Moisture-insensitive, self-powered paper-based flexible electronics
The fabrication of multifunctional electronic devices on ubiquitous paper substrates is gaining considerable attention due to their low cost, environmental friendliness, light weight, and flexibility. Unfortunately, the development of paper-based electronics is subject to significant challenges, suc...
Saved in:
Published in | Nano energy Vol. 78; p. 105301 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The fabrication of multifunctional electronic devices on ubiquitous paper substrates is gaining considerable attention due to their low cost, environmental friendliness, light weight, and flexibility. Unfortunately, the development of paper-based electronics is subject to significant challenges, such as rapid degradation with moisture, battery dependence, and limited compatibility with existing mass production technologies. This work describes omniphobic, self-powered paper-based electronics (RF-SPEs), completely wireless paper-based electronic devices insensitive to moisture, liquid stains, and dust. RF-SPEs can be rapidly fabricated through the sequential spray-deposition of alkylated organosilanes, conductive nanoparticles, polytetrafluoroethylene (strong electron affinity), and ethyl cellulose (weak electron affinity) over the surface of cellulose paper. RF-SPEs are lightweight, inexpensive to print (<$0.25 per device), and capable of generating power densities up to 300 μW/cm2. Additionally, RF-SPEs are flexible and exhibit excellent stability upon folding (0.3 mm radius of curvature). The simple printing process and relative low cost of RF-SPEs enable the large-scale production of self-powered paper-based electronics towards the ubiquitous integration of human-machine interfaces.
[Display omitted]
•All-spray fabrication of waterproof self-powered paper-based electronics (RF-SPEs).•RFSPEs are foldable and insensitive to moisture, liquid stains, and dust.•Triboelectric areas in RF-SPEs enable self-powered Bluetooth wireless communication.•RF-SPEs enable the low-cost manufacturing of reliable human-machine interfaces. |
---|---|
AbstractList | The fabrication of multifunctional electronic devices on ubiquitous paper substrates is gaining considerable attention due to their low cost, environmental friendliness, light weight, and flexibility. Unfortunately, the development of paper-based electronics is subject to significant challenges, such as rapid degradation with moisture, battery dependence, and limited compatibility with existing mass production technologies. This work describes omniphobic, self-powered paper-based electronics (RF-SPEs), completely wireless paper-based electronic devices insensitive to moisture, liquid stains, and dust. RF-SPEs can be rapidly fabricated through the sequential spray-deposition of alkylated organosilanes, conductive nanoparticles, polytetrafluoroethylene (strong electron affinity), and ethyl cellulose (weak electron affinity) over the surface of cellulose paper. RF-SPEs are lightweight, inexpensive to print (<$0.25 per device), and capable of generating power densities up to 300 μW/cm2. Additionally, RF-SPEs are flexible and exhibit excellent stability upon folding (0.3 mm radius of curvature). The simple printing process and relative low cost of RF-SPEs enable the large-scale production of self-powered paper-based electronics towards the ubiquitous integration of human-machine interfaces.
[Display omitted]
•All-spray fabrication of waterproof self-powered paper-based electronics (RF-SPEs).•RFSPEs are foldable and insensitive to moisture, liquid stains, and dust.•Triboelectric areas in RF-SPEs enable self-powered Bluetooth wireless communication.•RF-SPEs enable the low-cost manufacturing of reliable human-machine interfaces. |
ArticleNumber | 105301 |
Author | Sala de Medeiros, Marina Chanci, Daniela Martinez, Ramses V. |
Author_xml | – sequence: 1 givenname: Marina orcidid: 0000-0003-3800-8705 surname: Sala de Medeiros fullname: Sala de Medeiros, Marina organization: School of Industrial Engineering, Purdue University, 315 N. Grant Street, West Lafayette, IN, 47907, USA – sequence: 2 givenname: Daniela surname: Chanci fullname: Chanci, Daniela organization: School of Industrial Engineering, Purdue University, 315 N. Grant Street, West Lafayette, IN, 47907, USA – sequence: 3 givenname: Ramses V. surname: Martinez fullname: Martinez, Ramses V. email: rmartinez@purdue.edu organization: School of Industrial Engineering, Purdue University, 315 N. Grant Street, West Lafayette, IN, 47907, USA |
BookMark | eNqFkM1OwzAMgHMYEmPsDTjsAUhJ0iUNHJDQxJ80xAXOUZo6kqeSVEkY8PZ0KicO4Isty5_lzydkFmIAQs44qzjj6mJXBRsihEowcWjJmvEZmQvBORVaymOyzHnHxlCSN1zMyeYpYi7vCSiGDCFjwT2crzL0ng7xAxJ0q8EOkGhr81j7Hj6x7WEFPbiSYkCXT8mRt32G5U9ekNe725fNA90-3z9ubrbU1UwVWretF03NRQPCOaa4lZqDEpd67ZzT0CrmRSf1eLSXjWpV7Rvp9TjOwXa6qRdkPe11KeacwJsh4ZtNX4Yzc_A3OzP5m4O_mfxH7OoX5rDYgjGUZLH_D76eYBjF9gjJZIcQHHSYxgeYLuLfC74BWzR9Lg |
CitedBy_id | crossref_primary_10_1002_eom2_12493 crossref_primary_10_3390_nano11010080 crossref_primary_10_1038_s41598_022_16834_8 crossref_primary_10_1002_er_8270 crossref_primary_10_1002_ente_202300831 crossref_primary_10_3390_ma16103856 crossref_primary_10_3390_ma15062240 crossref_primary_10_1021_acsaelm_3c00673 crossref_primary_10_1016_j_matt_2021_05_009 crossref_primary_10_1002_adfm_202200260 crossref_primary_10_3390_ma15186447 crossref_primary_10_3390_mi14030592 crossref_primary_10_1016_j_nanoen_2021_106236 crossref_primary_10_1002_aesr_202100161 crossref_primary_10_1016_j_nanoen_2023_109224 crossref_primary_10_1016_j_nanoen_2022_108042 crossref_primary_10_1149_2162_8777_ac4389 crossref_primary_10_3390_nano15020089 crossref_primary_10_1007_s40820_023_01094_6 crossref_primary_10_1039_D4MH00753K crossref_primary_10_1002_advs_202105084 crossref_primary_10_1007_s12274_021_3591_9 crossref_primary_10_1088_2058_8585_ad7b50 crossref_primary_10_1109_JSEN_2022_3158354 crossref_primary_10_3390_nanoenergyadv1010005 crossref_primary_10_1016_j_jallcom_2023_173411 crossref_primary_10_1021_acsanm_2c02026 crossref_primary_10_1016_j_nanoen_2022_107934 crossref_primary_10_1021_acs_langmuir_1c02134 crossref_primary_10_1021_acs_analchem_1c03344 crossref_primary_10_3390_nano12040714 crossref_primary_10_1002_adma_202006792 crossref_primary_10_1016_j_cej_2024_154959 crossref_primary_10_1021_acssuschemeng_3c01943 |
Cites_doi | 10.1002/advs.201801883 10.1016/j.electacta.2017.03.211 10.1021/acsnano.7b00866 10.1039/C5CS00812C 10.1039/C3EE42927J 10.1002/aenm.201601852 10.1016/j.apsusc.2019.04.131 10.1016/j.nanoen.2018.06.019 10.1016/j.eml.2016.02.019 10.1002/aenm.201502566 10.1021/cm501596s 10.1007/s10570-018-1913-1 10.1002/adma.201200150 10.1063/1.4979306 10.1021/nl401006x 10.1021/acsnano.7b05317 10.1016/j.sna.2018.01.054 10.1039/c3lc50371b 10.3390/s19030494 10.1109/JIOT.2014.2313981 10.1016/j.nanoen.2020.105047 10.1016/j.nanoen.2017.05.024 10.1007/s11664-018-6344-0 10.1021/acsami.8b11020 10.1002/adfm.201806798 10.1088/1361-6528/ab6677 10.1002/adma.201401053 10.1016/j.nanoen.2014.12.013 10.1016/j.bios.2016.04.025 10.1002/advs.201500257 10.1002/adma.201801588 10.1016/j.carbon.2017.05.041 10.1002/admt.201700130 10.1002/adfm.201300780 10.1021/acsaem.8b00961 10.1002/solr.201800317 10.1039/C6NR02172G 10.1016/j.nanoen.2018.08.020 10.1021/acsnano.5b00618 10.1016/j.sna.2018.07.043 10.1126/sciadv.1700694 10.1039/C6TA06446A 10.1002/adma.201902151 10.1021/acsami.9b07465 10.1002/adfm.201500636 10.1016/j.nanoen.2018.10.044 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.nanoen.2020.105301 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_nanoen_2020_105301 S2211285520308788 |
GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AATTM AAXKI AAXUO ABMAC ABWVN ABXDB ABXRA ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEZYN AFJKZ AFRZQ AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BELTK BKOJK BLXMC BNPGV EBS EFJIC EJD FDB FIRID FNPLU FYGXN GBLVA HZ~ JARJE KOM M41 MAGPM MO0 O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SPC SPCBC SSH SSM SSR SSZ T5K ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c306t-3bbf273127e2cc061a581e62984ccc8eb60f2d58530f576b63f75f827e1ead873 |
IEDL.DBID | .~1 |
ISSN | 2211-2855 |
IngestDate | Tue Jul 01 00:56:41 EDT 2025 Thu Apr 24 22:57:02 EDT 2025 Sun Apr 06 06:54:58 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Triboelectric nanogenerators Self-powered human-machine interfaces Paper-based electronics Flexible electronics Omniphobic paper |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-3bbf273127e2cc061a581e62984ccc8eb60f2d58530f576b63f75f827e1ead873 |
ORCID | 0000-0003-3800-8705 |
ParticipantIDs | crossref_primary_10_1016_j_nanoen_2020_105301 crossref_citationtrail_10_1016_j_nanoen_2020_105301 elsevier_sciencedirect_doi_10_1016_j_nanoen_2020_105301 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2020 2020-12-00 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
PublicationDecade | 2020 |
PublicationTitle | Nano energy |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | An, Shin, Kim, Kim, Ji, Park, Lee, Jang, Park, Cho, Jo, Park (bib5) 2017; 9 Lee, Ye, Baik (bib9) 2017; 5 Xia, Zhang, Zhu, Xu (bib39) 2018; 272 Gao, Zhu, Li, Zhang, Liu, Yu, Huang (bib31) 2019; 11 Guo, Yeh, Zi, Wen, Chen, Liu, Hu, Wang (bib38) 2017; 11 Oyola-Reynoso, Tevis, Chen, Chang, Çinar, Bloch, Thuo (bib44) 2016; 4 Invernizzi, Dulio, Patrini, Guizzetti, Mustarelli (bib34) 2016; 45 Sadri, Goswami, Sala de Medeiros, Pal, Castro, Kuang, Martinez (bib13) 2018; 10 Gao, Chao, Hou, Liang, Chen, Yu, Huang (bib22) 2019; 3 Brunetti, Operamolla, Castro‐Hermosa, Lucarelli, Manca, Farinola, Brown (bib10) 2019; 29 Mo, Liang, Huang, Li, Wang, Zhi (bib20) 2020; 32 Pu, Tang, Chen, Huang, Liu, Zeng, Chen, Guo, Xin, Hu (bib52) 2020; 76 Bella, Pugliese, Zolin, Gerbaldi (bib24) 2017; 237 He, Akbari, Sydanheimo, Ukkonen, Virkki (bib7) 2017 Fraiwan, Choi (bib19) 2016; 83 Zhang, Wang, Yang (bib28) 2017; 7 Zhang, Zhang, Cui, Ge, Cheng, Yan, Yu, Liu (bib17) 2018; 30 Liao, Zhang, Liao, Liang, Ou, Xu, Li, Zhang, Zhang (bib14) 2016; 8 Wang, Pan, Sun, Edström, Strømme, Nyholm (bib18) 2018; 1 Thuo, Martinez, Lan, Liu, Barber, Atkinson, Bandarage, Bloch, Whitesides (bib45) 2014; 26 Lou, Chen, Wang, Shi, Li, Jiang, Chen, Shen (bib15) 2017; 38 Lee, Chen, Wang, Cha, Park, Kim, Chou, Wang (bib27) 2012; 24 Xia, Zhu, Zhang, Du, Xu, Wang (bib33) 2018; 50 Águas, Mateus, Vicente, Gaspar, Mendes, Schmidt, Pereira, Fortunato, Martins (bib26) 2015; 25 Chen, Gao, Tang, Zhu, Han, Jiang, Li, Cao, Wang (bib35) 2015; 14 Pu, Guo, Tang, Chen, Feng, Liu, Wang, Xi, Hu, Wang (bib32) 2018; 54 Han, Zhang, Zhang (bib40) 2019 Fan, Chen, Yang, Bai, Li, Wang (bib36) 2015; 9 Glavan, Martinez, Subramaniam, Yoon, Nunes, Lange, Thuo, Whitesides (bib46) 2014; 24 Dong, Wang, Deng, Dai, Zhang, Zou, Gu, Sun, Wang (bib41) 2017; 11 Madaka, Kanneboina, Agarwal (bib25) 2018; 47 Yu, Wang (bib49) 2016; 9 Pu, Guo, Chen, Wang, Xi, Hu, Wang (bib11) 2017; 3 Pal, Cuellar, Kuang, Caurin, Goswami, Martinez (bib12) 2017; 2 Glavan, Martinez, Maxwell, Subramaniam, Nunes, Soh, Whitesides (bib48) 2013; 13 Corchia, Monti, Tarricone (bib6) 2019; 19 Gwon, Hong, Kim, Seo, Jeon, Kang (bib21) 2014; 7 Zhou, Liu, Zhu, Lin, Pan, Jing, Wang (bib47) 2013; 13 Li, Li, Wang, Huang, Li, Lu, Chang, Fang, Song (bib16) 2019; 3 Parwekar (bib1) 2011 Lai, Hsiao, Wu, Wang (bib42) 2019; 6 Amendola, Lodato, Manzari, Occhiuzzi, Marrocco (bib8) 2014; 1 Shi, Wu (bib2) 2019 Zhang, Liao, Zhang, Liang, Zhao, Zheng, Zhang (bib29) 2016; 3 Cheng, Jiang, Li, Li, Zhang, Ding, Wang, Yuan (bib37) 2018; 280 Chang, Boddupalli, Boyer, Orondo, Bloch, Bratlie, Thuo (bib43) 2019; 484 Li, Yang, Huang, Cao, Ni, Huang, Chen, Ouyang (bib23) 2018; 25 Kim, Ahn (bib4) 2017; 120 Zhang, Liao, Ma, Gao, Zhang, Kang, Zhang (bib30) 2018; 52 Lee, Yoon, Jiang, Wen, Seung, Kim, Wang (bib3) 2016; 6 Shu Fang, Tsai, Xu, Wu, Lo, Lu, Fuh (bib51) 2020; 31 Lessing, Glavan, Walker, Keplinger, Lewis, Whitesides (bib50) 2014; 26 Lee (10.1016/j.nanoen.2020.105301_bib3) 2016; 6 Lessing (10.1016/j.nanoen.2020.105301_bib50) 2014; 26 Parwekar (10.1016/j.nanoen.2020.105301_bib1) 2011 He (10.1016/j.nanoen.2020.105301_bib7) 2017 Águas (10.1016/j.nanoen.2020.105301_bib26) 2015; 25 Brunetti (10.1016/j.nanoen.2020.105301_bib10) 2019; 29 Mo (10.1016/j.nanoen.2020.105301_bib20) 2020; 32 Lee (10.1016/j.nanoen.2020.105301_bib27) 2012; 24 Liao (10.1016/j.nanoen.2020.105301_bib14) 2016; 8 Xia (10.1016/j.nanoen.2020.105301_bib33) 2018; 50 Cheng (10.1016/j.nanoen.2020.105301_bib37) 2018; 280 Zhang (10.1016/j.nanoen.2020.105301_bib29) 2016; 3 Wang (10.1016/j.nanoen.2020.105301_bib18) 2018; 1 Madaka (10.1016/j.nanoen.2020.105301_bib25) 2018; 47 Shu Fang (10.1016/j.nanoen.2020.105301_bib51) 2020; 31 Invernizzi (10.1016/j.nanoen.2020.105301_bib34) 2016; 45 Gao (10.1016/j.nanoen.2020.105301_bib31) 2019; 11 Pu (10.1016/j.nanoen.2020.105301_bib52) 2020; 76 Chang (10.1016/j.nanoen.2020.105301_bib43) 2019; 484 Thuo (10.1016/j.nanoen.2020.105301_bib45) 2014; 26 Lee (10.1016/j.nanoen.2020.105301_bib9) 2017; 5 Gao (10.1016/j.nanoen.2020.105301_bib22) 2019; 3 Lou (10.1016/j.nanoen.2020.105301_bib15) 2017; 38 Sadri (10.1016/j.nanoen.2020.105301_bib13) 2018; 10 Shi (10.1016/j.nanoen.2020.105301_bib2) 2019 Glavan (10.1016/j.nanoen.2020.105301_bib46) 2014; 24 Zhang (10.1016/j.nanoen.2020.105301_bib30) 2018; 52 Corchia (10.1016/j.nanoen.2020.105301_bib6) 2019; 19 Glavan (10.1016/j.nanoen.2020.105301_bib48) 2013; 13 Oyola-Reynoso (10.1016/j.nanoen.2020.105301_bib44) 2016; 4 Pu (10.1016/j.nanoen.2020.105301_bib11) 2017; 3 Amendola (10.1016/j.nanoen.2020.105301_bib8) 2014; 1 Pu (10.1016/j.nanoen.2020.105301_bib32) 2018; 54 Fan (10.1016/j.nanoen.2020.105301_bib36) 2015; 9 Lai (10.1016/j.nanoen.2020.105301_bib42) 2019; 6 Pal (10.1016/j.nanoen.2020.105301_bib12) 2017; 2 Li (10.1016/j.nanoen.2020.105301_bib16) 2019; 3 Zhang (10.1016/j.nanoen.2020.105301_bib17) 2018; 30 Gwon (10.1016/j.nanoen.2020.105301_bib21) 2014; 7 Zhang (10.1016/j.nanoen.2020.105301_bib28) 2017; 7 Bella (10.1016/j.nanoen.2020.105301_bib24) 2017; 237 Li (10.1016/j.nanoen.2020.105301_bib23) 2018; 25 Fraiwan (10.1016/j.nanoen.2020.105301_bib19) 2016; 83 Han (10.1016/j.nanoen.2020.105301_bib40) 2019 An (10.1016/j.nanoen.2020.105301_bib5) 2017; 9 Zhou (10.1016/j.nanoen.2020.105301_bib47) 2013; 13 Kim (10.1016/j.nanoen.2020.105301_bib4) 2017; 120 Xia (10.1016/j.nanoen.2020.105301_bib39) 2018; 272 Guo (10.1016/j.nanoen.2020.105301_bib38) 2017; 11 Chen (10.1016/j.nanoen.2020.105301_bib35) 2015; 14 Yu (10.1016/j.nanoen.2020.105301_bib49) 2016; 9 Dong (10.1016/j.nanoen.2020.105301_bib41) 2017; 11 |
References_xml | – volume: 7 start-page: 538 year: 2014 end-page: 551 ident: bib21 article-title: Recent progress on flexible lithium rechargeable batteries publication-title: Energy Environ. Sci. – volume: 2 start-page: 1700130 year: 2017 ident: bib12 article-title: Self-powered, paper-based electrochemical devices for sensitive point-of-care testing publication-title: Adv. Mater. Technol. – volume: 50 start-page: 571 year: 2018 end-page: 580 ident: bib33 article-title: Painting a high-output triboelectric nanogenerator on paper for harvesting energy from human body motion publication-title: Nano Energy – volume: 3 start-page: 4 year: 2019 ident: bib22 article-title: Flexible, transparent nanocellulose paper-based perovskite solar cells, Npj Flex publication-title: Electron – volume: 11 start-page: 25034 year: 2019 end-page: 25042 ident: bib31 article-title: All paper-based flexible and wearable piezoresistive pressure sensor publication-title: ACS Appl. Mater. Interfaces – start-page: 1 year: 2017 end-page: 2 ident: bib7 article-title: 3D-printed graphene and stretchable antennas for wearable RFID applications publication-title: 2017 Int. Symp. Antennas Propagation – volume: 484 start-page: 461 year: 2019 end-page: 469 ident: bib43 article-title: Effect of surface morphologies and chemistry of paper on deposited collagen publication-title: Appl. Surf. Sci. – volume: 7 start-page: 1601852 year: 2017 ident: bib28 article-title: A one‐structure‐based piezo‐tribo‐pyro‐photoelectric effects coupled nanogenerator for simultaneously scavenging mechanical, thermal, and solar energies publication-title: Adv. Energy Mater. – volume: 24 start-page: 60 year: 2014 end-page: 70 ident: bib46 article-title: Omniphobic “R F paper” produced by silanization of paper with fluoroalkyltrichlorosilanes publication-title: Adv. Funct. Mater. – volume: 10 start-page: 31061 year: 2018 end-page: 31068 ident: bib13 article-title: Wearable and implantable epidermal paper-based electronics publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 514 year: 2016 end-page: 530 ident: bib49 article-title: Chemical modification of polymer surfaces for advanced triboelectric nanogenerator development publication-title: Extrem. Mech. Lett. – volume: 14 start-page: 217 year: 2015 end-page: 225 ident: bib35 article-title: Self-powered cleaning of air pollution by wind driven triboelectric nanogenerator publication-title: Nano Energy – volume: 11 start-page: 4475 year: 2017 end-page: 4482 ident: bib38 article-title: Ultralight cut-paper-based self-charging power unit for self-powered portable electronic and medical systems publication-title: ACS Nano – year: 2019 ident: bib40 article-title: Flexible and Stretchable Triboelectric Nanogenerator Devices : toward Self-Powered Systems – volume: 25 start-page: 3592 year: 2015 end-page: 3598 ident: bib26 article-title: Thin film silicon photovoltaic cells on paper for flexible indoor applications publication-title: Adv. Funct. Mater. – volume: 5 year: 2017 ident: bib9 article-title: Research Update: recent progress in the development of effective dielectrics for high-output triboelectric nanogenerator publication-title: Apl. Mater. – start-page: 329 year: 2011 end-page: 333 ident: bib1 article-title: From Internet of Things towards cloud of things publication-title: 2011 2nd Int. Conf. Comput. Commun. Technol. – volume: 1 start-page: 144 year: 2014 end-page: 152 ident: bib8 article-title: RFID technology for IoT-based personal healthcare in smart spaces publication-title: IEEE Internet Things J – volume: 6 start-page: 1502566 year: 2016 ident: bib3 article-title: Fully packaged self-powered triboelectric pressure sensor using hemispheres-array publication-title: Adv. Energy Mater. – volume: 9 start-page: 303 year: 2017 ident: bib5 publication-title: Smart Sensor Systems for Wearable Electronic Devices, Polymers (Basel) – volume: 30 start-page: 1801588 year: 2018 ident: bib17 article-title: Flexible electronics based on micro/nanostructured paper publication-title: Adv. Mater. – volume: 45 start-page: 5455 year: 2016 end-page: 5473 ident: bib34 article-title: Energy harvesting from human motion: materials and techniques publication-title: Chem. Soc. Rev. – volume: 52 start-page: 501 year: 2018 end-page: 509 ident: bib30 article-title: Uniformly assembled vanadium doped ZnO microflowers/bacterial cellulose hybrid paper for flexible piezoelectric nanogenerators and self-powered sensors publication-title: Nano Energy – volume: 3 start-page: 1800317 year: 2019 ident: bib16 article-title: Highly foldable and efficient paper-based perovskite solar cells publication-title: Sol. RRL. – volume: 76 start-page: 105047 year: 2020 ident: bib52 article-title: Flexible triboelectric 3D touch pad with unit subdivision structure for effective XY positioning and pressure sensing publication-title: Nano Energy – volume: 11 start-page: 9490 year: 2017 end-page: 9499 ident: bib41 article-title: A highly stretchable and washable all-yarn-based self-charging knitting power textile composed of fiber triboelectric nanogenerators and supercapacitors publication-title: ACS Nano – volume: 38 start-page: 28 year: 2017 end-page: 35 ident: bib15 article-title: Ultrasensitive and ultraflexible e-skins with dual functionalities for wearable electronics publication-title: Nano Energy – volume: 280 start-page: 252 year: 2018 end-page: 260 ident: bib37 article-title: A contact electrification based wind generator publication-title: Sens. Actuators, A A. – volume: 31 start-page: 155502 year: 2020 ident: bib51 article-title: Hybrid nano-textured nanogenerator and self-powered sensor for on-skin triggered biomechanical motions publication-title: Nanotechnology – volume: 13 start-page: 2922 year: 2013 ident: bib48 article-title: Rapid fabrication of pressure-driven open-channel microfluidic devices in omniphobic RF paper publication-title: Lab Chip – volume: 120 start-page: 244 year: 2017 end-page: 257 ident: bib4 article-title: Graphene for flexible and wearable device applications publication-title: Carbon N. Y. – volume: 3 start-page: 1500257 year: 2016 ident: bib29 article-title: Novel piezoelectric paper-based flexible nanogenerators composed of BaTiO publication-title: Adv. Sci. – volume: 24 start-page: 1759 year: 2012 end-page: 1764 ident: bib27 article-title: A hybrid piezoelectric structure for wearable nanogenerators publication-title: Adv. Mater. – volume: 272 start-page: 28 year: 2018 end-page: 32 ident: bib39 article-title: Folding triboelectric nanogenerator on paper based on conductive ink and teflon tape publication-title: Sens. Actuators, A A. – volume: 237 start-page: 87 year: 2017 end-page: 93 ident: bib24 article-title: Paper-based quasi-solid dye-sensitized solar cells publication-title: Electrochim. Acta – volume: 54 start-page: 453 year: 2018 end-page: 460 ident: bib32 article-title: Rotation sensing and gesture control of a robot joint via triboelectric quantization sensor publication-title: Nano Energy – volume: 4 start-page: 14729 year: 2016 end-page: 14738 ident: bib44 article-title: Recruiting physisorbed water in surface polymerization for bio-inspired materials of tunable hydrophobicity publication-title: J. Mater. Chem. A. – start-page: 359 year: 2019 end-page: 378 ident: bib2 article-title: Applications in Internet of things and artificial intelligence publication-title: Flex. Stretchable Triboelectric Nanogenerator Devices – volume: 29 start-page: 1806798 year: 2019 ident: bib10 article-title: Printed solar cells and energy storage devices on paper substrates publication-title: Adv. Funct. Mater. – volume: 1 start-page: 4341 year: 2018 end-page: 4350 ident: bib18 article-title: Nanocellulose structured paper-based lithium metal batteries publication-title: ACS Appl. Energy Mater. – volume: 3 year: 2017 ident: bib11 article-title: Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator publication-title: Sci. Adv. – volume: 32 start-page: 1902151 year: 2020 ident: bib20 article-title: An overview of fiber‐shaped batteries with a focus on multifunctionality, scalability, and technical difficulties publication-title: Adv. Mater. – volume: 9 start-page: 4236 year: 2015 end-page: 4243 ident: bib36 article-title: Ultrathin, rollable, paper-based triboelectric nanogenerator for acoustic energy harvesting and self-powered sound recording publication-title: ACS Nano – volume: 26 start-page: 4677 year: 2014 end-page: 4682 ident: bib50 article-title: Inkjet printing of conductive inks with high lateral resolution on omniphobic “R F paper” for paper-based electronics and MEMS publication-title: Adv. Mater. – volume: 25 start-page: 5113 year: 2018 end-page: 5122 ident: bib23 article-title: Conductive regenerated cellulose film as counter electrode for efficient dye-sensitized solar cells publication-title: Cellulose – volume: 26 start-page: 4230 year: 2014 end-page: 4237 ident: bib45 article-title: Fabrication of low-cost paper-based microfluidic devices by embossing or cut-and-stack methods publication-title: Chem. Mater. – volume: 6 start-page: 1801883 year: 2019 ident: bib42 article-title: Waterproof fabric-based multifunctional triboelectric nanogenerator for universally harvesting energy from raindrops, wind, and human motions and as self-powered sensors publication-title: Adv. Sci. – volume: 13 start-page: 2771 year: 2013 end-page: 2776 ident: bib47 article-title: In situ quantitative study of nanoscale triboelectrification and patterning publication-title: Nano Lett. – volume: 47 start-page: 4710 year: 2018 end-page: 4720 ident: bib25 article-title: Low-temperature growth of amorphous silicon films and direct fabrication of solar cells on flexible polyimide and photo-paper substrates publication-title: J. Electron. Mater. – volume: 8 start-page: 13025 year: 2016 end-page: 13032 ident: bib14 article-title: Flexible and printable paper-based strain sensors for wearable and large-area green electronics publication-title: Nanoscale – volume: 19 start-page: 494 year: 2019 ident: bib6 article-title: A frequency signature RFID chipless tag for wearable applications publication-title: Sensors – volume: 83 start-page: 27 year: 2016 end-page: 32 ident: bib19 article-title: A stackable, two-chambered, paper-based microbial fuel cell publication-title: Biosens. Bioelectron. – volume: 6 start-page: 1801883 year: 2019 ident: 10.1016/j.nanoen.2020.105301_bib42 article-title: Waterproof fabric-based multifunctional triboelectric nanogenerator for universally harvesting energy from raindrops, wind, and human motions and as self-powered sensors publication-title: Adv. Sci. doi: 10.1002/advs.201801883 – volume: 237 start-page: 87 year: 2017 ident: 10.1016/j.nanoen.2020.105301_bib24 article-title: Paper-based quasi-solid dye-sensitized solar cells publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.03.211 – volume: 11 start-page: 4475 year: 2017 ident: 10.1016/j.nanoen.2020.105301_bib38 article-title: Ultralight cut-paper-based self-charging power unit for self-powered portable electronic and medical systems publication-title: ACS Nano doi: 10.1021/acsnano.7b00866 – volume: 45 start-page: 5455 year: 2016 ident: 10.1016/j.nanoen.2020.105301_bib34 article-title: Energy harvesting from human motion: materials and techniques publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00812C – volume: 7 start-page: 538 year: 2014 ident: 10.1016/j.nanoen.2020.105301_bib21 article-title: Recent progress on flexible lithium rechargeable batteries publication-title: Energy Environ. Sci. doi: 10.1039/C3EE42927J – volume: 7 start-page: 1601852 year: 2017 ident: 10.1016/j.nanoen.2020.105301_bib28 article-title: A one‐structure‐based piezo‐tribo‐pyro‐photoelectric effects coupled nanogenerator for simultaneously scavenging mechanical, thermal, and solar energies publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201601852 – volume: 484 start-page: 461 year: 2019 ident: 10.1016/j.nanoen.2020.105301_bib43 article-title: Effect of surface morphologies and chemistry of paper on deposited collagen publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.04.131 – volume: 50 start-page: 571 year: 2018 ident: 10.1016/j.nanoen.2020.105301_bib33 article-title: Painting a high-output triboelectric nanogenerator on paper for harvesting energy from human body motion publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.06.019 – volume: 9 start-page: 514 year: 2016 ident: 10.1016/j.nanoen.2020.105301_bib49 article-title: Chemical modification of polymer surfaces for advanced triboelectric nanogenerator development publication-title: Extrem. Mech. Lett. doi: 10.1016/j.eml.2016.02.019 – volume: 6 start-page: 1502566 year: 2016 ident: 10.1016/j.nanoen.2020.105301_bib3 article-title: Fully packaged self-powered triboelectric pressure sensor using hemispheres-array publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201502566 – volume: 26 start-page: 4230 year: 2014 ident: 10.1016/j.nanoen.2020.105301_bib45 article-title: Fabrication of low-cost paper-based microfluidic devices by embossing or cut-and-stack methods publication-title: Chem. Mater. doi: 10.1021/cm501596s – start-page: 359 year: 2019 ident: 10.1016/j.nanoen.2020.105301_bib2 article-title: Applications in Internet of things and artificial intelligence – volume: 25 start-page: 5113 year: 2018 ident: 10.1016/j.nanoen.2020.105301_bib23 article-title: Conductive regenerated cellulose film as counter electrode for efficient dye-sensitized solar cells publication-title: Cellulose doi: 10.1007/s10570-018-1913-1 – volume: 24 start-page: 1759 year: 2012 ident: 10.1016/j.nanoen.2020.105301_bib27 article-title: A hybrid piezoelectric structure for wearable nanogenerators publication-title: Adv. Mater. doi: 10.1002/adma.201200150 – volume: 9 start-page: 303 year: 2017 ident: 10.1016/j.nanoen.2020.105301_bib5 publication-title: Smart Sensor Systems for Wearable Electronic Devices, Polymers (Basel) – volume: 5 year: 2017 ident: 10.1016/j.nanoen.2020.105301_bib9 article-title: Research Update: recent progress in the development of effective dielectrics for high-output triboelectric nanogenerator publication-title: Apl. Mater. doi: 10.1063/1.4979306 – volume: 13 start-page: 2771 year: 2013 ident: 10.1016/j.nanoen.2020.105301_bib47 article-title: In situ quantitative study of nanoscale triboelectrification and patterning publication-title: Nano Lett. doi: 10.1021/nl401006x – volume: 11 start-page: 9490 year: 2017 ident: 10.1016/j.nanoen.2020.105301_bib41 article-title: A highly stretchable and washable all-yarn-based self-charging knitting power textile composed of fiber triboelectric nanogenerators and supercapacitors publication-title: ACS Nano doi: 10.1021/acsnano.7b05317 – volume: 272 start-page: 28 year: 2018 ident: 10.1016/j.nanoen.2020.105301_bib39 article-title: Folding triboelectric nanogenerator on paper based on conductive ink and teflon tape publication-title: Sens. Actuators, A A. doi: 10.1016/j.sna.2018.01.054 – volume: 13 start-page: 2922 year: 2013 ident: 10.1016/j.nanoen.2020.105301_bib48 article-title: Rapid fabrication of pressure-driven open-channel microfluidic devices in omniphobic RF paper publication-title: Lab Chip doi: 10.1039/c3lc50371b – volume: 19 start-page: 494 year: 2019 ident: 10.1016/j.nanoen.2020.105301_bib6 article-title: A frequency signature RFID chipless tag for wearable applications publication-title: Sensors doi: 10.3390/s19030494 – volume: 1 start-page: 144 year: 2014 ident: 10.1016/j.nanoen.2020.105301_bib8 article-title: RFID technology for IoT-based personal healthcare in smart spaces publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2014.2313981 – volume: 76 start-page: 105047 year: 2020 ident: 10.1016/j.nanoen.2020.105301_bib52 article-title: Flexible triboelectric 3D touch pad with unit subdivision structure for effective XY positioning and pressure sensing publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105047 – volume: 38 start-page: 28 year: 2017 ident: 10.1016/j.nanoen.2020.105301_bib15 article-title: Ultrasensitive and ultraflexible e-skins with dual functionalities for wearable electronics publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.05.024 – volume: 47 start-page: 4710 year: 2018 ident: 10.1016/j.nanoen.2020.105301_bib25 article-title: Low-temperature growth of amorphous silicon films and direct fabrication of solar cells on flexible polyimide and photo-paper substrates publication-title: J. Electron. Mater. doi: 10.1007/s11664-018-6344-0 – volume: 10 start-page: 31061 year: 2018 ident: 10.1016/j.nanoen.2020.105301_bib13 article-title: Wearable and implantable epidermal paper-based electronics publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b11020 – volume: 29 start-page: 1806798 year: 2019 ident: 10.1016/j.nanoen.2020.105301_bib10 article-title: Printed solar cells and energy storage devices on paper substrates publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201806798 – year: 2019 ident: 10.1016/j.nanoen.2020.105301_bib40 – volume: 31 start-page: 155502 year: 2020 ident: 10.1016/j.nanoen.2020.105301_bib51 article-title: Hybrid nano-textured nanogenerator and self-powered sensor for on-skin triggered biomechanical motions publication-title: Nanotechnology doi: 10.1088/1361-6528/ab6677 – volume: 26 start-page: 4677 year: 2014 ident: 10.1016/j.nanoen.2020.105301_bib50 article-title: Inkjet printing of conductive inks with high lateral resolution on omniphobic “R F paper” for paper-based electronics and MEMS publication-title: Adv. Mater. doi: 10.1002/adma.201401053 – volume: 14 start-page: 217 year: 2015 ident: 10.1016/j.nanoen.2020.105301_bib35 article-title: Self-powered cleaning of air pollution by wind driven triboelectric nanogenerator publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.12.013 – start-page: 329 year: 2011 ident: 10.1016/j.nanoen.2020.105301_bib1 article-title: From Internet of Things towards cloud of things – volume: 83 start-page: 27 year: 2016 ident: 10.1016/j.nanoen.2020.105301_bib19 article-title: A stackable, two-chambered, paper-based microbial fuel cell publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2016.04.025 – volume: 3 start-page: 1500257 year: 2016 ident: 10.1016/j.nanoen.2020.105301_bib29 article-title: Novel piezoelectric paper-based flexible nanogenerators composed of BaTiO 3 nanoparticles and bacterial cellulose publication-title: Adv. Sci. doi: 10.1002/advs.201500257 – volume: 30 start-page: 1801588 year: 2018 ident: 10.1016/j.nanoen.2020.105301_bib17 article-title: Flexible electronics based on micro/nanostructured paper publication-title: Adv. Mater. doi: 10.1002/adma.201801588 – volume: 120 start-page: 244 year: 2017 ident: 10.1016/j.nanoen.2020.105301_bib4 article-title: Graphene for flexible and wearable device applications publication-title: Carbon N. Y. doi: 10.1016/j.carbon.2017.05.041 – volume: 2 start-page: 1700130 year: 2017 ident: 10.1016/j.nanoen.2020.105301_bib12 article-title: Self-powered, paper-based electrochemical devices for sensitive point-of-care testing publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201700130 – volume: 24 start-page: 60 year: 2014 ident: 10.1016/j.nanoen.2020.105301_bib46 article-title: Omniphobic “R F paper” produced by silanization of paper with fluoroalkyltrichlorosilanes publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201300780 – volume: 1 start-page: 4341 year: 2018 ident: 10.1016/j.nanoen.2020.105301_bib18 article-title: Nanocellulose structured paper-based lithium metal batteries publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b00961 – volume: 3 start-page: 1800317 year: 2019 ident: 10.1016/j.nanoen.2020.105301_bib16 article-title: Highly foldable and efficient paper-based perovskite solar cells publication-title: Sol. RRL. doi: 10.1002/solr.201800317 – volume: 8 start-page: 13025 year: 2016 ident: 10.1016/j.nanoen.2020.105301_bib14 article-title: Flexible and printable paper-based strain sensors for wearable and large-area green electronics publication-title: Nanoscale doi: 10.1039/C6NR02172G – volume: 52 start-page: 501 year: 2018 ident: 10.1016/j.nanoen.2020.105301_bib30 article-title: Uniformly assembled vanadium doped ZnO microflowers/bacterial cellulose hybrid paper for flexible piezoelectric nanogenerators and self-powered sensors publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.08.020 – start-page: 1 year: 2017 ident: 10.1016/j.nanoen.2020.105301_bib7 article-title: 3D-printed graphene and stretchable antennas for wearable RFID applications – volume: 3 start-page: 4 year: 2019 ident: 10.1016/j.nanoen.2020.105301_bib22 article-title: Flexible, transparent nanocellulose paper-based perovskite solar cells, Npj Flex publication-title: Electron – volume: 9 start-page: 4236 year: 2015 ident: 10.1016/j.nanoen.2020.105301_bib36 article-title: Ultrathin, rollable, paper-based triboelectric nanogenerator for acoustic energy harvesting and self-powered sound recording publication-title: ACS Nano doi: 10.1021/acsnano.5b00618 – volume: 280 start-page: 252 year: 2018 ident: 10.1016/j.nanoen.2020.105301_bib37 article-title: A contact electrification based wind generator publication-title: Sens. Actuators, A A. doi: 10.1016/j.sna.2018.07.043 – volume: 3 year: 2017 ident: 10.1016/j.nanoen.2020.105301_bib11 article-title: Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator publication-title: Sci. Adv. doi: 10.1126/sciadv.1700694 – volume: 4 start-page: 14729 year: 2016 ident: 10.1016/j.nanoen.2020.105301_bib44 article-title: Recruiting physisorbed water in surface polymerization for bio-inspired materials of tunable hydrophobicity publication-title: J. Mater. Chem. A. doi: 10.1039/C6TA06446A – volume: 32 start-page: 1902151 year: 2020 ident: 10.1016/j.nanoen.2020.105301_bib20 article-title: An overview of fiber‐shaped batteries with a focus on multifunctionality, scalability, and technical difficulties publication-title: Adv. Mater. doi: 10.1002/adma.201902151 – volume: 11 start-page: 25034 year: 2019 ident: 10.1016/j.nanoen.2020.105301_bib31 article-title: All paper-based flexible and wearable piezoresistive pressure sensor publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b07465 – volume: 25 start-page: 3592 year: 2015 ident: 10.1016/j.nanoen.2020.105301_bib26 article-title: Thin film silicon photovoltaic cells on paper for flexible indoor applications publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201500636 – volume: 54 start-page: 453 year: 2018 ident: 10.1016/j.nanoen.2020.105301_bib32 article-title: Rotation sensing and gesture control of a robot joint via triboelectric quantization sensor publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.10.044 |
SSID | ssj0000651712 |
Score | 2.4713814 |
Snippet | The fabrication of multifunctional electronic devices on ubiquitous paper substrates is gaining considerable attention due to their low cost, environmental... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 105301 |
SubjectTerms | Flexible electronics Omniphobic paper Paper-based electronics Self-powered human-machine interfaces Triboelectric nanogenerators |
Title | Moisture-insensitive, self-powered paper-based flexible electronics |
URI | https://dx.doi.org/10.1016/j.nanoen.2020.105301 |
Volume | 78 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPvHNHjwa22SzSfZYilKV9qKF3pZNdgKVsl36uPrbzeyjVgQFD3vIMgPLl2FeOw9CbrHzIzaY_xIqpML74NRAKH3ME3MXZzKGFBuFhyM5GIvnSTRpkX7TC4NllbXur3R6qa3rN50azU4xnXZeuY9duI4iXk6109jwK4RCKb__YJs8izexTJU_PZGeIkPTQVeWeeVpPgcchMrLnbdhvR3mh4XasjqPB2S_dheDXvVFh6QF-RHZ2xoieEz6w7m_qvUC6BTzxMuyGOguWMLM0QJ3oEEWFGkBC4oWKwscjsA0Mwi-NuAsT8j48eGtP6D1agRqvY-_oqExzjsejCvg1nqbnEaageSxFtZaDUZ2Hc98KBB2nY8ojAydipz25MyLjlbhKWnn8xzOSKB4ppgxIlVGiVRyzSyPMyZA-0dGcE7CBo7E1nPDcX3FLGkKxN6TCsQEQUwqEM8J3XAV1dyMP-hVg3Ty7f4Tr9p_5bz4N-cl2cVTVZxyRdqrxRquvYuxMjelDN2Qnd7Ty2D0CbWCzvo |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07a8MwED7SZGg7lD5p-vTQsSKxZEvyGEJL0jyWJpDNWLIEKcExefz_SracphRa6ODF1oH5fNzLd98BPNnJj0jY-lfACApMDI6EItTkPBHWUUojldhB4dGY9qbB2yyc1aBbzcLYtkpn-0ubXlhrd6fl0Gzl83nrHZvcBfMwxAWrHecH0LDsVGEdGp3-oDfelVqMl_VZ8d_TiiArUw3RFZ1eWZItleVCxcXaW-IWxPxwUnuO5_UUTlzE6HXKlzqDmsrO4XiPR_ACuqOl-VrblUJzWypeF_1Az95aLTTK7Ro0lXp5kqsVsk4r9bRlwRQL5X0twVlfwvT1ZdLtIbcdAUkT5m8QEUKb2MPHTGEpjVtOQu4riiMeSCm5ErStcWqyAdLWJqkQlGgWam6O-0Z7OCNXUM-WmboGj-GU-UIECRMsSCjmvsRR6geKm4uGqgmkgiOWjjrcbrBYxFWP2EdcghhbEOMSxCagnVReUmf8cZ5VSMffVCA21v1XyZt_Sz7CYW8yGsbD_nhwC0f2Sdmrcgf1zWqr7k3EsREPTqM-AeB70as |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Moisture-insensitive%2C+self-powered+paper-based+flexible+electronics&rft.jtitle=Nano+energy&rft.au=Sala+de+Medeiros%2C+Marina&rft.au=Chanci%2C+Daniela&rft.au=Martinez%2C+Ramses+V.&rft.date=2020-12-01&rft.pub=Elsevier+Ltd&rft.issn=2211-2855&rft.volume=78&rft_id=info:doi/10.1016%2Fj.nanoen.2020.105301&rft.externalDocID=S2211285520308788 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon |