Forced waves and gap formations for a Lotka–Volterra competition model with nonlocal dispersal and shifting habitats

This paper is mainly concerned with the forced waves and gap formations for a Lotka–Volterra competition model with nonlocal dispersal and shifting habitats. We first show that there exist two positive numbers c1∗ and c2∗ such that the system admits a forced wave provided that the forcing speed c∈(−...

Full description

Saved in:
Bibliographic Details
Published inNonlinear analysis: real world applications Vol. 58; p. 103208
Main Authors Wang, Jia-Bing, Wu, Chufen
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper is mainly concerned with the forced waves and gap formations for a Lotka–Volterra competition model with nonlocal dispersal and shifting habitats. We first show that there exist two positive numbers c1∗ and c2∗ such that the system admits a forced wave provided that the forcing speed c∈(−c2∗,c1∗) by the iterative techniques combining with some known results for the forced moving KPP equations. Meanwhile, we use some delicate analysis to obtain the asymptotic behaviors at infinity of the forced waves with nonzero forcing speed c∈(−c2∗,0)∪(0,c1∗). Then, based on the comparison argument, we prove that the gap formations exist for c>c1∗ and c<−c2∗. Finally, some numeric simulation results are presented to confirm our theoretical results, which also contains the critical cases of c=c1∗ and c=−c2∗.
AbstractList This paper is mainly concerned with the forced waves and gap formations for a Lotka–Volterra competition model with nonlocal dispersal and shifting habitats. We first show that there exist two positive numbers c1∗ and c2∗ such that the system admits a forced wave provided that the forcing speed c∈(−c2∗,c1∗) by the iterative techniques combining with some known results for the forced moving KPP equations. Meanwhile, we use some delicate analysis to obtain the asymptotic behaviors at infinity of the forced waves with nonzero forcing speed c∈(−c2∗,0)∪(0,c1∗). Then, based on the comparison argument, we prove that the gap formations exist for c>c1∗ and c<−c2∗. Finally, some numeric simulation results are presented to confirm our theoretical results, which also contains the critical cases of c=c1∗ and c=−c2∗.
ArticleNumber 103208
Author Wu, Chufen
Wang, Jia-Bing
Author_xml – sequence: 1
  givenname: Jia-Bing
  orcidid: 0000-0001-9270-7668
  surname: Wang
  fullname: Wang, Jia-Bing
  email: wangjb@cug.edu.cn
  organization: School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, People’s Republic of China
– sequence: 2
  givenname: Chufen
  surname: Wu
  fullname: Wu, Chufen
  email: wucfmath@fosu.edu.cn
  organization: School of Mathematics and Big Data, Foshan University, Foshan 528000, People’s Republic of China
BookMark eNqFkEFOwzAQRS1UJNrCDVj4Ail2nLYxCyRUUUCqxAbYWhN70rqkcWVbrdhxB27ISXAUVixgNV-j-X9m3ogMWtciIZecTTjjs6vtJDX8ESY5y7uWyFl5Qoa8nJfZdM7lIOliVmY85-UZGYWwZYzPueBDclg6r9HQIxwwUGgNXcOe1s7vIFrXhk5SoCsX3-Dr4_PVNRG9B6rdbo_RdjN05ww29GjjhqY7GqehocaGPfqQVJcZNraOtl3TDVQ2Qgzn5LSGJuDFTx2Tl-Xd8-IhWz3dPy5uV5kWbBYzUeLMSG1kJadaCGEMMCPrqkaOc1OKvJCYQ60rg4iVNAU3IHktxDSXqFGKMbnuc7V3IXisle72p6ujB9sozlRHUG1VT1B1BFVPMJmLX-a9tzvw7__ZbnobpscOFr0K2mKbKFuPOirj7N8B3994lIw
CitedBy_id crossref_primary_10_1016_j_jde_2021_07_041
crossref_primary_10_1007_s00033_024_02388_4
crossref_primary_10_1016_j_jmaa_2022_126283
crossref_primary_10_3934_dcdsb_2024175
crossref_primary_10_3934_era_2020118
crossref_primary_10_1007_s10473_023_0602_9
crossref_primary_10_1016_j_jmaa_2024_128647
crossref_primary_10_1111_sapm_12645
crossref_primary_10_1016_j_jde_2021_02_027
crossref_primary_10_1016_j_jmaa_2024_129075
crossref_primary_10_12677_AAM_2024_134110
crossref_primary_10_1007_s11854_022_0242_3
crossref_primary_10_3934_dcdsb_2021266
crossref_primary_10_1007_s00033_021_01582_y
crossref_primary_10_1007_s10473_024_0318_5
crossref_primary_10_1016_j_aml_2021_107168
crossref_primary_10_1017_S095679252100019X
crossref_primary_10_1016_j_jde_2021_09_017
crossref_primary_10_37394_23202_2023_22_45
crossref_primary_10_1016_j_jmaa_2021_125504
crossref_primary_10_1016_j_aml_2023_108573
crossref_primary_10_1016_j_nonrwa_2020_103247
crossref_primary_10_1007_s00028_024_00994_3
crossref_primary_10_1007_s10884_022_10223_5
crossref_primary_10_3934_era_2020116
crossref_primary_10_1016_j_nonrwa_2020_103287
crossref_primary_10_1016_j_nonrwa_2023_103880
crossref_primary_10_3934_dcdsb_2021152
crossref_primary_10_1007_s10884_021_10012_6
crossref_primary_10_1007_s10884_021_10018_0
crossref_primary_10_1016_j_chaos_2023_114414
crossref_primary_10_1016_j_jmaa_2024_128832
crossref_primary_10_1016_j_amc_2022_127269
crossref_primary_10_1016_j_jde_2022_11_039
crossref_primary_10_1016_j_mbs_2021_108711
crossref_primary_10_1007_s00033_024_02350_4
crossref_primary_10_3390_mca26040073
crossref_primary_10_1002_mma_9441
crossref_primary_10_1007_s10884_021_10116_z
crossref_primary_10_1016_j_jmaa_2021_125100
crossref_primary_10_1007_s00033_022_01735_7
crossref_primary_10_1088_1402_4896_acde14
crossref_primary_10_1088_1361_6544_ac08e8
crossref_primary_10_1016_j_nonrwa_2024_104120
crossref_primary_10_1016_j_jde_2023_09_027
crossref_primary_10_1142_S0218127421501650
crossref_primary_10_1007_s10884_023_10294_y
crossref_primary_10_1007_s12346_024_01015_x
Cites_doi 10.1007/s10884-019-09760-3
10.1137/120887746
10.1137/15M1029564
10.1007/s11538-008-9367-5
10.1137/16M1108741
10.1007/s11538-016-0180-2
10.1016/j.ecocom.2014.10.006
10.1007/s12080-010-0071-3
10.1007/s002050050037
10.1016/j.aml.2020.106349
10.1038/nature02121
10.1137/130938463
10.1137/16M1075934
10.1111/j.1466-8238.2010.00558.x
10.3934/dcds.2010.26.551
10.1016/j.jde.2015.03.025
10.15388/NA.2017.3.1
10.1007/s00332-018-9445-2
10.1007/s11425-016-9003-7
10.1137/050636152
10.1007/s00033-020-01374-w
10.1016/j.jde.2016.02.032
10.1007/s10584-018-2158-6
10.1090/proc/14235
10.1016/j.jde.2019.09.044
10.1016/j.nonrwa.2020.103198
10.1016/j.jde.2017.10.016
10.1016/j.jfa.2018.03.006
10.1007/s00526-019-1662-5
10.1016/j.jde.2007.11.002
10.1090/proc/13687
10.1016/j.jmaa.2018.02.042
10.1098/rspb.2018.0792
10.1016/j.jde.2019.05.019
10.1090/proc/15085
10.1007/s00285-003-0210-1
10.1007/s11425-019-1588-1
10.3934/dcds.2015.35.1531
10.1016/j.matpur.2010.11.005
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.nonrwa.2020.103208
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1878-5719
ExternalDocumentID 10_1016_j_nonrwa_2020_103208
S1468121820301267
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
29N
4.4
457
4G.
5VS
6OB
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
J9A
JJJVA
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSW
SSZ
T5K
XPP
YQT
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-38e6d9cd9b95c333dda0d9fbfe1e7d83249e2afcbdeeeb9d41da91f33529ece93
IEDL.DBID .~1
ISSN 1468-1218
IngestDate Tue Jul 01 04:03:13 EDT 2025
Thu Apr 24 22:59:58 EDT 2025
Fri Feb 23 02:48:12 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Forced waves
Shifting habitats
Lotka–Volterra competition model
Gap formations
Nonlocal dispersal
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-38e6d9cd9b95c333dda0d9fbfe1e7d83249e2afcbdeeeb9d41da91f33529ece93
ORCID 0000-0001-9270-7668
ParticipantIDs crossref_citationtrail_10_1016_j_nonrwa_2020_103208
crossref_primary_10_1016_j_nonrwa_2020_103208
elsevier_sciencedirect_doi_10_1016_j_nonrwa_2020_103208
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2021
2021-04-00
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationTitle Nonlinear analysis: real world applications
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Lutscher, Pachepsky, Lewis (b6) 2005; 47
Holzer, Scheel (b12) 2014; 46
Alfaro, Berestycki, Raoul (b19) 2017; 49
Bao, Li, Shen (b34) 2016; 260
Yang, Wu, Li (b29) 2019; 353
Gonzalez, Neilson, Lenihan, Drapek (b1) 2010; 19
Fang, Lou, Wu (b11) 2016; 76
Kao, Lou, Shen (b8) 2010; 26
Thomas, Cameron, Green (b3) 2004; 427
Wang, Li (b18) 2020; 71
Yuan, Wang, Zou (b31) 2019; 24
Hu, Li (b24) 2015; 259
Zhang, Wang, Yang (b32) 2017; 22
De Leenheer, Shen, Zhang (b16) 2020; 54
Li, Bewick, Shang, Fagan (b28) 2014; 5
Warren, Price, VanDerWal, Cornelius, Sohl (b4) 2018; 147
Wang, Li (b10) 2019; 62
Li, Wang, Zhao (b13) 2018; 28
Berestycki, Diekmann, Nagelkerke, Zegeling (b21) 2009; 71
Bates, Fife, Ren, Wang (b5) 1997; 138
Chen, Tsai, Wu (b23) 2017; 49
Li, Zhang, Zhang (b41) 2015; 35
Coville, Dávila, Martínez (b40) 2008; 244
Li, Wang, Zhao (b9) 2020; 28
Zhang, Li, Wang (b39) 2017; 60
Wu, Huang (b42) 2020; 148
Wu, Wang, Zou (b17) 2019; 267
Zhou, Kot (b33) 2011; 4
Newbold (b2) 2018; 285
Hutson, Martinez, Mischaikow, Vickers (b7) 2003; 47
Wang, Zhao (b14) 2019; 147
Zhao, Ruan (b36) 2011; 95
Lei, Nie, Dong, Du (b26) 2018; 462
Zhang, Zhao (b15) 2020; 268
Berestycki, Desvillettes, Diekmann (b20) 2014; 20
Berestycki, Fang (b22) 2018; 264
Wu, Yang, Wu (b30) 2021; 57
Zhang, Zhao (b35) 2020; 59
Zhou, Xiao (b37) 2018; 275
Li, Bewick, Barnard, Fagan (b27) 2016; 78
Hu, Zou (b25) 2017; 145
Wang, Pan, Ou (b38) 2020; 106
Zhao (10.1016/j.nonrwa.2020.103208_b36) 2011; 95
Li (10.1016/j.nonrwa.2020.103208_b27) 2016; 78
Wang (10.1016/j.nonrwa.2020.103208_b14) 2019; 147
Li (10.1016/j.nonrwa.2020.103208_b41) 2015; 35
Kao (10.1016/j.nonrwa.2020.103208_b8) 2010; 26
Lei (10.1016/j.nonrwa.2020.103208_b26) 2018; 462
Bao (10.1016/j.nonrwa.2020.103208_b34) 2016; 260
Gonzalez (10.1016/j.nonrwa.2020.103208_b1) 2010; 19
Zhang (10.1016/j.nonrwa.2020.103208_b35) 2020; 59
Zhang (10.1016/j.nonrwa.2020.103208_b32) 2017; 22
Hutson (10.1016/j.nonrwa.2020.103208_b7) 2003; 47
Berestycki (10.1016/j.nonrwa.2020.103208_b22) 2018; 264
Coville (10.1016/j.nonrwa.2020.103208_b40) 2008; 244
Wu (10.1016/j.nonrwa.2020.103208_b17) 2019; 267
Chen (10.1016/j.nonrwa.2020.103208_b23) 2017; 49
Newbold (10.1016/j.nonrwa.2020.103208_b2) 2018; 285
Li (10.1016/j.nonrwa.2020.103208_b13) 2018; 28
Fang (10.1016/j.nonrwa.2020.103208_b11) 2016; 76
Bates (10.1016/j.nonrwa.2020.103208_b5) 1997; 138
Berestycki (10.1016/j.nonrwa.2020.103208_b20) 2014; 20
Li (10.1016/j.nonrwa.2020.103208_b28) 2014; 5
Zhang (10.1016/j.nonrwa.2020.103208_b39) 2017; 60
Wu (10.1016/j.nonrwa.2020.103208_b30) 2021; 57
Wang (10.1016/j.nonrwa.2020.103208_b38) 2020; 106
Yang (10.1016/j.nonrwa.2020.103208_b29) 2019; 353
Zhang (10.1016/j.nonrwa.2020.103208_b15) 2020; 268
Wang (10.1016/j.nonrwa.2020.103208_b18) 2020; 71
Warren (10.1016/j.nonrwa.2020.103208_b4) 2018; 147
Li (10.1016/j.nonrwa.2020.103208_b9) 2020; 28
Berestycki (10.1016/j.nonrwa.2020.103208_b21) 2009; 71
Holzer (10.1016/j.nonrwa.2020.103208_b12) 2014; 46
Alfaro (10.1016/j.nonrwa.2020.103208_b19) 2017; 49
Zhou (10.1016/j.nonrwa.2020.103208_b33) 2011; 4
Hu (10.1016/j.nonrwa.2020.103208_b25) 2017; 145
Zhou (10.1016/j.nonrwa.2020.103208_b37) 2018; 275
Yuan (10.1016/j.nonrwa.2020.103208_b31) 2019; 24
Lutscher (10.1016/j.nonrwa.2020.103208_b6) 2005; 47
Thomas (10.1016/j.nonrwa.2020.103208_b3) 2004; 427
Wang (10.1016/j.nonrwa.2020.103208_b10) 2019; 62
De Leenheer (10.1016/j.nonrwa.2020.103208_b16) 2020; 54
Wu (10.1016/j.nonrwa.2020.103208_b42) 2020; 148
Hu (10.1016/j.nonrwa.2020.103208_b24) 2015; 259
References_xml – volume: 59
  year: 2020
  ident: b35
  article-title: Propagation phenomena for a two-species Lotka–Volterra strong competition system with nonlocal dispersal
  publication-title: Calc. Var. Partial Differential Equations
– volume: 462
  start-page: 1254
  year: 2018
  end-page: 1282
  ident: b26
  article-title: Spreading of two competing species governed by a free boundary model in a shifting environment
  publication-title: J. Math. Anal. Appl.
– volume: 78
  start-page: 1337
  year: 2016
  end-page: 1379
  ident: b27
  article-title: Persistence and spreading speeds of integro-difference equations with an expanding or contracting habitat
  publication-title: Bull. Math. Biol.
– volume: 244
  start-page: 3080
  year: 2008
  end-page: 3118
  ident: b40
  article-title: Nonlocal anisotropic dispersal with monostable nonlinearity
  publication-title: J. Differential Equations
– volume: 28
  start-page: 1027
  year: 2020
  end-page: 1064
  ident: b9
  article-title: Propagation dynamics in a time periodic nonlocal dispersal model with stage structure
  publication-title: J. Dynam. Differential Equations
– volume: 353
  start-page: 254
  year: 2019
  end-page: 264
  ident: b29
  article-title: Forced waves and their asymptotics in a Lotka–Volterra cooperative model under climate change
  publication-title: Appl. Math. Comput.
– volume: 22
  start-page: 285
  year: 2017
  end-page: 302
  ident: b32
  article-title: Persistence versus extinction for two competing species under a climate change
  publication-title: Nonlinear Anal. Model. Control
– volume: 57
  year: 2021
  ident: b30
  article-title: Existence and uniqueness of forced waves in a delayed reaction–diffusion equation in a shifting environment
  publication-title: Nonlinear Anal. RWA
– volume: 95
  start-page: 627
  year: 2011
  end-page: 671
  ident: b36
  article-title: Existence, uniqueness and asymptotic stability of time periodic traveling waves for a periodic Lotka–Volterra competition system with diffusion
  publication-title: J. Math. Pures Appl.
– volume: 427
  start-page: 145
  year: 2004
  end-page: 148
  ident: b3
  article-title: Extinction risk from climate change
  publication-title: Nature
– volume: 285
  year: 2018
  ident: b2
  article-title: Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios
  publication-title: Proc. R. Soc. B
– volume: 24
  start-page: 5633
  year: 2019
  end-page: 5671
  ident: b31
  article-title: Spatial–temporal dynamics of a Lotka–Volterra competition model with a shifting habitat
  publication-title: Discrete Contin. Dyn. Syst. Ser. B
– volume: 54
  year: 2020
  ident: b16
  article-title: Persistence and extinction of nonlocal dispersal evolution equations in moving habitats
  publication-title: Nonlinear Anal. RWA
– volume: 62
  start-page: 2505
  year: 2019
  end-page: 2526
  ident: b10
  article-title: Pulsating waves and entire solutions for a spatially periodic nonlocal dispersal system with a quiescent stage
  publication-title: Sci. China Math.
– volume: 268
  start-page: 2852
  year: 2020
  end-page: 2885
  ident: b15
  article-title: Propagation dynamics of a nonlocal dispersal Fisher–KPP equation in a time-periodic shifting habitat
  publication-title: J. Differential Equations
– volume: 4
  start-page: 13
  year: 2011
  end-page: 25
  ident: b33
  article-title: Discrete-time growth-dispersal models with shifting species ranges
  publication-title: Theor. Ecol.
– volume: 148
  start-page: 4405
  year: 2020
  end-page: 4421
  ident: b42
  article-title: Time periodic traveling waves for a periodic nonlocal dispersal model with delay
  publication-title: Proc. Amer. Math. Soc.
– volume: 60
  start-page: 1791
  year: 2017
  end-page: 1804
  ident: b39
  article-title: Entire solution in an ignition nonlocal dispersal equation: Asymmetric kernel
  publication-title: Sci. China Math.
– volume: 71
  year: 2020
  ident: b18
  article-title: Wave propagation for a cooperative model with nonlocal dispersal under worsening habitats
  publication-title: Z. Angew. Math. Phys.
– volume: 47
  start-page: 749
  year: 2005
  end-page: 772
  ident: b6
  article-title: The effect of dispersal patterns on stream populations
  publication-title: SIAM Rev.
– volume: 28
  start-page: 1189
  year: 2018
  end-page: 1219
  ident: b13
  article-title: Spatial dynamics of a nonlocal dispersal population model in a shifting environment
  publication-title: J. Nonlinear Sci.
– volume: 275
  start-page: 356
  year: 2018
  end-page: 380
  ident: b37
  article-title: Global dynamics of a classical Lotka–Volterra competition-diffusion-advection system
  publication-title: J. Funct. Anal.
– volume: 5
  start-page: 1397
  year: 2014
  end-page: 1417
  ident: b28
  article-title: Persistence and spread of s species with a shifting habitat edge
  publication-title: SIAM J. Appl. Math.
– volume: 20
  start-page: 264
  year: 2014
  end-page: 270
  ident: b20
  article-title: Can climate change lead to gap formation?
  publication-title: Ecol. Complex.
– volume: 19
  start-page: 755
  year: 2010
  end-page: 768
  ident: b1
  article-title: Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change
  publication-title: Glob. Ecol. Biogeogr.
– volume: 147
  start-page: 395
  year: 2018
  end-page: 409
  ident: b4
  article-title: The implications of the united nations paris agreement on climate change for globally significant biodiversity areas
  publication-title: Clim. Change
– volume: 138
  start-page: 105
  year: 1997
  end-page: 136
  ident: b5
  article-title: Traveling waves in a convolution model for phase transitions
  publication-title: Arch. Ration. Mech. Anal.
– volume: 35
  start-page: 1531
  year: 2015
  end-page: 1560
  ident: b41
  article-title: Invasion entire solutions in a competition system with nonlocal dispersal
  publication-title: Discrete Contin. Dyn. Syst.
– volume: 145
  start-page: 4763
  year: 2017
  end-page: 4771
  ident: b25
  article-title: Existence of an extinction wave in the Fisher equation with a shifting habitat
  publication-title: Proc. Amer. Math. Soc.
– volume: 71
  start-page: 399
  year: 2009
  end-page: 429
  ident: b21
  article-title: Can a species keep pace with a shifting climate?
  publication-title: Bull. Math. Biol.
– volume: 147
  start-page: 1467
  year: 2019
  end-page: 1481
  ident: b14
  article-title: Uniqueness and global stability of forced waves in a shifting environment
  publication-title: Proc. Amer. Math. Soc.
– volume: 76
  start-page: 1633
  year: 2016
  end-page: 1657
  ident: b11
  article-title: Can pathogen spread keep pace with its host invasion?
  publication-title: SIAM J. Appl. Math.
– volume: 46
  start-page: 397
  year: 2014
  end-page: 427
  ident: b12
  article-title: Accelerated fronts in a two-stage invasion process
  publication-title: SIAM J. Math. Anal.
– volume: 106
  year: 2020
  ident: b38
  article-title: Existence of forced waves and gap formations for the lattice Lotka–Volterra competition system in a shifting environment
  publication-title: Appl. Math. Lett.
– volume: 264
  start-page: 2157
  year: 2018
  end-page: 2183
  ident: b22
  article-title: Forced waves of the Fisher–KPP equation in a shifting environment
  publication-title: J. Differential Equations
– volume: 49
  start-page: 3925
  year: 2017
  end-page: 3950
  ident: b23
  article-title: Longtime behavior of solutions of a SIS epidemiological model
  publication-title: SIAM J. Math. Anal.
– volume: 267
  start-page: 4890
  year: 2019
  end-page: 4921
  ident: b17
  article-title: Spatial–temporal dynamics of a Lotka–Volterra competition model with nonlocal dispersal under shifting environment
  publication-title: J. Differential Equations
– volume: 26
  start-page: 551
  year: 2010
  end-page: 596
  ident: b8
  article-title: Random dispersal vs non-local dispersal
  publication-title: Discrete Contin. Dyn. Syst.
– volume: 259
  start-page: 1967
  year: 2015
  end-page: 1989
  ident: b24
  article-title: Spatial dynamics for lattice differential equations with a shifting habitat
  publication-title: J. Differential Equations
– volume: 47
  start-page: 483
  year: 2003
  end-page: 517
  ident: b7
  article-title: The evolution of dispersal
  publication-title: J. Math. Biol.
– volume: 260
  start-page: 8590
  year: 2016
  end-page: 8637
  ident: b34
  article-title: Traveling wave solutions of Lotka–Volterra competition systems with nonlocal dispersal in periodic habitats
  publication-title: J. Differential Equations
– volume: 49
  start-page: 562
  year: 2017
  end-page: 596
  ident: b19
  article-title: The effect of climate shift on a species submitted to dispersion, evolution, growth, and nonlocal competition
  publication-title: SIAM J. Math. Anal.
– volume: 28
  start-page: 1027
  year: 2020
  ident: 10.1016/j.nonrwa.2020.103208_b9
  article-title: Propagation dynamics in a time periodic nonlocal dispersal model with stage structure
  publication-title: J. Dynam. Differential Equations
  doi: 10.1007/s10884-019-09760-3
– volume: 46
  start-page: 397
  year: 2014
  ident: 10.1016/j.nonrwa.2020.103208_b12
  article-title: Accelerated fronts in a two-stage invasion process
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/120887746
– volume: 76
  start-page: 1633
  year: 2016
  ident: 10.1016/j.nonrwa.2020.103208_b11
  article-title: Can pathogen spread keep pace with its host invasion?
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/15M1029564
– volume: 71
  start-page: 399
  year: 2009
  ident: 10.1016/j.nonrwa.2020.103208_b21
  article-title: Can a species keep pace with a shifting climate?
  publication-title: Bull. Math. Biol.
  doi: 10.1007/s11538-008-9367-5
– volume: 49
  start-page: 3925
  year: 2017
  ident: 10.1016/j.nonrwa.2020.103208_b23
  article-title: Longtime behavior of solutions of a SIS epidemiological model
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/16M1108741
– volume: 78
  start-page: 1337
  year: 2016
  ident: 10.1016/j.nonrwa.2020.103208_b27
  article-title: Persistence and spreading speeds of integro-difference equations with an expanding or contracting habitat
  publication-title: Bull. Math. Biol.
  doi: 10.1007/s11538-016-0180-2
– volume: 20
  start-page: 264
  year: 2014
  ident: 10.1016/j.nonrwa.2020.103208_b20
  article-title: Can climate change lead to gap formation?
  publication-title: Ecol. Complex.
  doi: 10.1016/j.ecocom.2014.10.006
– volume: 4
  start-page: 13
  year: 2011
  ident: 10.1016/j.nonrwa.2020.103208_b33
  article-title: Discrete-time growth-dispersal models with shifting species ranges
  publication-title: Theor. Ecol.
  doi: 10.1007/s12080-010-0071-3
– volume: 138
  start-page: 105
  year: 1997
  ident: 10.1016/j.nonrwa.2020.103208_b5
  article-title: Traveling waves in a convolution model for phase transitions
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s002050050037
– volume: 106
  year: 2020
  ident: 10.1016/j.nonrwa.2020.103208_b38
  article-title: Existence of forced waves and gap formations for the lattice Lotka–Volterra competition system in a shifting environment
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2020.106349
– volume: 427
  start-page: 145
  year: 2004
  ident: 10.1016/j.nonrwa.2020.103208_b3
  article-title: Extinction risk from climate change
  publication-title: Nature
  doi: 10.1038/nature02121
– volume: 5
  start-page: 1397
  year: 2014
  ident: 10.1016/j.nonrwa.2020.103208_b28
  article-title: Persistence and spread of s species with a shifting habitat edge
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/130938463
– volume: 49
  start-page: 562
  year: 2017
  ident: 10.1016/j.nonrwa.2020.103208_b19
  article-title: The effect of climate shift on a species submitted to dispersion, evolution, growth, and nonlocal competition
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/16M1075934
– volume: 19
  start-page: 755
  year: 2010
  ident: 10.1016/j.nonrwa.2020.103208_b1
  article-title: Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change
  publication-title: Glob. Ecol. Biogeogr.
  doi: 10.1111/j.1466-8238.2010.00558.x
– volume: 24
  start-page: 5633
  year: 2019
  ident: 10.1016/j.nonrwa.2020.103208_b31
  article-title: Spatial–temporal dynamics of a Lotka–Volterra competition model with a shifting habitat
  publication-title: Discrete Contin. Dyn. Syst. Ser. B
– volume: 26
  start-page: 551
  year: 2010
  ident: 10.1016/j.nonrwa.2020.103208_b8
  article-title: Random dispersal vs non-local dispersal
  publication-title: Discrete Contin. Dyn. Syst.
  doi: 10.3934/dcds.2010.26.551
– volume: 259
  start-page: 1967
  year: 2015
  ident: 10.1016/j.nonrwa.2020.103208_b24
  article-title: Spatial dynamics for lattice differential equations with a shifting habitat
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2015.03.025
– volume: 22
  start-page: 285
  year: 2017
  ident: 10.1016/j.nonrwa.2020.103208_b32
  article-title: Persistence versus extinction for two competing species under a climate change
  publication-title: Nonlinear Anal. Model. Control
  doi: 10.15388/NA.2017.3.1
– volume: 28
  start-page: 1189
  year: 2018
  ident: 10.1016/j.nonrwa.2020.103208_b13
  article-title: Spatial dynamics of a nonlocal dispersal population model in a shifting environment
  publication-title: J. Nonlinear Sci.
  doi: 10.1007/s00332-018-9445-2
– volume: 60
  start-page: 1791
  year: 2017
  ident: 10.1016/j.nonrwa.2020.103208_b39
  article-title: Entire solution in an ignition nonlocal dispersal equation: Asymmetric kernel
  publication-title: Sci. China Math.
  doi: 10.1007/s11425-016-9003-7
– volume: 47
  start-page: 749
  year: 2005
  ident: 10.1016/j.nonrwa.2020.103208_b6
  article-title: The effect of dispersal patterns on stream populations
  publication-title: SIAM Rev.
  doi: 10.1137/050636152
– volume: 71
  year: 2020
  ident: 10.1016/j.nonrwa.2020.103208_b18
  article-title: Wave propagation for a cooperative model with nonlocal dispersal under worsening habitats
  publication-title: Z. Angew. Math. Phys.
  doi: 10.1007/s00033-020-01374-w
– volume: 260
  start-page: 8590
  year: 2016
  ident: 10.1016/j.nonrwa.2020.103208_b34
  article-title: Traveling wave solutions of Lotka–Volterra competition systems with nonlocal dispersal in periodic habitats
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2016.02.032
– volume: 147
  start-page: 395
  year: 2018
  ident: 10.1016/j.nonrwa.2020.103208_b4
  article-title: The implications of the united nations paris agreement on climate change for globally significant biodiversity areas
  publication-title: Clim. Change
  doi: 10.1007/s10584-018-2158-6
– volume: 147
  start-page: 1467
  year: 2019
  ident: 10.1016/j.nonrwa.2020.103208_b14
  article-title: Uniqueness and global stability of forced waves in a shifting environment
  publication-title: Proc. Amer. Math. Soc.
  doi: 10.1090/proc/14235
– volume: 268
  start-page: 2852
  year: 2020
  ident: 10.1016/j.nonrwa.2020.103208_b15
  article-title: Propagation dynamics of a nonlocal dispersal Fisher–KPP equation in a time-periodic shifting habitat
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2019.09.044
– volume: 57
  year: 2021
  ident: 10.1016/j.nonrwa.2020.103208_b30
  article-title: Existence and uniqueness of forced waves in a delayed reaction–diffusion equation in a shifting environment
  publication-title: Nonlinear Anal. RWA
  doi: 10.1016/j.nonrwa.2020.103198
– volume: 264
  start-page: 2157
  year: 2018
  ident: 10.1016/j.nonrwa.2020.103208_b22
  article-title: Forced waves of the Fisher–KPP equation in a shifting environment
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2017.10.016
– volume: 275
  start-page: 356
  year: 2018
  ident: 10.1016/j.nonrwa.2020.103208_b37
  article-title: Global dynamics of a classical Lotka–Volterra competition-diffusion-advection system
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2018.03.006
– volume: 54
  year: 2020
  ident: 10.1016/j.nonrwa.2020.103208_b16
  article-title: Persistence and extinction of nonlocal dispersal evolution equations in moving habitats
  publication-title: Nonlinear Anal. RWA
– volume: 59
  year: 2020
  ident: 10.1016/j.nonrwa.2020.103208_b35
  article-title: Propagation phenomena for a two-species Lotka–Volterra strong competition system with nonlocal dispersal
  publication-title: Calc. Var. Partial Differential Equations
  doi: 10.1007/s00526-019-1662-5
– volume: 244
  start-page: 3080
  year: 2008
  ident: 10.1016/j.nonrwa.2020.103208_b40
  article-title: Nonlocal anisotropic dispersal with monostable nonlinearity
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2007.11.002
– volume: 145
  start-page: 4763
  year: 2017
  ident: 10.1016/j.nonrwa.2020.103208_b25
  article-title: Existence of an extinction wave in the Fisher equation with a shifting habitat
  publication-title: Proc. Amer. Math. Soc.
  doi: 10.1090/proc/13687
– volume: 462
  start-page: 1254
  year: 2018
  ident: 10.1016/j.nonrwa.2020.103208_b26
  article-title: Spreading of two competing species governed by a free boundary model in a shifting environment
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2018.02.042
– volume: 285
  year: 2018
  ident: 10.1016/j.nonrwa.2020.103208_b2
  article-title: Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios
  publication-title: Proc. R. Soc. B
  doi: 10.1098/rspb.2018.0792
– volume: 267
  start-page: 4890
  year: 2019
  ident: 10.1016/j.nonrwa.2020.103208_b17
  article-title: Spatial–temporal dynamics of a Lotka–Volterra competition model with nonlocal dispersal under shifting environment
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2019.05.019
– volume: 148
  start-page: 4405
  year: 2020
  ident: 10.1016/j.nonrwa.2020.103208_b42
  article-title: Time periodic traveling waves for a periodic nonlocal dispersal model with delay
  publication-title: Proc. Amer. Math. Soc.
  doi: 10.1090/proc/15085
– volume: 47
  start-page: 483
  year: 2003
  ident: 10.1016/j.nonrwa.2020.103208_b7
  article-title: The evolution of dispersal
  publication-title: J. Math. Biol.
  doi: 10.1007/s00285-003-0210-1
– volume: 62
  start-page: 2505
  year: 2019
  ident: 10.1016/j.nonrwa.2020.103208_b10
  article-title: Pulsating waves and entire solutions for a spatially periodic nonlocal dispersal system with a quiescent stage
  publication-title: Sci. China Math.
  doi: 10.1007/s11425-019-1588-1
– volume: 353
  start-page: 254
  year: 2019
  ident: 10.1016/j.nonrwa.2020.103208_b29
  article-title: Forced waves and their asymptotics in a Lotka–Volterra cooperative model under climate change
  publication-title: Appl. Math. Comput.
– volume: 35
  start-page: 1531
  year: 2015
  ident: 10.1016/j.nonrwa.2020.103208_b41
  article-title: Invasion entire solutions in a competition system with nonlocal dispersal
  publication-title: Discrete Contin. Dyn. Syst.
  doi: 10.3934/dcds.2015.35.1531
– volume: 95
  start-page: 627
  year: 2011
  ident: 10.1016/j.nonrwa.2020.103208_b36
  article-title: Existence, uniqueness and asymptotic stability of time periodic traveling waves for a periodic Lotka–Volterra competition system with diffusion
  publication-title: J. Math. Pures Appl.
  doi: 10.1016/j.matpur.2010.11.005
SSID ssj0017131
Score 2.5052764
Snippet This paper is mainly concerned with the forced waves and gap formations for a Lotka–Volterra competition model with nonlocal dispersal and shifting habitats....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103208
SubjectTerms Forced waves
Gap formations
Lotka–Volterra competition model
Nonlocal dispersal
Shifting habitats
Title Forced waves and gap formations for a Lotka–Volterra competition model with nonlocal dispersal and shifting habitats
URI https://dx.doi.org/10.1016/j.nonrwa.2020.103208
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTsJAFJ0Q3OjC-IxPMgu3FdqZUmZJiAQViFEx7Jp5KmqAtAg74z_4h36Jc6ct0cRo4qqTZqaZ3t7O3Nuecy5CJ5SKyESceyqMah61r7YnFDGepDZ7DogQytVP6fXrnQG9GIbDEmoVXBiAVeZrf7amu9U6P1PNrVmdjkbVGyAN-U6A3DppUAdGOaURePnp6xLm4dskzC8YRtC7oM85jJfNsJMFqA8Fjn0eQJHJn7anL1tOewOt57EibmbT2UQlPd5Ca72l0Gq6jebtSWLvAS_4XKeYjxW-51O8ZCSm0MQcdyezJ_7x9n43gZ_jCcfShcsOroVdMRwMH2Sxnanb3LAagYJ4altwzfRhZAAejUHV20an6Q4atM9uWx0vL6XgSZsTzDzS0HXFpGKChZIQohSvKWaE0b6OlH2rKdMBN1IorbVgivqKM98AIYtpqRnZRWU7Bb2HsGlI0Bik1rKGhmHQ4II1oEkEt_Gh2EeksGAsc51xKHfxHBeAssc4s3sMdo8zu-8jbzlqmuls_NE_Kh5O_M1fYrsV_Dry4N8jD9FqAIgWh9s5QuVZ8qKPbUgyExXncxW00mxdd6_geH7Z6X8CtoTm-Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF5F7YFyqAoUkbbAHuDoJl6v4-yhBwRECfm5kKDczP4W0yqJ4jRRLxXvwKPwRjwJM2s7AglRCSm3leW11p_HM7P2N98Q8opzlbhEysDESTPg8GoHykQu0Bx2zyxSyvj-KcNRqzvhH6bxtEZ-VLUwSKssfX_h0723Lo80SjQbiyxrfMSiodALkIORslZSMiv79nYD-7b8ovcOHvJrxjrvx2-7QdlaINCQI6-CqG1bRmgjlIh1FEXGyKYRTjkb2sSAlXNhmXRaGWutEoaHRorQYYGSsNqiAhP4_X0O7gLbJpzfbXklIez6wqqkCZdX1et5Uhls6ZcblDtivtydYVfLv8XD32Jc54gclskpfVPc_yNSs7PH5OFwq-yaPyHrznwJoNGNXNucypmhl3JBtyWQOQ6ppIP56kr-_Pb90xz_xi8l1T4_9_ww6rvvUPwCTGGlPppSk6FkeQ4jvGb-JXPIx6YoIw7pcH5MJjsB-CnZgyXYZ4S6tkZRQw7IOh7HrC2VaOMwUhISUlUnUYVgqkthc-yvcZ1WDLavaYF7irinBe51EmxnLQphj3vOT6qHk_5hoCnEnn_OPPnvmS_Jg-54OEgHvVH_lBwwpNN40tAZ2Vstb-xzyIdW6oW3P0o-79rgfwFQeyRl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forced+waves+and+gap+formations+for+a+Lotka%E2%80%93Volterra+competition+model+with+nonlocal+dispersal+and+shifting+habitats&rft.jtitle=Nonlinear+analysis%3A+real+world+applications&rft.au=Wang%2C+Jia-Bing&rft.au=Wu%2C+Chufen&rft.date=2021-04-01&rft.pub=Elsevier+Ltd&rft.issn=1468-1218&rft.eissn=1878-5719&rft.volume=58&rft_id=info:doi/10.1016%2Fj.nonrwa.2020.103208&rft.externalDocID=S1468121820301267
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1468-1218&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1468-1218&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1468-1218&client=summon