Forced waves and gap formations for a Lotka–Volterra competition model with nonlocal dispersal and shifting habitats
This paper is mainly concerned with the forced waves and gap formations for a Lotka–Volterra competition model with nonlocal dispersal and shifting habitats. We first show that there exist two positive numbers c1∗ and c2∗ such that the system admits a forced wave provided that the forcing speed c∈(−...
Saved in:
Published in | Nonlinear analysis: real world applications Vol. 58; p. 103208 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper is mainly concerned with the forced waves and gap formations for a Lotka–Volterra competition model with nonlocal dispersal and shifting habitats. We first show that there exist two positive numbers c1∗ and c2∗ such that the system admits a forced wave provided that the forcing speed c∈(−c2∗,c1∗) by the iterative techniques combining with some known results for the forced moving KPP equations. Meanwhile, we use some delicate analysis to obtain the asymptotic behaviors at infinity of the forced waves with nonzero forcing speed c∈(−c2∗,0)∪(0,c1∗). Then, based on the comparison argument, we prove that the gap formations exist for c>c1∗ and c<−c2∗. Finally, some numeric simulation results are presented to confirm our theoretical results, which also contains the critical cases of c=c1∗ and c=−c2∗. |
---|---|
AbstractList | This paper is mainly concerned with the forced waves and gap formations for a Lotka–Volterra competition model with nonlocal dispersal and shifting habitats. We first show that there exist two positive numbers c1∗ and c2∗ such that the system admits a forced wave provided that the forcing speed c∈(−c2∗,c1∗) by the iterative techniques combining with some known results for the forced moving KPP equations. Meanwhile, we use some delicate analysis to obtain the asymptotic behaviors at infinity of the forced waves with nonzero forcing speed c∈(−c2∗,0)∪(0,c1∗). Then, based on the comparison argument, we prove that the gap formations exist for c>c1∗ and c<−c2∗. Finally, some numeric simulation results are presented to confirm our theoretical results, which also contains the critical cases of c=c1∗ and c=−c2∗. |
ArticleNumber | 103208 |
Author | Wu, Chufen Wang, Jia-Bing |
Author_xml | – sequence: 1 givenname: Jia-Bing orcidid: 0000-0001-9270-7668 surname: Wang fullname: Wang, Jia-Bing email: wangjb@cug.edu.cn organization: School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, People’s Republic of China – sequence: 2 givenname: Chufen surname: Wu fullname: Wu, Chufen email: wucfmath@fosu.edu.cn organization: School of Mathematics and Big Data, Foshan University, Foshan 528000, People’s Republic of China |
BookMark | eNqFkEFOwzAQRS1UJNrCDVj4Ail2nLYxCyRUUUCqxAbYWhN70rqkcWVbrdhxB27ISXAUVixgNV-j-X9m3ogMWtciIZecTTjjs6vtJDX8ESY5y7uWyFl5Qoa8nJfZdM7lIOliVmY85-UZGYWwZYzPueBDclg6r9HQIxwwUGgNXcOe1s7vIFrXhk5SoCsX3-Dr4_PVNRG9B6rdbo_RdjN05ww29GjjhqY7GqehocaGPfqQVJcZNraOtl3TDVQ2Qgzn5LSGJuDFTx2Tl-Xd8-IhWz3dPy5uV5kWbBYzUeLMSG1kJadaCGEMMCPrqkaOc1OKvJCYQ60rg4iVNAU3IHktxDSXqFGKMbnuc7V3IXisle72p6ujB9sozlRHUG1VT1B1BFVPMJmLX-a9tzvw7__ZbnobpscOFr0K2mKbKFuPOirj7N8B3994lIw |
CitedBy_id | crossref_primary_10_1016_j_jde_2021_07_041 crossref_primary_10_1007_s00033_024_02388_4 crossref_primary_10_1016_j_jmaa_2022_126283 crossref_primary_10_3934_dcdsb_2024175 crossref_primary_10_3934_era_2020118 crossref_primary_10_1007_s10473_023_0602_9 crossref_primary_10_1016_j_jmaa_2024_128647 crossref_primary_10_1111_sapm_12645 crossref_primary_10_1016_j_jde_2021_02_027 crossref_primary_10_1016_j_jmaa_2024_129075 crossref_primary_10_12677_AAM_2024_134110 crossref_primary_10_1007_s11854_022_0242_3 crossref_primary_10_3934_dcdsb_2021266 crossref_primary_10_1007_s00033_021_01582_y crossref_primary_10_1007_s10473_024_0318_5 crossref_primary_10_1016_j_aml_2021_107168 crossref_primary_10_1017_S095679252100019X crossref_primary_10_1016_j_jde_2021_09_017 crossref_primary_10_37394_23202_2023_22_45 crossref_primary_10_1016_j_jmaa_2021_125504 crossref_primary_10_1016_j_aml_2023_108573 crossref_primary_10_1016_j_nonrwa_2020_103247 crossref_primary_10_1007_s00028_024_00994_3 crossref_primary_10_1007_s10884_022_10223_5 crossref_primary_10_3934_era_2020116 crossref_primary_10_1016_j_nonrwa_2020_103287 crossref_primary_10_1016_j_nonrwa_2023_103880 crossref_primary_10_3934_dcdsb_2021152 crossref_primary_10_1007_s10884_021_10012_6 crossref_primary_10_1007_s10884_021_10018_0 crossref_primary_10_1016_j_chaos_2023_114414 crossref_primary_10_1016_j_jmaa_2024_128832 crossref_primary_10_1016_j_amc_2022_127269 crossref_primary_10_1016_j_jde_2022_11_039 crossref_primary_10_1016_j_mbs_2021_108711 crossref_primary_10_1007_s00033_024_02350_4 crossref_primary_10_3390_mca26040073 crossref_primary_10_1002_mma_9441 crossref_primary_10_1007_s10884_021_10116_z crossref_primary_10_1016_j_jmaa_2021_125100 crossref_primary_10_1007_s00033_022_01735_7 crossref_primary_10_1088_1402_4896_acde14 crossref_primary_10_1088_1361_6544_ac08e8 crossref_primary_10_1016_j_nonrwa_2024_104120 crossref_primary_10_1016_j_jde_2023_09_027 crossref_primary_10_1142_S0218127421501650 crossref_primary_10_1007_s10884_023_10294_y crossref_primary_10_1007_s12346_024_01015_x |
Cites_doi | 10.1007/s10884-019-09760-3 10.1137/120887746 10.1137/15M1029564 10.1007/s11538-008-9367-5 10.1137/16M1108741 10.1007/s11538-016-0180-2 10.1016/j.ecocom.2014.10.006 10.1007/s12080-010-0071-3 10.1007/s002050050037 10.1016/j.aml.2020.106349 10.1038/nature02121 10.1137/130938463 10.1137/16M1075934 10.1111/j.1466-8238.2010.00558.x 10.3934/dcds.2010.26.551 10.1016/j.jde.2015.03.025 10.15388/NA.2017.3.1 10.1007/s00332-018-9445-2 10.1007/s11425-016-9003-7 10.1137/050636152 10.1007/s00033-020-01374-w 10.1016/j.jde.2016.02.032 10.1007/s10584-018-2158-6 10.1090/proc/14235 10.1016/j.jde.2019.09.044 10.1016/j.nonrwa.2020.103198 10.1016/j.jde.2017.10.016 10.1016/j.jfa.2018.03.006 10.1007/s00526-019-1662-5 10.1016/j.jde.2007.11.002 10.1090/proc/13687 10.1016/j.jmaa.2018.02.042 10.1098/rspb.2018.0792 10.1016/j.jde.2019.05.019 10.1090/proc/15085 10.1007/s00285-003-0210-1 10.1007/s11425-019-1588-1 10.3934/dcds.2015.35.1531 10.1016/j.matpur.2010.11.005 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.nonrwa.2020.103208 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1878-5719 |
ExternalDocumentID | 10_1016_j_nonrwa_2020_103208 S1468121820301267 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 29N 4.4 457 4G. 5VS 6OB 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADGUI ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W J9A JJJVA KOM M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSW SSZ T5K XPP YQT ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-38e6d9cd9b95c333dda0d9fbfe1e7d83249e2afcbdeeeb9d41da91f33529ece93 |
IEDL.DBID | .~1 |
ISSN | 1468-1218 |
IngestDate | Tue Jul 01 04:03:13 EDT 2025 Thu Apr 24 22:59:58 EDT 2025 Fri Feb 23 02:48:12 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Forced waves Shifting habitats Lotka–Volterra competition model Gap formations Nonlocal dispersal |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-38e6d9cd9b95c333dda0d9fbfe1e7d83249e2afcbdeeeb9d41da91f33529ece93 |
ORCID | 0000-0001-9270-7668 |
ParticipantIDs | crossref_citationtrail_10_1016_j_nonrwa_2020_103208 crossref_primary_10_1016_j_nonrwa_2020_103208 elsevier_sciencedirect_doi_10_1016_j_nonrwa_2020_103208 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2021 2021-04-00 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: April 2021 |
PublicationDecade | 2020 |
PublicationTitle | Nonlinear analysis: real world applications |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Lutscher, Pachepsky, Lewis (b6) 2005; 47 Holzer, Scheel (b12) 2014; 46 Alfaro, Berestycki, Raoul (b19) 2017; 49 Bao, Li, Shen (b34) 2016; 260 Yang, Wu, Li (b29) 2019; 353 Gonzalez, Neilson, Lenihan, Drapek (b1) 2010; 19 Fang, Lou, Wu (b11) 2016; 76 Kao, Lou, Shen (b8) 2010; 26 Thomas, Cameron, Green (b3) 2004; 427 Wang, Li (b18) 2020; 71 Yuan, Wang, Zou (b31) 2019; 24 Hu, Li (b24) 2015; 259 Zhang, Wang, Yang (b32) 2017; 22 De Leenheer, Shen, Zhang (b16) 2020; 54 Li, Bewick, Shang, Fagan (b28) 2014; 5 Warren, Price, VanDerWal, Cornelius, Sohl (b4) 2018; 147 Wang, Li (b10) 2019; 62 Li, Wang, Zhao (b13) 2018; 28 Berestycki, Diekmann, Nagelkerke, Zegeling (b21) 2009; 71 Bates, Fife, Ren, Wang (b5) 1997; 138 Chen, Tsai, Wu (b23) 2017; 49 Li, Zhang, Zhang (b41) 2015; 35 Coville, Dávila, Martínez (b40) 2008; 244 Li, Wang, Zhao (b9) 2020; 28 Zhang, Li, Wang (b39) 2017; 60 Wu, Huang (b42) 2020; 148 Wu, Wang, Zou (b17) 2019; 267 Zhou, Kot (b33) 2011; 4 Newbold (b2) 2018; 285 Hutson, Martinez, Mischaikow, Vickers (b7) 2003; 47 Wang, Zhao (b14) 2019; 147 Zhao, Ruan (b36) 2011; 95 Lei, Nie, Dong, Du (b26) 2018; 462 Zhang, Zhao (b15) 2020; 268 Berestycki, Desvillettes, Diekmann (b20) 2014; 20 Berestycki, Fang (b22) 2018; 264 Wu, Yang, Wu (b30) 2021; 57 Zhang, Zhao (b35) 2020; 59 Zhou, Xiao (b37) 2018; 275 Li, Bewick, Barnard, Fagan (b27) 2016; 78 Hu, Zou (b25) 2017; 145 Wang, Pan, Ou (b38) 2020; 106 Zhao (10.1016/j.nonrwa.2020.103208_b36) 2011; 95 Li (10.1016/j.nonrwa.2020.103208_b27) 2016; 78 Wang (10.1016/j.nonrwa.2020.103208_b14) 2019; 147 Li (10.1016/j.nonrwa.2020.103208_b41) 2015; 35 Kao (10.1016/j.nonrwa.2020.103208_b8) 2010; 26 Lei (10.1016/j.nonrwa.2020.103208_b26) 2018; 462 Bao (10.1016/j.nonrwa.2020.103208_b34) 2016; 260 Gonzalez (10.1016/j.nonrwa.2020.103208_b1) 2010; 19 Zhang (10.1016/j.nonrwa.2020.103208_b35) 2020; 59 Zhang (10.1016/j.nonrwa.2020.103208_b32) 2017; 22 Hutson (10.1016/j.nonrwa.2020.103208_b7) 2003; 47 Berestycki (10.1016/j.nonrwa.2020.103208_b22) 2018; 264 Coville (10.1016/j.nonrwa.2020.103208_b40) 2008; 244 Wu (10.1016/j.nonrwa.2020.103208_b17) 2019; 267 Chen (10.1016/j.nonrwa.2020.103208_b23) 2017; 49 Newbold (10.1016/j.nonrwa.2020.103208_b2) 2018; 285 Li (10.1016/j.nonrwa.2020.103208_b13) 2018; 28 Fang (10.1016/j.nonrwa.2020.103208_b11) 2016; 76 Bates (10.1016/j.nonrwa.2020.103208_b5) 1997; 138 Berestycki (10.1016/j.nonrwa.2020.103208_b20) 2014; 20 Li (10.1016/j.nonrwa.2020.103208_b28) 2014; 5 Zhang (10.1016/j.nonrwa.2020.103208_b39) 2017; 60 Wu (10.1016/j.nonrwa.2020.103208_b30) 2021; 57 Wang (10.1016/j.nonrwa.2020.103208_b38) 2020; 106 Yang (10.1016/j.nonrwa.2020.103208_b29) 2019; 353 Zhang (10.1016/j.nonrwa.2020.103208_b15) 2020; 268 Wang (10.1016/j.nonrwa.2020.103208_b18) 2020; 71 Warren (10.1016/j.nonrwa.2020.103208_b4) 2018; 147 Li (10.1016/j.nonrwa.2020.103208_b9) 2020; 28 Berestycki (10.1016/j.nonrwa.2020.103208_b21) 2009; 71 Holzer (10.1016/j.nonrwa.2020.103208_b12) 2014; 46 Alfaro (10.1016/j.nonrwa.2020.103208_b19) 2017; 49 Zhou (10.1016/j.nonrwa.2020.103208_b33) 2011; 4 Hu (10.1016/j.nonrwa.2020.103208_b25) 2017; 145 Zhou (10.1016/j.nonrwa.2020.103208_b37) 2018; 275 Yuan (10.1016/j.nonrwa.2020.103208_b31) 2019; 24 Lutscher (10.1016/j.nonrwa.2020.103208_b6) 2005; 47 Thomas (10.1016/j.nonrwa.2020.103208_b3) 2004; 427 Wang (10.1016/j.nonrwa.2020.103208_b10) 2019; 62 De Leenheer (10.1016/j.nonrwa.2020.103208_b16) 2020; 54 Wu (10.1016/j.nonrwa.2020.103208_b42) 2020; 148 Hu (10.1016/j.nonrwa.2020.103208_b24) 2015; 259 |
References_xml | – volume: 59 year: 2020 ident: b35 article-title: Propagation phenomena for a two-species Lotka–Volterra strong competition system with nonlocal dispersal publication-title: Calc. Var. Partial Differential Equations – volume: 462 start-page: 1254 year: 2018 end-page: 1282 ident: b26 article-title: Spreading of two competing species governed by a free boundary model in a shifting environment publication-title: J. Math. Anal. Appl. – volume: 78 start-page: 1337 year: 2016 end-page: 1379 ident: b27 article-title: Persistence and spreading speeds of integro-difference equations with an expanding or contracting habitat publication-title: Bull. Math. Biol. – volume: 244 start-page: 3080 year: 2008 end-page: 3118 ident: b40 article-title: Nonlocal anisotropic dispersal with monostable nonlinearity publication-title: J. Differential Equations – volume: 28 start-page: 1027 year: 2020 end-page: 1064 ident: b9 article-title: Propagation dynamics in a time periodic nonlocal dispersal model with stage structure publication-title: J. Dynam. Differential Equations – volume: 353 start-page: 254 year: 2019 end-page: 264 ident: b29 article-title: Forced waves and their asymptotics in a Lotka–Volterra cooperative model under climate change publication-title: Appl. Math. Comput. – volume: 22 start-page: 285 year: 2017 end-page: 302 ident: b32 article-title: Persistence versus extinction for two competing species under a climate change publication-title: Nonlinear Anal. Model. Control – volume: 57 year: 2021 ident: b30 article-title: Existence and uniqueness of forced waves in a delayed reaction–diffusion equation in a shifting environment publication-title: Nonlinear Anal. RWA – volume: 95 start-page: 627 year: 2011 end-page: 671 ident: b36 article-title: Existence, uniqueness and asymptotic stability of time periodic traveling waves for a periodic Lotka–Volterra competition system with diffusion publication-title: J. Math. Pures Appl. – volume: 427 start-page: 145 year: 2004 end-page: 148 ident: b3 article-title: Extinction risk from climate change publication-title: Nature – volume: 285 year: 2018 ident: b2 article-title: Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios publication-title: Proc. R. Soc. B – volume: 24 start-page: 5633 year: 2019 end-page: 5671 ident: b31 article-title: Spatial–temporal dynamics of a Lotka–Volterra competition model with a shifting habitat publication-title: Discrete Contin. Dyn. Syst. Ser. B – volume: 54 year: 2020 ident: b16 article-title: Persistence and extinction of nonlocal dispersal evolution equations in moving habitats publication-title: Nonlinear Anal. RWA – volume: 62 start-page: 2505 year: 2019 end-page: 2526 ident: b10 article-title: Pulsating waves and entire solutions for a spatially periodic nonlocal dispersal system with a quiescent stage publication-title: Sci. China Math. – volume: 268 start-page: 2852 year: 2020 end-page: 2885 ident: b15 article-title: Propagation dynamics of a nonlocal dispersal Fisher–KPP equation in a time-periodic shifting habitat publication-title: J. Differential Equations – volume: 4 start-page: 13 year: 2011 end-page: 25 ident: b33 article-title: Discrete-time growth-dispersal models with shifting species ranges publication-title: Theor. Ecol. – volume: 148 start-page: 4405 year: 2020 end-page: 4421 ident: b42 article-title: Time periodic traveling waves for a periodic nonlocal dispersal model with delay publication-title: Proc. Amer. Math. Soc. – volume: 60 start-page: 1791 year: 2017 end-page: 1804 ident: b39 article-title: Entire solution in an ignition nonlocal dispersal equation: Asymmetric kernel publication-title: Sci. China Math. – volume: 71 year: 2020 ident: b18 article-title: Wave propagation for a cooperative model with nonlocal dispersal under worsening habitats publication-title: Z. Angew. Math. Phys. – volume: 47 start-page: 749 year: 2005 end-page: 772 ident: b6 article-title: The effect of dispersal patterns on stream populations publication-title: SIAM Rev. – volume: 28 start-page: 1189 year: 2018 end-page: 1219 ident: b13 article-title: Spatial dynamics of a nonlocal dispersal population model in a shifting environment publication-title: J. Nonlinear Sci. – volume: 275 start-page: 356 year: 2018 end-page: 380 ident: b37 article-title: Global dynamics of a classical Lotka–Volterra competition-diffusion-advection system publication-title: J. Funct. Anal. – volume: 5 start-page: 1397 year: 2014 end-page: 1417 ident: b28 article-title: Persistence and spread of s species with a shifting habitat edge publication-title: SIAM J. Appl. Math. – volume: 20 start-page: 264 year: 2014 end-page: 270 ident: b20 article-title: Can climate change lead to gap formation? publication-title: Ecol. Complex. – volume: 19 start-page: 755 year: 2010 end-page: 768 ident: b1 article-title: Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change publication-title: Glob. Ecol. Biogeogr. – volume: 147 start-page: 395 year: 2018 end-page: 409 ident: b4 article-title: The implications of the united nations paris agreement on climate change for globally significant biodiversity areas publication-title: Clim. Change – volume: 138 start-page: 105 year: 1997 end-page: 136 ident: b5 article-title: Traveling waves in a convolution model for phase transitions publication-title: Arch. Ration. Mech. Anal. – volume: 35 start-page: 1531 year: 2015 end-page: 1560 ident: b41 article-title: Invasion entire solutions in a competition system with nonlocal dispersal publication-title: Discrete Contin. Dyn. Syst. – volume: 145 start-page: 4763 year: 2017 end-page: 4771 ident: b25 article-title: Existence of an extinction wave in the Fisher equation with a shifting habitat publication-title: Proc. Amer. Math. Soc. – volume: 71 start-page: 399 year: 2009 end-page: 429 ident: b21 article-title: Can a species keep pace with a shifting climate? publication-title: Bull. Math. Biol. – volume: 147 start-page: 1467 year: 2019 end-page: 1481 ident: b14 article-title: Uniqueness and global stability of forced waves in a shifting environment publication-title: Proc. Amer. Math. Soc. – volume: 76 start-page: 1633 year: 2016 end-page: 1657 ident: b11 article-title: Can pathogen spread keep pace with its host invasion? publication-title: SIAM J. Appl. Math. – volume: 46 start-page: 397 year: 2014 end-page: 427 ident: b12 article-title: Accelerated fronts in a two-stage invasion process publication-title: SIAM J. Math. Anal. – volume: 106 year: 2020 ident: b38 article-title: Existence of forced waves and gap formations for the lattice Lotka–Volterra competition system in a shifting environment publication-title: Appl. Math. Lett. – volume: 264 start-page: 2157 year: 2018 end-page: 2183 ident: b22 article-title: Forced waves of the Fisher–KPP equation in a shifting environment publication-title: J. Differential Equations – volume: 49 start-page: 3925 year: 2017 end-page: 3950 ident: b23 article-title: Longtime behavior of solutions of a SIS epidemiological model publication-title: SIAM J. Math. Anal. – volume: 267 start-page: 4890 year: 2019 end-page: 4921 ident: b17 article-title: Spatial–temporal dynamics of a Lotka–Volterra competition model with nonlocal dispersal under shifting environment publication-title: J. Differential Equations – volume: 26 start-page: 551 year: 2010 end-page: 596 ident: b8 article-title: Random dispersal vs non-local dispersal publication-title: Discrete Contin. Dyn. Syst. – volume: 259 start-page: 1967 year: 2015 end-page: 1989 ident: b24 article-title: Spatial dynamics for lattice differential equations with a shifting habitat publication-title: J. Differential Equations – volume: 47 start-page: 483 year: 2003 end-page: 517 ident: b7 article-title: The evolution of dispersal publication-title: J. Math. Biol. – volume: 260 start-page: 8590 year: 2016 end-page: 8637 ident: b34 article-title: Traveling wave solutions of Lotka–Volterra competition systems with nonlocal dispersal in periodic habitats publication-title: J. Differential Equations – volume: 49 start-page: 562 year: 2017 end-page: 596 ident: b19 article-title: The effect of climate shift on a species submitted to dispersion, evolution, growth, and nonlocal competition publication-title: SIAM J. Math. Anal. – volume: 28 start-page: 1027 year: 2020 ident: 10.1016/j.nonrwa.2020.103208_b9 article-title: Propagation dynamics in a time periodic nonlocal dispersal model with stage structure publication-title: J. Dynam. Differential Equations doi: 10.1007/s10884-019-09760-3 – volume: 46 start-page: 397 year: 2014 ident: 10.1016/j.nonrwa.2020.103208_b12 article-title: Accelerated fronts in a two-stage invasion process publication-title: SIAM J. Math. Anal. doi: 10.1137/120887746 – volume: 76 start-page: 1633 year: 2016 ident: 10.1016/j.nonrwa.2020.103208_b11 article-title: Can pathogen spread keep pace with its host invasion? publication-title: SIAM J. Appl. Math. doi: 10.1137/15M1029564 – volume: 71 start-page: 399 year: 2009 ident: 10.1016/j.nonrwa.2020.103208_b21 article-title: Can a species keep pace with a shifting climate? publication-title: Bull. Math. Biol. doi: 10.1007/s11538-008-9367-5 – volume: 49 start-page: 3925 year: 2017 ident: 10.1016/j.nonrwa.2020.103208_b23 article-title: Longtime behavior of solutions of a SIS epidemiological model publication-title: SIAM J. Math. Anal. doi: 10.1137/16M1108741 – volume: 78 start-page: 1337 year: 2016 ident: 10.1016/j.nonrwa.2020.103208_b27 article-title: Persistence and spreading speeds of integro-difference equations with an expanding or contracting habitat publication-title: Bull. Math. Biol. doi: 10.1007/s11538-016-0180-2 – volume: 20 start-page: 264 year: 2014 ident: 10.1016/j.nonrwa.2020.103208_b20 article-title: Can climate change lead to gap formation? publication-title: Ecol. Complex. doi: 10.1016/j.ecocom.2014.10.006 – volume: 4 start-page: 13 year: 2011 ident: 10.1016/j.nonrwa.2020.103208_b33 article-title: Discrete-time growth-dispersal models with shifting species ranges publication-title: Theor. Ecol. doi: 10.1007/s12080-010-0071-3 – volume: 138 start-page: 105 year: 1997 ident: 10.1016/j.nonrwa.2020.103208_b5 article-title: Traveling waves in a convolution model for phase transitions publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s002050050037 – volume: 106 year: 2020 ident: 10.1016/j.nonrwa.2020.103208_b38 article-title: Existence of forced waves and gap formations for the lattice Lotka–Volterra competition system in a shifting environment publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2020.106349 – volume: 427 start-page: 145 year: 2004 ident: 10.1016/j.nonrwa.2020.103208_b3 article-title: Extinction risk from climate change publication-title: Nature doi: 10.1038/nature02121 – volume: 5 start-page: 1397 year: 2014 ident: 10.1016/j.nonrwa.2020.103208_b28 article-title: Persistence and spread of s species with a shifting habitat edge publication-title: SIAM J. Appl. Math. doi: 10.1137/130938463 – volume: 49 start-page: 562 year: 2017 ident: 10.1016/j.nonrwa.2020.103208_b19 article-title: The effect of climate shift on a species submitted to dispersion, evolution, growth, and nonlocal competition publication-title: SIAM J. Math. Anal. doi: 10.1137/16M1075934 – volume: 19 start-page: 755 year: 2010 ident: 10.1016/j.nonrwa.2020.103208_b1 article-title: Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change publication-title: Glob. Ecol. Biogeogr. doi: 10.1111/j.1466-8238.2010.00558.x – volume: 24 start-page: 5633 year: 2019 ident: 10.1016/j.nonrwa.2020.103208_b31 article-title: Spatial–temporal dynamics of a Lotka–Volterra competition model with a shifting habitat publication-title: Discrete Contin. Dyn. Syst. Ser. B – volume: 26 start-page: 551 year: 2010 ident: 10.1016/j.nonrwa.2020.103208_b8 article-title: Random dispersal vs non-local dispersal publication-title: Discrete Contin. Dyn. Syst. doi: 10.3934/dcds.2010.26.551 – volume: 259 start-page: 1967 year: 2015 ident: 10.1016/j.nonrwa.2020.103208_b24 article-title: Spatial dynamics for lattice differential equations with a shifting habitat publication-title: J. Differential Equations doi: 10.1016/j.jde.2015.03.025 – volume: 22 start-page: 285 year: 2017 ident: 10.1016/j.nonrwa.2020.103208_b32 article-title: Persistence versus extinction for two competing species under a climate change publication-title: Nonlinear Anal. Model. Control doi: 10.15388/NA.2017.3.1 – volume: 28 start-page: 1189 year: 2018 ident: 10.1016/j.nonrwa.2020.103208_b13 article-title: Spatial dynamics of a nonlocal dispersal population model in a shifting environment publication-title: J. Nonlinear Sci. doi: 10.1007/s00332-018-9445-2 – volume: 60 start-page: 1791 year: 2017 ident: 10.1016/j.nonrwa.2020.103208_b39 article-title: Entire solution in an ignition nonlocal dispersal equation: Asymmetric kernel publication-title: Sci. China Math. doi: 10.1007/s11425-016-9003-7 – volume: 47 start-page: 749 year: 2005 ident: 10.1016/j.nonrwa.2020.103208_b6 article-title: The effect of dispersal patterns on stream populations publication-title: SIAM Rev. doi: 10.1137/050636152 – volume: 71 year: 2020 ident: 10.1016/j.nonrwa.2020.103208_b18 article-title: Wave propagation for a cooperative model with nonlocal dispersal under worsening habitats publication-title: Z. Angew. Math. Phys. doi: 10.1007/s00033-020-01374-w – volume: 260 start-page: 8590 year: 2016 ident: 10.1016/j.nonrwa.2020.103208_b34 article-title: Traveling wave solutions of Lotka–Volterra competition systems with nonlocal dispersal in periodic habitats publication-title: J. Differential Equations doi: 10.1016/j.jde.2016.02.032 – volume: 147 start-page: 395 year: 2018 ident: 10.1016/j.nonrwa.2020.103208_b4 article-title: The implications of the united nations paris agreement on climate change for globally significant biodiversity areas publication-title: Clim. Change doi: 10.1007/s10584-018-2158-6 – volume: 147 start-page: 1467 year: 2019 ident: 10.1016/j.nonrwa.2020.103208_b14 article-title: Uniqueness and global stability of forced waves in a shifting environment publication-title: Proc. Amer. Math. Soc. doi: 10.1090/proc/14235 – volume: 268 start-page: 2852 year: 2020 ident: 10.1016/j.nonrwa.2020.103208_b15 article-title: Propagation dynamics of a nonlocal dispersal Fisher–KPP equation in a time-periodic shifting habitat publication-title: J. Differential Equations doi: 10.1016/j.jde.2019.09.044 – volume: 57 year: 2021 ident: 10.1016/j.nonrwa.2020.103208_b30 article-title: Existence and uniqueness of forced waves in a delayed reaction–diffusion equation in a shifting environment publication-title: Nonlinear Anal. RWA doi: 10.1016/j.nonrwa.2020.103198 – volume: 264 start-page: 2157 year: 2018 ident: 10.1016/j.nonrwa.2020.103208_b22 article-title: Forced waves of the Fisher–KPP equation in a shifting environment publication-title: J. Differential Equations doi: 10.1016/j.jde.2017.10.016 – volume: 275 start-page: 356 year: 2018 ident: 10.1016/j.nonrwa.2020.103208_b37 article-title: Global dynamics of a classical Lotka–Volterra competition-diffusion-advection system publication-title: J. Funct. Anal. doi: 10.1016/j.jfa.2018.03.006 – volume: 54 year: 2020 ident: 10.1016/j.nonrwa.2020.103208_b16 article-title: Persistence and extinction of nonlocal dispersal evolution equations in moving habitats publication-title: Nonlinear Anal. RWA – volume: 59 year: 2020 ident: 10.1016/j.nonrwa.2020.103208_b35 article-title: Propagation phenomena for a two-species Lotka–Volterra strong competition system with nonlocal dispersal publication-title: Calc. Var. Partial Differential Equations doi: 10.1007/s00526-019-1662-5 – volume: 244 start-page: 3080 year: 2008 ident: 10.1016/j.nonrwa.2020.103208_b40 article-title: Nonlocal anisotropic dispersal with monostable nonlinearity publication-title: J. Differential Equations doi: 10.1016/j.jde.2007.11.002 – volume: 145 start-page: 4763 year: 2017 ident: 10.1016/j.nonrwa.2020.103208_b25 article-title: Existence of an extinction wave in the Fisher equation with a shifting habitat publication-title: Proc. Amer. Math. Soc. doi: 10.1090/proc/13687 – volume: 462 start-page: 1254 year: 2018 ident: 10.1016/j.nonrwa.2020.103208_b26 article-title: Spreading of two competing species governed by a free boundary model in a shifting environment publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2018.02.042 – volume: 285 year: 2018 ident: 10.1016/j.nonrwa.2020.103208_b2 article-title: Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios publication-title: Proc. R. Soc. B doi: 10.1098/rspb.2018.0792 – volume: 267 start-page: 4890 year: 2019 ident: 10.1016/j.nonrwa.2020.103208_b17 article-title: Spatial–temporal dynamics of a Lotka–Volterra competition model with nonlocal dispersal under shifting environment publication-title: J. Differential Equations doi: 10.1016/j.jde.2019.05.019 – volume: 148 start-page: 4405 year: 2020 ident: 10.1016/j.nonrwa.2020.103208_b42 article-title: Time periodic traveling waves for a periodic nonlocal dispersal model with delay publication-title: Proc. Amer. Math. Soc. doi: 10.1090/proc/15085 – volume: 47 start-page: 483 year: 2003 ident: 10.1016/j.nonrwa.2020.103208_b7 article-title: The evolution of dispersal publication-title: J. Math. Biol. doi: 10.1007/s00285-003-0210-1 – volume: 62 start-page: 2505 year: 2019 ident: 10.1016/j.nonrwa.2020.103208_b10 article-title: Pulsating waves and entire solutions for a spatially periodic nonlocal dispersal system with a quiescent stage publication-title: Sci. China Math. doi: 10.1007/s11425-019-1588-1 – volume: 353 start-page: 254 year: 2019 ident: 10.1016/j.nonrwa.2020.103208_b29 article-title: Forced waves and their asymptotics in a Lotka–Volterra cooperative model under climate change publication-title: Appl. Math. Comput. – volume: 35 start-page: 1531 year: 2015 ident: 10.1016/j.nonrwa.2020.103208_b41 article-title: Invasion entire solutions in a competition system with nonlocal dispersal publication-title: Discrete Contin. Dyn. Syst. doi: 10.3934/dcds.2015.35.1531 – volume: 95 start-page: 627 year: 2011 ident: 10.1016/j.nonrwa.2020.103208_b36 article-title: Existence, uniqueness and asymptotic stability of time periodic traveling waves for a periodic Lotka–Volterra competition system with diffusion publication-title: J. Math. Pures Appl. doi: 10.1016/j.matpur.2010.11.005 |
SSID | ssj0017131 |
Score | 2.5052764 |
Snippet | This paper is mainly concerned with the forced waves and gap formations for a Lotka–Volterra competition model with nonlocal dispersal and shifting habitats.... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 103208 |
SubjectTerms | Forced waves Gap formations Lotka–Volterra competition model Nonlocal dispersal Shifting habitats |
Title | Forced waves and gap formations for a Lotka–Volterra competition model with nonlocal dispersal and shifting habitats |
URI | https://dx.doi.org/10.1016/j.nonrwa.2020.103208 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTsJAFJ0Q3OjC-IxPMgu3FdqZUmZJiAQViFEx7Jp5KmqAtAg74z_4h36Jc6ct0cRo4qqTZqaZ3t7O3Nuecy5CJ5SKyESceyqMah61r7YnFDGepDZ7DogQytVP6fXrnQG9GIbDEmoVXBiAVeZrf7amu9U6P1PNrVmdjkbVGyAN-U6A3DppUAdGOaURePnp6xLm4dskzC8YRtC7oM85jJfNsJMFqA8Fjn0eQJHJn7anL1tOewOt57EibmbT2UQlPd5Ca72l0Gq6jebtSWLvAS_4XKeYjxW-51O8ZCSm0MQcdyezJ_7x9n43gZ_jCcfShcsOroVdMRwMH2Sxnanb3LAagYJ4altwzfRhZAAejUHV20an6Q4atM9uWx0vL6XgSZsTzDzS0HXFpGKChZIQohSvKWaE0b6OlH2rKdMBN1IorbVgivqKM98AIYtpqRnZRWU7Bb2HsGlI0Bik1rKGhmHQ4II1oEkEt_Gh2EeksGAsc51xKHfxHBeAssc4s3sMdo8zu-8jbzlqmuls_NE_Kh5O_M1fYrsV_Dry4N8jD9FqAIgWh9s5QuVZ8qKPbUgyExXncxW00mxdd6_geH7Z6X8CtoTm-Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF5F7YFyqAoUkbbAHuDoJl6v4-yhBwRECfm5kKDczP4W0yqJ4jRRLxXvwKPwRjwJM2s7AglRCSm3leW11p_HM7P2N98Q8opzlbhEysDESTPg8GoHykQu0Bx2zyxSyvj-KcNRqzvhH6bxtEZ-VLUwSKssfX_h0723Lo80SjQbiyxrfMSiodALkIORslZSMiv79nYD-7b8ovcOHvJrxjrvx2-7QdlaINCQI6-CqG1bRmgjlIh1FEXGyKYRTjkb2sSAlXNhmXRaGWutEoaHRorQYYGSsNqiAhP4_X0O7gLbJpzfbXklIez6wqqkCZdX1et5Uhls6ZcblDtivtydYVfLv8XD32Jc54gclskpfVPc_yNSs7PH5OFwq-yaPyHrznwJoNGNXNucypmhl3JBtyWQOQ6ppIP56kr-_Pb90xz_xi8l1T4_9_ww6rvvUPwCTGGlPppSk6FkeQ4jvGb-JXPIx6YoIw7pcH5MJjsB-CnZgyXYZ4S6tkZRQw7IOh7HrC2VaOMwUhISUlUnUYVgqkthc-yvcZ1WDLavaYF7irinBe51EmxnLQphj3vOT6qHk_5hoCnEnn_OPPnvmS_Jg-54OEgHvVH_lBwwpNN40tAZ2Vstb-xzyIdW6oW3P0o-79rgfwFQeyRl |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forced+waves+and+gap+formations+for+a+Lotka%E2%80%93Volterra+competition+model+with+nonlocal+dispersal+and+shifting+habitats&rft.jtitle=Nonlinear+analysis%3A+real+world+applications&rft.au=Wang%2C+Jia-Bing&rft.au=Wu%2C+Chufen&rft.date=2021-04-01&rft.pub=Elsevier+Ltd&rft.issn=1468-1218&rft.eissn=1878-5719&rft.volume=58&rft_id=info:doi/10.1016%2Fj.nonrwa.2020.103208&rft.externalDocID=S1468121820301267 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1468-1218&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1468-1218&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1468-1218&client=summon |