In-situ constructing Bi@Bi2O2CO3 nanosheet catalyst for ampere-level CO2 electroreduction to formate
Bi-based electrocatalysts are prominent candidates to achieve CO2 reduction to formate with high selectivity but suffer from unsatisfied activity, stability, and ambiguous nature of active sites. Herein, the Bi@Bi2O2CO3 nanosheet catalyst is designed via an electrochemical in-situ reconstruction app...
Saved in:
Published in | Nano energy Vol. 114; p. 108638 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.09.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bi-based electrocatalysts are prominent candidates to achieve CO2 reduction to formate with high selectivity but suffer from unsatisfied activity, stability, and ambiguous nature of active sites. Herein, the Bi@Bi2O2CO3 nanosheet catalyst is designed via an electrochemical in-situ reconstruction approach from BiPO4. The conversion processes were revealed by electrochemical in-situ Raman and FTIR spectroscopy. The obtained Bi@Bi2O2CO3 catalyst demonstrates high CO2 reduction performance (FEHCOOH ≈ 100%, jHCOOH ≈ −60 mA cm−2) and excellent stability of 110 h in H-type cell. Moreover, the Bi@Bi2O2CO3 delivers a remarkable formate partial current density up to −1.2 A cm−2 (production rate as 22.4 mmol cm−2 h−1) in the flow cell. DFT theoretical studies reveal the synergistic effect of Bi and Bi2O2CO3 at the interface played an important role in changing the adsorption behavior of reaction intermediates and further greatly reducing the activation barrier of the conversion of *OCHO to *HCOOH during CO2 reduction.
[Display omitted]
•Bi@Bi2O2CO3 nanosheet is designed by electrochemical in-situ reconstruction method.•Bi@Bi2O2CO3 catalyst demonstrates high formate selectivity and stability in CO2RR.•Bi@Bi2O2CO3 catalyst deliveries an ampere-level formate partial current density.•The synergistic effect of Bi and Bi2O2CO3 boosts CO2 adsorption and conversion. |
---|---|
AbstractList | Bi-based electrocatalysts are prominent candidates to achieve CO2 reduction to formate with high selectivity but suffer from unsatisfied activity, stability, and ambiguous nature of active sites. Herein, the Bi@Bi2O2CO3 nanosheet catalyst is designed via an electrochemical in-situ reconstruction approach from BiPO4. The conversion processes were revealed by electrochemical in-situ Raman and FTIR spectroscopy. The obtained Bi@Bi2O2CO3 catalyst demonstrates high CO2 reduction performance (FEHCOOH ≈ 100%, jHCOOH ≈ −60 mA cm−2) and excellent stability of 110 h in H-type cell. Moreover, the Bi@Bi2O2CO3 delivers a remarkable formate partial current density up to −1.2 A cm−2 (production rate as 22.4 mmol cm−2 h−1) in the flow cell. DFT theoretical studies reveal the synergistic effect of Bi and Bi2O2CO3 at the interface played an important role in changing the adsorption behavior of reaction intermediates and further greatly reducing the activation barrier of the conversion of *OCHO to *HCOOH during CO2 reduction.
[Display omitted]
•Bi@Bi2O2CO3 nanosheet is designed by electrochemical in-situ reconstruction method.•Bi@Bi2O2CO3 catalyst demonstrates high formate selectivity and stability in CO2RR.•Bi@Bi2O2CO3 catalyst deliveries an ampere-level formate partial current density.•The synergistic effect of Bi and Bi2O2CO3 boosts CO2 adsorption and conversion. |
ArticleNumber | 108638 |
Author | Lou, Yao-Yin Tian, Na Zhou, Zhi-You Liao, Hong-Gang Liang, Xiao-Du Wei, Nian Hu, Sheng-Nan Zhao, Kuang-Min Sun, Shi-Gang Zheng, Qi-Zheng |
Author_xml | – sequence: 1 givenname: Xiao-Du surname: Liang fullname: Liang, Xiao-Du – sequence: 2 givenname: Qi-Zheng surname: Zheng fullname: Zheng, Qi-Zheng – sequence: 3 givenname: Nian surname: Wei fullname: Wei, Nian – sequence: 4 givenname: Yao-Yin surname: Lou fullname: Lou, Yao-Yin – sequence: 5 givenname: Sheng-Nan surname: Hu fullname: Hu, Sheng-Nan – sequence: 6 givenname: Kuang-Min surname: Zhao fullname: Zhao, Kuang-Min – sequence: 7 givenname: Hong-Gang surname: Liao fullname: Liao, Hong-Gang email: hgliao@xmu.edu.cn – sequence: 8 givenname: Na surname: Tian fullname: Tian, Na email: tnsd@xmu.edu.cn – sequence: 9 givenname: Zhi-You surname: Zhou fullname: Zhou, Zhi-You – sequence: 10 givenname: Shi-Gang surname: Sun fullname: Sun, Shi-Gang |
BookMark | eNqFkMtOwzAQRb0oEgX6Byz8Ayl-JE7KAkEjHpUqZQNry51MwFVqV7ZbqX9PorJiAbMZaTTnauZckYnzDgm55WzOGVd327kzzqObCybkMKqUrCZkKgTnmaiK4pLMYtyyoVTBSy6mpF25LNp0oOBdTOEAybpPurSPSysaUTeSjonxCzFRMMn0p5ho5wM1uz0GzHo8Yk_rRlDsEVLwAdsxxDua_Li4MwlvyEVn-oizn35NPl6e3-u3bN28ruqndQaSqZRJsyhLI6BSCnImBe8YdBsOKhflJufKKMnyyhSMtVywVpSAC2aKDloBCriQ1-T-nAvBxxiw02CTGY9Jwdhec6ZHTXqrz5r0qEmfNQ1w_gveB7sz4fQf9nDGcHjsaDHoCBYdYGvDIES33v4d8A3_7of2 |
CitedBy_id | crossref_primary_10_1039_D4IM00126E crossref_primary_10_1002_anie_202411575 crossref_primary_10_1002_anie_202317628 crossref_primary_10_1002_adsu_202400748 crossref_primary_10_1039_D4QI01570C crossref_primary_10_1016_j_cej_2024_153170 crossref_primary_10_1021_acsanm_4c02570 crossref_primary_10_1016_j_apsusc_2024_160216 crossref_primary_10_3390_catal15010052 crossref_primary_10_1016_j_colsurfa_2025_136464 crossref_primary_10_1016_j_jechem_2024_02_023 crossref_primary_10_1002_ange_202411575 crossref_primary_10_1557_s43581_025_00127_4 crossref_primary_10_1021_acsanm_4c05813 crossref_primary_10_1016_j_apcatb_2025_125234 crossref_primary_10_1016_j_matchemphys_2025_130600 crossref_primary_10_1002_adma_202415639 crossref_primary_10_1002_ange_202317628 crossref_primary_10_1073_pnas_2420922122 crossref_primary_10_1002_adma_202404980 crossref_primary_10_1002_aic_18350 crossref_primary_10_1002_smll_202402879 crossref_primary_10_1039_D4TA05445H crossref_primary_10_1016_j_surfin_2024_105417 crossref_primary_10_1021_acs_iecr_4c04177 crossref_primary_10_1016_j_apsusc_2024_160844 crossref_primary_10_1002_advs_202415616 crossref_primary_10_1016_j_cej_2024_153105 crossref_primary_10_1016_j_apcatb_2025_125203 crossref_primary_10_1016_j_carbon_2024_119385 crossref_primary_10_1016_j_cej_2024_154219 crossref_primary_10_1039_D4TA06898J crossref_primary_10_1016_j_fuel_2024_132280 crossref_primary_10_1021_acsnano_4c15927 crossref_primary_10_1016_j_apcatb_2024_124451 crossref_primary_10_1039_D4DT02203C crossref_primary_10_1039_D4NR05343E crossref_primary_10_1016_j_seppur_2024_127926 crossref_primary_10_1002_adfm_202315211 crossref_primary_10_1016_j_apcatb_2025_125146 crossref_primary_10_1016_j_cclet_2024_110300 crossref_primary_10_1016_j_jallcom_2024_174220 |
Cites_doi | 10.1016/j.scib.2021.03.020 10.1002/anie.202014341 10.1039/D1QM01557E 10.1039/D0TA07411J 10.1002/aenm.202202695 10.1002/aenm.202200970 10.1016/j.cej.2021.129606 10.1038/s41467-018-03712-z 10.1002/adfm.202107182 10.1038/s41586-021-04068-z 10.1021/acscatal.0c05317 10.1021/acscatal.1c01899 10.1016/S1872-2067(21)63901-3 10.1002/anie.202015713 10.1002/anie.201907674 10.1021/acscatal.9b04516 10.1021/acscatal.1c02495 10.1002/adma.202008373 10.1016/j.apcatb.2021.120781 10.1002/aenm.202202818 10.1021/acscatal.9b04043 10.1016/j.ces.2021.117409 10.1039/D2CC01393B 10.1016/j.cej.2021.131867 10.1021/acscatal.1c05503 10.1038/s41467-019-10819-4 10.1002/aenm.202001709 10.1039/D0CC06756C 10.1088/0953-8984/21/8/084204 10.1038/nature08907 10.1016/j.nanoen.2019.05.077 10.1021/acs.nanolett.1c02053 10.1039/D1EE01495A 10.1021/acsami.1c25217 10.1021/acscatal.5b00402 10.1007/s12274-021-3903-0 10.1002/anie.202104747 10.1039/D0SE00228C 10.1007/s12274-022-5337-8 10.1007/s12274-022-4345-z 10.1557/jmr.2020.16 10.1038/s41467-022-29861-w 10.1021/acsami.1c16689 10.1021/acs.nanolett.1c04683 10.1002/adma.202100910 10.1002/anie.201807643 10.1002/asia.202100305 10.1002/celc.202000656 10.1038/s41467-020-17403-1 10.1002/anie.201916538 10.1016/j.apcatb.2020.118957 10.1021/acscatal.0c02130 10.1002/(SICI)1097-4555(199808)29:8<749::AID-JRS285>3.0.CO;2-2 10.1016/j.apcatb.2022.121101 10.1021/acscatal.0c03137 10.1021/acs.inorgchem.2c01961 10.1021/jacs.9b08259 10.1039/C9EE00018F 10.1002/smtd.201900846 10.1016/j.apsusc.2021.150197 10.1002/anie.202102832 10.1021/acscatal.1c05135 10.1002/aenm.201801536 10.1021/acscatal.7b00687 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.nanoen.2023.108638 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_nanoen_2023_108638 S2211285523004755 |
GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FNPLU FYGXN GBLVA HZ~ JARJE KOM M41 MAGPM MO0 O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SPC SPCBC SSM SSR SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-3a977a2c866c40321f0cfb1c6427b416a63048a500d120d27ce90a5fcd2c6c123 |
IEDL.DBID | .~1 |
ISSN | 2211-2855 |
IngestDate | Tue Jul 01 00:57:04 EDT 2025 Thu Apr 24 23:07:36 EDT 2025 Fri Feb 23 02:36:56 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | In-situ characterization Formate CO2 reduction Bismuth nanosheet Bismuth subcarbonate |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-3a977a2c866c40321f0cfb1c6427b416a63048a500d120d27ce90a5fcd2c6c123 |
ParticipantIDs | crossref_citationtrail_10_1016_j_nanoen_2023_108638 crossref_primary_10_1016_j_nanoen_2023_108638 elsevier_sciencedirect_doi_10_1016_j_nanoen_2023_108638 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2023 2023-09-00 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: September 2023 |
PublicationDecade | 2020 |
PublicationTitle | Nano energy |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Puppin, Khalid, da Silva, Ribeiro, Varela, Lopes (bib27) 2020; 35 Shen, Zhao, Zhang, He, Yang, Wang, Cao, Guo, Zhang, Zhang (bib70) 2023; 13 Wang, Li, Liu, Dong, Xiao, Cheng, Jiang, Jiang, Li (bib15) 2021; 60 Fan, Xia, Zhu, Lu, Wang (bib69) 2020; 11 Tang, Lu, Zhang, Wei, Si, Lu (bib37) 2021; 66 Liu, Lu, Xiao, Wang, Lou (bib5) 2019; 58 Chen, Chen, Li, Liao, Zhao, Cheng, Wang (bib56) 2022; 18 Duan, Liu, Zhang, Yan, Jiang (bib31) 2020; 4 Fan, Jia, Ji, Kuang, Zhu, Liu, Yu (bib10) 2020; 10 Duan, Zhou, Yu, Liu, Wen, Yan, Jiang (bib51) 2021; 60 Lu, Shen, Liu, Zhang, Wan, Morris, Wang, Zhou, Li, Sheng, Gu, Zhang, Tian, Sun (bib44) 2021; 11 Li, Lu, Gan, Tian, Zhang, Yan, Chen, Chen, Zhou, Sun (bib45) 2021; 42 Lin, Liu, Kong, Geng, Zeng (bib68) 2022 Liu, Peng, He, Li, Qiao (bib3) 2022; 28 Wang, Yang, Zang, Chen, Wang, Yu, Geng (bib74) 2022; 61 Yao, Tang, Vasileff, Zhi, Jiao, Qiao (bib20) 2021; 60 Zheng, Wu, Gao, Wang (bib8) 2021; 421 Deng, Wang, Qi, Zhu, Chen, Yang, Zhou, Qi, Liu, Xia (bib33) 2020; 10 Li, Huang, Ding, Yang, Li, Zhou, Fan, Zhang, Zhou, Wu, Ren, Wang, Tian (bib38) 2010; 464 Wang, Zu, Li, Li, Wu, Wang, Ling, Zhao, Sun, Xie (bib71) 2022 Chen, Chen, Zhou, Zhang, Yang, Li, Yang, Wang, Ye, Liu (bib73) 2021; 17 Yuan, Wang, Qiao, Chen, Yang, Lai, Chen, Zhang, Duan, Liu, Huang (bib59) 2022 Yang, Wang, Chen, Zang, Liu, Yu, Geng (bib19) 2023; 16 Wang, Wang, Ni, Zhou, Geng (bib46) 2022; 58 Han, Wang, Yang, Deng, Wu, Li, Li (bib55) 2018; 9 Wu, Huo, Chen, Fu, Luo (bib13) 2020; 271 Ye, Zhou, Shao, Lin, Gao, Ta, Si, Wang, Bao (bib61) 2020; 59 Chen, Mou, Wang, Liu (bib52) 2018; 57 Feng, Zou, Zheng, Wei, Wang, Zou, Lim, Hong, Duan, Chen (bib7) 2022; 22 Siltamaki, Shuai, Rahmati, Lipkowski, Chen (bib6) 2021; 27 Qiao, Lai, Huang, Yu, Wang, Gao, Yang, Ma, Sun, Liu, Lian, Huang (bib57) 2022; 12 Zhu, Zhang, Gao, Sui, Xu, Gong, Zeng, Shankar, Bergens, Luo (bib11) 2022; 306 Thanh, Daiyan, Fusco, Ma, Amal, Tricoli (bib26) 2020; 30 Zhao, Liu, Liu, Lin, Lan, Zhang, Lu, Peng, Chan, Tan (bib67) 2021; 21 Wang, Tang, Sun, Liu, Xia, Li, Jiang, He, Xiao (bib39) 2022; 4 Wang, Zheng, Yang, Zhou, He, Radjenovic, Dong, Li, Zheng, Yang, Attard, Pan, Tian, Li (bib40) 2021; 600 Wang, Cheng, Liu, Xiao, Zhang, Xiong, Zhang, Jiang, Jiang, Zhu, Li, Li (bib18) 2020; 7 Lee, Liu, Chen, Li (bib29) 2022; 14 An, Li, Hao, Du, Yu, Wang, Hao, Abudula, Guan (bib35) 2020; 4 Fu, Wang, Hu, He, Tu, Yue, Kang (bib49) 2022; 32 Pi, Guo, Shao, Huang (bib1) 2019; 62 Liu, Wang, Wu, Tian, Sun, Lv, Mu, Sun, Li, Wang, Wang, Tang, Wang, Li, Ding (bib16) 2021; 11 Wang, Yin, Si, Wang, Guo, Guo, Fu (bib75) 2020; 8 Shi, Wen, Wu, Zhao, Mao, Liu, Yang (bib21) 2022; 6 Peng, Wu, Zeng, Zhu (bib17) 2021; 16 Liang, Tian, Hu, Zhou, Sun (bib28) 2023; 3 Yu, Wu, Chen, Hao, Su, Zhu, Gao, Wang, Yin (bib25) 2022; 14 Wu, Wu, Cai, Wen, Jia, Wang, Jin, Ma (bib14) 2021; 60 Liu, Wang, Song, Kuster, Starke, van Aken, Klemm (bib2) 2022; 61 Baruch, Pander, White, Bocarsly (bib42) 2015; 5 Liu, Gao, Feng, Gong, Zeng, Luo (bib47) 2021; 11 Ning, Xu, Liu, Jiang, Hu, Li (bib65) 2022; 251 Zhang, Jang, Ge, Zhang, Li, Hou, Zhai, Wei, Wang, Kim, Liu, Qin, Liu, Cho (bib76) 2022; 12 Ren, Wen, Gao, Luo, Zhang, Qiu, Ma, Wang, Cui, Ricardez–Sandoval, Yu, Chen (bib72) 2022; 13 Fan, Ma, Xie, Liu, Zhang, Yang, Huang, Dong, Chen, Yi (bib12) 2021; 2 Lin, Liu, Kong, Geng, Zeng (bib32) 2022; 15 Tang, Sanville, Henkelman (bib30) 2009; 21 Wang, Wang, Zhang, Wang, Yang, Ning, Zhu, Zhang, Guan, Teng, Zhao, Wu (bib64) 2021; 426 Yang, Elnabawy, Schimmenti, Song, Wang, Peng, Yao, Deng, Song, Lin, Mavrikakis, Xu (bib24) 2020; 11 Xing, Chen, Liu, Sheng, Zeng, Geng, Bao (bib63) 2021; 57 Fan, Zhao, Mao, Xu, Han, Yang, Pan, Li, Wang, Li (bib50) 2021; 33 Zhang, Wei, Zhou, Ma, Cao, Wu, Zhu (bib66) 2021; 14 Wang, Wang, Jiang, Liu, Zhang, Gao, Yao (bib22) 2021; 15 Moradzaman, Mul (bib43) 2020; 10 Yang, Wang, Qu, Wang, Huo, Fan, Wang, Yang, Wu (bib58) 2020; 10 Sun, Yuan, Zhou, Yuan, Liu, Zhang (bib4) 2021; 12 Zhang, Sun, Guo, Bond, Zhang (bib53) 2019; 12 Dutta, Montiel, Kiran, Rieder, Grozovski, Gut, Broekmann (bib23) 2021; 11 Chen, Zou, Huang, Tian (bib41) 1998; 29 Liu, Xie, Wang, Gao, Chen, Wu, Meng, Song, Du, Ren (bib62) 2022; 301 Gong, Ding, Xu, Zhu, Wang, Deng, Ma, Han, Zhu, Lu, Feng, Li, Zhou, Li (bib54) 2019; 10 Xie, Zhang, Xie, Hou, Ji, Pang, Chen, Titirici, Weng, Chai (bib60) 2021; 33 Wang, Mao, Zheng, Zhou, Xu (bib34) 2021; 562 Zhang, Wang, Yu, Liu, Chen, Li, Rong, Lin, Ji, Zheng, Wang, Zheng, Chen, Wang, Zhang, Li (bib9) 2019; 141 Feaster, Shi, Cave, Hatsukade, Abram, Kuhl, Hahn, Nørskov, Jaramillo (bib77) 2017; 7 Lin, He, Zhang, Ma, Zhang, Wei, Xie, Zhang, Yi, Wang (bib36) 2022 Yang, Han, Deng, Wu, Wang, Hu, Ding, Li, Li, Lu (bib48) 2018; 8 Qiao (10.1016/j.nanoen.2023.108638_bib57) 2022; 12 Zhang (10.1016/j.nanoen.2023.108638_bib9) 2019; 141 Yao (10.1016/j.nanoen.2023.108638_bib20) 2021; 60 Han (10.1016/j.nanoen.2023.108638_bib55) 2018; 9 Liu (10.1016/j.nanoen.2023.108638_bib47) 2021; 11 Tang (10.1016/j.nanoen.2023.108638_bib30) 2009; 21 Zhao (10.1016/j.nanoen.2023.108638_bib67) 2021; 21 Siltamaki (10.1016/j.nanoen.2023.108638_bib6) 2021; 27 Wang (10.1016/j.nanoen.2023.108638_bib15) 2021; 60 Lin (10.1016/j.nanoen.2023.108638_bib32) 2022; 15 Wang (10.1016/j.nanoen.2023.108638_bib39) 2022; 4 Li (10.1016/j.nanoen.2023.108638_bib45) 2021; 42 Zhang (10.1016/j.nanoen.2023.108638_bib66) 2021; 14 Liu (10.1016/j.nanoen.2023.108638_bib16) 2021; 11 Wang (10.1016/j.nanoen.2023.108638_bib34) 2021; 562 Shi (10.1016/j.nanoen.2023.108638_bib21) 2022; 6 Liu (10.1016/j.nanoen.2023.108638_bib3) 2022; 28 Moradzaman (10.1016/j.nanoen.2023.108638_bib43) 2020; 10 Feaster (10.1016/j.nanoen.2023.108638_bib77) 2017; 7 Chen (10.1016/j.nanoen.2023.108638_bib73) 2021; 17 Fan (10.1016/j.nanoen.2023.108638_bib10) 2020; 10 Liang (10.1016/j.nanoen.2023.108638_bib28) 2023; 3 Li (10.1016/j.nanoen.2023.108638_bib38) 2010; 464 Dutta (10.1016/j.nanoen.2023.108638_bib23) 2021; 11 Peng (10.1016/j.nanoen.2023.108638_bib17) 2021; 16 Zhu (10.1016/j.nanoen.2023.108638_bib11) 2022; 306 Wang (10.1016/j.nanoen.2023.108638_bib46) 2022; 58 Fan (10.1016/j.nanoen.2023.108638_bib50) 2021; 33 Wang (10.1016/j.nanoen.2023.108638_bib18) 2020; 7 Wang (10.1016/j.nanoen.2023.108638_bib74) 2022; 61 Yuan (10.1016/j.nanoen.2023.108638_bib59) 2022 Fan (10.1016/j.nanoen.2023.108638_bib12) 2021; 2 Feng (10.1016/j.nanoen.2023.108638_bib7) 2022; 22 Thanh (10.1016/j.nanoen.2023.108638_bib26) 2020; 30 Yang (10.1016/j.nanoen.2023.108638_bib24) 2020; 11 Duan (10.1016/j.nanoen.2023.108638_bib31) 2020; 4 Zheng (10.1016/j.nanoen.2023.108638_bib8) 2021; 421 Shen (10.1016/j.nanoen.2023.108638_bib70) 2023; 13 Baruch (10.1016/j.nanoen.2023.108638_bib42) 2015; 5 Chen (10.1016/j.nanoen.2023.108638_bib41) 1998; 29 Xie (10.1016/j.nanoen.2023.108638_bib60) 2021; 33 Puppin (10.1016/j.nanoen.2023.108638_bib27) 2020; 35 Ren (10.1016/j.nanoen.2023.108638_bib72) 2022; 13 Fu (10.1016/j.nanoen.2023.108638_bib49) 2022; 32 Lin (10.1016/j.nanoen.2023.108638_bib36) 2022 Yu (10.1016/j.nanoen.2023.108638_bib25) 2022; 14 Yang (10.1016/j.nanoen.2023.108638_bib48) 2018; 8 Ning (10.1016/j.nanoen.2023.108638_bib65) 2022; 251 Chen (10.1016/j.nanoen.2023.108638_bib56) 2022; 18 Liu (10.1016/j.nanoen.2023.108638_bib2) 2022; 61 Pi (10.1016/j.nanoen.2023.108638_bib1) 2019; 62 Deng (10.1016/j.nanoen.2023.108638_bib33) 2020; 10 An (10.1016/j.nanoen.2023.108638_bib35) 2020; 4 Wu (10.1016/j.nanoen.2023.108638_bib13) 2020; 271 Yang (10.1016/j.nanoen.2023.108638_bib19) 2023; 16 Gong (10.1016/j.nanoen.2023.108638_bib54) 2019; 10 Wang (10.1016/j.nanoen.2023.108638_bib75) 2020; 8 Lu (10.1016/j.nanoen.2023.108638_bib44) 2021; 11 Fan (10.1016/j.nanoen.2023.108638_bib69) 2020; 11 Wu (10.1016/j.nanoen.2023.108638_bib14) 2021; 60 Ye (10.1016/j.nanoen.2023.108638_bib61) 2020; 59 Lin (10.1016/j.nanoen.2023.108638_bib68) 2022 Zhang (10.1016/j.nanoen.2023.108638_bib53) 2019; 12 Wang (10.1016/j.nanoen.2023.108638_bib64) 2021; 426 Duan (10.1016/j.nanoen.2023.108638_bib51) 2021; 60 Lee (10.1016/j.nanoen.2023.108638_bib29) 2022; 14 Wang (10.1016/j.nanoen.2023.108638_bib71) 2022 Liu (10.1016/j.nanoen.2023.108638_bib5) 2019; 58 Sun (10.1016/j.nanoen.2023.108638_bib4) 2021; 12 Wang (10.1016/j.nanoen.2023.108638_bib22) 2021; 15 Xing (10.1016/j.nanoen.2023.108638_bib63) 2021; 57 Wang (10.1016/j.nanoen.2023.108638_bib40) 2021; 600 Yang (10.1016/j.nanoen.2023.108638_bib58) 2020; 10 Tang (10.1016/j.nanoen.2023.108638_bib37) 2021; 66 Chen (10.1016/j.nanoen.2023.108638_bib52) 2018; 57 Liu (10.1016/j.nanoen.2023.108638_bib62) 2022; 301 Zhang (10.1016/j.nanoen.2023.108638_bib76) 2022; 12 |
References_xml | – volume: 16 start-page: 1539 year: 2021 end-page: 1544 ident: bib17 article-title: In situ bismuth nanosheet assembly for highly selective electrocatalytic CO publication-title: Chem. Asian J. – volume: 6 start-page: 1091 year: 2022 end-page: 1097 ident: bib21 article-title: In situ reconstruction of vegetable sponge-like Bi publication-title: Mater. Chem. Front. – volume: 5 start-page: 3148 year: 2015 end-page: 3156 ident: bib42 article-title: Mechanistic insights into the reduction of CO publication-title: ACS Catal. – year: 2022 ident: bib36 article-title: A nanocomposite of bismuth clusters and Bi publication-title: Angew. Chem. Int. Ed. Engl. – volume: 14 start-page: 4998 year: 2021 end-page: 5008 ident: bib66 article-title: Engineering a conductive network of atomically thin bismuthene with rich defects enables CO publication-title: Energy Environ. Sci. – volume: 11 start-page: 355 year: 2021 end-page: 363 ident: bib44 article-title: Structurally disordered phosphorus-doped Pt as a highly active electrocatalyst for an oxygen reduction reaction publication-title: ACS Catal. – volume: 32 year: 2022 ident: bib49 article-title: Scalable chemical interface confinement reduction BiOBr to bismuth porous nanosheets for electroreduction of carbon dioxide to liquid fuel publication-title: Adv. Funct. Mater. – volume: 30 year: 2020 ident: bib26 article-title: Nanostructured publication-title: Adv. Funct. Mater. – volume: 3 year: 2023 ident: bib28 article-title: Recent advances of bismuth-based electrocatalysts for CO publication-title: Mater. Rep. Energy – volume: 4 year: 2020 ident: bib31 article-title: Efficient CO publication-title: Small Methods – volume: 251 year: 2022 ident: bib65 article-title: Bismuthene with stable Bi-O bonds for efficient CO publication-title: Chem. Eng. Sci. – volume: 14 start-page: 10648 year: 2022 end-page: 10655 ident: bib25 article-title: Promoting the electrocatalytic reduction of CO publication-title: ACS Appl. Mater. Interfaces – volume: 18 year: 2022 ident: bib56 article-title: Galvanic-cell deposition enables the exposure of bismuth grain boundary for efficient electroreduction of carbon dioxide publication-title: Small – year: 2022 ident: bib59 article-title: In situ structural reconstruction to generate the active sites for CO publication-title: Adv. Energy Mater. – volume: 8 start-page: 19938 year: 2020 end-page: 19945 ident: bib75 article-title: Conversion of CO publication-title: J. Mater. Chem. A – volume: 421 year: 2021 ident: bib8 article-title: The bismuth architecture assembled by nanotubes used as highly efficient electrocatalyst for CO publication-title: Chem. Eng. J. – volume: 35 start-page: 272 year: 2020 end-page: 280 ident: bib27 article-title: Electrochemical reduction of CO publication-title: J. Mater. Res. – volume: 4 start-page: 2831 year: 2020 end-page: 2840 ident: bib35 article-title: The in situ morphology transformation of bismuth-based catalysts for the effective electroreduction of carbon dioxide publication-title: Suatain. Energ. Fuels – volume: 10 year: 2020 ident: bib58 article-title: Bi-based metal-organic framework derived leafy bismuth nanosheets for carbon dioxide electroreduction publication-title: Adv. Energy Mater. – year: 2022 ident: bib68 article-title: Electrodeposited highly-oriented bismuth microparticles for efficient CO publication-title: Nano Res. – volume: 15 start-page: 10078 year: 2022 end-page: 10083 ident: bib32 article-title: Electrodeposited highly-oriented bismuth microparticles for efficient CO publication-title: Nano Res. – volume: 22 start-page: 1656 year: 2022 end-page: 1664 ident: bib7 article-title: Bi publication-title: Nano Lett. – volume: 562 year: 2021 ident: bib34 article-title: Sulfur boosting CO publication-title: Appl. Surf. Sci. – volume: 60 start-page: 7681 year: 2021 end-page: 7685 ident: bib15 article-title: BiPO publication-title: Angew. Chem. Int. Ed. Engl. – volume: 12 start-page: 1334 year: 2019 end-page: 1340 ident: bib53 article-title: Formation of lattice-dislocated bismuth nanowires on copper foam for enhanced electrocatalytic CO publication-title: Energy Environ. Sci. – volume: 10 year: 2019 ident: bib54 article-title: Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction publication-title: Nat. Commun. – volume: 15 start-page: 2919 year: 2021 end-page: 2927 ident: bib22 article-title: Sub-2 nm ultra-thin Bi publication-title: Nano Res. – volume: 7 start-page: 4822 year: 2017 end-page: 4827 ident: bib77 article-title: Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes publication-title: ACS Catal. – volume: 306 year: 2022 ident: bib11 article-title: Electrochemically reconstructed perovskite with cooperative catalytic sites for CO publication-title: Appl. Catal. B – volume: 426 year: 2021 ident: bib64 article-title: Carbon sustained SnO publication-title: Chem. Eng. J. – volume: 600 start-page: 81 year: 2021 end-page: 85 ident: bib40 article-title: In situ Raman spectroscopy reveals the structure and dissociation of interfacial water publication-title: Nature – volume: 33 year: 2021 ident: bib50 article-title: Large-area vertically aligned bismuthene nanosheet arrays from galvanic replacement reaction for efficient electrochemical CO publication-title: Adv. Mater. – volume: 12 year: 2022 ident: bib76 article-title: Single-atom Sn on tensile-strained ZnO nanosheets for highly efficient conversion of CO publication-title: Adv. Energy Mater. – year: 2022 ident: bib71 article-title: Industrial-current-density CO publication-title: Nano Res. – volume: 57 start-page: 12790 year: 2018 end-page: 12794 ident: bib52 article-title: Nitrogen-doped graphene quantum dots enhance the activity of Bi publication-title: Angew. Chem. Int. Ed. Engl. – volume: 10 start-page: 743 year: 2020 end-page: 750 ident: bib33 article-title: Bismuth oxides with enhanced bismuth-oxygen structure for efficient electrochemical reduction of carbon dioxide to formate publication-title: ACS Catal. – volume: 16 start-page: 7974 year: 2023 end-page: 7981 ident: bib19 article-title: In-situ electrochemical restructuring of Cu publication-title: Nano Res. – volume: 60 start-page: 8798 year: 2021 end-page: 8802 ident: bib51 article-title: Boosting production of HCOOH from CO publication-title: Angew. Chem. Int. Ed. Engl. – volume: 11 year: 2020 ident: bib69 article-title: Electrochemical CO publication-title: Nat. Commun. – volume: 21 start-page: 6907 year: 2021 end-page: 6913 ident: bib67 article-title: Spontaneously Sn-doped Bi/BiO publication-title: Nano Lett. – volume: 7 start-page: 2864 year: 2020 end-page: 2868 ident: bib18 article-title: Rich bismuth-oxygen bonds in bismuth derivatives from Bi publication-title: ChemElectroChem – volume: 14 start-page: 14210 year: 2022 end-page: 14217 ident: bib29 article-title: Bismuth nanosheets derived by in situ morphology transformation of bismuth oxides for selective electrochemical CO publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 4988 year: 2021 end-page: 5003 ident: bib23 article-title: A tandem (Bi publication-title: ACS Catal. – volume: 59 start-page: 4814 year: 2020 end-page: 4821 ident: bib61 article-title: In situ reconstruction of a hierarchical Sn-Cu/SnO publication-title: Angew. Chem. Int. Ed. Engl. – volume: 12 start-page: 923 year: 2021 end-page: 934 ident: bib4 article-title: Au publication-title: ACS Catal. – volume: 13 start-page: 2486 year: 2022 ident: bib72 article-title: Nano-crumples induced Sn-Bi bimetallic interface pattern with moderate electron bank for highly efficient CO publication-title: Nat. Commun. – volume: 61 start-page: 12003 year: 2022 end-page: 12011 ident: bib74 article-title: Metal–organic framework-derived BiIn bimetallic oxide nanoparticles embedded in carbon networks for efficient electrochemical reduction of CO publication-title: Inorg. Chem. – volume: 8 year: 2018 ident: bib48 article-title: Selective CO publication-title: Adv. Energy Mater. – volume: 12 start-page: 2357 year: 2022 end-page: 2364 ident: bib57 article-title: Engineering the local microenvironment over Bi nanosheets for highly selective electrocatalytic conversion of CO publication-title: ACS Catal. – volume: 66 start-page: 1533 year: 2021 end-page: 1541 ident: bib37 article-title: Decorating graphdiyne on ultrathin bismuth subcarbonate nanosheets to promote CO publication-title: Sci. Bull. – volume: 10 start-page: 8049 year: 2020 end-page: 8057 ident: bib43 article-title: Infrared analysis of interfacial phenomena during electrochemical reduction of CO publication-title: ACS Catal. – volume: 58 start-page: 6352 year: 2022 end-page: 6355 ident: bib46 article-title: Hexamethylenetetramine induced multidimensional defects in Co publication-title: Chem. Commun. – volume: 58 start-page: 13828 year: 2019 end-page: 13833 ident: bib5 article-title: Bi publication-title: Angew. Chem. Int. Ed. Engl. – volume: 13 year: 2023 ident: bib70 article-title: In-situ constructuring of copper-doped bismuth catalyst for highly efficient CO publication-title: Adv. Energy Mater. – volume: 29 start-page: 749 year: 1998 end-page: 756 ident: bib41 article-title: SERS studies of electrode/electrolyte interfacial water part II—librations of water correlated to hydrogen evolution reaction publication-title: J. Raman Spectrosc. – volume: 21 year: 2009 ident: bib30 article-title: A grid-based Bader analysis algorithm without lattice bias publication-title: J. Phys. Condens. Mat. – volume: 4 year: 2022 ident: bib39 article-title: In-situ structural evolution of Bi publication-title: Int. J. Mech. Sci. – volume: 2 year: 2021 ident: bib12 article-title: Achieving high current density for electrocatalytic reduction of CO publication-title: Cell. Rep. Phys. Sci. – volume: 17 year: 2021 ident: bib73 article-title: Boron dopant induced electron-rich bismuth for electrochemical CO publication-title: Small – volume: 10 start-page: 358 year: 2020 end-page: 364 ident: bib10 article-title: Curved surface boosts electrochemical CO publication-title: ACS Catal. – volume: 27 start-page: 278 year: 2021 end-page: 290 ident: bib6 article-title: Synthesis and electrochemical study of CuAu nanodendrites for CO publication-title: J. Electrochem – volume: 60 start-page: 12554 year: 2021 end-page: 12559 ident: bib14 article-title: Engineering bismuth-tin interface in bimetallic aerogel with a 3D porous structure for highly selective electrocatalytic CO publication-title: Angew. Chem. Int. Ed. Engl. – volume: 60 start-page: 18178 year: 2021 end-page: 18184 ident: bib20 article-title: The controllable reconstruction of Bi-MOFs for electrochemical CO publication-title: Angew. Chem. Int. Ed. Engl. – volume: 301 year: 2022 ident: bib62 article-title: Copper-triggered delocalization of bismuth publication-title: Appl. Catal. B – volume: 57 start-page: 1502 year: 2021 end-page: 1505 ident: bib63 article-title: A phosphate-derived bismuth catalyst with abundant grain boundaries for efficient reduction of CO publication-title: Chem. Commun. – volume: 62 start-page: 861 year: 2019 end-page: 868 ident: bib1 article-title: All-inorganic SrSnO publication-title: Nano Energy – volume: 11 start-page: 7604 year: 2021 end-page: 7612 ident: bib47 article-title: Electronic delocalization of bismuth oxide induced by sulfur doping for efficient CO publication-title: ACS Catal. – volume: 11 start-page: 12476 year: 2021 end-page: 12484 ident: bib16 article-title: Efficient CO publication-title: ACS Catal. – volume: 28 year: 2022 ident: bib3 article-title: A high-performance continuous-flow MEA reactor for electroreduction CO publication-title: J. Electrochem – volume: 42 start-page: 2173 year: 2021 end-page: 2180 ident: bib45 article-title: High activity and durability of carbon-supported core-shell PtPx@Pt/C catalyst for oxygen reduction reaction publication-title: Chinese J. Catal. – volume: 464 start-page: 392 year: 2010 end-page: 395 ident: bib38 article-title: Shell-isolated nanoparticle-enhanced Raman spectroscopy publication-title: Nature – volume: 11 year: 2020 ident: bib24 article-title: Bismuthene for highly efficient carbon dioxide electroreduction reaction publication-title: Nat. Commun. – volume: 141 start-page: 16569 year: 2019 end-page: 16573 ident: bib9 article-title: Bismuth single atoms resulting from transformation of metal-organic frameworks and their use as electrocatalysts for CO publication-title: J. Am. Chem. Soc. – volume: 9 year: 2018 ident: bib55 article-title: Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO publication-title: Nat. Commun. – volume: 33 year: 2021 ident: bib60 article-title: Facet engineering to regulate surface states of topological crystalline insulator bismuth rhombic dodecahedrons for highly energy efficient electrochemical CO publication-title: Adv. Mater. – volume: 61 year: 2022 ident: bib2 article-title: Assembling metal organic layer composites for high-performance electrocatalytic CO publication-title: Angew. Chem. Int. Ed. Engl. – volume: 271 year: 2020 ident: bib13 article-title: Boosting formate production at high current density from CO publication-title: Appl. Catal. B – volume: 66 start-page: 1533 year: 2021 ident: 10.1016/j.nanoen.2023.108638_bib37 article-title: Decorating graphdiyne on ultrathin bismuth subcarbonate nanosheets to promote CO2 electroreduction to formate publication-title: Sci. Bull. doi: 10.1016/j.scib.2021.03.020 – volume: 61 year: 2022 ident: 10.1016/j.nanoen.2023.108638_bib2 article-title: Assembling metal organic layer composites for high-performance electrocatalytic CO2 reduction to formate publication-title: Angew. Chem. Int. Ed. Engl. – volume: 60 start-page: 7681 year: 2021 ident: 10.1016/j.nanoen.2023.108638_bib15 article-title: BiPO4-derived 2D nanosheets for efficient electrocatalytic reduction of CO2 to liquid fuel publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.202014341 – volume: 6 start-page: 1091 year: 2022 ident: 10.1016/j.nanoen.2023.108638_bib21 article-title: In situ reconstruction of vegetable sponge-like Bi2O3 for efficient CO2 electroreduction to formate publication-title: Mater. Chem. Front. doi: 10.1039/D1QM01557E – volume: 8 start-page: 19938 year: 2020 ident: 10.1016/j.nanoen.2023.108638_bib75 article-title: Conversion of CO2 to chemical feedstocks over bismuth nanosheets in situ grown on nitrogen-doped carbon publication-title: J. Mater. Chem. A doi: 10.1039/D0TA07411J – volume: 12 year: 2022 ident: 10.1016/j.nanoen.2023.108638_bib76 article-title: Single-atom Sn on tensile-strained ZnO nanosheets for highly efficient conversion of CO2 into formate publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202202695 – year: 2022 ident: 10.1016/j.nanoen.2023.108638_bib59 article-title: In situ structural reconstruction to generate the active sites for CO2 electroreduction on bismuth ultrathin nanosheets publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202200970 – volume: 421 year: 2021 ident: 10.1016/j.nanoen.2023.108638_bib8 article-title: The bismuth architecture assembled by nanotubes used as highly efficient electrocatalyst for CO2 reduction to formate publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.129606 – volume: 28 year: 2022 ident: 10.1016/j.nanoen.2023.108638_bib3 article-title: A high-performance continuous-flow MEA reactor for electroreduction CO2 to formate publication-title: J. Electrochem – volume: 9 year: 2018 ident: 10.1016/j.nanoen.2023.108638_bib55 article-title: Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate publication-title: Nat. Commun. doi: 10.1038/s41467-018-03712-z – volume: 3 year: 2023 ident: 10.1016/j.nanoen.2023.108638_bib28 article-title: Recent advances of bismuth-based electrocatalysts for CO2 reduction: strategies mechanism and applications publication-title: Mater. Rep. Energy – volume: 32 year: 2022 ident: 10.1016/j.nanoen.2023.108638_bib49 article-title: Scalable chemical interface confinement reduction BiOBr to bismuth porous nanosheets for electroreduction of carbon dioxide to liquid fuel publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202107182 – volume: 27 start-page: 278 year: 2021 ident: 10.1016/j.nanoen.2023.108638_bib6 article-title: Synthesis and electrochemical study of CuAu nanodendrites for CO2 reduction publication-title: J. Electrochem – volume: 30 year: 2020 ident: 10.1016/j.nanoen.2023.108638_bib26 article-title: Nanostructured β-Bi2O3 fractals on carbon fibers for highly selective CO2 electroreduction to formate publication-title: Adv. Funct. Mater. – volume: 600 start-page: 81 year: 2021 ident: 10.1016/j.nanoen.2023.108638_bib40 article-title: In situ Raman spectroscopy reveals the structure and dissociation of interfacial water publication-title: Nature doi: 10.1038/s41586-021-04068-z – volume: 11 start-page: 4988 year: 2021 ident: 10.1016/j.nanoen.2023.108638_bib23 article-title: A tandem (Bi2O3 -> Bi-met) catalyst for highly efficient ec-CO2 conversion into formate: operando Raman spectroscopic evidence for a reaction pathway change publication-title: ACS Catal. doi: 10.1021/acscatal.0c05317 – volume: 11 start-page: 7604 year: 2021 ident: 10.1016/j.nanoen.2023.108638_bib47 article-title: Electronic delocalization of bismuth oxide induced by sulfur doping for efficient CO2 electroreduction to formate publication-title: ACS Catal. doi: 10.1021/acscatal.1c01899 – volume: 42 start-page: 2173 year: 2021 ident: 10.1016/j.nanoen.2023.108638_bib45 article-title: High activity and durability of carbon-supported core-shell PtPx@Pt/C catalyst for oxygen reduction reaction publication-title: Chinese J. Catal. doi: 10.1016/S1872-2067(21)63901-3 – volume: 18 year: 2022 ident: 10.1016/j.nanoen.2023.108638_bib56 article-title: Galvanic-cell deposition enables the exposure of bismuth grain boundary for efficient electroreduction of carbon dioxide publication-title: Small – year: 2022 ident: 10.1016/j.nanoen.2023.108638_bib36 article-title: A nanocomposite of bismuth clusters and Bi2O2CO3 sheets for highly efficient electrocatalytic reduction of CO2 to formate publication-title: Angew. Chem. Int. Ed. Engl. – volume: 4 year: 2022 ident: 10.1016/j.nanoen.2023.108638_bib39 article-title: In-situ structural evolution of Bi2O3 nanoparticle catalysts for CO2 electroreduction publication-title: Int. J. Mech. Sci. – volume: 60 start-page: 8798 year: 2021 ident: 10.1016/j.nanoen.2023.108638_bib51 article-title: Boosting production of HCOOH from CO2 electroreduction via Bi/CeOx publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.202015713 – volume: 58 start-page: 13828 year: 2019 ident: 10.1016/j.nanoen.2023.108638_bib5 article-title: Bi2O3 nanosheets grown on multi-channel carbon matrix to catalyze efficient CO2 electroreduction to HCOOH publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201907674 – volume: 10 start-page: 358 year: 2020 ident: 10.1016/j.nanoen.2023.108638_bib10 article-title: Curved surface boosts electrochemical CO2 reduction to formate via bismuth nanotubes in a wide potential window publication-title: ACS Catal. doi: 10.1021/acscatal.9b04516 – volume: 11 start-page: 12476 year: 2021 ident: 10.1016/j.nanoen.2023.108638_bib16 article-title: Efficient CO2 electroreduction with a monolayer Bi2WO6 through a metallic intermediate surface state publication-title: ACS Catal. doi: 10.1021/acscatal.1c02495 – volume: 11 year: 2020 ident: 10.1016/j.nanoen.2023.108638_bib24 article-title: Bismuthene for highly efficient carbon dioxide electroreduction reaction publication-title: Nat. Commun. – volume: 33 year: 2021 ident: 10.1016/j.nanoen.2023.108638_bib60 article-title: Facet engineering to regulate surface states of topological crystalline insulator bismuth rhombic dodecahedrons for highly energy efficient electrochemical CO2 reduction publication-title: Adv. Mater. doi: 10.1002/adma.202008373 – volume: 301 year: 2022 ident: 10.1016/j.nanoen.2023.108638_bib62 article-title: Copper-triggered delocalization of bismuth p-orbital favours high-throughput CO2 electroreduction publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2021.120781 – volume: 13 year: 2023 ident: 10.1016/j.nanoen.2023.108638_bib70 article-title: In-situ constructuring of copper-doped bismuth catalyst for highly efficient CO2 electrolysis to formate in ampere-level publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202202818 – volume: 2 year: 2021 ident: 10.1016/j.nanoen.2023.108638_bib12 article-title: Achieving high current density for electrocatalytic reduction of CO2 to formate on bismuth-based catalysts publication-title: Cell. Rep. Phys. Sci. – volume: 10 start-page: 743 year: 2020 ident: 10.1016/j.nanoen.2023.108638_bib33 article-title: Bismuth oxides with enhanced bismuth-oxygen structure for efficient electrochemical reduction of carbon dioxide to formate publication-title: ACS Catal. doi: 10.1021/acscatal.9b04043 – volume: 251 year: 2022 ident: 10.1016/j.nanoen.2023.108638_bib65 article-title: Bismuthene with stable Bi-O bonds for efficient CO2 electroreduction to formate publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2021.117409 – volume: 58 start-page: 6352 year: 2022 ident: 10.1016/j.nanoen.2023.108638_bib46 article-title: Hexamethylenetetramine induced multidimensional defects in Co2P nanosheets for efficient alkaline hydrogen evolution publication-title: Chem. Commun. doi: 10.1039/D2CC01393B – volume: 426 year: 2021 ident: 10.1016/j.nanoen.2023.108638_bib64 article-title: Carbon sustained SnO2-Bi2O3 hollow nanofibers as Janus catalyst for high-efficiency CO2 electroreduction publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131867 – volume: 12 start-page: 923 year: 2021 ident: 10.1016/j.nanoen.2023.108638_bib4 article-title: Au3+ species-induced interfacial activation enhances metal–support interactions for boosting electrocatalytic CO2 reduction to CO publication-title: ACS Catal. doi: 10.1021/acscatal.1c05503 – volume: 10 year: 2019 ident: 10.1016/j.nanoen.2023.108638_bib54 article-title: Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction publication-title: Nat. Commun. doi: 10.1038/s41467-019-10819-4 – volume: 10 year: 2020 ident: 10.1016/j.nanoen.2023.108638_bib58 article-title: Bi-based metal-organic framework derived leafy bismuth nanosheets for carbon dioxide electroreduction publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202001709 – volume: 57 start-page: 1502 year: 2021 ident: 10.1016/j.nanoen.2023.108638_bib63 article-title: A phosphate-derived bismuth catalyst with abundant grain boundaries for efficient reduction of CO2 to HCOOH publication-title: Chem. Commun. doi: 10.1039/D0CC06756C – volume: 21 year: 2009 ident: 10.1016/j.nanoen.2023.108638_bib30 article-title: A grid-based Bader analysis algorithm without lattice bias publication-title: J. Phys. Condens. Mat. doi: 10.1088/0953-8984/21/8/084204 – volume: 464 start-page: 392 year: 2010 ident: 10.1016/j.nanoen.2023.108638_bib38 article-title: Shell-isolated nanoparticle-enhanced Raman spectroscopy publication-title: Nature doi: 10.1038/nature08907 – volume: 62 start-page: 861 year: 2019 ident: 10.1016/j.nanoen.2023.108638_bib1 article-title: All-inorganic SrSnO3 perovskite nanowires for efficient CO2 electroreduction publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.05.077 – volume: 21 start-page: 6907 year: 2021 ident: 10.1016/j.nanoen.2023.108638_bib67 article-title: Spontaneously Sn-doped Bi/BiOx core-shell nanowires toward high-performance CO2 electroreduction to liquid fuel publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c02053 – volume: 14 start-page: 4998 year: 2021 ident: 10.1016/j.nanoen.2023.108638_bib66 article-title: Engineering a conductive network of atomically thin bismuthene with rich defects enables CO2 reduction to formate with industry-compatible current densities and stability publication-title: Energy Environ. Sci. doi: 10.1039/D1EE01495A – volume: 14 start-page: 14210 year: 2022 ident: 10.1016/j.nanoen.2023.108638_bib29 article-title: Bismuth nanosheets derived by in situ morphology transformation of bismuth oxides for selective electrochemical CO2 reduction to formate publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c25217 – volume: 5 start-page: 3148 year: 2015 ident: 10.1016/j.nanoen.2023.108638_bib42 article-title: Mechanistic insights into the reduction of CO2 on tin electrodes using in situ ATR-IR spectroscopy publication-title: ACS Catal. doi: 10.1021/acscatal.5b00402 – volume: 15 start-page: 2919 year: 2021 ident: 10.1016/j.nanoen.2023.108638_bib22 article-title: Sub-2 nm ultra-thin Bi2O2CO3 nanosheets with abundant Bi-O structures toward formic acid electrosynthesis over a wide potential window publication-title: Nano Res. doi: 10.1007/s12274-021-3903-0 – volume: 60 start-page: 18178 year: 2021 ident: 10.1016/j.nanoen.2023.108638_bib20 article-title: The controllable reconstruction of Bi-MOFs for electrochemical CO2 reduction through electrolyte and potential mediation publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.202104747 – volume: 4 start-page: 2831 year: 2020 ident: 10.1016/j.nanoen.2023.108638_bib35 article-title: The in situ morphology transformation of bismuth-based catalysts for the effective electroreduction of carbon dioxide publication-title: Suatain. Energ. Fuels doi: 10.1039/D0SE00228C – volume: 16 start-page: 7974 year: 2023 ident: 10.1016/j.nanoen.2023.108638_bib19 article-title: In-situ electrochemical restructuring of Cu2BiSx solid solution into Bi/CuxSy heterointerfaces enabling stabilization intermediates for high-performance CO2 electroreduction to formate publication-title: Nano Res. doi: 10.1007/s12274-022-5337-8 – volume: 15 start-page: 10078 year: 2022 ident: 10.1016/j.nanoen.2023.108638_bib32 article-title: Electrodeposited highly-oriented bismuth microparticles for efficient CO2 electroreduction into formate publication-title: Nano Res. doi: 10.1007/s12274-022-4345-z – volume: 35 start-page: 272 year: 2020 ident: 10.1016/j.nanoen.2023.108638_bib27 article-title: Electrochemical reduction of CO2 to formic acid on Bi2O2CO3/carbon fiber electrodes publication-title: J. Mater. Res. doi: 10.1557/jmr.2020.16 – volume: 13 start-page: 2486 year: 2022 ident: 10.1016/j.nanoen.2023.108638_bib72 article-title: Nano-crumples induced Sn-Bi bimetallic interface pattern with moderate electron bank for highly efficient CO2 electroreduction publication-title: Nat. Commun. doi: 10.1038/s41467-022-29861-w – volume: 14 start-page: 10648 year: 2022 ident: 10.1016/j.nanoen.2023.108638_bib25 article-title: Promoting the electrocatalytic reduction of CO2 on ultrathin porous bismuth nanosheets with tunable surface-active sites and local pH environments publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c16689 – volume: 22 start-page: 1656 year: 2022 ident: 10.1016/j.nanoen.2023.108638_bib7 article-title: Bi2O3/BiO2 nanoheterojunction for highly efficient electrocatalytic CO2 reduction to formate publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c04683 – volume: 33 year: 2021 ident: 10.1016/j.nanoen.2023.108638_bib50 article-title: Large-area vertically aligned bismuthene nanosheet arrays from galvanic replacement reaction for efficient electrochemical CO2 conversion publication-title: Adv. Mater. doi: 10.1002/adma.202100910 – volume: 57 start-page: 12790 year: 2018 ident: 10.1016/j.nanoen.2023.108638_bib52 article-title: Nitrogen-doped graphene quantum dots enhance the activity of Bi2O3 nanosheets for electrochemical reduction of CO2 in a wide negative potential region publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201807643 – volume: 16 start-page: 1539 year: 2021 ident: 10.1016/j.nanoen.2023.108638_bib17 article-title: In situ bismuth nanosheet assembly for highly selective electrocatalytic CO2 reduction to formate publication-title: Chem. Asian J. doi: 10.1002/asia.202100305 – volume: 7 start-page: 2864 year: 2020 ident: 10.1016/j.nanoen.2023.108638_bib18 article-title: Rich bismuth-oxygen bonds in bismuth derivatives from Bi2S3 pre-catalysts promote the electrochemical reduction of CO2 publication-title: ChemElectroChem doi: 10.1002/celc.202000656 – volume: 11 year: 2020 ident: 10.1016/j.nanoen.2023.108638_bib69 article-title: Electrochemical CO2 reduction to high-concentration pure formic acid solutions in an all-solid-state reactor publication-title: Nat. Commun. doi: 10.1038/s41467-020-17403-1 – volume: 59 start-page: 4814 year: 2020 ident: 10.1016/j.nanoen.2023.108638_bib61 article-title: In situ reconstruction of a hierarchical Sn-Cu/SnOx core/shell catalyst for high-performance CO2 electroreduction publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201916538 – volume: 271 year: 2020 ident: 10.1016/j.nanoen.2023.108638_bib13 article-title: Boosting formate production at high current density from CO2 electroreduction on defect-rich hierarchical mesoporous Bi/Bi2O3 junction nanosheets publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2020.118957 – year: 2022 ident: 10.1016/j.nanoen.2023.108638_bib68 article-title: Electrodeposited highly-oriented bismuth microparticles for efficient CO2 electroreduction into formate publication-title: Nano Res. doi: 10.1007/s12274-022-4345-z – volume: 10 start-page: 8049 year: 2020 ident: 10.1016/j.nanoen.2023.108638_bib43 article-title: Infrared analysis of interfacial phenomena during electrochemical reduction of CO2 over polycrystalline copper electrodes publication-title: ACS Catal. doi: 10.1021/acscatal.0c02130 – volume: 17 year: 2021 ident: 10.1016/j.nanoen.2023.108638_bib73 article-title: Boron dopant induced electron-rich bismuth for electrochemical CO2 reduction with high solar energy conversion efficiency publication-title: Small – volume: 29 start-page: 749 year: 1998 ident: 10.1016/j.nanoen.2023.108638_bib41 article-title: SERS studies of electrode/electrolyte interfacial water part II—librations of water correlated to hydrogen evolution reaction publication-title: J. Raman Spectrosc. doi: 10.1002/(SICI)1097-4555(199808)29:8<749::AID-JRS285>3.0.CO;2-2 – volume: 306 year: 2022 ident: 10.1016/j.nanoen.2023.108638_bib11 article-title: Electrochemically reconstructed perovskite with cooperative catalytic sites for CO2-to-formate conversion publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2022.121101 – year: 2022 ident: 10.1016/j.nanoen.2023.108638_bib71 article-title: Industrial-current-density CO2-to-formate conversion with low overpotentials enabled by disorder-engineered metal sites publication-title: Nano Res. – volume: 11 start-page: 355 year: 2021 ident: 10.1016/j.nanoen.2023.108638_bib44 article-title: Structurally disordered phosphorus-doped Pt as a highly active electrocatalyst for an oxygen reduction reaction publication-title: ACS Catal. doi: 10.1021/acscatal.0c03137 – volume: 61 start-page: 12003 year: 2022 ident: 10.1016/j.nanoen.2023.108638_bib74 article-title: Metal–organic framework-derived BiIn bimetallic oxide nanoparticles embedded in carbon networks for efficient electrochemical reduction of CO2 to formate publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.2c01961 – volume: 141 start-page: 16569 year: 2019 ident: 10.1016/j.nanoen.2023.108638_bib9 article-title: Bismuth single atoms resulting from transformation of metal-organic frameworks and their use as electrocatalysts for CO2 reduction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b08259 – volume: 12 start-page: 1334 year: 2019 ident: 10.1016/j.nanoen.2023.108638_bib53 article-title: Formation of lattice-dislocated bismuth nanowires on copper foam for enhanced electrocatalytic CO2 reduction at low overpotential publication-title: Energy Environ. Sci. doi: 10.1039/C9EE00018F – volume: 4 year: 2020 ident: 10.1016/j.nanoen.2023.108638_bib31 article-title: Efficient CO2 reduction to HCOOH with high selectivity and energy efficiency over Bi/rGO catalyst publication-title: Small Methods doi: 10.1002/smtd.201900846 – volume: 562 year: 2021 ident: 10.1016/j.nanoen.2023.108638_bib34 article-title: Sulfur boosting CO2 reduction activity of bismuth subcarbonate nanosheets via promoting proton-coupled electron transfer publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2021.150197 – volume: 60 start-page: 12554 year: 2021 ident: 10.1016/j.nanoen.2023.108638_bib14 article-title: Engineering bismuth-tin interface in bimetallic aerogel with a 3D porous structure for highly selective electrocatalytic CO2 reduction to HCOOH publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.202102832 – volume: 12 start-page: 2357 year: 2022 ident: 10.1016/j.nanoen.2023.108638_bib57 article-title: Engineering the local microenvironment over Bi nanosheets for highly selective electrocatalytic conversion of CO2 to HCOOH in strong acid publication-title: ACS Catal. doi: 10.1021/acscatal.1c05135 – volume: 8 year: 2018 ident: 10.1016/j.nanoen.2023.108638_bib48 article-title: Selective CO2 reduction on 2D mesoporous Bi nanosheets publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801536 – volume: 7 start-page: 4822 year: 2017 ident: 10.1016/j.nanoen.2023.108638_bib77 article-title: Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes publication-title: ACS Catal. doi: 10.1021/acscatal.7b00687 |
SSID | ssj0000651712 |
Score | 2.5541947 |
SecondaryResourceType | review_article |
Snippet | Bi-based electrocatalysts are prominent candidates to achieve CO2 reduction to formate with high selectivity but suffer from unsatisfied activity, stability,... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 108638 |
SubjectTerms | Bismuth nanosheet Bismuth subcarbonate CO2 reduction Formate In-situ characterization |
Title | In-situ constructing Bi@Bi2O2CO3 nanosheet catalyst for ampere-level CO2 electroreduction to formate |
URI | https://dx.doi.org/10.1016/j.nanoen.2023.108638 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqDywmsZOHCcbbUTVgtQOUKlb5Do2BFVJ1YaBhd-OL48KJAQSYyKfEt05d985d98hdK2k1FLQkPBAM-L5JiTS2p0kbiIk0KWHsqzynfijmXc_5_MWippeGCirrH1_5dNLb13f6dXa7K3StPfIbO7CAg7Hmo4nODSae56AXX7zQbfnLDbEUlH-9IT1BASaDrqyzCuTWa6BCJW55dQhaFT5KUJ9iTrDA7Rfw0Xcr97oELV0doT2vpAIHqNknJFNWrxhlTdssNkzHqS3g5RNWTR1MTx886J1gcvDmvdNgS1UxdIi5rUmSygbwtGU4XokzhrYXMFeuMhxhWn1CZoN756iEalnJxBlk4CCuNICO8lU4PvKc1xGjaPMgiqbboiFBWHSd-23C-MQEsqchAmlQ0dyoxKmfGXD2SlqZ3mmzxDm2lCb9DhGG-5J6gZcGAt7fMGkAvjUQW6jr1jVxOIw32IZNxVkr3Gl5Ri0HFda7iCylVpVxBp_rBeNKeJvGyS2vv9XyfN_S16gXbiqSsouUdvaUF9ZDFIsuuUm66Kd_vhhNPkEEenaJQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4gHtSD8RnxuQevK-222y03hUhAEQ5Cwq1ZtlutIYVAPXjxtzvTB8HEaOK17aTNzO7MN9uZbwi51koZJe0GE77hzPWiBlNgdxY6oVRIl95QWZVv3-uM3IexGFdIq-yFwbLKwvfnPj3z1sWVeqHN-jyO688cchfuCzzWtFwpxAbZdGH74hiDm097ddACMdaW2V9PFGAoUbbQZXVeiUpmBplQuZONHcJOlZ9C1FrYae-R3QIv0rv8k_ZJxSQHZGeNRfCQhN2ELeP0nepZSQebvNBmfNuM-YC3Bg7Fly9fjUlpdlrzsUwpYFWqADIvDJti3RBtDTgtZuIskM4VDUbTGc1BrTkio_b9sNVhxfAEpiELSJmjANkprn3P067lcDuydDSxNeQbcgIoTHkObF6chxDa3Aq51KZhKRHpkGtPQzw7JtVklpgTQoWJbMh6rMhEwlW24wsZAe7xJFca8VONOKW-Al0wi-OAi2lQlpC9BbmWA9RykGu5RthKap4za_zxvCxNEXxbIQE4_18lT_8teUW2OsOnXtDr9h_PyDbeyevLzkkV7GkuAJCkk8tswX0BL3Xbsw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In-situ+constructing+Bi%40Bi2O2CO3+nanosheet+catalyst+for+ampere-level+CO2+electroreduction+to+formate&rft.jtitle=Nano+energy&rft.au=Liang%2C+Xiao-Du&rft.au=Zheng%2C+Qi-Zheng&rft.au=Wei%2C+Nian&rft.au=Lou%2C+Yao-Yin&rft.date=2023-09-01&rft.pub=Elsevier+Ltd&rft.issn=2211-2855&rft.volume=114&rft_id=info:doi/10.1016%2Fj.nanoen.2023.108638&rft.externalDocID=S2211285523004755 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon |