MMCL-Net: Spinal disease diagnosis in global mode using progressive multi-task joint learning
•Multiple structures of the spine are directly interdependent and influential, and the multi-tasks under a deep convolutional neural network framework can also influence each other.•Densely dilate ResNet module combat the challenge of size discrepancy and extract significant radiological features.•I...
Saved in:
Published in | Neurocomputing (Amsterdam) Vol. 399; pp. 307 - 316 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
25.07.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Multiple structures of the spine are directly interdependent and influential, and the multi-tasks under a deep convolutional neural network framework can also influence each other.•Densely dilate ResNet module combat the challenge of size discrepancy and extract significant radiological features.•Integrate the variational level-set function can enrich the local morphological features of the deep learning model.•Applied potential features practical can assist other tasks.
Simultaneous detection, segmentation, and classification of multiple spinal structures on MRI is crucial for the early and pathogenesis-based diagnosis of multiple spine diseases in the clinical setting. It is more assistance for radiologists reflections on the disease based on the pathogenesis when the lesion area and its adjacent structures are detected. Obviously, the multiple structures of the spine are directly interdependent and influential, and the multi-tasks under a deep convolutional neural network framework can also influence each other. Multi-task joint optimization in the spinal global mode is a direct outlet to seek the dynamic balance of the above potential correlation. In this paper, we propose a novel end-to-end Multi-task Multi-structure Correlation Learning Network (MMCL-Net) for the detection, segmentation, and classification (normal, slight, marked, and severe) of three types of spine structure: disc, vertebra, and neural foramen simultaneously. And the model is locally optimized to achieve a more stable dynamic equilibrium state. Extensive experiments on T1/T2-weighted MR scans from 200 subjects demonstrate that MMCL-Net achieves high performance with mAP of 0.9187, the classification accuracy of 90.67%, and dice coefficient of 90.60%. The experimental results show that the performance of our method is comparable to that of the state-of-the-art methods. |
---|---|
AbstractList | •Multiple structures of the spine are directly interdependent and influential, and the multi-tasks under a deep convolutional neural network framework can also influence each other.•Densely dilate ResNet module combat the challenge of size discrepancy and extract significant radiological features.•Integrate the variational level-set function can enrich the local morphological features of the deep learning model.•Applied potential features practical can assist other tasks.
Simultaneous detection, segmentation, and classification of multiple spinal structures on MRI is crucial for the early and pathogenesis-based diagnosis of multiple spine diseases in the clinical setting. It is more assistance for radiologists reflections on the disease based on the pathogenesis when the lesion area and its adjacent structures are detected. Obviously, the multiple structures of the spine are directly interdependent and influential, and the multi-tasks under a deep convolutional neural network framework can also influence each other. Multi-task joint optimization in the spinal global mode is a direct outlet to seek the dynamic balance of the above potential correlation. In this paper, we propose a novel end-to-end Multi-task Multi-structure Correlation Learning Network (MMCL-Net) for the detection, segmentation, and classification (normal, slight, marked, and severe) of three types of spine structure: disc, vertebra, and neural foramen simultaneously. And the model is locally optimized to achieve a more stable dynamic equilibrium state. Extensive experiments on T1/T2-weighted MR scans from 200 subjects demonstrate that MMCL-Net achieves high performance with mAP of 0.9187, the classification accuracy of 90.67%, and dice coefficient of 90.60%. The experimental results show that the performance of our method is comparable to that of the state-of-the-art methods. |
Author | Li, Xiang Hong, Yanfei Wei, Benzheng Zheng, Yuanjie Li, Shuo Han, Zhongyi |
Author_xml | – sequence: 1 givenname: Yanfei surname: Hong fullname: Hong, Yanfei organization: College of Science and Technology, Shandong University of Traditional Chinese Medicine, Jinan, SD, China – sequence: 2 givenname: Benzheng orcidid: 0000-0001-9640-4947 surname: Wei fullname: Wei, Benzheng email: wbz99@sina.com organization: Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao, SD, China – sequence: 3 givenname: Zhongyi surname: Han fullname: Han, Zhongyi organization: School of Software, Shandong University, Jinan, SD, China – sequence: 4 givenname: Xiang surname: Li fullname: Li, Xiang organization: College of Science and Technology, Shandong University of Traditional Chinese Medicine, Jinan, SD, China – sequence: 5 givenname: Yuanjie surname: Zheng fullname: Zheng, Yuanjie organization: School of Information Science and Engineering, Shandong Normal University, Jinan, SD, China – sequence: 6 givenname: Shuo orcidid: 0000-0002-5184-3230 surname: Li fullname: Li, Shuo organization: Digital Image Group (DIG), London, ON, Canada |
BookMark | eNqFkM1KAzEURoNUsFbfwEVeYMYkM53JdCFI8Q9aXahLCWnmZsg4k5QkLfj2ptSVC119F-49H9xzjibWWUDoipKcElpd97mFnXJjzggjOaE5pewETSmvWcYZryZoSho2z1hB2Rk6D6EnhNaUNVP0sV4vV9kzxAV-3RorB9yaADJAStlZF0zAxuJucJu0G10LeBeM7fDWu85DCGYPeNwN0WRRhk_cO2MjHkB6m64u0KmWQ4DLn5yh9_u7t-Vjtnp5eFrerjJVkCpmBVcFEF3zUhOePlIllargdM42TbVpSy1BV7VUqtG6mstCAmhaEMkrxiVL4wwtjr3KuxA8aKFMlNE4G700g6BEHESJXhxFiYMoQahIohJc_oK33ozSf_2H3RwxSI_tDXgRlAGroDUeVBStM38XfANfN4hi |
CitedBy_id | crossref_primary_10_1155_2022_2384830 crossref_primary_10_1016_j_media_2020_101872 crossref_primary_10_1109_TMI_2024_3385650 crossref_primary_10_15407_jai2024_04_256 crossref_primary_10_1016_j_engappai_2022_105451 crossref_primary_10_1016_j_neucom_2022_12_017 crossref_primary_10_1016_j_compbiomed_2023_106947 crossref_primary_10_1016_j_neucom_2021_10_025 crossref_primary_10_1016_j_cmpb_2020_105893 crossref_primary_10_1016_j_compbiomed_2021_105157 crossref_primary_10_1109_TMI_2023_3247543 crossref_primary_10_1016_j_media_2021_102170 crossref_primary_10_1007_s00586_022_07147_5 crossref_primary_10_1016_j_compbiomed_2022_106496 crossref_primary_10_3390_jpm13121703 crossref_primary_10_3390_s21248410 crossref_primary_10_1007_s11063_021_10457_2 crossref_primary_10_1109_ACCESS_2021_3051763 |
Cites_doi | 10.1097/BRS.0b013e31820cccfb 10.1177/2050312117740984 10.1016/j.media.2016.10.009 10.1016/j.media.2018.08.005 10.1097/01.brs.0000201243.81745.ba 10.1023/A:1007379606734 10.1016/j.neucom.2018.01.088 10.1109/TMI.2018.2798293 10.2214/AJR.09.2772 10.1016/j.media.2017.07.002 |
ContentType | Journal Article |
Copyright | 2020 |
Copyright_xml | – notice: 2020 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.neucom.2020.01.112 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-8286 |
EndPage | 316 |
ExternalDocumentID | 10_1016_j_neucom_2020_01_112 S0925231220303003 |
GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB HLZ HVGLF HZ~ R2- RIG SBC SEW SSH WUQ XPP |
ID | FETCH-LOGICAL-c306t-38c3e0f784f08101c41ac38152b96bd4faef67acc9ff65a3aeef130a8628a2f13 |
IEDL.DBID | .~1 |
ISSN | 0925-2312 |
IngestDate | Thu Apr 24 23:11:11 EDT 2025 Tue Jul 01 01:46:48 EDT 2025 Fri Feb 23 02:47:03 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | 99-00 Level-set Global optimization 00-01 Medical image Progressive multi-task Multi-structure Densely aggregation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-38c3e0f784f08101c41ac38152b96bd4faef67acc9ff65a3aeef130a8628a2f13 |
ORCID | 0000-0002-5184-3230 0000-0001-9640-4947 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1016_j_neucom_2020_01_112 crossref_primary_10_1016_j_neucom_2020_01_112 elsevier_sciencedirect_doi_10_1016_j_neucom_2020_01_112 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-25 |
PublicationDateYYYYMMDD | 2020-07-25 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-25 day: 25 |
PublicationDecade | 2020 |
PublicationTitle | Neurocomputing (Amsterdam) |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | M. Pisov, G. Makarchuk, V. Kostjuchenko, A. Dalechina, A. Golanov, M. Belyaev, Brain tumor image retrieval via multitask learning, arXiv Pinheiro, Collobert, Dollár (bib0026) 2015 Li, Qi, Dai, Ji, Wei (bib0020) 2017 D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by jointly learning to align and translate, arXiv Dai, He, Sun (bib0006) 2016 J.-T. Lu, S. Pedemonte, B. Bizzo, S. Doyle, K.P. Andriole, M.H. Michalski, R.G. Gonzalez, S.R. Pomerantz, Deepspine: Automated lumbar vertebral segmentation, disc-level designation, and spinal stenosis grading using deep learning, arXiv Kokkinos (bib0018) 2017; 2 Yang, Yu, Zhang, Li, Yang (bib0031) 2018 Ghosh, Malgireddy, Chaudhary, Dhillon (bib0009) 2012 Corso, RajaS, Chaudhary (bib0005) 2008 He, Gkioxari, Dollár, Girshick (bib0012) 2017 Long, Shelhamer, Darrell (bib0023) 2015 Liao, Mesfin, Luo (bib0021) 2018; 37 Ren, He, Girshick, Sun (bib0029) 2015 Han, Wei, Leung, Nachum, Laidley, Li (bib0010) 2018 Han, Wei, Mercado, Leung, Li (bib0011) 2018; 50 Huang, Liu, Van Der Maaten, Weinberger (bib0015) 2017; 1 He, Zhang, Landis, Sharma, Warrington, Li (bib0014) 2017; 36 He, Leung, Warrington, Shmuilovich, Li (bib0013) 2018; 287 Lin, Dollár, Girshick, He, Hariharan, Belongie (bib0022) 2017 Ren, Jae Lee (bib0030) 2018 (2014). Klinder, Wolz, Lorenz, Franz, Ostermann (bib0017) 2008 Egger, Nimsky, Chen (bib0008) 2017; 5 Jamaludin, Kadir, Zisserman (bib0016) 2017; 41 Zhang, Bhalerao, Hutchinson (bib0033) 2017 Bai, Chen, Tarroni (bib0003) 2019 Duan, Schlemper, Bai, Dawes, Bello, Doumou, De Marvao, O’Regan, Rueckert (bib0007) 2018 (2018). Zhan, Maneesh, Harder, Zhou (bib0032) 2012 Asgari, Orlando, Waldstein (bib0001) 2019 Caruana (bib0004) 1997; 28 Panjabi, Maak, Ivancic, Ito (bib0025) 2006; 31 Lee, Lee, Yeom, Kim, Kim, Chung, Kang (bib0019) 2010; 194 Rajaee, Bae, Kanim, Delamarter (bib0028) 2012; 37 Yang (10.1016/j.neucom.2020.01.112_bib0031) 2018 Panjabi (10.1016/j.neucom.2020.01.112_bib0025) 2006; 31 He (10.1016/j.neucom.2020.01.112_bib0014) 2017; 36 Rajaee (10.1016/j.neucom.2020.01.112_bib0028) 2012; 37 Zhan (10.1016/j.neucom.2020.01.112_bib0032) 2012 Jamaludin (10.1016/j.neucom.2020.01.112_bib0016) 2017; 41 Klinder (10.1016/j.neucom.2020.01.112_bib0017) 2008 Asgari (10.1016/j.neucom.2020.01.112_bib0001) 2019 Li (10.1016/j.neucom.2020.01.112_bib0020) 2017 Caruana (10.1016/j.neucom.2020.01.112_bib0004) 1997; 28 Egger (10.1016/j.neucom.2020.01.112_sbref0005) 2017; 5 Corso (10.1016/j.neucom.2020.01.112_bib0005) 2008 Lin (10.1016/j.neucom.2020.01.112_bib0022) 2017 Bai (10.1016/j.neucom.2020.01.112_bib0003) 2019 Han (10.1016/j.neucom.2020.01.112_bib0011) 2018; 50 Ren (10.1016/j.neucom.2020.01.112_bib0030) 2018 10.1016/j.neucom.2020.01.112_bib0002 10.1016/j.neucom.2020.01.112_bib0024 Zhang (10.1016/j.neucom.2020.01.112_bib0033) 2017 Lee (10.1016/j.neucom.2020.01.112_bib0019) 2010; 194 10.1016/j.neucom.2020.01.112_bib0027 Pinheiro (10.1016/j.neucom.2020.01.112_bib0026) 2015 Liao (10.1016/j.neucom.2020.01.112_bib0021) 2018; 37 Kokkinos (10.1016/j.neucom.2020.01.112_bib0018) 2017; 2 Dai (10.1016/j.neucom.2020.01.112_bib0006) 2016 Huang (10.1016/j.neucom.2020.01.112_bib0015) 2017; 1 Ghosh (10.1016/j.neucom.2020.01.112_bib0009) 2012 Han (10.1016/j.neucom.2020.01.112_bib0010) 2018 He (10.1016/j.neucom.2020.01.112_bib0013) 2018; 287 Ren (10.1016/j.neucom.2020.01.112_bib0029) 2015 Duan (10.1016/j.neucom.2020.01.112_bib0007) 2018 He (10.1016/j.neucom.2020.01.112_bib0012) 2017 Long (10.1016/j.neucom.2020.01.112_bib0023) 2015 |
References_xml | – start-page: 595 year: 2018 end-page: 603 ident: bib0007 article-title: Deep nested level sets: Fully automated segmentation of cardiac mr images in patients with pulmonary hypertension publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 2961 year: 2017 end-page: 2969 ident: bib0012 article-title: Mask R-CNN publication-title: Proceedings of the IEEE International Conference on Computer Vision – start-page: 3431 year: 2015 end-page: 3440 ident: bib0023 article-title: Fully convolutional networks for semantic segmentation publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – reference: (2018). – reference: (2014). – volume: 287 start-page: 185 year: 2018 end-page: 195 ident: bib0013 article-title: Automated neural foraminal stenosis grading via task-aware structural representation learning publication-title: Neurocomputing – volume: 194 start-page: 1095 year: 2010 end-page: 1098 ident: bib0019 article-title: A practical MRI grading system for lumbar foraminal stenosis publication-title: Am. J. Roentgenol. – volume: 41 start-page: 63 year: 2017 end-page: 73 ident: bib0016 article-title: Spinenet: Automated classification and evidence visualization in spinal Mris publication-title: Med. Image Anal. – volume: 50 start-page: 23 year: 2018 end-page: 35 ident: bib0011 article-title: Spine-Gan: Semantic segmentation of multiple spinal structures publication-title: Med. Image Anal. – start-page: 227 year: 2008 end-page: 234 ident: bib0017 article-title: Spine segmentation using articulated shape models publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention – reference: M. Pisov, G. Makarchuk, V. Kostjuchenko, A. Dalechina, A. Golanov, M. Belyaev, Brain tumor image retrieval via multitask learning, arXiv: – start-page: 91 year: 2015 end-page: 99 ident: bib0029 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks publication-title: Proceedings of the Advances in neural information processing systems – volume: 2 start-page: 8 year: 2017 ident: bib0018 article-title: Ubernet: Training a universal convolutional neural network for low-, mid-, and high-level vision using diverse datasets and limited memory. publication-title: Proceedings of the CVPR – volume: 1 start-page: 3 year: 2017 ident: bib0015 article-title: Densely connected convolutional networks. publication-title: Proceedings of the CVPR – start-page: 3150 year: 2016 end-page: 3158 ident: bib0006 article-title: Instance-aware semantic segmentation via multi-task network cascades publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 202 year: 2008 end-page: 210 ident: bib0005 article-title: Lumbar disc localization and labeling with a probabilistic model on both pixel and object features publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 2359 year: 2017 end-page: 2367 ident: bib0020 article-title: Fully convolutional instance-aware semantic segmentation publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 2117 year: 2017 end-page: 2125 ident: bib0022 article-title: Feature pyramid networks for object detection publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 36 start-page: 22 year: 2017 end-page: 40 ident: bib0014 article-title: Unsupervised boundary delineation of spinal neural foramina using a multi-feature and adaptive spectral segmentation publication-title: Med. Image Anal. – start-page: 192 year: 2019 end-page: 200 ident: bib0001 article-title: Multiclass segmentation as multitask learning for drusen segmentation. Retinal Optical Coherence tomography publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 28 start-page: 41 year: 1997 end-page: 75 ident: bib0004 article-title: Multitask learning publication-title: Mach. Learn. – start-page: 541 year: 2019 end-page: 549 ident: bib0003 article-title: Self-Supervised learning for cardiac MR image segmentation by anatomical position prediction publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – reference: D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by jointly learning to align and translate, arXiv: – start-page: 141 year: 2012 end-page: 148 ident: bib0032 article-title: Robust MR spine detection using hierarchical learning and local articulated model publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 3684 year: 2018 end-page: 3692 ident: bib0031 article-title: Denseaspp for semantic segmentation in street scenes publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 114 year: 2012 end-page: 117 ident: bib0009 article-title: A new approach to automatic disc localization in clinical lumbar mri: combining machine learning with heuristics publication-title: Proceedings of the 9th IEEE International Symposium on Biomedical Imaging (ISBI) – volume: 37 start-page: 1266 year: 2018 end-page: 1275 ident: bib0021 article-title: Joint vertebrae identification and localization in spinal ct images by combining short-and long-range contextual information publication-title: IEEE Trans. Med. Imaging – start-page: 1990 year: 2015 end-page: 1998 ident: bib0026 article-title: Learning to segment object candidates publication-title: Proceedings of the Advances in Neural Information Processing Systems – reference: J.-T. Lu, S. Pedemonte, B. Bizzo, S. Doyle, K.P. Andriole, M.H. Michalski, R.G. Gonzalez, S.R. Pomerantz, Deepspine: Automated lumbar vertebral segmentation, disc-level designation, and spinal stenosis grading using deep learning, arXiv: – start-page: 1 year: 2018 end-page: 13 ident: bib0010 article-title: Automated pathogenesis-based diagnosis of lumbar neural foraminal stenosis via deep multiscale multitask learning publication-title: Neuroinformatics – volume: 5 year: 2017 ident: bib0008 article-title: Vertebral body segmentation with Growcut: Initial experience, workflow and practical application publication-title: SAGE Open Medicine – start-page: 762 year: 2018 end-page: 771 ident: bib0030 article-title: Cross-domain self-supervised multi-task feature learning using synthetic imagery publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 210 year: 2017 end-page: 222 ident: bib0033 article-title: Weakly-supervised evidence pinpointing and description publication-title: Proceedings of the International Conference on Information Processing in Medical Imaging – volume: 31 start-page: E128 year: 2006 end-page: E134 ident: bib0025 article-title: Dynamic intervertebral foramen narrowing during simulated rear impact publication-title: Spine – volume: 37 start-page: 67 year: 2012 end-page: 76 ident: bib0028 article-title: Spinal fusion in the united states: analysis of trends from 1998 to 2008 publication-title: Spine – volume: 37 start-page: 67 issue: 1 year: 2012 ident: 10.1016/j.neucom.2020.01.112_bib0028 article-title: Spinal fusion in the united states: analysis of trends from 1998 to 2008 publication-title: Spine doi: 10.1097/BRS.0b013e31820cccfb – volume: 5 year: 2017 ident: 10.1016/j.neucom.2020.01.112_sbref0005 article-title: Vertebral body segmentation with Growcut: Initial experience, workflow and practical application publication-title: SAGE Open Medicine doi: 10.1177/2050312117740984 – start-page: 3150 year: 2016 ident: 10.1016/j.neucom.2020.01.112_bib0006 article-title: Instance-aware semantic segmentation via multi-task network cascades – volume: 36 start-page: 22 year: 2017 ident: 10.1016/j.neucom.2020.01.112_bib0014 article-title: Unsupervised boundary delineation of spinal neural foramina using a multi-feature and adaptive spectral segmentation publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.10.009 – start-page: 762 year: 2018 ident: 10.1016/j.neucom.2020.01.112_bib0030 article-title: Cross-domain self-supervised multi-task feature learning using synthetic imagery – start-page: 541 year: 2019 ident: 10.1016/j.neucom.2020.01.112_bib0003 article-title: Self-Supervised learning for cardiac MR image segmentation by anatomical position prediction – ident: 10.1016/j.neucom.2020.01.112_bib0002 – start-page: 3684 year: 2018 ident: 10.1016/j.neucom.2020.01.112_bib0031 article-title: Denseaspp for semantic segmentation in street scenes – volume: 50 start-page: 23 year: 2018 ident: 10.1016/j.neucom.2020.01.112_bib0011 article-title: Spine-Gan: Semantic segmentation of multiple spinal structures publication-title: Med. Image Anal. doi: 10.1016/j.media.2018.08.005 – ident: 10.1016/j.neucom.2020.01.112_bib0027 – start-page: 2359 year: 2017 ident: 10.1016/j.neucom.2020.01.112_bib0020 article-title: Fully convolutional instance-aware semantic segmentation – start-page: 210 year: 2017 ident: 10.1016/j.neucom.2020.01.112_bib0033 article-title: Weakly-supervised evidence pinpointing and description – start-page: 2117 year: 2017 ident: 10.1016/j.neucom.2020.01.112_bib0022 article-title: Feature pyramid networks for object detection – volume: 31 start-page: E128 issue: 5 year: 2006 ident: 10.1016/j.neucom.2020.01.112_bib0025 article-title: Dynamic intervertebral foramen narrowing during simulated rear impact publication-title: Spine doi: 10.1097/01.brs.0000201243.81745.ba – start-page: 227 year: 2008 ident: 10.1016/j.neucom.2020.01.112_bib0017 article-title: Spine segmentation using articulated shape models – start-page: 1 year: 2018 ident: 10.1016/j.neucom.2020.01.112_bib0010 article-title: Automated pathogenesis-based diagnosis of lumbar neural foraminal stenosis via deep multiscale multitask learning publication-title: Neuroinformatics – start-page: 3431 year: 2015 ident: 10.1016/j.neucom.2020.01.112_bib0023 article-title: Fully convolutional networks for semantic segmentation – start-page: 114 year: 2012 ident: 10.1016/j.neucom.2020.01.112_bib0009 article-title: A new approach to automatic disc localization in clinical lumbar mri: combining machine learning with heuristics – start-page: 1990 year: 2015 ident: 10.1016/j.neucom.2020.01.112_bib0026 article-title: Learning to segment object candidates – volume: 28 start-page: 41 issue: 1 year: 1997 ident: 10.1016/j.neucom.2020.01.112_bib0004 article-title: Multitask learning publication-title: Mach. Learn. doi: 10.1023/A:1007379606734 – volume: 287 start-page: 185 year: 2018 ident: 10.1016/j.neucom.2020.01.112_bib0013 article-title: Automated neural foraminal stenosis grading via task-aware structural representation learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.01.088 – start-page: 202 year: 2008 ident: 10.1016/j.neucom.2020.01.112_bib0005 article-title: Lumbar disc localization and labeling with a probabilistic model on both pixel and object features – start-page: 141 year: 2012 ident: 10.1016/j.neucom.2020.01.112_bib0032 article-title: Robust MR spine detection using hierarchical learning and local articulated model – volume: 37 start-page: 1266 issue: 5 year: 2018 ident: 10.1016/j.neucom.2020.01.112_bib0021 article-title: Joint vertebrae identification and localization in spinal ct images by combining short-and long-range contextual information publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2798293 – ident: 10.1016/j.neucom.2020.01.112_bib0024 – start-page: 192 year: 2019 ident: 10.1016/j.neucom.2020.01.112_bib0001 article-title: Multiclass segmentation as multitask learning for drusen segmentation. Retinal Optical Coherence tomography – volume: 194 start-page: 1095 issue: 4 year: 2010 ident: 10.1016/j.neucom.2020.01.112_bib0019 article-title: A practical MRI grading system for lumbar foraminal stenosis publication-title: Am. J. Roentgenol. doi: 10.2214/AJR.09.2772 – start-page: 91 year: 2015 ident: 10.1016/j.neucom.2020.01.112_bib0029 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks – start-page: 595 year: 2018 ident: 10.1016/j.neucom.2020.01.112_bib0007 article-title: Deep nested level sets: Fully automated segmentation of cardiac mr images in patients with pulmonary hypertension – volume: 1 start-page: 3 year: 2017 ident: 10.1016/j.neucom.2020.01.112_bib0015 article-title: Densely connected convolutional networks. – volume: 41 start-page: 63 year: 2017 ident: 10.1016/j.neucom.2020.01.112_bib0016 article-title: Spinenet: Automated classification and evidence visualization in spinal Mris publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.07.002 – start-page: 2961 year: 2017 ident: 10.1016/j.neucom.2020.01.112_bib0012 article-title: Mask R-CNN – volume: 2 start-page: 8 year: 2017 ident: 10.1016/j.neucom.2020.01.112_bib0018 article-title: Ubernet: Training a universal convolutional neural network for low-, mid-, and high-level vision using diverse datasets and limited memory. |
SSID | ssj0017129 |
Score | 2.3878996 |
Snippet | •Multiple structures of the spine are directly interdependent and influential, and the multi-tasks under a deep convolutional neural network framework can also... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 307 |
SubjectTerms | Densely aggregation Global optimization Level-set Medical image Multi-structure Progressive multi-task |
Title | MMCL-Net: Spinal disease diagnosis in global mode using progressive multi-task joint learning |
URI | https://dx.doi.org/10.1016/j.neucom.2020.01.112 |
Volume | 399 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRpSXPLCaxk5sJ2xVRVUe7VIqdUGRk56rFJRWNGXkt2MnTgUSAokpD_mk6HK5R_zddwhdCQGpplwREMoUKJEvSARMkqkvpxByRWViG5wHQ9EfB_cTPmmgbt0LY2GVzvdXPr301u5O22mzvcyy9siLmKmiKGPGTv2K8TMIpLXy648NzINKyiq-PcaJXV23z5UYrxzWFjPCTM5kyTspZT-Hpy8hp7eHdlyuiDvV4-yjBuQHaLeew4DdZ3mIngeD7iMZQnGDR0s75Qq7bRdzLIF02QpnOa64P7CdfYMt3H2GS3CWxcG-Ay6RhaRQqxc8X2R5gd08idkRGvdun7p94sYmkNTk_wXxw9QHT8sw0J6l70oDqlITmDlLIpFMA61AC6nSNNJacOUrAG0imTK1TaiYOT1GzXyRwwnCzO4zMjoVWtEANI_CxCRYEoD7SWKSrxbya23FqeMUt6MtXuMaPDaPKx3HVsexR03FwVqIbKSWFafGH-tl_SLib7YRG7f_q-TpvyXP0La9sn9xGT9HzeJtDRcm_SiSy9K-LtFW5-6hP_wEsIja5Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na8IwFA-ih-2y7zH3mcOuQZM2abubyIZO60UFL6Ok9UXqRpVZ9_cvaVPZYGywU0vbB-U1fR95v_d7CN0LAYmiXBIQUicogSNIAMwjc8ebg88l9WLT4ByORG_qPs_4rIa6VS-MgVVa21_a9MJa2ystq83WOk1b43bAdBZFGdPr1CkYPxuGnYrXUaPTH_RGu2KCR1lJucc4MQJVB10B88pga2AjTIdNhr-TUvazh_ridZ6O0IENF3GnfKNjVIPsBB1Woxiw_TNP0UsYdodkBPkDHq_NoCtsKy_6WGDp0g1OM1zSf2Az_gYbxPsCF_gsA4X9AFyAC0kuN694uUqzHNuREoszNH16nHR7xE5OIIlOAXLi-IkDbeX5rmobBq_EpTLRvpmzOBDx3FUSlPBkkgRKCS4dCaC0M5M6vfEl06fnqJ6tMrhAmJlSI6NzoSR1QfHAj3WM5QFwJ451_NVETqWtKLG04ma6xVtU4ceWUanjyOg4alOddLAmIjupdUmr8cfzXvUhom_LI9KW_1fJy39L3qG93iQcRsP-aHCF9s0ds6nL-DWq5-9buNHRSB7f2tX2CTqi3ZY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MMCL-Net%3A+Spinal+disease+diagnosis+in+global+mode+using+progressive+multi-task+joint+learning&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Hong%2C+Yanfei&rft.au=Wei%2C+Benzheng&rft.au=Han%2C+Zhongyi&rft.au=Li%2C+Xiang&rft.date=2020-07-25&rft.issn=0925-2312&rft.volume=399&rft.spage=307&rft.epage=316&rft_id=info:doi/10.1016%2Fj.neucom.2020.01.112&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2020_01_112 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |