In-situ constructing Bi@Bi2O2CO3 nanosheet catalyst for ampere-level CO2 electroreduction to formate

Bi-based electrocatalysts are prominent candidates to achieve CO2 reduction to formate with high selectivity but suffer from unsatisfied activity, stability, and ambiguous nature of active sites. Herein, the Bi@Bi2O2CO3 nanosheet catalyst is designed via an electrochemical in-situ reconstruction app...

Full description

Saved in:
Bibliographic Details
Published inNano energy Vol. 114; p. 108638
Main Authors Liang, Xiao-Du, Zheng, Qi-Zheng, Wei, Nian, Lou, Yao-Yin, Hu, Sheng-Nan, Zhao, Kuang-Min, Liao, Hong-Gang, Tian, Na, Zhou, Zhi-You, Sun, Shi-Gang
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bi-based electrocatalysts are prominent candidates to achieve CO2 reduction to formate with high selectivity but suffer from unsatisfied activity, stability, and ambiguous nature of active sites. Herein, the Bi@Bi2O2CO3 nanosheet catalyst is designed via an electrochemical in-situ reconstruction approach from BiPO4. The conversion processes were revealed by electrochemical in-situ Raman and FTIR spectroscopy. The obtained Bi@Bi2O2CO3 catalyst demonstrates high CO2 reduction performance (FEHCOOH ≈ 100%, jHCOOH ≈ −60 mA cm−2) and excellent stability of 110 h in H-type cell. Moreover, the Bi@Bi2O2CO3 delivers a remarkable formate partial current density up to −1.2 A cm−2 (production rate as 22.4 mmol cm−2 h−1) in the flow cell. DFT theoretical studies reveal the synergistic effect of Bi and Bi2O2CO3 at the interface played an important role in changing the adsorption behavior of reaction intermediates and further greatly reducing the activation barrier of the conversion of *OCHO to *HCOOH during CO2 reduction. [Display omitted] •Bi@Bi2O2CO3 nanosheet is designed by electrochemical in-situ reconstruction method.•Bi@Bi2O2CO3 catalyst demonstrates high formate selectivity and stability in CO2RR.•Bi@Bi2O2CO3 catalyst deliveries an ampere-level formate partial current density.•The synergistic effect of Bi and Bi2O2CO3 boosts CO2 adsorption and conversion.
AbstractList Bi-based electrocatalysts are prominent candidates to achieve CO2 reduction to formate with high selectivity but suffer from unsatisfied activity, stability, and ambiguous nature of active sites. Herein, the Bi@Bi2O2CO3 nanosheet catalyst is designed via an electrochemical in-situ reconstruction approach from BiPO4. The conversion processes were revealed by electrochemical in-situ Raman and FTIR spectroscopy. The obtained Bi@Bi2O2CO3 catalyst demonstrates high CO2 reduction performance (FEHCOOH ≈ 100%, jHCOOH ≈ −60 mA cm−2) and excellent stability of 110 h in H-type cell. Moreover, the Bi@Bi2O2CO3 delivers a remarkable formate partial current density up to −1.2 A cm−2 (production rate as 22.4 mmol cm−2 h−1) in the flow cell. DFT theoretical studies reveal the synergistic effect of Bi and Bi2O2CO3 at the interface played an important role in changing the adsorption behavior of reaction intermediates and further greatly reducing the activation barrier of the conversion of *OCHO to *HCOOH during CO2 reduction. [Display omitted] •Bi@Bi2O2CO3 nanosheet is designed by electrochemical in-situ reconstruction method.•Bi@Bi2O2CO3 catalyst demonstrates high formate selectivity and stability in CO2RR.•Bi@Bi2O2CO3 catalyst deliveries an ampere-level formate partial current density.•The synergistic effect of Bi and Bi2O2CO3 boosts CO2 adsorption and conversion.
ArticleNumber 108638
Author Lou, Yao-Yin
Tian, Na
Zhou, Zhi-You
Liao, Hong-Gang
Liang, Xiao-Du
Wei, Nian
Hu, Sheng-Nan
Zhao, Kuang-Min
Sun, Shi-Gang
Zheng, Qi-Zheng
Author_xml – sequence: 1
  givenname: Xiao-Du
  surname: Liang
  fullname: Liang, Xiao-Du
– sequence: 2
  givenname: Qi-Zheng
  surname: Zheng
  fullname: Zheng, Qi-Zheng
– sequence: 3
  givenname: Nian
  surname: Wei
  fullname: Wei, Nian
– sequence: 4
  givenname: Yao-Yin
  surname: Lou
  fullname: Lou, Yao-Yin
– sequence: 5
  givenname: Sheng-Nan
  surname: Hu
  fullname: Hu, Sheng-Nan
– sequence: 6
  givenname: Kuang-Min
  surname: Zhao
  fullname: Zhao, Kuang-Min
– sequence: 7
  givenname: Hong-Gang
  surname: Liao
  fullname: Liao, Hong-Gang
  email: hgliao@xmu.edu.cn
– sequence: 8
  givenname: Na
  surname: Tian
  fullname: Tian, Na
  email: tnsd@xmu.edu.cn
– sequence: 9
  givenname: Zhi-You
  surname: Zhou
  fullname: Zhou, Zhi-You
– sequence: 10
  givenname: Shi-Gang
  surname: Sun
  fullname: Sun, Shi-Gang
BookMark eNqFkMtOwzAQRb0oEgX6Byz8Ayl-JE7KAkEjHpUqZQNry51MwFVqV7ZbqX9PorJiAbMZaTTnauZckYnzDgm55WzOGVd327kzzqObCybkMKqUrCZkKgTnmaiK4pLMYtyyoVTBSy6mpF25LNp0oOBdTOEAybpPurSPSysaUTeSjonxCzFRMMn0p5ho5wM1uz0GzHo8Yk_rRlDsEVLwAdsxxDua_Li4MwlvyEVn-oizn35NPl6e3-u3bN28ruqndQaSqZRJsyhLI6BSCnImBe8YdBsOKhflJufKKMnyyhSMtVywVpSAC2aKDloBCriQ1-T-nAvBxxiw02CTGY9Jwdhec6ZHTXqrz5r0qEmfNQ1w_gveB7sz4fQf9nDGcHjsaDHoCBYdYGvDIES33v4d8A3_7of2
CitedBy_id crossref_primary_10_1039_D4IM00126E
crossref_primary_10_1002_anie_202411575
crossref_primary_10_1002_anie_202317628
crossref_primary_10_1002_adsu_202400748
crossref_primary_10_1039_D4QI01570C
crossref_primary_10_1016_j_cej_2024_153170
crossref_primary_10_1021_acsanm_4c02570
crossref_primary_10_1016_j_apsusc_2024_160216
crossref_primary_10_3390_catal15010052
crossref_primary_10_1016_j_colsurfa_2025_136464
crossref_primary_10_1016_j_jechem_2024_02_023
crossref_primary_10_1002_ange_202411575
crossref_primary_10_1557_s43581_025_00127_4
crossref_primary_10_1021_acsanm_4c05813
crossref_primary_10_1016_j_apcatb_2025_125234
crossref_primary_10_1016_j_matchemphys_2025_130600
crossref_primary_10_1002_adma_202415639
crossref_primary_10_1002_ange_202317628
crossref_primary_10_1073_pnas_2420922122
crossref_primary_10_1002_adma_202404980
crossref_primary_10_1002_aic_18350
crossref_primary_10_1002_smll_202402879
crossref_primary_10_1039_D4TA05445H
crossref_primary_10_1016_j_surfin_2024_105417
crossref_primary_10_1021_acs_iecr_4c04177
crossref_primary_10_1016_j_apsusc_2024_160844
crossref_primary_10_1002_advs_202415616
crossref_primary_10_1016_j_cej_2024_153105
crossref_primary_10_1016_j_apcatb_2025_125203
crossref_primary_10_1016_j_carbon_2024_119385
crossref_primary_10_1016_j_cej_2024_154219
crossref_primary_10_1039_D4TA06898J
crossref_primary_10_1016_j_fuel_2024_132280
crossref_primary_10_1021_acsnano_4c15927
crossref_primary_10_1016_j_apcatb_2024_124451
crossref_primary_10_1039_D4DT02203C
crossref_primary_10_1039_D4NR05343E
crossref_primary_10_1016_j_seppur_2024_127926
crossref_primary_10_1002_adfm_202315211
crossref_primary_10_1016_j_apcatb_2025_125146
crossref_primary_10_1016_j_cclet_2024_110300
crossref_primary_10_1016_j_jallcom_2024_174220
Cites_doi 10.1016/j.scib.2021.03.020
10.1002/anie.202014341
10.1039/D1QM01557E
10.1039/D0TA07411J
10.1002/aenm.202202695
10.1002/aenm.202200970
10.1016/j.cej.2021.129606
10.1038/s41467-018-03712-z
10.1002/adfm.202107182
10.1038/s41586-021-04068-z
10.1021/acscatal.0c05317
10.1021/acscatal.1c01899
10.1016/S1872-2067(21)63901-3
10.1002/anie.202015713
10.1002/anie.201907674
10.1021/acscatal.9b04516
10.1021/acscatal.1c02495
10.1002/adma.202008373
10.1016/j.apcatb.2021.120781
10.1002/aenm.202202818
10.1021/acscatal.9b04043
10.1016/j.ces.2021.117409
10.1039/D2CC01393B
10.1016/j.cej.2021.131867
10.1021/acscatal.1c05503
10.1038/s41467-019-10819-4
10.1002/aenm.202001709
10.1039/D0CC06756C
10.1088/0953-8984/21/8/084204
10.1038/nature08907
10.1016/j.nanoen.2019.05.077
10.1021/acs.nanolett.1c02053
10.1039/D1EE01495A
10.1021/acsami.1c25217
10.1021/acscatal.5b00402
10.1007/s12274-021-3903-0
10.1002/anie.202104747
10.1039/D0SE00228C
10.1007/s12274-022-5337-8
10.1007/s12274-022-4345-z
10.1557/jmr.2020.16
10.1038/s41467-022-29861-w
10.1021/acsami.1c16689
10.1021/acs.nanolett.1c04683
10.1002/adma.202100910
10.1002/anie.201807643
10.1002/asia.202100305
10.1002/celc.202000656
10.1038/s41467-020-17403-1
10.1002/anie.201916538
10.1016/j.apcatb.2020.118957
10.1021/acscatal.0c02130
10.1002/(SICI)1097-4555(199808)29:8<749::AID-JRS285>3.0.CO;2-2
10.1016/j.apcatb.2022.121101
10.1021/acscatal.0c03137
10.1021/acs.inorgchem.2c01961
10.1021/jacs.9b08259
10.1039/C9EE00018F
10.1002/smtd.201900846
10.1016/j.apsusc.2021.150197
10.1002/anie.202102832
10.1021/acscatal.1c05135
10.1002/aenm.201801536
10.1021/acscatal.7b00687
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.nanoen.2023.108638
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_nanoen_2023_108638
S2211285523004755
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FNPLU
FYGXN
GBLVA
HZ~
JARJE
KOM
M41
MAGPM
MO0
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SPC
SPCBC
SSM
SSR
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-3a977a2c866c40321f0cfb1c6427b416a63048a500d120d27ce90a5fcd2c6c123
IEDL.DBID .~1
ISSN 2211-2855
IngestDate Tue Jul 01 00:57:04 EDT 2025
Thu Apr 24 23:07:36 EDT 2025
Fri Feb 23 02:36:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords In-situ characterization
Formate
CO2 reduction
Bismuth nanosheet
Bismuth subcarbonate
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-3a977a2c866c40321f0cfb1c6427b416a63048a500d120d27ce90a5fcd2c6c123
ParticipantIDs crossref_citationtrail_10_1016_j_nanoen_2023_108638
crossref_primary_10_1016_j_nanoen_2023_108638
elsevier_sciencedirect_doi_10_1016_j_nanoen_2023_108638
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2023
2023-09-00
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: September 2023
PublicationDecade 2020
PublicationTitle Nano energy
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Puppin, Khalid, da Silva, Ribeiro, Varela, Lopes (bib27) 2020; 35
Shen, Zhao, Zhang, He, Yang, Wang, Cao, Guo, Zhang, Zhang (bib70) 2023; 13
Wang, Li, Liu, Dong, Xiao, Cheng, Jiang, Jiang, Li (bib15) 2021; 60
Fan, Xia, Zhu, Lu, Wang (bib69) 2020; 11
Tang, Lu, Zhang, Wei, Si, Lu (bib37) 2021; 66
Liu, Lu, Xiao, Wang, Lou (bib5) 2019; 58
Chen, Chen, Li, Liao, Zhao, Cheng, Wang (bib56) 2022; 18
Duan, Liu, Zhang, Yan, Jiang (bib31) 2020; 4
Fan, Jia, Ji, Kuang, Zhu, Liu, Yu (bib10) 2020; 10
Duan, Zhou, Yu, Liu, Wen, Yan, Jiang (bib51) 2021; 60
Lu, Shen, Liu, Zhang, Wan, Morris, Wang, Zhou, Li, Sheng, Gu, Zhang, Tian, Sun (bib44) 2021; 11
Li, Lu, Gan, Tian, Zhang, Yan, Chen, Chen, Zhou, Sun (bib45) 2021; 42
Lin, Liu, Kong, Geng, Zeng (bib68) 2022
Liu, Peng, He, Li, Qiao (bib3) 2022; 28
Wang, Yang, Zang, Chen, Wang, Yu, Geng (bib74) 2022; 61
Yao, Tang, Vasileff, Zhi, Jiao, Qiao (bib20) 2021; 60
Zheng, Wu, Gao, Wang (bib8) 2021; 421
Deng, Wang, Qi, Zhu, Chen, Yang, Zhou, Qi, Liu, Xia (bib33) 2020; 10
Li, Huang, Ding, Yang, Li, Zhou, Fan, Zhang, Zhou, Wu, Ren, Wang, Tian (bib38) 2010; 464
Wang, Zu, Li, Li, Wu, Wang, Ling, Zhao, Sun, Xie (bib71) 2022
Chen, Chen, Zhou, Zhang, Yang, Li, Yang, Wang, Ye, Liu (bib73) 2021; 17
Yuan, Wang, Qiao, Chen, Yang, Lai, Chen, Zhang, Duan, Liu, Huang (bib59) 2022
Yang, Wang, Chen, Zang, Liu, Yu, Geng (bib19) 2023; 16
Wang, Wang, Ni, Zhou, Geng (bib46) 2022; 58
Han, Wang, Yang, Deng, Wu, Li, Li (bib55) 2018; 9
Wu, Huo, Chen, Fu, Luo (bib13) 2020; 271
Ye, Zhou, Shao, Lin, Gao, Ta, Si, Wang, Bao (bib61) 2020; 59
Chen, Mou, Wang, Liu (bib52) 2018; 57
Feng, Zou, Zheng, Wei, Wang, Zou, Lim, Hong, Duan, Chen (bib7) 2022; 22
Siltamaki, Shuai, Rahmati, Lipkowski, Chen (bib6) 2021; 27
Qiao, Lai, Huang, Yu, Wang, Gao, Yang, Ma, Sun, Liu, Lian, Huang (bib57) 2022; 12
Zhu, Zhang, Gao, Sui, Xu, Gong, Zeng, Shankar, Bergens, Luo (bib11) 2022; 306
Thanh, Daiyan, Fusco, Ma, Amal, Tricoli (bib26) 2020; 30
Zhao, Liu, Liu, Lin, Lan, Zhang, Lu, Peng, Chan, Tan (bib67) 2021; 21
Wang, Tang, Sun, Liu, Xia, Li, Jiang, He, Xiao (bib39) 2022; 4
Wang, Zheng, Yang, Zhou, He, Radjenovic, Dong, Li, Zheng, Yang, Attard, Pan, Tian, Li (bib40) 2021; 600
Wang, Cheng, Liu, Xiao, Zhang, Xiong, Zhang, Jiang, Jiang, Zhu, Li, Li (bib18) 2020; 7
Lee, Liu, Chen, Li (bib29) 2022; 14
An, Li, Hao, Du, Yu, Wang, Hao, Abudula, Guan (bib35) 2020; 4
Fu, Wang, Hu, He, Tu, Yue, Kang (bib49) 2022; 32
Pi, Guo, Shao, Huang (bib1) 2019; 62
Liu, Wang, Wu, Tian, Sun, Lv, Mu, Sun, Li, Wang, Wang, Tang, Wang, Li, Ding (bib16) 2021; 11
Wang, Yin, Si, Wang, Guo, Guo, Fu (bib75) 2020; 8
Shi, Wen, Wu, Zhao, Mao, Liu, Yang (bib21) 2022; 6
Peng, Wu, Zeng, Zhu (bib17) 2021; 16
Liang, Tian, Hu, Zhou, Sun (bib28) 2023; 3
Yu, Wu, Chen, Hao, Su, Zhu, Gao, Wang, Yin (bib25) 2022; 14
Wu, Wu, Cai, Wen, Jia, Wang, Jin, Ma (bib14) 2021; 60
Liu, Wang, Song, Kuster, Starke, van Aken, Klemm (bib2) 2022; 61
Baruch, Pander, White, Bocarsly (bib42) 2015; 5
Liu, Gao, Feng, Gong, Zeng, Luo (bib47) 2021; 11
Ning, Xu, Liu, Jiang, Hu, Li (bib65) 2022; 251
Zhang, Jang, Ge, Zhang, Li, Hou, Zhai, Wei, Wang, Kim, Liu, Qin, Liu, Cho (bib76) 2022; 12
Ren, Wen, Gao, Luo, Zhang, Qiu, Ma, Wang, Cui, Ricardez–Sandoval, Yu, Chen (bib72) 2022; 13
Fan, Ma, Xie, Liu, Zhang, Yang, Huang, Dong, Chen, Yi (bib12) 2021; 2
Lin, Liu, Kong, Geng, Zeng (bib32) 2022; 15
Tang, Sanville, Henkelman (bib30) 2009; 21
Wang, Wang, Zhang, Wang, Yang, Ning, Zhu, Zhang, Guan, Teng, Zhao, Wu (bib64) 2021; 426
Yang, Elnabawy, Schimmenti, Song, Wang, Peng, Yao, Deng, Song, Lin, Mavrikakis, Xu (bib24) 2020; 11
Xing, Chen, Liu, Sheng, Zeng, Geng, Bao (bib63) 2021; 57
Fan, Zhao, Mao, Xu, Han, Yang, Pan, Li, Wang, Li (bib50) 2021; 33
Zhang, Wei, Zhou, Ma, Cao, Wu, Zhu (bib66) 2021; 14
Wang, Wang, Jiang, Liu, Zhang, Gao, Yao (bib22) 2021; 15
Moradzaman, Mul (bib43) 2020; 10
Yang, Wang, Qu, Wang, Huo, Fan, Wang, Yang, Wu (bib58) 2020; 10
Sun, Yuan, Zhou, Yuan, Liu, Zhang (bib4) 2021; 12
Zhang, Sun, Guo, Bond, Zhang (bib53) 2019; 12
Dutta, Montiel, Kiran, Rieder, Grozovski, Gut, Broekmann (bib23) 2021; 11
Chen, Zou, Huang, Tian (bib41) 1998; 29
Liu, Xie, Wang, Gao, Chen, Wu, Meng, Song, Du, Ren (bib62) 2022; 301
Gong, Ding, Xu, Zhu, Wang, Deng, Ma, Han, Zhu, Lu, Feng, Li, Zhou, Li (bib54) 2019; 10
Xie, Zhang, Xie, Hou, Ji, Pang, Chen, Titirici, Weng, Chai (bib60) 2021; 33
Wang, Mao, Zheng, Zhou, Xu (bib34) 2021; 562
Zhang, Wang, Yu, Liu, Chen, Li, Rong, Lin, Ji, Zheng, Wang, Zheng, Chen, Wang, Zhang, Li (bib9) 2019; 141
Feaster, Shi, Cave, Hatsukade, Abram, Kuhl, Hahn, Nørskov, Jaramillo (bib77) 2017; 7
Lin, He, Zhang, Ma, Zhang, Wei, Xie, Zhang, Yi, Wang (bib36) 2022
Yang, Han, Deng, Wu, Wang, Hu, Ding, Li, Li, Lu (bib48) 2018; 8
Qiao (10.1016/j.nanoen.2023.108638_bib57) 2022; 12
Zhang (10.1016/j.nanoen.2023.108638_bib9) 2019; 141
Yao (10.1016/j.nanoen.2023.108638_bib20) 2021; 60
Han (10.1016/j.nanoen.2023.108638_bib55) 2018; 9
Liu (10.1016/j.nanoen.2023.108638_bib47) 2021; 11
Tang (10.1016/j.nanoen.2023.108638_bib30) 2009; 21
Zhao (10.1016/j.nanoen.2023.108638_bib67) 2021; 21
Siltamaki (10.1016/j.nanoen.2023.108638_bib6) 2021; 27
Wang (10.1016/j.nanoen.2023.108638_bib15) 2021; 60
Lin (10.1016/j.nanoen.2023.108638_bib32) 2022; 15
Wang (10.1016/j.nanoen.2023.108638_bib39) 2022; 4
Li (10.1016/j.nanoen.2023.108638_bib45) 2021; 42
Zhang (10.1016/j.nanoen.2023.108638_bib66) 2021; 14
Liu (10.1016/j.nanoen.2023.108638_bib16) 2021; 11
Wang (10.1016/j.nanoen.2023.108638_bib34) 2021; 562
Shi (10.1016/j.nanoen.2023.108638_bib21) 2022; 6
Liu (10.1016/j.nanoen.2023.108638_bib3) 2022; 28
Moradzaman (10.1016/j.nanoen.2023.108638_bib43) 2020; 10
Feaster (10.1016/j.nanoen.2023.108638_bib77) 2017; 7
Chen (10.1016/j.nanoen.2023.108638_bib73) 2021; 17
Fan (10.1016/j.nanoen.2023.108638_bib10) 2020; 10
Liang (10.1016/j.nanoen.2023.108638_bib28) 2023; 3
Li (10.1016/j.nanoen.2023.108638_bib38) 2010; 464
Dutta (10.1016/j.nanoen.2023.108638_bib23) 2021; 11
Peng (10.1016/j.nanoen.2023.108638_bib17) 2021; 16
Zhu (10.1016/j.nanoen.2023.108638_bib11) 2022; 306
Wang (10.1016/j.nanoen.2023.108638_bib46) 2022; 58
Fan (10.1016/j.nanoen.2023.108638_bib50) 2021; 33
Wang (10.1016/j.nanoen.2023.108638_bib18) 2020; 7
Wang (10.1016/j.nanoen.2023.108638_bib74) 2022; 61
Yuan (10.1016/j.nanoen.2023.108638_bib59) 2022
Fan (10.1016/j.nanoen.2023.108638_bib12) 2021; 2
Feng (10.1016/j.nanoen.2023.108638_bib7) 2022; 22
Thanh (10.1016/j.nanoen.2023.108638_bib26) 2020; 30
Yang (10.1016/j.nanoen.2023.108638_bib24) 2020; 11
Duan (10.1016/j.nanoen.2023.108638_bib31) 2020; 4
Zheng (10.1016/j.nanoen.2023.108638_bib8) 2021; 421
Shen (10.1016/j.nanoen.2023.108638_bib70) 2023; 13
Baruch (10.1016/j.nanoen.2023.108638_bib42) 2015; 5
Chen (10.1016/j.nanoen.2023.108638_bib41) 1998; 29
Xie (10.1016/j.nanoen.2023.108638_bib60) 2021; 33
Puppin (10.1016/j.nanoen.2023.108638_bib27) 2020; 35
Ren (10.1016/j.nanoen.2023.108638_bib72) 2022; 13
Fu (10.1016/j.nanoen.2023.108638_bib49) 2022; 32
Lin (10.1016/j.nanoen.2023.108638_bib36) 2022
Yu (10.1016/j.nanoen.2023.108638_bib25) 2022; 14
Yang (10.1016/j.nanoen.2023.108638_bib48) 2018; 8
Ning (10.1016/j.nanoen.2023.108638_bib65) 2022; 251
Chen (10.1016/j.nanoen.2023.108638_bib56) 2022; 18
Liu (10.1016/j.nanoen.2023.108638_bib2) 2022; 61
Pi (10.1016/j.nanoen.2023.108638_bib1) 2019; 62
Deng (10.1016/j.nanoen.2023.108638_bib33) 2020; 10
An (10.1016/j.nanoen.2023.108638_bib35) 2020; 4
Wu (10.1016/j.nanoen.2023.108638_bib13) 2020; 271
Yang (10.1016/j.nanoen.2023.108638_bib19) 2023; 16
Gong (10.1016/j.nanoen.2023.108638_bib54) 2019; 10
Wang (10.1016/j.nanoen.2023.108638_bib75) 2020; 8
Lu (10.1016/j.nanoen.2023.108638_bib44) 2021; 11
Fan (10.1016/j.nanoen.2023.108638_bib69) 2020; 11
Wu (10.1016/j.nanoen.2023.108638_bib14) 2021; 60
Ye (10.1016/j.nanoen.2023.108638_bib61) 2020; 59
Lin (10.1016/j.nanoen.2023.108638_bib68) 2022
Zhang (10.1016/j.nanoen.2023.108638_bib53) 2019; 12
Wang (10.1016/j.nanoen.2023.108638_bib64) 2021; 426
Duan (10.1016/j.nanoen.2023.108638_bib51) 2021; 60
Lee (10.1016/j.nanoen.2023.108638_bib29) 2022; 14
Wang (10.1016/j.nanoen.2023.108638_bib71) 2022
Liu (10.1016/j.nanoen.2023.108638_bib5) 2019; 58
Sun (10.1016/j.nanoen.2023.108638_bib4) 2021; 12
Wang (10.1016/j.nanoen.2023.108638_bib22) 2021; 15
Xing (10.1016/j.nanoen.2023.108638_bib63) 2021; 57
Wang (10.1016/j.nanoen.2023.108638_bib40) 2021; 600
Yang (10.1016/j.nanoen.2023.108638_bib58) 2020; 10
Tang (10.1016/j.nanoen.2023.108638_bib37) 2021; 66
Chen (10.1016/j.nanoen.2023.108638_bib52) 2018; 57
Liu (10.1016/j.nanoen.2023.108638_bib62) 2022; 301
Zhang (10.1016/j.nanoen.2023.108638_bib76) 2022; 12
References_xml – volume: 16
  start-page: 1539
  year: 2021
  end-page: 1544
  ident: bib17
  article-title: In situ bismuth nanosheet assembly for highly selective electrocatalytic CO
  publication-title: Chem. Asian J.
– volume: 6
  start-page: 1091
  year: 2022
  end-page: 1097
  ident: bib21
  article-title: In situ reconstruction of vegetable sponge-like Bi
  publication-title: Mater. Chem. Front.
– volume: 5
  start-page: 3148
  year: 2015
  end-page: 3156
  ident: bib42
  article-title: Mechanistic insights into the reduction of CO
  publication-title: ACS Catal.
– year: 2022
  ident: bib36
  article-title: A nanocomposite of bismuth clusters and Bi
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 14
  start-page: 4998
  year: 2021
  end-page: 5008
  ident: bib66
  article-title: Engineering a conductive network of atomically thin bismuthene with rich defects enables CO
  publication-title: Energy Environ. Sci.
– volume: 11
  start-page: 355
  year: 2021
  end-page: 363
  ident: bib44
  article-title: Structurally disordered phosphorus-doped Pt as a highly active electrocatalyst for an oxygen reduction reaction
  publication-title: ACS Catal.
– volume: 32
  year: 2022
  ident: bib49
  article-title: Scalable chemical interface confinement reduction BiOBr to bismuth porous nanosheets for electroreduction of carbon dioxide to liquid fuel
  publication-title: Adv. Funct. Mater.
– volume: 30
  year: 2020
  ident: bib26
  article-title: Nanostructured
  publication-title: Adv. Funct. Mater.
– volume: 3
  year: 2023
  ident: bib28
  article-title: Recent advances of bismuth-based electrocatalysts for CO
  publication-title: Mater. Rep. Energy
– volume: 4
  year: 2020
  ident: bib31
  article-title: Efficient CO
  publication-title: Small Methods
– volume: 251
  year: 2022
  ident: bib65
  article-title: Bismuthene with stable Bi-O bonds for efficient CO
  publication-title: Chem. Eng. Sci.
– volume: 14
  start-page: 10648
  year: 2022
  end-page: 10655
  ident: bib25
  article-title: Promoting the electrocatalytic reduction of CO
  publication-title: ACS Appl. Mater. Interfaces
– volume: 18
  year: 2022
  ident: bib56
  article-title: Galvanic-cell deposition enables the exposure of bismuth grain boundary for efficient electroreduction of carbon dioxide
  publication-title: Small
– year: 2022
  ident: bib59
  article-title: In situ structural reconstruction to generate the active sites for CO
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 19938
  year: 2020
  end-page: 19945
  ident: bib75
  article-title: Conversion of CO
  publication-title: J. Mater. Chem. A
– volume: 421
  year: 2021
  ident: bib8
  article-title: The bismuth architecture assembled by nanotubes used as highly efficient electrocatalyst for CO
  publication-title: Chem. Eng. J.
– volume: 35
  start-page: 272
  year: 2020
  end-page: 280
  ident: bib27
  article-title: Electrochemical reduction of CO
  publication-title: J. Mater. Res.
– volume: 4
  start-page: 2831
  year: 2020
  end-page: 2840
  ident: bib35
  article-title: The in situ morphology transformation of bismuth-based catalysts for the effective electroreduction of carbon dioxide
  publication-title: Suatain. Energ. Fuels
– volume: 10
  year: 2020
  ident: bib58
  article-title: Bi-based metal-organic framework derived leafy bismuth nanosheets for carbon dioxide electroreduction
  publication-title: Adv. Energy Mater.
– year: 2022
  ident: bib68
  article-title: Electrodeposited highly-oriented bismuth microparticles for efficient CO
  publication-title: Nano Res.
– volume: 15
  start-page: 10078
  year: 2022
  end-page: 10083
  ident: bib32
  article-title: Electrodeposited highly-oriented bismuth microparticles for efficient CO
  publication-title: Nano Res.
– volume: 22
  start-page: 1656
  year: 2022
  end-page: 1664
  ident: bib7
  article-title: Bi
  publication-title: Nano Lett.
– volume: 562
  year: 2021
  ident: bib34
  article-title: Sulfur boosting CO
  publication-title: Appl. Surf. Sci.
– volume: 60
  start-page: 7681
  year: 2021
  end-page: 7685
  ident: bib15
  article-title: BiPO
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 12
  start-page: 1334
  year: 2019
  end-page: 1340
  ident: bib53
  article-title: Formation of lattice-dislocated bismuth nanowires on copper foam for enhanced electrocatalytic CO
  publication-title: Energy Environ. Sci.
– volume: 10
  year: 2019
  ident: bib54
  article-title: Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction
  publication-title: Nat. Commun.
– volume: 15
  start-page: 2919
  year: 2021
  end-page: 2927
  ident: bib22
  article-title: Sub-2 nm ultra-thin Bi
  publication-title: Nano Res.
– volume: 7
  start-page: 4822
  year: 2017
  end-page: 4827
  ident: bib77
  article-title: Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes
  publication-title: ACS Catal.
– volume: 306
  year: 2022
  ident: bib11
  article-title: Electrochemically reconstructed perovskite with cooperative catalytic sites for CO
  publication-title: Appl. Catal. B
– volume: 426
  year: 2021
  ident: bib64
  article-title: Carbon sustained SnO
  publication-title: Chem. Eng. J.
– volume: 600
  start-page: 81
  year: 2021
  end-page: 85
  ident: bib40
  article-title: In situ Raman spectroscopy reveals the structure and dissociation of interfacial water
  publication-title: Nature
– volume: 33
  year: 2021
  ident: bib50
  article-title: Large-area vertically aligned bismuthene nanosheet arrays from galvanic replacement reaction for efficient electrochemical CO
  publication-title: Adv. Mater.
– volume: 12
  year: 2022
  ident: bib76
  article-title: Single-atom Sn on tensile-strained ZnO nanosheets for highly efficient conversion of CO
  publication-title: Adv. Energy Mater.
– year: 2022
  ident: bib71
  article-title: Industrial-current-density CO
  publication-title: Nano Res.
– volume: 57
  start-page: 12790
  year: 2018
  end-page: 12794
  ident: bib52
  article-title: Nitrogen-doped graphene quantum dots enhance the activity of Bi
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 10
  start-page: 743
  year: 2020
  end-page: 750
  ident: bib33
  article-title: Bismuth oxides with enhanced bismuth-oxygen structure for efficient electrochemical reduction of carbon dioxide to formate
  publication-title: ACS Catal.
– volume: 16
  start-page: 7974
  year: 2023
  end-page: 7981
  ident: bib19
  article-title: In-situ electrochemical restructuring of Cu
  publication-title: Nano Res.
– volume: 60
  start-page: 8798
  year: 2021
  end-page: 8802
  ident: bib51
  article-title: Boosting production of HCOOH from CO
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 11
  year: 2020
  ident: bib69
  article-title: Electrochemical CO
  publication-title: Nat. Commun.
– volume: 21
  start-page: 6907
  year: 2021
  end-page: 6913
  ident: bib67
  article-title: Spontaneously Sn-doped Bi/BiO
  publication-title: Nano Lett.
– volume: 7
  start-page: 2864
  year: 2020
  end-page: 2868
  ident: bib18
  article-title: Rich bismuth-oxygen bonds in bismuth derivatives from Bi
  publication-title: ChemElectroChem
– volume: 14
  start-page: 14210
  year: 2022
  end-page: 14217
  ident: bib29
  article-title: Bismuth nanosheets derived by in situ morphology transformation of bismuth oxides for selective electrochemical CO
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 4988
  year: 2021
  end-page: 5003
  ident: bib23
  article-title: A tandem (Bi
  publication-title: ACS Catal.
– volume: 59
  start-page: 4814
  year: 2020
  end-page: 4821
  ident: bib61
  article-title: In situ reconstruction of a hierarchical Sn-Cu/SnO
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 12
  start-page: 923
  year: 2021
  end-page: 934
  ident: bib4
  article-title: Au
  publication-title: ACS Catal.
– volume: 13
  start-page: 2486
  year: 2022
  ident: bib72
  article-title: Nano-crumples induced Sn-Bi bimetallic interface pattern with moderate electron bank for highly efficient CO
  publication-title: Nat. Commun.
– volume: 61
  start-page: 12003
  year: 2022
  end-page: 12011
  ident: bib74
  article-title: Metal–organic framework-derived BiIn bimetallic oxide nanoparticles embedded in carbon networks for efficient electrochemical reduction of CO
  publication-title: Inorg. Chem.
– volume: 8
  year: 2018
  ident: bib48
  article-title: Selective CO
  publication-title: Adv. Energy Mater.
– volume: 12
  start-page: 2357
  year: 2022
  end-page: 2364
  ident: bib57
  article-title: Engineering the local microenvironment over Bi nanosheets for highly selective electrocatalytic conversion of CO
  publication-title: ACS Catal.
– volume: 66
  start-page: 1533
  year: 2021
  end-page: 1541
  ident: bib37
  article-title: Decorating graphdiyne on ultrathin bismuth subcarbonate nanosheets to promote CO
  publication-title: Sci. Bull.
– volume: 10
  start-page: 8049
  year: 2020
  end-page: 8057
  ident: bib43
  article-title: Infrared analysis of interfacial phenomena during electrochemical reduction of CO
  publication-title: ACS Catal.
– volume: 58
  start-page: 6352
  year: 2022
  end-page: 6355
  ident: bib46
  article-title: Hexamethylenetetramine induced multidimensional defects in Co
  publication-title: Chem. Commun.
– volume: 58
  start-page: 13828
  year: 2019
  end-page: 13833
  ident: bib5
  article-title: Bi
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 13
  year: 2023
  ident: bib70
  article-title: In-situ constructuring of copper-doped bismuth catalyst for highly efficient CO
  publication-title: Adv. Energy Mater.
– volume: 29
  start-page: 749
  year: 1998
  end-page: 756
  ident: bib41
  article-title: SERS studies of electrode/electrolyte interfacial water part II—librations of water correlated to hydrogen evolution reaction
  publication-title: J. Raman Spectrosc.
– volume: 21
  year: 2009
  ident: bib30
  article-title: A grid-based Bader analysis algorithm without lattice bias
  publication-title: J. Phys. Condens. Mat.
– volume: 4
  year: 2022
  ident: bib39
  article-title: In-situ structural evolution of Bi
  publication-title: Int. J. Mech. Sci.
– volume: 2
  year: 2021
  ident: bib12
  article-title: Achieving high current density for electrocatalytic reduction of CO
  publication-title: Cell. Rep. Phys. Sci.
– volume: 17
  year: 2021
  ident: bib73
  article-title: Boron dopant induced electron-rich bismuth for electrochemical CO
  publication-title: Small
– volume: 10
  start-page: 358
  year: 2020
  end-page: 364
  ident: bib10
  article-title: Curved surface boosts electrochemical CO
  publication-title: ACS Catal.
– volume: 27
  start-page: 278
  year: 2021
  end-page: 290
  ident: bib6
  article-title: Synthesis and electrochemical study of CuAu nanodendrites for CO
  publication-title: J. Electrochem
– volume: 60
  start-page: 12554
  year: 2021
  end-page: 12559
  ident: bib14
  article-title: Engineering bismuth-tin interface in bimetallic aerogel with a 3D porous structure for highly selective electrocatalytic CO
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 60
  start-page: 18178
  year: 2021
  end-page: 18184
  ident: bib20
  article-title: The controllable reconstruction of Bi-MOFs for electrochemical CO
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 301
  year: 2022
  ident: bib62
  article-title: Copper-triggered delocalization of bismuth
  publication-title: Appl. Catal. B
– volume: 57
  start-page: 1502
  year: 2021
  end-page: 1505
  ident: bib63
  article-title: A phosphate-derived bismuth catalyst with abundant grain boundaries for efficient reduction of CO
  publication-title: Chem. Commun.
– volume: 62
  start-page: 861
  year: 2019
  end-page: 868
  ident: bib1
  article-title: All-inorganic SrSnO
  publication-title: Nano Energy
– volume: 11
  start-page: 7604
  year: 2021
  end-page: 7612
  ident: bib47
  article-title: Electronic delocalization of bismuth oxide induced by sulfur doping for efficient CO
  publication-title: ACS Catal.
– volume: 11
  start-page: 12476
  year: 2021
  end-page: 12484
  ident: bib16
  article-title: Efficient CO
  publication-title: ACS Catal.
– volume: 28
  year: 2022
  ident: bib3
  article-title: A high-performance continuous-flow MEA reactor for electroreduction CO
  publication-title: J. Electrochem
– volume: 42
  start-page: 2173
  year: 2021
  end-page: 2180
  ident: bib45
  article-title: High activity and durability of carbon-supported core-shell PtPx@Pt/C catalyst for oxygen reduction reaction
  publication-title: Chinese J. Catal.
– volume: 464
  start-page: 392
  year: 2010
  end-page: 395
  ident: bib38
  article-title: Shell-isolated nanoparticle-enhanced Raman spectroscopy
  publication-title: Nature
– volume: 11
  year: 2020
  ident: bib24
  article-title: Bismuthene for highly efficient carbon dioxide electroreduction reaction
  publication-title: Nat. Commun.
– volume: 141
  start-page: 16569
  year: 2019
  end-page: 16573
  ident: bib9
  article-title: Bismuth single atoms resulting from transformation of metal-organic frameworks and their use as electrocatalysts for CO
  publication-title: J. Am. Chem. Soc.
– volume: 9
  year: 2018
  ident: bib55
  article-title: Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO
  publication-title: Nat. Commun.
– volume: 33
  year: 2021
  ident: bib60
  article-title: Facet engineering to regulate surface states of topological crystalline insulator bismuth rhombic dodecahedrons for highly energy efficient electrochemical CO
  publication-title: Adv. Mater.
– volume: 61
  year: 2022
  ident: bib2
  article-title: Assembling metal organic layer composites for high-performance electrocatalytic CO
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 271
  year: 2020
  ident: bib13
  article-title: Boosting formate production at high current density from CO
  publication-title: Appl. Catal. B
– volume: 66
  start-page: 1533
  year: 2021
  ident: 10.1016/j.nanoen.2023.108638_bib37
  article-title: Decorating graphdiyne on ultrathin bismuth subcarbonate nanosheets to promote CO2 electroreduction to formate
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2021.03.020
– volume: 61
  year: 2022
  ident: 10.1016/j.nanoen.2023.108638_bib2
  article-title: Assembling metal organic layer composites for high-performance electrocatalytic CO2 reduction to formate
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 60
  start-page: 7681
  year: 2021
  ident: 10.1016/j.nanoen.2023.108638_bib15
  article-title: BiPO4-derived 2D nanosheets for efficient electrocatalytic reduction of CO2 to liquid fuel
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.202014341
– volume: 6
  start-page: 1091
  year: 2022
  ident: 10.1016/j.nanoen.2023.108638_bib21
  article-title: In situ reconstruction of vegetable sponge-like Bi2O3 for efficient CO2 electroreduction to formate
  publication-title: Mater. Chem. Front.
  doi: 10.1039/D1QM01557E
– volume: 8
  start-page: 19938
  year: 2020
  ident: 10.1016/j.nanoen.2023.108638_bib75
  article-title: Conversion of CO2 to chemical feedstocks over bismuth nanosheets in situ grown on nitrogen-doped carbon
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA07411J
– volume: 12
  year: 2022
  ident: 10.1016/j.nanoen.2023.108638_bib76
  article-title: Single-atom Sn on tensile-strained ZnO nanosheets for highly efficient conversion of CO2 into formate
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202202695
– year: 2022
  ident: 10.1016/j.nanoen.2023.108638_bib59
  article-title: In situ structural reconstruction to generate the active sites for CO2 electroreduction on bismuth ultrathin nanosheets
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202200970
– volume: 421
  year: 2021
  ident: 10.1016/j.nanoen.2023.108638_bib8
  article-title: The bismuth architecture assembled by nanotubes used as highly efficient electrocatalyst for CO2 reduction to formate
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.129606
– volume: 28
  year: 2022
  ident: 10.1016/j.nanoen.2023.108638_bib3
  article-title: A high-performance continuous-flow MEA reactor for electroreduction CO2 to formate
  publication-title: J. Electrochem
– volume: 9
  year: 2018
  ident: 10.1016/j.nanoen.2023.108638_bib55
  article-title: Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03712-z
– volume: 3
  year: 2023
  ident: 10.1016/j.nanoen.2023.108638_bib28
  article-title: Recent advances of bismuth-based electrocatalysts for CO2 reduction: strategies mechanism and applications
  publication-title: Mater. Rep. Energy
– volume: 32
  year: 2022
  ident: 10.1016/j.nanoen.2023.108638_bib49
  article-title: Scalable chemical interface confinement reduction BiOBr to bismuth porous nanosheets for electroreduction of carbon dioxide to liquid fuel
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202107182
– volume: 27
  start-page: 278
  year: 2021
  ident: 10.1016/j.nanoen.2023.108638_bib6
  article-title: Synthesis and electrochemical study of CuAu nanodendrites for CO2 reduction
  publication-title: J. Electrochem
– volume: 30
  year: 2020
  ident: 10.1016/j.nanoen.2023.108638_bib26
  article-title: Nanostructured β-Bi2O3 fractals on carbon fibers for highly selective CO2 electroreduction to formate
  publication-title: Adv. Funct. Mater.
– volume: 600
  start-page: 81
  year: 2021
  ident: 10.1016/j.nanoen.2023.108638_bib40
  article-title: In situ Raman spectroscopy reveals the structure and dissociation of interfacial water
  publication-title: Nature
  doi: 10.1038/s41586-021-04068-z
– volume: 11
  start-page: 4988
  year: 2021
  ident: 10.1016/j.nanoen.2023.108638_bib23
  article-title: A tandem (Bi2O3 -> Bi-met) catalyst for highly efficient ec-CO2 conversion into formate: operando Raman spectroscopic evidence for a reaction pathway change
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c05317
– volume: 11
  start-page: 7604
  year: 2021
  ident: 10.1016/j.nanoen.2023.108638_bib47
  article-title: Electronic delocalization of bismuth oxide induced by sulfur doping for efficient CO2 electroreduction to formate
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c01899
– volume: 42
  start-page: 2173
  year: 2021
  ident: 10.1016/j.nanoen.2023.108638_bib45
  article-title: High activity and durability of carbon-supported core-shell PtPx@Pt/C catalyst for oxygen reduction reaction
  publication-title: Chinese J. Catal.
  doi: 10.1016/S1872-2067(21)63901-3
– volume: 18
  year: 2022
  ident: 10.1016/j.nanoen.2023.108638_bib56
  article-title: Galvanic-cell deposition enables the exposure of bismuth grain boundary for efficient electroreduction of carbon dioxide
  publication-title: Small
– year: 2022
  ident: 10.1016/j.nanoen.2023.108638_bib36
  article-title: A nanocomposite of bismuth clusters and Bi2O2CO3 sheets for highly efficient electrocatalytic reduction of CO2 to formate
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 4
  year: 2022
  ident: 10.1016/j.nanoen.2023.108638_bib39
  article-title: In-situ structural evolution of Bi2O3 nanoparticle catalysts for CO2 electroreduction
  publication-title: Int. J. Mech. Sci.
– volume: 60
  start-page: 8798
  year: 2021
  ident: 10.1016/j.nanoen.2023.108638_bib51
  article-title: Boosting production of HCOOH from CO2 electroreduction via Bi/CeOx
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.202015713
– volume: 58
  start-page: 13828
  year: 2019
  ident: 10.1016/j.nanoen.2023.108638_bib5
  article-title: Bi2O3 nanosheets grown on multi-channel carbon matrix to catalyze efficient CO2 electroreduction to HCOOH
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201907674
– volume: 10
  start-page: 358
  year: 2020
  ident: 10.1016/j.nanoen.2023.108638_bib10
  article-title: Curved surface boosts electrochemical CO2 reduction to formate via bismuth nanotubes in a wide potential window
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b04516
– volume: 11
  start-page: 12476
  year: 2021
  ident: 10.1016/j.nanoen.2023.108638_bib16
  article-title: Efficient CO2 electroreduction with a monolayer Bi2WO6 through a metallic intermediate surface state
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c02495
– volume: 11
  year: 2020
  ident: 10.1016/j.nanoen.2023.108638_bib24
  article-title: Bismuthene for highly efficient carbon dioxide electroreduction reaction
  publication-title: Nat. Commun.
– volume: 33
  year: 2021
  ident: 10.1016/j.nanoen.2023.108638_bib60
  article-title: Facet engineering to regulate surface states of topological crystalline insulator bismuth rhombic dodecahedrons for highly energy efficient electrochemical CO2 reduction
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202008373
– volume: 301
  year: 2022
  ident: 10.1016/j.nanoen.2023.108638_bib62
  article-title: Copper-triggered delocalization of bismuth p-orbital favours high-throughput CO2 electroreduction
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2021.120781
– volume: 13
  year: 2023
  ident: 10.1016/j.nanoen.2023.108638_bib70
  article-title: In-situ constructuring of copper-doped bismuth catalyst for highly efficient CO2 electrolysis to formate in ampere-level
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202202818
– volume: 2
  year: 2021
  ident: 10.1016/j.nanoen.2023.108638_bib12
  article-title: Achieving high current density for electrocatalytic reduction of CO2 to formate on bismuth-based catalysts
  publication-title: Cell. Rep. Phys. Sci.
– volume: 10
  start-page: 743
  year: 2020
  ident: 10.1016/j.nanoen.2023.108638_bib33
  article-title: Bismuth oxides with enhanced bismuth-oxygen structure for efficient electrochemical reduction of carbon dioxide to formate
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b04043
– volume: 251
  year: 2022
  ident: 10.1016/j.nanoen.2023.108638_bib65
  article-title: Bismuthene with stable Bi-O bonds for efficient CO2 electroreduction to formate
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2021.117409
– volume: 58
  start-page: 6352
  year: 2022
  ident: 10.1016/j.nanoen.2023.108638_bib46
  article-title: Hexamethylenetetramine induced multidimensional defects in Co2P nanosheets for efficient alkaline hydrogen evolution
  publication-title: Chem. Commun.
  doi: 10.1039/D2CC01393B
– volume: 426
  year: 2021
  ident: 10.1016/j.nanoen.2023.108638_bib64
  article-title: Carbon sustained SnO2-Bi2O3 hollow nanofibers as Janus catalyst for high-efficiency CO2 electroreduction
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.131867
– volume: 12
  start-page: 923
  year: 2021
  ident: 10.1016/j.nanoen.2023.108638_bib4
  article-title: Au3+ species-induced interfacial activation enhances metal–support interactions for boosting electrocatalytic CO2 reduction to CO
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c05503
– volume: 10
  year: 2019
  ident: 10.1016/j.nanoen.2023.108638_bib54
  article-title: Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10819-4
– volume: 10
  year: 2020
  ident: 10.1016/j.nanoen.2023.108638_bib58
  article-title: Bi-based metal-organic framework derived leafy bismuth nanosheets for carbon dioxide electroreduction
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202001709
– volume: 57
  start-page: 1502
  year: 2021
  ident: 10.1016/j.nanoen.2023.108638_bib63
  article-title: A phosphate-derived bismuth catalyst with abundant grain boundaries for efficient reduction of CO2 to HCOOH
  publication-title: Chem. Commun.
  doi: 10.1039/D0CC06756C
– volume: 21
  year: 2009
  ident: 10.1016/j.nanoen.2023.108638_bib30
  article-title: A grid-based Bader analysis algorithm without lattice bias
  publication-title: J. Phys. Condens. Mat.
  doi: 10.1088/0953-8984/21/8/084204
– volume: 464
  start-page: 392
  year: 2010
  ident: 10.1016/j.nanoen.2023.108638_bib38
  article-title: Shell-isolated nanoparticle-enhanced Raman spectroscopy
  publication-title: Nature
  doi: 10.1038/nature08907
– volume: 62
  start-page: 861
  year: 2019
  ident: 10.1016/j.nanoen.2023.108638_bib1
  article-title: All-inorganic SrSnO3 perovskite nanowires for efficient CO2 electroreduction
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.05.077
– volume: 21
  start-page: 6907
  year: 2021
  ident: 10.1016/j.nanoen.2023.108638_bib67
  article-title: Spontaneously Sn-doped Bi/BiOx core-shell nanowires toward high-performance CO2 electroreduction to liquid fuel
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c02053
– volume: 14
  start-page: 4998
  year: 2021
  ident: 10.1016/j.nanoen.2023.108638_bib66
  article-title: Engineering a conductive network of atomically thin bismuthene with rich defects enables CO2 reduction to formate with industry-compatible current densities and stability
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE01495A
– volume: 14
  start-page: 14210
  year: 2022
  ident: 10.1016/j.nanoen.2023.108638_bib29
  article-title: Bismuth nanosheets derived by in situ morphology transformation of bismuth oxides for selective electrochemical CO2 reduction to formate
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c25217
– volume: 5
  start-page: 3148
  year: 2015
  ident: 10.1016/j.nanoen.2023.108638_bib42
  article-title: Mechanistic insights into the reduction of CO2 on tin electrodes using in situ ATR-IR spectroscopy
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b00402
– volume: 15
  start-page: 2919
  year: 2021
  ident: 10.1016/j.nanoen.2023.108638_bib22
  article-title: Sub-2 nm ultra-thin Bi2O2CO3 nanosheets with abundant Bi-O structures toward formic acid electrosynthesis over a wide potential window
  publication-title: Nano Res.
  doi: 10.1007/s12274-021-3903-0
– volume: 60
  start-page: 18178
  year: 2021
  ident: 10.1016/j.nanoen.2023.108638_bib20
  article-title: The controllable reconstruction of Bi-MOFs for electrochemical CO2 reduction through electrolyte and potential mediation
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.202104747
– volume: 4
  start-page: 2831
  year: 2020
  ident: 10.1016/j.nanoen.2023.108638_bib35
  article-title: The in situ morphology transformation of bismuth-based catalysts for the effective electroreduction of carbon dioxide
  publication-title: Suatain. Energ. Fuels
  doi: 10.1039/D0SE00228C
– volume: 16
  start-page: 7974
  year: 2023
  ident: 10.1016/j.nanoen.2023.108638_bib19
  article-title: In-situ electrochemical restructuring of Cu2BiSx solid solution into Bi/CuxSy heterointerfaces enabling stabilization intermediates for high-performance CO2 electroreduction to formate
  publication-title: Nano Res.
  doi: 10.1007/s12274-022-5337-8
– volume: 15
  start-page: 10078
  year: 2022
  ident: 10.1016/j.nanoen.2023.108638_bib32
  article-title: Electrodeposited highly-oriented bismuth microparticles for efficient CO2 electroreduction into formate
  publication-title: Nano Res.
  doi: 10.1007/s12274-022-4345-z
– volume: 35
  start-page: 272
  year: 2020
  ident: 10.1016/j.nanoen.2023.108638_bib27
  article-title: Electrochemical reduction of CO2 to formic acid on Bi2O2CO3/carbon fiber electrodes
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2020.16
– volume: 13
  start-page: 2486
  year: 2022
  ident: 10.1016/j.nanoen.2023.108638_bib72
  article-title: Nano-crumples induced Sn-Bi bimetallic interface pattern with moderate electron bank for highly efficient CO2 electroreduction
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29861-w
– volume: 14
  start-page: 10648
  year: 2022
  ident: 10.1016/j.nanoen.2023.108638_bib25
  article-title: Promoting the electrocatalytic reduction of CO2 on ultrathin porous bismuth nanosheets with tunable surface-active sites and local pH environments
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c16689
– volume: 22
  start-page: 1656
  year: 2022
  ident: 10.1016/j.nanoen.2023.108638_bib7
  article-title: Bi2O3/BiO2 nanoheterojunction for highly efficient electrocatalytic CO2 reduction to formate
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c04683
– volume: 33
  year: 2021
  ident: 10.1016/j.nanoen.2023.108638_bib50
  article-title: Large-area vertically aligned bismuthene nanosheet arrays from galvanic replacement reaction for efficient electrochemical CO2 conversion
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202100910
– volume: 57
  start-page: 12790
  year: 2018
  ident: 10.1016/j.nanoen.2023.108638_bib52
  article-title: Nitrogen-doped graphene quantum dots enhance the activity of Bi2O3 nanosheets for electrochemical reduction of CO2 in a wide negative potential region
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201807643
– volume: 16
  start-page: 1539
  year: 2021
  ident: 10.1016/j.nanoen.2023.108638_bib17
  article-title: In situ bismuth nanosheet assembly for highly selective electrocatalytic CO2 reduction to formate
  publication-title: Chem. Asian J.
  doi: 10.1002/asia.202100305
– volume: 7
  start-page: 2864
  year: 2020
  ident: 10.1016/j.nanoen.2023.108638_bib18
  article-title: Rich bismuth-oxygen bonds in bismuth derivatives from Bi2S3 pre-catalysts promote the electrochemical reduction of CO2
  publication-title: ChemElectroChem
  doi: 10.1002/celc.202000656
– volume: 11
  year: 2020
  ident: 10.1016/j.nanoen.2023.108638_bib69
  article-title: Electrochemical CO2 reduction to high-concentration pure formic acid solutions in an all-solid-state reactor
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17403-1
– volume: 59
  start-page: 4814
  year: 2020
  ident: 10.1016/j.nanoen.2023.108638_bib61
  article-title: In situ reconstruction of a hierarchical Sn-Cu/SnOx core/shell catalyst for high-performance CO2 electroreduction
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201916538
– volume: 271
  year: 2020
  ident: 10.1016/j.nanoen.2023.108638_bib13
  article-title: Boosting formate production at high current density from CO2 electroreduction on defect-rich hierarchical mesoporous Bi/Bi2O3 junction nanosheets
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2020.118957
– year: 2022
  ident: 10.1016/j.nanoen.2023.108638_bib68
  article-title: Electrodeposited highly-oriented bismuth microparticles for efficient CO2 electroreduction into formate
  publication-title: Nano Res.
  doi: 10.1007/s12274-022-4345-z
– volume: 10
  start-page: 8049
  year: 2020
  ident: 10.1016/j.nanoen.2023.108638_bib43
  article-title: Infrared analysis of interfacial phenomena during electrochemical reduction of CO2 over polycrystalline copper electrodes
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c02130
– volume: 17
  year: 2021
  ident: 10.1016/j.nanoen.2023.108638_bib73
  article-title: Boron dopant induced electron-rich bismuth for electrochemical CO2 reduction with high solar energy conversion efficiency
  publication-title: Small
– volume: 29
  start-page: 749
  year: 1998
  ident: 10.1016/j.nanoen.2023.108638_bib41
  article-title: SERS studies of electrode/electrolyte interfacial water part II—librations of water correlated to hydrogen evolution reaction
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/(SICI)1097-4555(199808)29:8<749::AID-JRS285>3.0.CO;2-2
– volume: 306
  year: 2022
  ident: 10.1016/j.nanoen.2023.108638_bib11
  article-title: Electrochemically reconstructed perovskite with cooperative catalytic sites for CO2-to-formate conversion
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2022.121101
– year: 2022
  ident: 10.1016/j.nanoen.2023.108638_bib71
  article-title: Industrial-current-density CO2-to-formate conversion with low overpotentials enabled by disorder-engineered metal sites
  publication-title: Nano Res.
– volume: 11
  start-page: 355
  year: 2021
  ident: 10.1016/j.nanoen.2023.108638_bib44
  article-title: Structurally disordered phosphorus-doped Pt as a highly active electrocatalyst for an oxygen reduction reaction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c03137
– volume: 61
  start-page: 12003
  year: 2022
  ident: 10.1016/j.nanoen.2023.108638_bib74
  article-title: Metal–organic framework-derived BiIn bimetallic oxide nanoparticles embedded in carbon networks for efficient electrochemical reduction of CO2 to formate
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.2c01961
– volume: 141
  start-page: 16569
  year: 2019
  ident: 10.1016/j.nanoen.2023.108638_bib9
  article-title: Bismuth single atoms resulting from transformation of metal-organic frameworks and their use as electrocatalysts for CO2 reduction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b08259
– volume: 12
  start-page: 1334
  year: 2019
  ident: 10.1016/j.nanoen.2023.108638_bib53
  article-title: Formation of lattice-dislocated bismuth nanowires on copper foam for enhanced electrocatalytic CO2 reduction at low overpotential
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE00018F
– volume: 4
  year: 2020
  ident: 10.1016/j.nanoen.2023.108638_bib31
  article-title: Efficient CO2 reduction to HCOOH with high selectivity and energy efficiency over Bi/rGO catalyst
  publication-title: Small Methods
  doi: 10.1002/smtd.201900846
– volume: 562
  year: 2021
  ident: 10.1016/j.nanoen.2023.108638_bib34
  article-title: Sulfur boosting CO2 reduction activity of bismuth subcarbonate nanosheets via promoting proton-coupled electron transfer
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2021.150197
– volume: 60
  start-page: 12554
  year: 2021
  ident: 10.1016/j.nanoen.2023.108638_bib14
  article-title: Engineering bismuth-tin interface in bimetallic aerogel with a 3D porous structure for highly selective electrocatalytic CO2 reduction to HCOOH
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.202102832
– volume: 12
  start-page: 2357
  year: 2022
  ident: 10.1016/j.nanoen.2023.108638_bib57
  article-title: Engineering the local microenvironment over Bi nanosheets for highly selective electrocatalytic conversion of CO2 to HCOOH in strong acid
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c05135
– volume: 8
  year: 2018
  ident: 10.1016/j.nanoen.2023.108638_bib48
  article-title: Selective CO2 reduction on 2D mesoporous Bi nanosheets
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801536
– volume: 7
  start-page: 4822
  year: 2017
  ident: 10.1016/j.nanoen.2023.108638_bib77
  article-title: Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b00687
SSID ssj0000651712
Score 2.5541947
SecondaryResourceType review_article
Snippet Bi-based electrocatalysts are prominent candidates to achieve CO2 reduction to formate with high selectivity but suffer from unsatisfied activity, stability,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108638
SubjectTerms Bismuth nanosheet
Bismuth subcarbonate
CO2 reduction
Formate
In-situ characterization
Title In-situ constructing Bi@Bi2O2CO3 nanosheet catalyst for ampere-level CO2 electroreduction to formate
URI https://dx.doi.org/10.1016/j.nanoen.2023.108638
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqDywmsZOHCcbbUTVgtQOUKlb5Do2BFVJ1YaBhd-OL48KJAQSYyKfEt05d985d98hdK2k1FLQkPBAM-L5JiTS2p0kbiIk0KWHsqzynfijmXc_5_MWippeGCirrH1_5dNLb13f6dXa7K3StPfIbO7CAg7Hmo4nODSae56AXX7zQbfnLDbEUlH-9IT1BASaDrqyzCuTWa6BCJW55dQhaFT5KUJ9iTrDA7Rfw0Xcr97oELV0doT2vpAIHqNknJFNWrxhlTdssNkzHqS3g5RNWTR1MTx886J1gcvDmvdNgS1UxdIi5rUmSygbwtGU4XokzhrYXMFeuMhxhWn1CZoN756iEalnJxBlk4CCuNICO8lU4PvKc1xGjaPMgiqbboiFBWHSd-23C-MQEsqchAmlQ0dyoxKmfGXD2SlqZ3mmzxDm2lCb9DhGG-5J6gZcGAt7fMGkAvjUQW6jr1jVxOIw32IZNxVkr3Gl5Ri0HFda7iCylVpVxBp_rBeNKeJvGyS2vv9XyfN_S16gXbiqSsouUdvaUF9ZDFIsuuUm66Kd_vhhNPkEEenaJQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4gHtSD8RnxuQevK-222y03hUhAEQ5Cwq1ZtlutIYVAPXjxtzvTB8HEaOK17aTNzO7MN9uZbwi51koZJe0GE77hzPWiBlNgdxY6oVRIl95QWZVv3-uM3IexGFdIq-yFwbLKwvfnPj3z1sWVeqHN-jyO688cchfuCzzWtFwpxAbZdGH74hiDm097ddACMdaW2V9PFGAoUbbQZXVeiUpmBplQuZONHcJOlZ9C1FrYae-R3QIv0rv8k_ZJxSQHZGeNRfCQhN2ELeP0nepZSQebvNBmfNuM-YC3Bg7Fly9fjUlpdlrzsUwpYFWqADIvDJti3RBtDTgtZuIskM4VDUbTGc1BrTkio_b9sNVhxfAEpiELSJmjANkprn3P067lcDuydDSxNeQbcgIoTHkObF6chxDa3Aq51KZhKRHpkGtPQzw7JtVklpgTQoWJbMh6rMhEwlW24wsZAe7xJFca8VONOKW-Al0wi-OAi2lQlpC9BbmWA9RykGu5RthKap4za_zxvCxNEXxbIQE4_18lT_8teUW2OsOnXtDr9h_PyDbeyevLzkkV7GkuAJCkk8tswX0BL3Xbsw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In-situ+constructing+Bi%40Bi2O2CO3+nanosheet+catalyst+for+ampere-level+CO2+electroreduction+to+formate&rft.jtitle=Nano+energy&rft.au=Liang%2C+Xiao-Du&rft.au=Zheng%2C+Qi-Zheng&rft.au=Wei%2C+Nian&rft.au=Lou%2C+Yao-Yin&rft.date=2023-09-01&rft.pub=Elsevier+Ltd&rft.issn=2211-2855&rft.volume=114&rft_id=info:doi/10.1016%2Fj.nanoen.2023.108638&rft.externalDocID=S2211285523004755
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-2855&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-2855&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-2855&client=summon