MMCL-Net: Spinal disease diagnosis in global mode using progressive multi-task joint learning

•Multiple structures of the spine are directly interdependent and influential, and the multi-tasks under a deep convolutional neural network framework can also influence each other.•Densely dilate ResNet module combat the challenge of size discrepancy and extract significant radiological features.•I...

Full description

Saved in:
Bibliographic Details
Published inNeurocomputing (Amsterdam) Vol. 399; pp. 307 - 316
Main Authors Hong, Yanfei, Wei, Benzheng, Han, Zhongyi, Li, Xiang, Zheng, Yuanjie, Li, Shuo
Format Journal Article
LanguageEnglish
Published Elsevier B.V 25.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Multiple structures of the spine are directly interdependent and influential, and the multi-tasks under a deep convolutional neural network framework can also influence each other.•Densely dilate ResNet module combat the challenge of size discrepancy and extract significant radiological features.•Integrate the variational level-set function can enrich the local morphological features of the deep learning model.•Applied potential features practical can assist other tasks. Simultaneous detection, segmentation, and classification of multiple spinal structures on MRI is crucial for the early and pathogenesis-based diagnosis of multiple spine diseases in the clinical setting. It is more assistance for radiologists reflections on the disease based on the pathogenesis when the lesion area and its adjacent structures are detected. Obviously, the multiple structures of the spine are directly interdependent and influential, and the multi-tasks under a deep convolutional neural network framework can also influence each other. Multi-task joint optimization in the spinal global mode is a direct outlet to seek the dynamic balance of the above potential correlation. In this paper, we propose a novel end-to-end Multi-task Multi-structure Correlation Learning Network (MMCL-Net) for the detection, segmentation, and classification (normal, slight, marked, and severe) of three types of spine structure: disc, vertebra, and neural foramen simultaneously. And the model is locally optimized to achieve a more stable dynamic equilibrium state. Extensive experiments on T1/T2-weighted MR scans from 200 subjects demonstrate that MMCL-Net achieves high performance with mAP of 0.9187, the classification accuracy of 90.67%, and dice coefficient of 90.60%. The experimental results show that the performance of our method is comparable to that of the state-of-the-art methods.
AbstractList •Multiple structures of the spine are directly interdependent and influential, and the multi-tasks under a deep convolutional neural network framework can also influence each other.•Densely dilate ResNet module combat the challenge of size discrepancy and extract significant radiological features.•Integrate the variational level-set function can enrich the local morphological features of the deep learning model.•Applied potential features practical can assist other tasks. Simultaneous detection, segmentation, and classification of multiple spinal structures on MRI is crucial for the early and pathogenesis-based diagnosis of multiple spine diseases in the clinical setting. It is more assistance for radiologists reflections on the disease based on the pathogenesis when the lesion area and its adjacent structures are detected. Obviously, the multiple structures of the spine are directly interdependent and influential, and the multi-tasks under a deep convolutional neural network framework can also influence each other. Multi-task joint optimization in the spinal global mode is a direct outlet to seek the dynamic balance of the above potential correlation. In this paper, we propose a novel end-to-end Multi-task Multi-structure Correlation Learning Network (MMCL-Net) for the detection, segmentation, and classification (normal, slight, marked, and severe) of three types of spine structure: disc, vertebra, and neural foramen simultaneously. And the model is locally optimized to achieve a more stable dynamic equilibrium state. Extensive experiments on T1/T2-weighted MR scans from 200 subjects demonstrate that MMCL-Net achieves high performance with mAP of 0.9187, the classification accuracy of 90.67%, and dice coefficient of 90.60%. The experimental results show that the performance of our method is comparable to that of the state-of-the-art methods.
Author Li, Xiang
Hong, Yanfei
Wei, Benzheng
Zheng, Yuanjie
Li, Shuo
Han, Zhongyi
Author_xml – sequence: 1
  givenname: Yanfei
  surname: Hong
  fullname: Hong, Yanfei
  organization: College of Science and Technology, Shandong University of Traditional Chinese Medicine, Jinan, SD, China
– sequence: 2
  givenname: Benzheng
  orcidid: 0000-0001-9640-4947
  surname: Wei
  fullname: Wei, Benzheng
  email: wbz99@sina.com
  organization: Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao, SD, China
– sequence: 3
  givenname: Zhongyi
  surname: Han
  fullname: Han, Zhongyi
  organization: School of Software, Shandong University, Jinan, SD, China
– sequence: 4
  givenname: Xiang
  surname: Li
  fullname: Li, Xiang
  organization: College of Science and Technology, Shandong University of Traditional Chinese Medicine, Jinan, SD, China
– sequence: 5
  givenname: Yuanjie
  surname: Zheng
  fullname: Zheng, Yuanjie
  organization: School of Information Science and Engineering, Shandong Normal University, Jinan, SD, China
– sequence: 6
  givenname: Shuo
  orcidid: 0000-0002-5184-3230
  surname: Li
  fullname: Li, Shuo
  organization: Digital Image Group (DIG), London, ON, Canada
BookMark eNqFkM1KAzEURoNUsFbfwEVeYMYkM53JdCFI8Q9aXahLCWnmZsg4k5QkLfj2ptSVC119F-49H9xzjibWWUDoipKcElpd97mFnXJjzggjOaE5pewETSmvWcYZryZoSho2z1hB2Rk6D6EnhNaUNVP0sV4vV9kzxAV-3RorB9yaADJAStlZF0zAxuJucJu0G10LeBeM7fDWu85DCGYPeNwN0WRRhk_cO2MjHkB6m64u0KmWQ4DLn5yh9_u7t-Vjtnp5eFrerjJVkCpmBVcFEF3zUhOePlIllargdM42TbVpSy1BV7VUqtG6mstCAmhaEMkrxiVL4wwtjr3KuxA8aKFMlNE4G700g6BEHESJXhxFiYMoQahIohJc_oK33ozSf_2H3RwxSI_tDXgRlAGroDUeVBStM38XfANfN4hi
CitedBy_id crossref_primary_10_1155_2022_2384830
crossref_primary_10_1016_j_media_2020_101872
crossref_primary_10_1109_TMI_2024_3385650
crossref_primary_10_15407_jai2024_04_256
crossref_primary_10_1016_j_engappai_2022_105451
crossref_primary_10_1016_j_neucom_2022_12_017
crossref_primary_10_1016_j_compbiomed_2023_106947
crossref_primary_10_1016_j_neucom_2021_10_025
crossref_primary_10_1016_j_cmpb_2020_105893
crossref_primary_10_1016_j_compbiomed_2021_105157
crossref_primary_10_1109_TMI_2023_3247543
crossref_primary_10_1016_j_media_2021_102170
crossref_primary_10_1007_s00586_022_07147_5
crossref_primary_10_1016_j_compbiomed_2022_106496
crossref_primary_10_3390_jpm13121703
crossref_primary_10_3390_s21248410
crossref_primary_10_1007_s11063_021_10457_2
crossref_primary_10_1109_ACCESS_2021_3051763
Cites_doi 10.1097/BRS.0b013e31820cccfb
10.1177/2050312117740984
10.1016/j.media.2016.10.009
10.1016/j.media.2018.08.005
10.1097/01.brs.0000201243.81745.ba
10.1023/A:1007379606734
10.1016/j.neucom.2018.01.088
10.1109/TMI.2018.2798293
10.2214/AJR.09.2772
10.1016/j.media.2017.07.002
ContentType Journal Article
Copyright 2020
Copyright_xml – notice: 2020
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2020.01.112
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 316
ExternalDocumentID 10_1016_j_neucom_2020_01_112
S0925231220303003
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SEW
SSH
WUQ
XPP
ID FETCH-LOGICAL-c306t-38c3e0f784f08101c41ac38152b96bd4faef67acc9ff65a3aeef130a8628a2f13
IEDL.DBID .~1
ISSN 0925-2312
IngestDate Thu Apr 24 23:11:11 EDT 2025
Tue Jul 01 01:46:48 EDT 2025
Fri Feb 23 02:47:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords 99-00
Level-set
Global optimization
00-01
Medical image
Progressive multi-task
Multi-structure
Densely aggregation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-38c3e0f784f08101c41ac38152b96bd4faef67acc9ff65a3aeef130a8628a2f13
ORCID 0000-0002-5184-3230
0000-0001-9640-4947
PageCount 10
ParticipantIDs crossref_citationtrail_10_1016_j_neucom_2020_01_112
crossref_primary_10_1016_j_neucom_2020_01_112
elsevier_sciencedirect_doi_10_1016_j_neucom_2020_01_112
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-25
PublicationDateYYYYMMDD 2020-07-25
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-25
  day: 25
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References M. Pisov, G. Makarchuk, V. Kostjuchenko, A. Dalechina, A. Golanov, M. Belyaev, Brain tumor image retrieval via multitask learning, arXiv
Pinheiro, Collobert, Dollár (bib0026) 2015
Li, Qi, Dai, Ji, Wei (bib0020) 2017
D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by jointly learning to align and translate, arXiv
Dai, He, Sun (bib0006) 2016
J.-T. Lu, S. Pedemonte, B. Bizzo, S. Doyle, K.P. Andriole, M.H. Michalski, R.G. Gonzalez, S.R. Pomerantz, Deepspine: Automated lumbar vertebral segmentation, disc-level designation, and spinal stenosis grading using deep learning, arXiv
Kokkinos (bib0018) 2017; 2
Yang, Yu, Zhang, Li, Yang (bib0031) 2018
Ghosh, Malgireddy, Chaudhary, Dhillon (bib0009) 2012
Corso, RajaS, Chaudhary (bib0005) 2008
He, Gkioxari, Dollár, Girshick (bib0012) 2017
Long, Shelhamer, Darrell (bib0023) 2015
Liao, Mesfin, Luo (bib0021) 2018; 37
Ren, He, Girshick, Sun (bib0029) 2015
Han, Wei, Leung, Nachum, Laidley, Li (bib0010) 2018
Han, Wei, Mercado, Leung, Li (bib0011) 2018; 50
Huang, Liu, Van Der Maaten, Weinberger (bib0015) 2017; 1
He, Zhang, Landis, Sharma, Warrington, Li (bib0014) 2017; 36
He, Leung, Warrington, Shmuilovich, Li (bib0013) 2018; 287
Lin, Dollár, Girshick, He, Hariharan, Belongie (bib0022) 2017
Ren, Jae Lee (bib0030) 2018
(2014).
Klinder, Wolz, Lorenz, Franz, Ostermann (bib0017) 2008
Egger, Nimsky, Chen (bib0008) 2017; 5
Jamaludin, Kadir, Zisserman (bib0016) 2017; 41
Zhang, Bhalerao, Hutchinson (bib0033) 2017
Bai, Chen, Tarroni (bib0003) 2019
Duan, Schlemper, Bai, Dawes, Bello, Doumou, De Marvao, O’Regan, Rueckert (bib0007) 2018
(2018).
Zhan, Maneesh, Harder, Zhou (bib0032) 2012
Asgari, Orlando, Waldstein (bib0001) 2019
Caruana (bib0004) 1997; 28
Panjabi, Maak, Ivancic, Ito (bib0025) 2006; 31
Lee, Lee, Yeom, Kim, Kim, Chung, Kang (bib0019) 2010; 194
Rajaee, Bae, Kanim, Delamarter (bib0028) 2012; 37
Yang (10.1016/j.neucom.2020.01.112_bib0031) 2018
Panjabi (10.1016/j.neucom.2020.01.112_bib0025) 2006; 31
He (10.1016/j.neucom.2020.01.112_bib0014) 2017; 36
Rajaee (10.1016/j.neucom.2020.01.112_bib0028) 2012; 37
Zhan (10.1016/j.neucom.2020.01.112_bib0032) 2012
Jamaludin (10.1016/j.neucom.2020.01.112_bib0016) 2017; 41
Klinder (10.1016/j.neucom.2020.01.112_bib0017) 2008
Asgari (10.1016/j.neucom.2020.01.112_bib0001) 2019
Li (10.1016/j.neucom.2020.01.112_bib0020) 2017
Caruana (10.1016/j.neucom.2020.01.112_bib0004) 1997; 28
Egger (10.1016/j.neucom.2020.01.112_sbref0005) 2017; 5
Corso (10.1016/j.neucom.2020.01.112_bib0005) 2008
Lin (10.1016/j.neucom.2020.01.112_bib0022) 2017
Bai (10.1016/j.neucom.2020.01.112_bib0003) 2019
Han (10.1016/j.neucom.2020.01.112_bib0011) 2018; 50
Ren (10.1016/j.neucom.2020.01.112_bib0030) 2018
10.1016/j.neucom.2020.01.112_bib0002
10.1016/j.neucom.2020.01.112_bib0024
Zhang (10.1016/j.neucom.2020.01.112_bib0033) 2017
Lee (10.1016/j.neucom.2020.01.112_bib0019) 2010; 194
10.1016/j.neucom.2020.01.112_bib0027
Pinheiro (10.1016/j.neucom.2020.01.112_bib0026) 2015
Liao (10.1016/j.neucom.2020.01.112_bib0021) 2018; 37
Kokkinos (10.1016/j.neucom.2020.01.112_bib0018) 2017; 2
Dai (10.1016/j.neucom.2020.01.112_bib0006) 2016
Huang (10.1016/j.neucom.2020.01.112_bib0015) 2017; 1
Ghosh (10.1016/j.neucom.2020.01.112_bib0009) 2012
Han (10.1016/j.neucom.2020.01.112_bib0010) 2018
He (10.1016/j.neucom.2020.01.112_bib0013) 2018; 287
Ren (10.1016/j.neucom.2020.01.112_bib0029) 2015
Duan (10.1016/j.neucom.2020.01.112_bib0007) 2018
He (10.1016/j.neucom.2020.01.112_bib0012) 2017
Long (10.1016/j.neucom.2020.01.112_bib0023) 2015
References_xml – start-page: 595
  year: 2018
  end-page: 603
  ident: bib0007
  article-title: Deep nested level sets: Fully automated segmentation of cardiac mr images in patients with pulmonary hypertension
  publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 2961
  year: 2017
  end-page: 2969
  ident: bib0012
  article-title: Mask R-CNN
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– start-page: 3431
  year: 2015
  end-page: 3440
  ident: bib0023
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– reference: (2018).
– reference: (2014).
– volume: 287
  start-page: 185
  year: 2018
  end-page: 195
  ident: bib0013
  article-title: Automated neural foraminal stenosis grading via task-aware structural representation learning
  publication-title: Neurocomputing
– volume: 194
  start-page: 1095
  year: 2010
  end-page: 1098
  ident: bib0019
  article-title: A practical MRI grading system for lumbar foraminal stenosis
  publication-title: Am. J. Roentgenol.
– volume: 41
  start-page: 63
  year: 2017
  end-page: 73
  ident: bib0016
  article-title: Spinenet: Automated classification and evidence visualization in spinal Mris
  publication-title: Med. Image Anal.
– volume: 50
  start-page: 23
  year: 2018
  end-page: 35
  ident: bib0011
  article-title: Spine-Gan: Semantic segmentation of multiple spinal structures
  publication-title: Med. Image Anal.
– start-page: 227
  year: 2008
  end-page: 234
  ident: bib0017
  article-title: Spine segmentation using articulated shape models
  publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention
– reference: M. Pisov, G. Makarchuk, V. Kostjuchenko, A. Dalechina, A. Golanov, M. Belyaev, Brain tumor image retrieval via multitask learning, arXiv:
– start-page: 91
  year: 2015
  end-page: 99
  ident: bib0029
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: Proceedings of the Advances in neural information processing systems
– volume: 2
  start-page: 8
  year: 2017
  ident: bib0018
  article-title: Ubernet: Training a universal convolutional neural network for low-, mid-, and high-level vision using diverse datasets and limited memory.
  publication-title: Proceedings of the CVPR
– volume: 1
  start-page: 3
  year: 2017
  ident: bib0015
  article-title: Densely connected convolutional networks.
  publication-title: Proceedings of the CVPR
– start-page: 3150
  year: 2016
  end-page: 3158
  ident: bib0006
  article-title: Instance-aware semantic segmentation via multi-task network cascades
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 202
  year: 2008
  end-page: 210
  ident: bib0005
  article-title: Lumbar disc localization and labeling with a probabilistic model on both pixel and object features
  publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 2359
  year: 2017
  end-page: 2367
  ident: bib0020
  article-title: Fully convolutional instance-aware semantic segmentation
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 2117
  year: 2017
  end-page: 2125
  ident: bib0022
  article-title: Feature pyramid networks for object detection
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 36
  start-page: 22
  year: 2017
  end-page: 40
  ident: bib0014
  article-title: Unsupervised boundary delineation of spinal neural foramina using a multi-feature and adaptive spectral segmentation
  publication-title: Med. Image Anal.
– start-page: 192
  year: 2019
  end-page: 200
  ident: bib0001
  article-title: Multiclass segmentation as multitask learning for drusen segmentation. Retinal Optical Coherence tomography
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 28
  start-page: 41
  year: 1997
  end-page: 75
  ident: bib0004
  article-title: Multitask learning
  publication-title: Mach. Learn.
– start-page: 541
  year: 2019
  end-page: 549
  ident: bib0003
  article-title: Self-Supervised learning for cardiac MR image segmentation by anatomical position prediction
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– reference: D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by jointly learning to align and translate, arXiv:
– start-page: 141
  year: 2012
  end-page: 148
  ident: bib0032
  article-title: Robust MR spine detection using hierarchical learning and local articulated model
  publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 3684
  year: 2018
  end-page: 3692
  ident: bib0031
  article-title: Denseaspp for semantic segmentation in street scenes
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 114
  year: 2012
  end-page: 117
  ident: bib0009
  article-title: A new approach to automatic disc localization in clinical lumbar mri: combining machine learning with heuristics
  publication-title: Proceedings of the 9th IEEE International Symposium on Biomedical Imaging (ISBI)
– volume: 37
  start-page: 1266
  year: 2018
  end-page: 1275
  ident: bib0021
  article-title: Joint vertebrae identification and localization in spinal ct images by combining short-and long-range contextual information
  publication-title: IEEE Trans. Med. Imaging
– start-page: 1990
  year: 2015
  end-page: 1998
  ident: bib0026
  article-title: Learning to segment object candidates
  publication-title: Proceedings of the Advances in Neural Information Processing Systems
– reference: J.-T. Lu, S. Pedemonte, B. Bizzo, S. Doyle, K.P. Andriole, M.H. Michalski, R.G. Gonzalez, S.R. Pomerantz, Deepspine: Automated lumbar vertebral segmentation, disc-level designation, and spinal stenosis grading using deep learning, arXiv:
– start-page: 1
  year: 2018
  end-page: 13
  ident: bib0010
  article-title: Automated pathogenesis-based diagnosis of lumbar neural foraminal stenosis via deep multiscale multitask learning
  publication-title: Neuroinformatics
– volume: 5
  year: 2017
  ident: bib0008
  article-title: Vertebral body segmentation with Growcut: Initial experience, workflow and practical application
  publication-title: SAGE Open Medicine
– start-page: 762
  year: 2018
  end-page: 771
  ident: bib0030
  article-title: Cross-domain self-supervised multi-task feature learning using synthetic imagery
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 210
  year: 2017
  end-page: 222
  ident: bib0033
  article-title: Weakly-supervised evidence pinpointing and description
  publication-title: Proceedings of the International Conference on Information Processing in Medical Imaging
– volume: 31
  start-page: E128
  year: 2006
  end-page: E134
  ident: bib0025
  article-title: Dynamic intervertebral foramen narrowing during simulated rear impact
  publication-title: Spine
– volume: 37
  start-page: 67
  year: 2012
  end-page: 76
  ident: bib0028
  article-title: Spinal fusion in the united states: analysis of trends from 1998 to 2008
  publication-title: Spine
– volume: 37
  start-page: 67
  issue: 1
  year: 2012
  ident: 10.1016/j.neucom.2020.01.112_bib0028
  article-title: Spinal fusion in the united states: analysis of trends from 1998 to 2008
  publication-title: Spine
  doi: 10.1097/BRS.0b013e31820cccfb
– volume: 5
  year: 2017
  ident: 10.1016/j.neucom.2020.01.112_sbref0005
  article-title: Vertebral body segmentation with Growcut: Initial experience, workflow and practical application
  publication-title: SAGE Open Medicine
  doi: 10.1177/2050312117740984
– start-page: 3150
  year: 2016
  ident: 10.1016/j.neucom.2020.01.112_bib0006
  article-title: Instance-aware semantic segmentation via multi-task network cascades
– volume: 36
  start-page: 22
  year: 2017
  ident: 10.1016/j.neucom.2020.01.112_bib0014
  article-title: Unsupervised boundary delineation of spinal neural foramina using a multi-feature and adaptive spectral segmentation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.10.009
– start-page: 762
  year: 2018
  ident: 10.1016/j.neucom.2020.01.112_bib0030
  article-title: Cross-domain self-supervised multi-task feature learning using synthetic imagery
– start-page: 541
  year: 2019
  ident: 10.1016/j.neucom.2020.01.112_bib0003
  article-title: Self-Supervised learning for cardiac MR image segmentation by anatomical position prediction
– ident: 10.1016/j.neucom.2020.01.112_bib0002
– start-page: 3684
  year: 2018
  ident: 10.1016/j.neucom.2020.01.112_bib0031
  article-title: Denseaspp for semantic segmentation in street scenes
– volume: 50
  start-page: 23
  year: 2018
  ident: 10.1016/j.neucom.2020.01.112_bib0011
  article-title: Spine-Gan: Semantic segmentation of multiple spinal structures
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2018.08.005
– ident: 10.1016/j.neucom.2020.01.112_bib0027
– start-page: 2359
  year: 2017
  ident: 10.1016/j.neucom.2020.01.112_bib0020
  article-title: Fully convolutional instance-aware semantic segmentation
– start-page: 210
  year: 2017
  ident: 10.1016/j.neucom.2020.01.112_bib0033
  article-title: Weakly-supervised evidence pinpointing and description
– start-page: 2117
  year: 2017
  ident: 10.1016/j.neucom.2020.01.112_bib0022
  article-title: Feature pyramid networks for object detection
– volume: 31
  start-page: E128
  issue: 5
  year: 2006
  ident: 10.1016/j.neucom.2020.01.112_bib0025
  article-title: Dynamic intervertebral foramen narrowing during simulated rear impact
  publication-title: Spine
  doi: 10.1097/01.brs.0000201243.81745.ba
– start-page: 227
  year: 2008
  ident: 10.1016/j.neucom.2020.01.112_bib0017
  article-title: Spine segmentation using articulated shape models
– start-page: 1
  year: 2018
  ident: 10.1016/j.neucom.2020.01.112_bib0010
  article-title: Automated pathogenesis-based diagnosis of lumbar neural foraminal stenosis via deep multiscale multitask learning
  publication-title: Neuroinformatics
– start-page: 3431
  year: 2015
  ident: 10.1016/j.neucom.2020.01.112_bib0023
  article-title: Fully convolutional networks for semantic segmentation
– start-page: 114
  year: 2012
  ident: 10.1016/j.neucom.2020.01.112_bib0009
  article-title: A new approach to automatic disc localization in clinical lumbar mri: combining machine learning with heuristics
– start-page: 1990
  year: 2015
  ident: 10.1016/j.neucom.2020.01.112_bib0026
  article-title: Learning to segment object candidates
– volume: 28
  start-page: 41
  issue: 1
  year: 1997
  ident: 10.1016/j.neucom.2020.01.112_bib0004
  article-title: Multitask learning
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007379606734
– volume: 287
  start-page: 185
  year: 2018
  ident: 10.1016/j.neucom.2020.01.112_bib0013
  article-title: Automated neural foraminal stenosis grading via task-aware structural representation learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.01.088
– start-page: 202
  year: 2008
  ident: 10.1016/j.neucom.2020.01.112_bib0005
  article-title: Lumbar disc localization and labeling with a probabilistic model on both pixel and object features
– start-page: 141
  year: 2012
  ident: 10.1016/j.neucom.2020.01.112_bib0032
  article-title: Robust MR spine detection using hierarchical learning and local articulated model
– volume: 37
  start-page: 1266
  issue: 5
  year: 2018
  ident: 10.1016/j.neucom.2020.01.112_bib0021
  article-title: Joint vertebrae identification and localization in spinal ct images by combining short-and long-range contextual information
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2798293
– ident: 10.1016/j.neucom.2020.01.112_bib0024
– start-page: 192
  year: 2019
  ident: 10.1016/j.neucom.2020.01.112_bib0001
  article-title: Multiclass segmentation as multitask learning for drusen segmentation. Retinal Optical Coherence tomography
– volume: 194
  start-page: 1095
  issue: 4
  year: 2010
  ident: 10.1016/j.neucom.2020.01.112_bib0019
  article-title: A practical MRI grading system for lumbar foraminal stenosis
  publication-title: Am. J. Roentgenol.
  doi: 10.2214/AJR.09.2772
– start-page: 91
  year: 2015
  ident: 10.1016/j.neucom.2020.01.112_bib0029
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
– start-page: 595
  year: 2018
  ident: 10.1016/j.neucom.2020.01.112_bib0007
  article-title: Deep nested level sets: Fully automated segmentation of cardiac mr images in patients with pulmonary hypertension
– volume: 1
  start-page: 3
  year: 2017
  ident: 10.1016/j.neucom.2020.01.112_bib0015
  article-title: Densely connected convolutional networks.
– volume: 41
  start-page: 63
  year: 2017
  ident: 10.1016/j.neucom.2020.01.112_bib0016
  article-title: Spinenet: Automated classification and evidence visualization in spinal Mris
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.07.002
– start-page: 2961
  year: 2017
  ident: 10.1016/j.neucom.2020.01.112_bib0012
  article-title: Mask R-CNN
– volume: 2
  start-page: 8
  year: 2017
  ident: 10.1016/j.neucom.2020.01.112_bib0018
  article-title: Ubernet: Training a universal convolutional neural network for low-, mid-, and high-level vision using diverse datasets and limited memory.
SSID ssj0017129
Score 2.3878996
Snippet •Multiple structures of the spine are directly interdependent and influential, and the multi-tasks under a deep convolutional neural network framework can also...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 307
SubjectTerms Densely aggregation
Global optimization
Level-set
Medical image
Multi-structure
Progressive multi-task
Title MMCL-Net: Spinal disease diagnosis in global mode using progressive multi-task joint learning
URI https://dx.doi.org/10.1016/j.neucom.2020.01.112
Volume 399
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRpSXPLCaxk5sJ2xVRVUe7VIqdUGRk56rFJRWNGXkt2MnTgUSAokpD_mk6HK5R_zddwhdCQGpplwREMoUKJEvSARMkqkvpxByRWViG5wHQ9EfB_cTPmmgbt0LY2GVzvdXPr301u5O22mzvcyy9siLmKmiKGPGTv2K8TMIpLXy648NzINKyiq-PcaJXV23z5UYrxzWFjPCTM5kyTspZT-Hpy8hp7eHdlyuiDvV4-yjBuQHaLeew4DdZ3mIngeD7iMZQnGDR0s75Qq7bRdzLIF02QpnOa64P7CdfYMt3H2GS3CWxcG-Ay6RhaRQqxc8X2R5gd08idkRGvdun7p94sYmkNTk_wXxw9QHT8sw0J6l70oDqlITmDlLIpFMA61AC6nSNNJacOUrAG0imTK1TaiYOT1GzXyRwwnCzO4zMjoVWtEANI_CxCRYEoD7SWKSrxbya23FqeMUt6MtXuMaPDaPKx3HVsexR03FwVqIbKSWFafGH-tl_SLib7YRG7f_q-TpvyXP0La9sn9xGT9HzeJtDRcm_SiSy9K-LtFW5-6hP_wEsIja5Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na8IwFA-ih-2y7zH3mcOuQZM2abubyIZO60UFL6Ok9UXqRpVZ9_cvaVPZYGywU0vbB-U1fR95v_d7CN0LAYmiXBIQUicogSNIAMwjc8ebg88l9WLT4ByORG_qPs_4rIa6VS-MgVVa21_a9MJa2ystq83WOk1b43bAdBZFGdPr1CkYPxuGnYrXUaPTH_RGu2KCR1lJucc4MQJVB10B88pga2AjTIdNhr-TUvazh_ridZ6O0IENF3GnfKNjVIPsBB1Woxiw_TNP0UsYdodkBPkDHq_NoCtsKy_6WGDp0g1OM1zSf2Az_gYbxPsCF_gsA4X9AFyAC0kuN694uUqzHNuREoszNH16nHR7xE5OIIlOAXLi-IkDbeX5rmobBq_EpTLRvpmzOBDx3FUSlPBkkgRKCS4dCaC0M5M6vfEl06fnqJ6tMrhAmJlSI6NzoSR1QfHAj3WM5QFwJ451_NVETqWtKLG04ma6xVtU4ceWUanjyOg4alOddLAmIjupdUmr8cfzXvUhom_LI9KW_1fJy39L3qG93iQcRsP-aHCF9s0ds6nL-DWq5-9buNHRSB7f2tX2CTqi3ZY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MMCL-Net%3A+Spinal+disease+diagnosis+in+global+mode+using+progressive+multi-task+joint+learning&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Hong%2C+Yanfei&rft.au=Wei%2C+Benzheng&rft.au=Han%2C+Zhongyi&rft.au=Li%2C+Xiang&rft.date=2020-07-25&rft.issn=0925-2312&rft.volume=399&rft.spage=307&rft.epage=316&rft_id=info:doi/10.1016%2Fj.neucom.2020.01.112&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2020_01_112
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon