Modification of polypropylene separator with multifunctional layers to achieve highly stable sodium metal anode

The modified PP separators with HCS layer ensure uniform sodium ion flux, while NaF layer reduces the sodium ion diffusion barrier, and their synergistic effects improve the electrochemical performances of SMBs. [Display omitted] Separator modification is an effective approach to suppress dendrite g...

Full description

Saved in:
Bibliographic Details
Published inJournal of energy chemistry Vol. 101; pp. 223 - 232
Main Authors Chishti, Aadil Nabi, Iqbal, Sikandar, Ali, Muhammad, Ali, Moazzam, Aman, Samia, Hussain, Hamid, Yousaf, Muhammad, Jiang, Yinzhu
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The modified PP separators with HCS layer ensure uniform sodium ion flux, while NaF layer reduces the sodium ion diffusion barrier, and their synergistic effects improve the electrochemical performances of SMBs. [Display omitted] Separator modification is an effective approach to suppress dendrite growth to realize high-energy sodium metal batteries (SMBs) in practical applications, however, its success is mainly subject to surface modification. Herein, a separator with multifunctional layers composed of N-doped mesoporous hollow carbon spheres (HCS) as the inner layer and sodium fluoride (NaF) as the outer layer on commercial polypropylene separator (PP) is proposed (PP@HCS-NaF) to achieve stable cycling in SMB. At the molecular level, the inner HCS layer with a high content of pyrrolic-N induces the uniform Na+ flux as a potential Na+ redistributor for homogenous deposition, whereas its hollow mesoporous structure offers nano-porous buffers and ion channels to regulate Na+ ion distribution and uniform deposition. The outer layer (NaF) constructs the NaF-enriched robust solid electrolyte interphase layer, significantly lowering the Na+ ions diffusion barrier. Benefiting from these merits, higher electrochemical performances are achieved with multifunctional double-layered PP@HCS-NaF separators compared with single-layered separators (i.e. PP@HCS or PP@NaF) in SMBs. The Na||Cu half-cell with PP@HCS-NaF offers stable cycling (280 cycles) with a high CE (99.6%), and Na||Na symmetric cells demonstrate extended lifespans for over 6000 h at 1 mA cm−2 with a progressively stable overpotential of 9 mV. Remarkably, in Na||NVP full-cells, the PP@HCS-NaF separator grants a stable capacity of ∼81 mA h g−1 after 3500 cycles at 1 C and an impressive rate capability performance (∼70 mA h g−1 at 15 C).
AbstractList The modified PP separators with HCS layer ensure uniform sodium ion flux, while NaF layer reduces the sodium ion diffusion barrier, and their synergistic effects improve the electrochemical performances of SMBs. [Display omitted] Separator modification is an effective approach to suppress dendrite growth to realize high-energy sodium metal batteries (SMBs) in practical applications, however, its success is mainly subject to surface modification. Herein, a separator with multifunctional layers composed of N-doped mesoporous hollow carbon spheres (HCS) as the inner layer and sodium fluoride (NaF) as the outer layer on commercial polypropylene separator (PP) is proposed (PP@HCS-NaF) to achieve stable cycling in SMB. At the molecular level, the inner HCS layer with a high content of pyrrolic-N induces the uniform Na+ flux as a potential Na+ redistributor for homogenous deposition, whereas its hollow mesoporous structure offers nano-porous buffers and ion channels to regulate Na+ ion distribution and uniform deposition. The outer layer (NaF) constructs the NaF-enriched robust solid electrolyte interphase layer, significantly lowering the Na+ ions diffusion barrier. Benefiting from these merits, higher electrochemical performances are achieved with multifunctional double-layered PP@HCS-NaF separators compared with single-layered separators (i.e. PP@HCS or PP@NaF) in SMBs. The Na||Cu half-cell with PP@HCS-NaF offers stable cycling (280 cycles) with a high CE (99.6%), and Na||Na symmetric cells demonstrate extended lifespans for over 6000 h at 1 mA cm−2 with a progressively stable overpotential of 9 mV. Remarkably, in Na||NVP full-cells, the PP@HCS-NaF separator grants a stable capacity of ∼81 mA h g−1 after 3500 cycles at 1 C and an impressive rate capability performance (∼70 mA h g−1 at 15 C).
Author Ali, Muhammad
Ali, Moazzam
Chishti, Aadil Nabi
Iqbal, Sikandar
Yousaf, Muhammad
Hussain, Hamid
Aman, Samia
Jiang, Yinzhu
Author_xml – sequence: 1
  givenname: Aadil Nabi
  surname: Chishti
  fullname: Chishti, Aadil Nabi
  organization: Future Science Research Institute, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, Zhejiang, China
– sequence: 2
  givenname: Sikandar
  surname: Iqbal
  fullname: Iqbal, Sikandar
  organization: Future Science Research Institute, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, Zhejiang, China
– sequence: 3
  givenname: Muhammad
  surname: Ali
  fullname: Ali, Muhammad
  organization: Future Science Research Institute, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, Zhejiang, China
– sequence: 4
  givenname: Moazzam
  surname: Ali
  fullname: Ali, Moazzam
  organization: Future Science Research Institute, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, Zhejiang, China
– sequence: 5
  givenname: Samia
  surname: Aman
  fullname: Aman, Samia
  organization: Future Science Research Institute, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, Zhejiang, China
– sequence: 6
  givenname: Hamid
  surname: Hussain
  fullname: Hussain, Hamid
  organization: Future Science Research Institute, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, Zhejiang, China
– sequence: 7
  givenname: Muhammad
  surname: Yousaf
  fullname: Yousaf, Muhammad
  email: muhammadyousaf@zju.edu.cn
  organization: Future Science Research Institute, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, Zhejiang, China
– sequence: 8
  givenname: Yinzhu
  surname: Jiang
  fullname: Jiang, Yinzhu
  email: yzjiang@zju.edu.cn
  organization: Future Science Research Institute, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, Zhejiang, China
BookMark eNqFkMtOwzAQRb0oEgX6Byz8Awl2nJiYBRKqeElFbGBtuc6EOHLiyHaL8ve4lBULmM1Io3uuNOcMLUY3AkKXlOSUUH7V5z3oDoa8IEWZE5GToligZUFElZWi4qdoFUJP0oiSFqJaIvfiGtMaraJxI3YtnpydJ--m2cIIOMCkvIrO408TOzzsbDTtbtSHtLLYqhl8wNFhpTsDe8Cd-ejsjENUW5vwVL4b8AAxhdXoGrhAJ62yAVY_-xy9P9y_rZ-yzevj8_puk2lGeMxYzVQN1w0VTOuGalIqXtc6Xbe81oqAppwxTpUSJdSsLVu-LVKkIQ1lFWPsHJXHXu1dCB5aOXkzKD9LSuTBlezl0ZU8uJJEyOQqYTe_MG3it5volbH_wbdHGNJjewNeBm1g1NAYDzrKxpm_C74APKGO1g
CitedBy_id crossref_primary_10_1016_j_compscitech_2025_111152
crossref_primary_10_1039_D4CS00845F
crossref_primary_10_1002_smll_202407682
Cites_doi 10.1002/aenm.201702097
10.1016/0927-0256(96)00008-0
10.1002/jcc.21759
10.1038/s41467-019-09211-z
10.1038/natrevmats.2018.13
10.1016/j.ensm.2021.10.038
10.1016/j.ensm.2019.12.014
10.1002/ange.201916716
10.1002/smsc.202300038
10.1002/ange.201703937
10.1063/1.1329672
10.1002/cssc.202200504
10.1038/s41467-021-26032-1
10.1016/j.ensm.2020.06.040
10.1016/j.chempr.2020.06.036
10.1016/j.est.2023.108132
10.1016/j.jmst.2022.01.003
10.1016/j.nanoen.2019.103903
10.1021/acsami.2c12518
10.1016/j.nanoen.2023.108466
10.1103/PhysRevB.50.17953
10.1103/PhysRevB.59.1758
10.1002/ange.201911267
10.1002/ange.201910202
10.1021/acs.chemrev.7b00115
10.1038/s41560-024-01469-y
10.1016/j.jpowsour.2021.230372
10.1016/j.jcis.2024.05.095
10.1038/s41467-023-40669-0
10.1021/acsami.0c22006
10.1063/1.3382344
10.1039/C7TA01820G
10.1103/PhysRevLett.77.3865
10.1016/j.ensm.2019.06.026
10.1002/ange.201915440
ContentType Journal Article
Copyright 2024 Science Press
Copyright_xml – notice: 2024 Science Press
DBID AAYXX
CITATION
DOI 10.1016/j.jechem.2024.09.022
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 232
ExternalDocumentID 10_1016_j_jechem_2024_09_022
S2095495624006442
GroupedDBID --M
-SB
-S~
.~1
0R~
1~.
2B.
2C0
4.4
457
4G.
5VR
5VS
5XA
5XC
7-5
8P~
92H
92I
AACTN
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXDM
AAXKI
AAXUO
ABJNI
ABMAC
ABNUV
ABXDB
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AFUIB
AGHFR
AGUBO
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANKPU
AXJTR
BELTK
BKOJK
BLXMC
CAJEB
CCEZO
CDRFL
CHBEP
EBS
EFJIC
EJD
ENUVR
FA0
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
KOM
M41
MO0
O-L
O9-
OAUVE
P-8
P-9
PC.
Q--
Q38
RIG
ROL
SDF
SPC
SPCBC
SSG
SSR
SSZ
T5K
TCJ
TGT
U1G
U5L
~G-
AATTM
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-383a8e7d193ccd1c04a688c83ab68ca0ec163361aa94e83f4f6b2a68d0d135333
IEDL.DBID .~1
ISSN 2095-4956
IngestDate Tue Jul 01 03:49:08 EDT 2025
Thu Apr 24 23:10:51 EDT 2025
Sat Feb 22 15:43:04 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Separator modification
Enhanced cyclic stability
Multifunctional layers
NaF-enriched SEI layer
Sodium metal batteries
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-383a8e7d193ccd1c04a688c83ab68ca0ec163361aa94e83f4f6b2a68d0d135333
PageCount 10
ParticipantIDs crossref_primary_10_1016_j_jechem_2024_09_022
crossref_citationtrail_10_1016_j_jechem_2024_09_022
elsevier_sciencedirect_doi_10_1016_j_jechem_2024_09_022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2025
2025-02-00
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: February 2025
PublicationDecade 2020
PublicationTitle Journal of energy chemistry
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Shuai, Lou, Pei, Su, Ye, Zhang, Wang, Xu, Gao, He (b0055) 2022; 14
Wang, Jin, Zhao (b0080) 2021; 17
Blöchl (b0200) 1994; 50
Hou, Wang, Yu, Zhao, Chen, Zhao, Di, Ju, Quan (b0270) 2020; 24
Cheng, Zhang, Zhao, Zhang (b0005) 2017; 117
Wang, Hu, Tang, Zhang, Liu, Yang, Yang, Luo (b0265) 2017; 129
Zhang, Zhang, Liu, Li, Guo, Geng, Tao, Yang (b0075) 2022; 32
Liu, Zhang, You, Yu (b0230) 2018; 14
Zhang, Wang, Peng, Wu (b0065) 2021; 13
Ma, Cui, Yao, Liu, Luo, Shen, Kim (b0010) 2020; 27
Perdew, Burke, Ernzerhof (b0190) 1996; 77
Li, Ye, Zhang, Yan, Shen, Wei, Xie (b0150) 2019; 131
Luo, Cheng, Wu, Zhang, Yang, Rui (b0145) 2021; 509
Qiu, Chen, Zhang, Zhang, Zhang, Lu, Wu, Chen (b0255) 2024
Patrike, Yadav, Shelke, Shelke (b0130) 2022; 15
Wang, Ke, Shen, Zhu, Yuan (b0135) 2022; 7
Zhao, Zhan, Liu, Wang, Li, Xu, Zhou, Wu, Wang (b0170) 2024; 670
Kresse, Joubert (b0195) 1999; 59
Kresse, Furthmüller (b0180) 1996; 6
Wang, He, Yang, Cai, Wang, Lacivita, Kim, Ouyang, Ceder (b0165) 2023; 14
Jin, Zhao, Shen, Pu, Xu, Zhong, Zhang, Li, Zhang (b0275) 2020; 31
Ye, Liao, Zhao, Sun, Zhao, Sun, Wang, Peng (b0095) 2019; 131
Li, Lu, Zheng, Zhao, Li, Jiang, Yang, Li, Qu, Xu (b0110) 2023; 33
Yuan, Wen, Chen, Liu, Dong, Feng, Han, Han, Zhang, Xia (b0140) 2021; 31
Grimme, Antony, Ehrlich, Krieg (b0205) 2010; 132
Lu, Chen, Jia, Chen, Wang, Ai, Yang, Cao (b0050) 2019; 64
Yao, Yang, Liang, Chen, Ding, Li, Liu, Xi, Zhu, Liu (b0280) 2023; 33
Vaalma, Buchholz, Weil, Passerini (b0020) 2018; 3
Liu, Zhang, Cheng, Yu (b0235) 2019; 9
Ma, Liu, Qi, Rong, Shao, Feng, Nie, Hu, Li, Huang (b0070) 2017; 5
Sun, Xiong, Maitra, Langsdorf, Yan, Wang, Janek, Schröder, Wang (b0025) 2020; 32
Xia, Chen, Xu, Yao, Liu, Xu, Rui, Yu (b0045) 2023; 3
Liu, Zheng, Du, Borrás, Wu, Konstantinov, Pang, Chou, Liu, Dou (b0115) 2024; 36
Kresse, Furthmüller (b0185) 1996; 54
Kuang, Wang, Zhu, Xia, Tung, Wu, Chen, Yu (b0220) 2021; 33
Liang, Chen, Liao, Yao, Zhu, Lv, Wang, Chen, Zhu (b0245) 2020; 132
Zhu, Wu, Wang, Wang, Liu, Guo, Liu, Ma (b0090) 2024; 34
Wang, Gao, Liu, Zou, Li, Fernandez, Zhang, Peng (b0285) 2023
He, Bhargav, Su, Lamb, Okasinski, Shin, Manthiram (b0015) 2024; 9
Lee, Lee, Lee, Han, Lim, Ryu, Yoon, Kim, Kim, Lee (b0100) 2022; 34
Xu, Li, Ihsan-Ul-Haq, Mubarak, Liu, Wu, Luo, Kim (b0175) 2022; 44
Liu, Wang, Ling, Zhou, Jiang, Yao, Yang, Shao, Wu, Rui (b0260) 2022; 32
Soni, Bera, Vineeth, Kumar, Kumar (b0155) 2023; 71
Adams, Zheng, Ren, Xu, Zhang (b0250) 2018; 8
Li, Liu, Shi, Liang, Lu, Fu, Wu (b0240) 2019; 10
Chen, Shen, Hou, Zhang, Peng, Zhang (b0085) 2020; 6
Lin, Sun, Kim, Li, Zhang, Sun (b0035) 2023; 112
Zhu, Wang, Liu, Guo, Xu, Huang, Wu, Liu, Dou, Wu (b0060) 2020; 132
Grimme, Ehrlich, Goerigk (b0210) 2011; 32
Henkelman, Uberuaga, Jónsson (b0215) 2000; 113
Chen, Yao, Tang (b0030) 2024; 34
Wang, Gao, Liu, Zou, Li, Fernandez, Zhang, Peng (b0225) 2024; 36
Huang, Wang, Tian, Xu, Ma, Zhang, Zang, Kong, Li, Wang (b0105) 2022; 118
Liu, Liu, Mitlin (b0125) 2020; 10
Lei, Liu, Yang, Zhao, Lai, Chen, Liu, Dou, Wang (b0040) 2023; 33
Wang, Xu, Zhang, Song, Lu, Zhang, Onyianta, Wang, Titirici, Eichhorn (b0120) 2022; 34
Qin, Shi, Huang, Lu, Wen, Xing, Yang, Ye, Yu, Wu (b0160) 2021; 12
Huang (10.1016/j.jechem.2024.09.022_b0105) 2022; 118
Kresse (10.1016/j.jechem.2024.09.022_b0195) 1999; 59
Kuang (10.1016/j.jechem.2024.09.022_b0220) 2021; 33
Wang (10.1016/j.jechem.2024.09.022_b0165) 2023; 14
Zhang (10.1016/j.jechem.2024.09.022_b0065) 2021; 13
Kresse (10.1016/j.jechem.2024.09.022_b0185) 1996; 54
Liu (10.1016/j.jechem.2024.09.022_b0230) 2018; 14
Ma (10.1016/j.jechem.2024.09.022_b0070) 2017; 5
Xia (10.1016/j.jechem.2024.09.022_b0045) 2023; 3
Li (10.1016/j.jechem.2024.09.022_b0240) 2019; 10
Adams (10.1016/j.jechem.2024.09.022_b0250) 2018; 8
Zhu (10.1016/j.jechem.2024.09.022_b0060) 2020; 132
Zhao (10.1016/j.jechem.2024.09.022_b0170) 2024; 670
Ye (10.1016/j.jechem.2024.09.022_b0095) 2019; 131
Li (10.1016/j.jechem.2024.09.022_b0110) 2023; 33
Sun (10.1016/j.jechem.2024.09.022_b0025) 2020; 32
Patrike (10.1016/j.jechem.2024.09.022_b0130) 2022; 15
Jin (10.1016/j.jechem.2024.09.022_b0275) 2020; 31
Liu (10.1016/j.jechem.2024.09.022_b0115) 2024; 36
Lei (10.1016/j.jechem.2024.09.022_b0040) 2023; 33
Yao (10.1016/j.jechem.2024.09.022_b0280) 2023; 33
Qiu (10.1016/j.jechem.2024.09.022_b0255) 2024
Zhang (10.1016/j.jechem.2024.09.022_b0075) 2022; 32
Lu (10.1016/j.jechem.2024.09.022_b0050) 2019; 64
Liu (10.1016/j.jechem.2024.09.022_b0260) 2022; 32
Chen (10.1016/j.jechem.2024.09.022_b0085) 2020; 6
Xu (10.1016/j.jechem.2024.09.022_b0175) 2022; 44
Liang (10.1016/j.jechem.2024.09.022_b0245) 2020; 132
Lin (10.1016/j.jechem.2024.09.022_b0035) 2023; 112
Perdew (10.1016/j.jechem.2024.09.022_b0190) 1996; 77
Li (10.1016/j.jechem.2024.09.022_b0150) 2019; 131
Chen (10.1016/j.jechem.2024.09.022_b0030) 2024; 34
Ma (10.1016/j.jechem.2024.09.022_b0010) 2020; 27
Grimme (10.1016/j.jechem.2024.09.022_b0210) 2011; 32
Zhu (10.1016/j.jechem.2024.09.022_b0090) 2024; 34
Wang (10.1016/j.jechem.2024.09.022_b0080) 2021; 17
Luo (10.1016/j.jechem.2024.09.022_b0145) 2021; 509
Liu (10.1016/j.jechem.2024.09.022_b0125) 2020; 10
Blöchl (10.1016/j.jechem.2024.09.022_b0200) 1994; 50
Liu (10.1016/j.jechem.2024.09.022_b0235) 2019; 9
Grimme (10.1016/j.jechem.2024.09.022_b0205) 2010; 132
Hou (10.1016/j.jechem.2024.09.022_b0270) 2020; 24
Wang (10.1016/j.jechem.2024.09.022_b0120) 2022; 34
Soni (10.1016/j.jechem.2024.09.022_b0155) 2023; 71
Wang (10.1016/j.jechem.2024.09.022_b0285) 2023
Vaalma (10.1016/j.jechem.2024.09.022_b0020) 2018; 3
Yuan (10.1016/j.jechem.2024.09.022_b0140) 2021; 31
Lee (10.1016/j.jechem.2024.09.022_b0100) 2022; 34
Wang (10.1016/j.jechem.2024.09.022_b0225) 2024; 36
Qin (10.1016/j.jechem.2024.09.022_b0160) 2021; 12
Shuai (10.1016/j.jechem.2024.09.022_b0055) 2022; 14
Cheng (10.1016/j.jechem.2024.09.022_b0005) 2017; 117
He (10.1016/j.jechem.2024.09.022_b0015) 2024; 9
Wang (10.1016/j.jechem.2024.09.022_b0265) 2017; 129
Wang (10.1016/j.jechem.2024.09.022_b0135) 2022; 7
Henkelman (10.1016/j.jechem.2024.09.022_b0215) 2000; 113
Kresse (10.1016/j.jechem.2024.09.022_b0180) 1996; 6
References_xml – volume: 3
  year: 2023
  ident: b0045
  publication-title: Small Science
– volume: 10
  year: 2020
  ident: b0125
  publication-title: Adv. Energy Mater.
– volume: 15
  year: 2022
  ident: b0130
  publication-title: ChemSusChem
– volume: 14
  year: 2018
  ident: b0230
  publication-title: Small
– volume: 13
  start-page: 26533
  year: 2021
  end-page: 26541
  ident: b0065
  publication-title: ACS Appl. Mater. Interfaces
– volume: 131
  start-page: 17210
  year: 2019
  end-page: 17216
  ident: b0095
  publication-title: Angew. Chem.
– volume: 44
  start-page: 477
  year: 2022
  end-page: 486
  ident: b0175
  publication-title: Energy Storage Mater.
– volume: 117
  start-page: 10403
  year: 2017
  end-page: 10473
  ident: b0005
  publication-title: Chem. Rev.
– volume: 8
  year: 2018
  ident: b0250
  publication-title: Adv. Energy Mater.
– volume: 34
  year: 2024
  ident: b0090
  publication-title: Adv. Funct. Mater.
– volume: 131
  start-page: 18414
  year: 2019
  end-page: 18419
  ident: b0150
  publication-title: Angew. Chem.
– volume: 670
  start-page: 246
  year: 2024
  end-page: 257
  ident: b0170
  publication-title: J. Colloid Interface Sci.
– volume: 9
  year: 2019
  ident: b0235
  publication-title: Adv. Energy Mater.
– volume: 132
  start-page: 6658
  year: 2020
  end-page: 6662
  ident: b0060
  publication-title: Angew. Chem.
– volume: 32
  year: 2020
  ident: b0025
  publication-title: Adv. Mater.
– volume: 50
  start-page: 17953
  year: 1994
  ident: b0200
  publication-title: Phys. Rev. B
– volume: 129
  start-page: 12083
  year: 2017
  end-page: 12088
  ident: b0265
  publication-title: Angew. Chem.
– volume: 24
  start-page: 588
  year: 2020
  end-page: 593
  ident: b0270
  publication-title: Energy Storage Mater.
– volume: 64
  year: 2019
  ident: b0050
  publication-title: Nano Energy
– volume: 33
  year: 2021
  ident: b0220
  publication-title: Adv. Mater.
– volume: 9
  start-page: 446
  year: 2024
  end-page: 456
  ident: b0015
  publication-title: Nat. Energy
– volume: 17
  year: 2021
  ident: b0080
  publication-title: Small
– volume: 33
  year: 2023
  ident: b0280
  publication-title: Adv. Funct. Mater.
– volume: 34
  year: 2024
  ident: b0030
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 7738
  year: 2017
  end-page: 7743
  ident: b0070
  publication-title: J. Mater. Chem. A
– year: 2024
  ident: b0255
  publication-title: Angew. Chem. Int. Ed.
– volume: 33
  year: 2023
  ident: b0040
  publication-title: Adv. Funct. Mater.
– volume: 113
  start-page: 9901
  year: 2000
  end-page: 9904
  ident: b0215
  publication-title: J. Chem. Phys.
– volume: 14
  start-page: 5210
  year: 2023
  ident: b0165
  publication-title: Nat. Commun.
– volume: 6
  start-page: 15
  year: 1996
  end-page: 50
  ident: b0180
  publication-title: Comput. Mater. Sci.
– volume: 59
  start-page: 1758
  year: 1999
  ident: b0195
  publication-title: Phys. Rev. B
– volume: 132
  year: 2010
  ident: b0205
  publication-title: J. Chem. Phys.
– volume: 33
  year: 2023
  ident: b0110
  publication-title: Adv. Funct. Mater.
– volume: 27
  start-page: 522
  year: 2020
  end-page: 554
  ident: b0010
  publication-title: Energy Storage Mater.
– volume: 54
  start-page: 11169
  year: 1996
  ident: b0185
  publication-title: Phys. B
– volume: 7
  year: 2022
  ident: b0135
  publication-title: Adv. Mater. Technol.
– volume: 112
  year: 2023
  ident: b0035
  publication-title: Nano Energy
– volume: 71
  year: 2023
  ident: b0155
  publication-title: J. Energy Storage
– volume: 34
  year: 2022
  ident: b0120
  publication-title: Adv. Mater.
– volume: 34
  year: 2022
  ident: b0100
  publication-title: Adv. Mater.
– volume: 3
  start-page: 1
  year: 2018
  end-page: 11
  ident: b0020
  publication-title: Nat. Rev. Mater.
– volume: 36
  year: 2024
  ident: b0225
  publication-title: Adv. Mater.
– volume: 509
  year: 2021
  ident: b0145
  publication-title: J. Power Sources
– volume: 14
  start-page: 45382
  year: 2022
  end-page: 45391
  ident: b0055
  publication-title: ACS Appl. Mater. Interfaces
– volume: 31
  start-page: 221
  year: 2020
  end-page: 229
  ident: b0275
  publication-title: Energy Storage Mater.
– year: 2023
  ident: b0285
  publication-title: Adv. Mater.
– volume: 32
  year: 2022
  ident: b0075
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 5786
  year: 2021
  ident: b0160
  publication-title: Nat. Commun.
– volume: 6
  start-page: 2242
  year: 2020
  end-page: 2256
  ident: b0085
  publication-title: Chem
– volume: 36
  year: 2024
  ident: b0115
  publication-title: Adv. Mater.
– volume: 132
  start-page: 6623
  year: 2020
  end-page: 6628
  ident: b0245
  publication-title: Angew. Chem.
– volume: 118
  start-page: 199
  year: 2022
  end-page: 207
  ident: b0105
  publication-title: J. Mater. Sci. Technol.
– volume: 31
  year: 2021
  ident: b0140
  publication-title: Adv. Funct. Mater.
– volume: 32
  start-page: 1456
  year: 2011
  end-page: 1465
  ident: b0210
  publication-title: J. Comput. Chem.
– volume: 10
  start-page: 1363
  year: 2019
  ident: b0240
  publication-title: Nat. Commun.
– volume: 77
  start-page: 3865
  year: 1996
  ident: b0190
  publication-title: Phys. Rev. Lett.
– volume: 32
  year: 2022
  ident: b0260
  publication-title: Adv. Funct. Mater.
– volume: 33
  year: 2023
  ident: 10.1016/j.jechem.2024.09.022_b0280
  publication-title: Adv. Funct. Mater.
– volume: 8
  year: 2018
  ident: 10.1016/j.jechem.2024.09.022_b0250
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702097
– volume: 14
  year: 2018
  ident: 10.1016/j.jechem.2024.09.022_b0230
  publication-title: Small
– volume: 6
  start-page: 15
  year: 1996
  ident: 10.1016/j.jechem.2024.09.022_b0180
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 32
  start-page: 1456
  year: 2011
  ident: 10.1016/j.jechem.2024.09.022_b0210
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21759
– volume: 10
  start-page: 1363
  year: 2019
  ident: 10.1016/j.jechem.2024.09.022_b0240
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09211-z
– volume: 3
  start-page: 1
  year: 2018
  ident: 10.1016/j.jechem.2024.09.022_b0020
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2018.13
– volume: 44
  start-page: 477
  year: 2022
  ident: 10.1016/j.jechem.2024.09.022_b0175
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2021.10.038
– volume: 27
  start-page: 522
  year: 2020
  ident: 10.1016/j.jechem.2024.09.022_b0010
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.12.014
– volume: 34
  year: 2024
  ident: 10.1016/j.jechem.2024.09.022_b0090
  publication-title: Adv. Funct. Mater.
– volume: 36
  year: 2024
  ident: 10.1016/j.jechem.2024.09.022_b0225
  publication-title: Adv. Mater.
– volume: 34
  year: 2024
  ident: 10.1016/j.jechem.2024.09.022_b0030
  publication-title: Adv. Funct. Mater.
– volume: 132
  start-page: 6658
  year: 2020
  ident: 10.1016/j.jechem.2024.09.022_b0060
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201916716
– volume: 17
  year: 2021
  ident: 10.1016/j.jechem.2024.09.022_b0080
  publication-title: Small
– volume: 3
  year: 2023
  ident: 10.1016/j.jechem.2024.09.022_b0045
  publication-title: Small Science
  doi: 10.1002/smsc.202300038
– volume: 33
  year: 2023
  ident: 10.1016/j.jechem.2024.09.022_b0040
  publication-title: Adv. Funct. Mater.
– year: 2024
  ident: 10.1016/j.jechem.2024.09.022_b0255
  publication-title: Angew. Chem. Int. Ed.
– volume: 34
  year: 2022
  ident: 10.1016/j.jechem.2024.09.022_b0100
  publication-title: Adv. Mater.
– volume: 129
  start-page: 12083
  year: 2017
  ident: 10.1016/j.jechem.2024.09.022_b0265
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201703937
– volume: 33
  year: 2021
  ident: 10.1016/j.jechem.2024.09.022_b0220
  publication-title: Adv. Mater.
– volume: 113
  start-page: 9901
  year: 2000
  ident: 10.1016/j.jechem.2024.09.022_b0215
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1329672
– volume: 36
  year: 2024
  ident: 10.1016/j.jechem.2024.09.022_b0115
  publication-title: Adv. Mater.
– volume: 15
  year: 2022
  ident: 10.1016/j.jechem.2024.09.022_b0130
  publication-title: ChemSusChem
  doi: 10.1002/cssc.202200504
– volume: 12
  start-page: 5786
  year: 2021
  ident: 10.1016/j.jechem.2024.09.022_b0160
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-26032-1
– volume: 31
  start-page: 221
  year: 2020
  ident: 10.1016/j.jechem.2024.09.022_b0275
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.06.040
– volume: 6
  start-page: 2242
  year: 2020
  ident: 10.1016/j.jechem.2024.09.022_b0085
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.06.036
– volume: 71
  year: 2023
  ident: 10.1016/j.jechem.2024.09.022_b0155
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2023.108132
– volume: 118
  start-page: 199
  year: 2022
  ident: 10.1016/j.jechem.2024.09.022_b0105
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2022.01.003
– volume: 64
  year: 2019
  ident: 10.1016/j.jechem.2024.09.022_b0050
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.103903
– volume: 14
  start-page: 45382
  year: 2022
  ident: 10.1016/j.jechem.2024.09.022_b0055
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c12518
– volume: 33
  year: 2023
  ident: 10.1016/j.jechem.2024.09.022_b0110
  publication-title: Adv. Funct. Mater.
– year: 2023
  ident: 10.1016/j.jechem.2024.09.022_b0285
  publication-title: Adv. Mater.
– volume: 32
  year: 2022
  ident: 10.1016/j.jechem.2024.09.022_b0260
  publication-title: Adv. Funct. Mater.
– volume: 112
  year: 2023
  ident: 10.1016/j.jechem.2024.09.022_b0035
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2023.108466
– volume: 50
  start-page: 17953
  year: 1994
  ident: 10.1016/j.jechem.2024.09.022_b0200
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 7
  year: 2022
  ident: 10.1016/j.jechem.2024.09.022_b0135
  publication-title: Adv. Mater. Technol.
– volume: 59
  start-page: 1758
  year: 1999
  ident: 10.1016/j.jechem.2024.09.022_b0195
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 131
  start-page: 18414
  year: 2019
  ident: 10.1016/j.jechem.2024.09.022_b0150
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201911267
– volume: 131
  start-page: 17210
  year: 2019
  ident: 10.1016/j.jechem.2024.09.022_b0095
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201910202
– volume: 9
  year: 2019
  ident: 10.1016/j.jechem.2024.09.022_b0235
  publication-title: Adv. Energy Mater.
– volume: 31
  year: 2021
  ident: 10.1016/j.jechem.2024.09.022_b0140
  publication-title: Adv. Funct. Mater.
– volume: 117
  start-page: 10403
  year: 2017
  ident: 10.1016/j.jechem.2024.09.022_b0005
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00115
– volume: 9
  start-page: 446
  year: 2024
  ident: 10.1016/j.jechem.2024.09.022_b0015
  publication-title: Nat. Energy
  doi: 10.1038/s41560-024-01469-y
– volume: 10
  year: 2020
  ident: 10.1016/j.jechem.2024.09.022_b0125
  publication-title: Adv. Energy Mater.
– volume: 509
  year: 2021
  ident: 10.1016/j.jechem.2024.09.022_b0145
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2021.230372
– volume: 32
  year: 2020
  ident: 10.1016/j.jechem.2024.09.022_b0025
  publication-title: Adv. Mater.
– volume: 670
  start-page: 246
  year: 2024
  ident: 10.1016/j.jechem.2024.09.022_b0170
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2024.05.095
– volume: 14
  start-page: 5210
  year: 2023
  ident: 10.1016/j.jechem.2024.09.022_b0165
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-40669-0
– volume: 13
  start-page: 26533
  year: 2021
  ident: 10.1016/j.jechem.2024.09.022_b0065
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c22006
– volume: 132
  year: 2010
  ident: 10.1016/j.jechem.2024.09.022_b0205
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3382344
– volume: 5
  start-page: 7738
  year: 2017
  ident: 10.1016/j.jechem.2024.09.022_b0070
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA01820G
– volume: 77
  start-page: 3865
  year: 1996
  ident: 10.1016/j.jechem.2024.09.022_b0190
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 24
  start-page: 588
  year: 2020
  ident: 10.1016/j.jechem.2024.09.022_b0270
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.06.026
– volume: 54
  start-page: 11169
  year: 1996
  ident: 10.1016/j.jechem.2024.09.022_b0185
  publication-title: Phys. B
– volume: 34
  year: 2022
  ident: 10.1016/j.jechem.2024.09.022_b0120
  publication-title: Adv. Mater.
– volume: 132
  start-page: 6623
  year: 2020
  ident: 10.1016/j.jechem.2024.09.022_b0245
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201915440
– volume: 32
  year: 2022
  ident: 10.1016/j.jechem.2024.09.022_b0075
  publication-title: Adv. Funct. Mater.
SSID ssj0000941295
Score 2.388423
Snippet The modified PP separators with HCS layer ensure uniform sodium ion flux, while NaF layer reduces the sodium ion diffusion barrier, and their synergistic...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 223
SubjectTerms Enhanced cyclic stability
Multifunctional layers
NaF-enriched SEI layer
Separator modification
Sodium metal batteries
Title Modification of polypropylene separator with multifunctional layers to achieve highly stable sodium metal anode
URI https://dx.doi.org/10.1016/j.jechem.2024.09.022
Volume 101
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FL3oQn_gmB6-x6W6ymz2WYqlKe9FCb0teC8raLbUVevG3O7OPUkEUvIZMWCZhvi_Zb2YIuek4HSZWShYrJ5iQ3LLEBY5xC2QizrgyEnOHh6NoMBYPEzlpkV6TC4Oyyjr2VzG9jNb1SLv2Znv28tJ-Cjj-ogL8FoirAuOwEDGe8tvPzvqdBa4vAGmoZMT5DA2aDLpS5vXqwTmYkh5UBU-D4GeE2kCd_j7Zq-ki7VZfdEBafnpIdjeKCB6RYlg41PuULqZFRmdFjnlMsxUAiqfvvqzuXcwpPrnSUkCIYFa9AdJcI-emi4KiqtJ_eIoFjPMVBdZocjCHxZdv9M0DSad6Wjh_TMb9u-fegNVtFJiF-8CCwR1UKx87oGrWuo7lQkdKWRg1kbKaewucLIw6WifCqzATWWQCmOK4w6YYYXhCtqbF1J8S6jPpbWCsktwJY4QOncxiZ6TwCeyDOiNh47rU1jXGsdVFnjZiste0cniKDk95koLDzwhbW82qGht_zI-bXUm_nZUUYOBXy_N_W16QnQA7_5Z67UuytZgv_RXQkYW5Ls_bNdnu3j8ORl87VeII
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7LelAP4hPf5uA1bLZN2vQooqzu4-IK3kJeBaVul3UV_PfO9CEKouA1ZEKZhPm-pN_MEHLe9ybOnJQsVV4wIbljmY884w7IRJpzZSXmDo8nyeBe3D7Ihw65bHNhUFbZxP46plfRuhnpNd7szR8fe3cRx19UgN8CcVVAHF7B6lSyS1YuboaDyedTC9xgANVQzIgmDG3aJLpK6fUUwD-YlR7VNU-j6GeQ-gI815tko2GM9KL-qC3SCbNtsv6ljuAOKcelR8lP5WVa5nReFpjKNH8HTAn0JVQFvssFxVdXWmkIEc_qZ0BaGKTddFlSFFaGt0CxhnHxToE42gLMYfHXZ_ocgKdTMyt92CX311fTywFrOikwB1eCJYNrqFEh9cDWnPN9x4VJlHIwahPlDA8OaFmc9I3JRFBxLvLERjDFc499MeJ4j3Rn5SzsExpyGVxknZLcC2uFib3MU2-lCBlshTogces67Zoy49jtotCtnuxJ1w7X6HDNMw0OPyDs02pel9n4Y37a7or-dlw0IMGvlof_tjwjq4PpeKRHN5PhEVmLsBFwJd8-Jt3l4jWcADtZ2tPm9H0A-7zkuQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modification+of+polypropylene+separator+with+multifunctional+layers+to+achieve+highly+stable+sodium+metal+anode&rft.jtitle=Journal+of+energy+chemistry&rft.au=Chishti%2C+Aadil+Nabi&rft.au=Iqbal%2C+Sikandar&rft.au=Ali%2C+Muhammad&rft.au=Ali%2C+Moazzam&rft.date=2025-02-01&rft.pub=Elsevier+B.V&rft.issn=2095-4956&rft.volume=101&rft.spage=223&rft.epage=232&rft_id=info:doi/10.1016%2Fj.jechem.2024.09.022&rft.externalDocID=S2095495624006442
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-4956&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-4956&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-4956&client=summon