852
  year: 2017
  ident: 10.1016/j.nanoen.2020.105301_bib28
  article-title: A one‐structure‐based piezo‐tribo‐pyro‐photoelectric effects coupled nanogenerator for simultaneously scavenging mechanical, thermal, and solar energies
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201601852
– volume: 484
  start-page: 461
  year: 2019
  ident: 10.1016/j.nanoen.2020.105301_bib43
  article-title: Effect of surface morphologies and chemistry of paper on deposited collagen
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.04.131
– volume: 50
  start-page: 571
  year: 2018
  ident: 10.1016/j.nanoen.2020.105301_bib33
  article-title: Painting a high-output triboelectric nanogenerator on paper for harvesting energy from human body motion
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.06.019
– volume: 9
  start-page: 514
  year: 2016
  ident: 10.1016/j.nanoen.2020.105301_bib49
  article-title: Chemical modification of polymer surfaces for advanced triboelectric nanogenerator development
  publication-title: Extrem. Mech. Lett.
  doi: 10.1016/j.eml.2016.02.019
– volume: 6
  start-page: 1502566
  year: 2016
  ident: 10.1016/j.nanoen.2020.105301_bib3
  article-title: Fully packaged self-powered triboelectric pressure sensor using hemispheres-array
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201502566
– volume: 26
  start-page: 4230
  year: 2014
  ident: 10.1016/j.nanoen.2020.105301_bib45
  article-title: Fabrication of low-cost paper-based microfluidic devices by embossing or cut-and-stack methods
  publication-title: Chem. Mater.
  doi: 10.1021/cm501596s
– start-page: 359
  year: 2019
  ident: 10.1016/j.nanoen.2020.105301_bib2
  article-title: Applications in Internet of things and artificial intelligence
– volume: 25
  start-page: 5113
  year: 2018
  ident: 10.1016/j.nanoen.2020.105301_bib23
  article-title: Conductive regenerated cellulose film as counter electrode for efficient dye-sensitized solar cells
  publication-title: Cellulose
  doi: 10.1007/s10570-018-1913-1
– volume: 24
  start-page: 1759
  year: 2012
  ident: 10.1016/j.nanoen.2020.105301_bib27
  article-title: A hybrid piezoelectric structure for wearable nanogenerators
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201200150
– volume: 9
  start-page: 303
  year: 2017
  ident: 10.1016/j.nanoen.2020.105301_bib5
  publication-title: Smart Sensor Systems for Wearable Electronic Devices, Polymers (Basel)
– volume: 5
  year: 2017
  ident: 10.1016/j.nanoen.2020.105301_bib9
  article-title: Research Update: recent progress in the development of effective dielectrics for high-output triboelectric nanogenerator
  publication-title: Apl. Mater.
  doi: 10.1063/1.4979306
– volume: 13
  start-page: 2771
  year: 2013
  ident: 10.1016/j.nanoen.2020.105301_bib47
  article-title: In situ quantitative study of nanoscale triboelectrification and patterning
  publication-title: Nano Lett.
  doi: 10.1021/nl401006x
– volume: 11
  start-page: 9490
  year: 2017
  ident: 10.1016/j.nanoen.2020.105301_bib41
  article-title: A highly stretchable and washable all-yarn-based self-charging knitting power textile composed of fiber triboelectric nanogenerators and supercapacitors
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b05317
– volume: 272
  start-page: 28
  year: 2018
  ident: 10.1016/j.nanoen.2020.105301_bib39
  article-title: Folding triboelectric nanogenerator on paper based on conductive ink and teflon tape
  publication-title: Sens. Actuators, A A.
  doi: 10.1016/j.sna.2018.01.054
– volume: 13
  start-page: 2922
  year: 2013
  ident: 10.1016/j.nanoen.2020.105301_bib48
  article-title: Rapid fabrication of pressure-driven open-channel microfluidic devices in omniphobic RF paper
  publication-title: Lab Chip
  doi: 10.1039/c3lc50371b
– volume: 19
  start-page: 494
  year: 2019
  ident: 10.1016/j.nanoen.2020.105301_bib6
  article-title: A frequency signature RFID chipless tag for wearable applications
  publication-title: Sensors
  doi: 10.3390/s19030494
– volume: 1
  start-page: 144
  year: 2014
  ident: 10.1016/j.nanoen.2020.105301_bib8
  article-title: RFID technology for IoT-based personal healthcare in smart spaces
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2014.2313981
– volume: 76
  start-page: 105047
  year: 2020
  ident: 10.1016/j.nanoen.2020.105301_bib52
  article-title: Flexible triboelectric 3D touch pad with unit subdivision structure for effective XY positioning and pressure sensing
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105047
– volume: 38
  start-page: 28
  year: 2017
  ident: 10.1016/j.nanoen.2020.105301_bib15
  article-title: Ultrasensitive and ultraflexible e-skins with dual functionalities for wearable electronics
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.05.024
– volume: 47
  start-page: 4710
  year: 2018
  ident: 10.1016/j.nanoen.2020.105301_bib25
  article-title: Low-temperature growth of amorphous silicon films and direct fabrication of solar cells on flexible polyimide and photo-paper substrates
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-018-6344-0
– volume: 10
  start-page: 31061
  year: 2018
  ident: 10.1016/j.nanoen.2020.105301_bib13
  article-title: Wearable and implantable epidermal paper-based electronics
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b11020
– volume: 29
  start-page: 1806798
  year: 2019
  ident: 10.1016/j.nanoen.2020.105301_bib10
  article-title: Printed solar cells and energy storage devices on paper substrates
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201806798
– year: 2019
  ident: 10.1016/j.nanoen.2020.105301_bib40
– volume: 31
  start-page: 155502
  year: 2020
  ident: 10.1016/j.nanoen.2020.105301_bib51
  article-title: Hybrid nano-textured nanogenerator and self-powered sensor for on-skin triggered biomechanical motions
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/ab6677
– volume: 26
  start-page: 4677
  year: 2014
  ident: 10.1016/j.nanoen.2020.105301_bib50
  article-title: Inkjet printing of conductive inks with high lateral resolution on omniphobic “R F paper” for paper-based electronics and MEMS
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201401053
– volume: 14
  start-page: 217
  year: 2015
  ident: 10.1016/j.nanoen.2020.105301_bib35
  article-title: Self-powered cleaning of air pollution by wind driven triboelectric nanogenerator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.12.013
– start-page: 329
  year: 2011
  ident: 10.1016/j.nanoen.2020.105301_bib1
  article-title: From Internet of Things towards cloud of things
– volume: 83
  start-page: 27
  year: 2016
  ident: 10.1016/j.nanoen.2020.105301_bib19
  article-title: A stackable, two-chambered, paper-based microbial fuel cell
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2016.04.025
– volume: 3
  start-page: 1500257
  year: 2016
  ident: 10.1016/j.nanoen.2020.105301_bib29
  article-title: Novel piezoelectric paper-based flexible nanogenerators composed of BaTiO 3 nanoparticles and bacterial cellulose
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201500257
– volume: 30
  start-page: 1801588
  year: 2018
  ident: 10.1016/j.nanoen.2020.105301_bib17
  article-title: Flexible electronics based on micro/nanostructured paper
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801588
– volume: 120
  start-page: 244
  year: 2017
  ident: 10.1016/j.nanoen.2020.105301_bib4
  article-title: Graphene for flexible and wearable device applications
  publication-title: Carbon N. Y.
  doi: 10.1016/j.carbon.2017.05.041
– volume: 2
  start-page: 1700130
  year: 2017
  ident: 10.1016/j.nanoen.2020.105301_bib12
  article-title: Self-powered, paper-based electrochemical devices for sensitive point-of-care testing
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201700130
– volume: 24
  start-page: 60
  year: 2014
  ident: 10.1016/j.nanoen.2020.105301_bib46
  article-title: Omniphobic “R F paper” produced by silanization of paper with fluoroalkyltrichlorosilanes
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201300780
– volume: 1
  start-page: 4341
  year: 2018
  ident: 10.1016/j.nanoen.2020.105301_bib18
  article-title: Nanocellulose structured paper-based lithium metal batteries
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b00961
– volume: 3
  start-page: 1800317
  year: 2019
  ident: 10.1016/j.nanoen.2020.105301_bib16
  article-title: Highly foldable and efficient paper-based perovskite solar cells
  publication-title: Sol. RRL.
  doi: 10.1002/solr.201800317
– volume: 8
  start-page: 13025
  year: 2016
  ident: 10.1016/j.nanoen.2020.105301_bib14
  article-title: Flexible and printable paper-based strain sensors for wearable and large-area green electronics
  publication-title: Nanoscale
  doi: 10.1039/C6NR02172G
– volume: 52
  start-page: 501
  year: 2018
  ident: 10.1016/j.nanoen.2020.105301_bib30
  article-title: Uniformly assembled vanadium doped ZnO microflowers/bacterial cellulose hybrid paper for flexible piezoelectric nanogenerators and self-powered sensors
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.08.020
– start-page: 1
  year: 2017
  ident: 10.1016/j.nanoen.2020.105301_bib7
  article-title: 3D-printed graphene and stretchable antennas for wearable RFID applications
– volume: 3
  start-page: 4
  year: 2019
  ident: 10.1016/j.nanoen.2020.105301_bib22
  article-title: Flexible, transparent nanocellulose paper-based perovskite solar cells, Npj Flex
  publication-title: Electron
– volume: 9
  start-page: 4236
  year: 2015
  ident: 10.1016/j.nanoen.2020.105301_bib36
  article-title: Ultrathin, rollable, paper-based triboelectric nanogenerator for acoustic energy harvesting and self-powered sound recording
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b00618
– volume: 280
  start-page: 252
  year: 2018
  ident: 10.1016/j.nanoen.2020.105301_bib37
  article-title: A contact electrification based wind generator
  publication-title: Sens. Actuators, A A.
  doi: 10.1016/j.sna.2018.07.043
– volume: 3
  year: 2017
  ident: 10.1016/j.nanoen.2020.105301_bib11
  article-title: Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1700694
– volume: 4
  start-page: 14729
  year: 2016
  ident: 10.1016/j.nanoen.2020.105301_bib44
  article-title: Recruiting physisorbed water in surface polymerization for bio-inspired materials of tunable hydrophobicity
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C6TA06446A
– volume: 32
  start-page: 1902151
  year: 2020
  ident: 10.1016/j.nanoen.2020.105301_bib20
  article-title: An overview of fiber‐shaped batteries with a focus on multifunctionality, scalability, and technical difficulties
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902151
– volume: 11
  start-page: 25034
  year: 2019
  ident: 10.1016/j.nanoen.2020.105301_bib31
  article-title: All paper-based flexible and wearable piezoresistive pressure sensor
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b07465
– volume: 25
  start-page: 3592
  year: 2015
  ident: 10.1016/j.nanoen.2020.105301_bib26
  article-title: Thin film silicon photovoltaic cells on paper for flexible indoor applications
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201500636
– volume: 54
  start-page: 453
  year: 2018
  ident: 10.1016/j.nanoen.2020.105301_bib32
  article-title: Rotation sensing and gesture control of a robot joint via triboelectric quantization sensor
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.10.044
SSID ssj0000651712
Score 2.4713814
Snippet The fabrication of multifunctional electronic devices on ubiquitous paper substrates is gaining considerable attention due to their low cost, environmental...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105301
SubjectTerms Flexible electronics
Omniphobic paper
Paper-based electronics
Self-powered human-machine interfaces
Triboelectric nanogenerators
Title Moisture-insensitive, self-powered paper-based flexible electronics
URI https://dx.doi.org/10.1016/j.nanoen.2020.105301
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPvHNHjwa22SzSfZYilKV9qKF3pZNdgKVsl36uPrbzeyjVgQFD3vIMgPLl2FeOw9CbrHzIzaY_xIqpML74NRAKH3ME3MXZzKGFBuFhyM5GIvnSTRpkX7TC4NllbXur3R6qa3rN50azU4xnXZeuY9duI4iXk6109jwK4RCKb__YJs8izexTJU_PZGeIkPTQVeWeeVpPgcchMrLnbdhvR3mh4XasjqPB2S_dheDXvVFh6QF-RHZ2xoieEz6w7m_qvUC6BTzxMuyGOguWMLM0QJ3oEEWFGkBC4oWKwscjsA0Mwi-NuAsT8j48eGtP6D1agRqvY-_oqExzjsejCvg1nqbnEaageSxFtZaDUZ2Hc98KBB2nY8ojAydipz25MyLjlbhKWnn8xzOSKB4ppgxIlVGiVRyzSyPMyZA-0dGcE7CBo7E1nPDcX3FLGkKxN6TCsQEQUwqEM8J3XAV1dyMP-hVg3Ty7f4Tr9p_5bz4N-cl2cVTVZxyRdqrxRquvYuxMjelDN2Qnd7Ty2D0CbWCzvo
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07a8MwED7SZGg7lD5p-vTQsSKxZEvyGEJL0jyWJpDNWLIEKcExefz_SracphRa6ODF1oH5fNzLd98BPNnJj0jY-lfACApMDI6EItTkPBHWUUojldhB4dGY9qbB2yyc1aBbzcLYtkpn-0ubXlhrd6fl0Gzl83nrHZvcBfMwxAWrHecH0LDsVGEdGp3-oDfelVqMl_VZ8d_TiiArUw3RFZ1eWZItleVCxcXaW-IWxPxwUnuO5_UUTlzE6HXKlzqDmsrO4XiPR_ACuqOl-VrblUJzWypeF_1Az95aLTTK7Ro0lXp5kqsVsk4r9bRlwRQL5X0twVlfwvT1ZdLtIbcdAUkT5m8QEUKb2MPHTGEpjVtOQu4riiMeSCm5ErStcWqyAdLWJqkQlGgWam6O-0Z7OCNXUM-WmboGj-GU-UIECRMsSCjmvsRR6geKm4uGqgmkgiOWjjrcbrBYxFWP2EdcghhbEOMSxCagnVReUmf8cZ5VSMffVCA21v1XyZt_Sz7CYW8yGsbD_nhwC0f2Sdmrcgf1zWqr7k3EsREPTqM-AeB70as
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Moisture-insensitive%2C+self-powered+paper-based+flexible+electronics&rft.jtitle=Nano+energy&rft.au=Sala+de+Medeiros%2C+Marina&rft.au=Chanci%2C+Daniela&rft.au=Martinez%2C+Ramses+V.&rft.date=2020-12-01&rft.pub=Elsevier+Ltd&rft.issn=2211-2855&rft.volume=78&rft_id=info:doi/10.1016%2Fj.nanoen.2020.105301&rft.externalDocID=S2211285520308788
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon