Online dictionary learning for Local Coordinate Coding with Locality Coding Adaptors

Dictionary in Local Coordinate Coding (LCC) is important to approximate a non-linear function with linear ones. Optimizing dictionary from predefined coding schemes is a challenge task. This paper focuses on learning dictionary from two Locality Coding Adaptors (LCAs), i.e., locality Gaussian Adapto...

Full description

Saved in:
Bibliographic Details
Published inNeurocomputing (Amsterdam) Vol. 157; pp. 61 - 69
Main Authors Pang, Junbiao, Zhang, Chunjie, Qin, Lei, Zhang, Weigang, Qing, Laiyun, Huang, Qingming, Yin, Baocai
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2015
Subjects
Online AccessGet full text
ISSN0925-2312
1872-8286
DOI10.1016/j.neucom.2015.01.035

Cover

Abstract Dictionary in Local Coordinate Coding (LCC) is important to approximate a non-linear function with linear ones. Optimizing dictionary from predefined coding schemes is a challenge task. This paper focuses on learning dictionary from two Locality Coding Adaptors (LCAs), i.e., locality Gaussian Adaptor (GA) and locality Euclidean Adaptor (EA), for large-scale and high-dimension datasets. Online dictionary learning is formulated as two cycling steps, local coding and dictionary updating. Both stages scale up gracefully to large-scale datasets with millions of data. The experiments on different applications demonstrate that our method leads to a faster dictionary learning than the classical ones or the state-of-the-art methods.
AbstractList Dictionary in Local Coordinate Coding (LCC) is important to approximate a non-linear function with linear ones. Optimizing dictionary from predefined coding schemes is a challenge task. This paper focuses on learning dictionary from two Locality Coding Adaptors (LCAs), i.e., locality Gaussian Adaptor (GA) and locality Euclidean Adaptor (EA), for large-scale and high-dimension datasets. Online dictionary learning is formulated as two cycling steps, local coding and dictionary updating. Both stages scale up gracefully to large-scale datasets with millions of data. The experiments on different applications demonstrate that our method leads to a faster dictionary learning than the classical ones or the state-of-the-art methods.
Author Zhang, Weigang
Yin, Baocai
Zhang, Chunjie
Pang, Junbiao
Qin, Lei
Huang, Qingming
Qing, Laiyun
Author_xml – sequence: 1
  givenname: Junbiao
  orcidid: 0000-0001-8153-7229
  surname: Pang
  fullname: Pang, Junbiao
  email: junbiao_pang@bjut.edu.cn
  organization: Beijing Key Laboratory of Multimedia and Intelligent Software Technology, College of Metropolitan Transportation, Beijing University of Technology, No. 100 Pingleyuan Road, Chaoyang District 100124, China
– sequence: 2
  givenname: Chunjie
  surname: Zhang
  fullname: Zhang, Chunjie
  email: cjzhang@jdl.ac.cn
  organization: School of Computer and Control Engineering, University of Chinese Academy of Sciences, No. 19 Yuquan Road, Shijingshan District, Beijing 100049, China
– sequence: 3
  givenname: Lei
  surname: Qin
  fullname: Qin, Lei
  email: lqin@jdl.ac.cn
  organization: Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, No. 6 Kexueyuan South Road, Haidian District, Beijing 100190, China
– sequence: 4
  givenname: Weigang
  surname: Zhang
  fullname: Zhang, Weigang
  email: wgzhang@jdl.ac.cn
  organization: School of Computer Science and Technology, Harbin Institute of Technology at Weihai, No. 2 West Wenhua Road, Weihai 26209, China
– sequence: 5
  givenname: Laiyun
  surname: Qing
  fullname: Qing, Laiyun
  email: lyqing@ucas.ac.cn
  organization: School of Computer and Control Engineering, University of Chinese Academy of Sciences, No. 19 Yuquan Road, Shijingshan District, Beijing 100049, China
– sequence: 6
  givenname: Qingming
  surname: Huang
  fullname: Huang, Qingming
  email: qmhuang@jdl.ac.cn
  organization: Beijing Key Laboratory of Multimedia and Intelligent Software Technology, College of Metropolitan Transportation, Beijing University of Technology, No. 100 Pingleyuan Road, Chaoyang District 100124, China
– sequence: 7
  givenname: Baocai
  surname: Yin
  fullname: Yin, Baocai
  email: ybc@bjut.edu.cn
  organization: Beijing Key Laboratory of Multimedia and Intelligent Software Technology, College of Metropolitan Transportation, Beijing University of Technology, No. 100 Pingleyuan Road, Chaoyang District 100124, China
BookMark eNqFkM1OwzAQhC1UJNrCG3DICyTs2q3jcECqKv6kSL2Us-XaDrhK7coxoL49iQIXDnDa1Y5mtPPNyMQHbwm5RigQkN_sC2_fdTgUFHBZABbAlmdkiqKkuaCCT8gUKrrMKUN6QWZdtwfAEmk1JduNb523mXE6ueBVPGWtVdE7_5o1IWZ10KrN1iFE47xKtl_NoH269DaKLp1-jiujjinE7pKcN6rt7NX3nJOXh_vt-imvN4_P61WdawY85YxXun9J4M6a0mBTUYqsbJhFWCgwANwKYZQWi7IxeqdFaQTXjIoGVLXjnM3J7ZirY-i6aBupXVJDjxSVayWCHPjIvRz5yIGPBJQ9n968-GU-RnfoAfxnuxttti_24WyUnXbWa2tctDpJE9zfAV8HX4TW
CitedBy_id crossref_primary_10_3233_IDA_150296
crossref_primary_10_1109_TCYB_2015_2433926
crossref_primary_10_1007_s12559_020_09780_y
Cites_doi 10.1109/TPAMI.2008.79
10.1016/j.patcog.2012.11.014
10.5244/C.24.36
10.1109/TPAMI.2012.63
10.1109/CVPR.2010.5540018
10.1109/ACV.1994.341300
10.7551/mitpress/7503.003.0105
10.1109/TPAMI.2008.138
10.1016/j.patcog.2012.10.006
10.1109/34.291440
10.1007/s10107-007-0170-0
10.1111/j.2517-6161.1996.tb02080.x
10.1145/1553374.1553463
10.1109/CVPR.2006.68
10.1016/j.neucom.2011.11.031
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright_xml – notice: 2015 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2015.01.035
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 69
ExternalDocumentID 10_1016_j_neucom_2015_01_035
S0925231215000569
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
SSH
WUQ
XPP
ID FETCH-LOGICAL-c306t-369c23181bed7d1f922137f3e104a0d006e88dac847fdcbc87d86c328f0a9b663
IEDL.DBID AIKHN
ISSN 0925-2312
IngestDate Thu Apr 24 23:00:17 EDT 2025
Tue Jul 01 04:52:24 EDT 2025
Fri Feb 23 02:28:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Locality Coding Adaptor
Surrogate function
Large scale problem
Online training
Local Coordinate Coding
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-369c23181bed7d1f922137f3e104a0d006e88dac847fdcbc87d86c328f0a9b663
ORCID 0000-0001-8153-7229
PageCount 9
ParticipantIDs crossref_citationtrail_10_1016_j_neucom_2015_01_035
crossref_primary_10_1016_j_neucom_2015_01_035
elsevier_sciencedirect_doi_10_1016_j_neucom_2015_01_035
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-06-01
2015-06-00
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-06-01
  day: 01
PublicationDecade 2010
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References D. Donoho, For Most Large Underdetermined Systems of Linear Equations, The Minimal L1-Norm Near-Solution Approximates the Sparsest Near-Solution, Technical Report, Stanford University.
Mairal, Bach, Ponce, Sapiro (bib20) 2011; 11
Wei, Chao, Yeh, Wang (bib8) 2013; 46
Zhang, Yao, Sun, Lu (bib15) 2013; 46
Wright, Yang, Ganesh, Sastry, Ma (bib25) 2009; 31
J. Mairal, F. Bach, J. Ponce, G. Sapiro, Online dictionary learning for sparse coding, in: International Conference on Machine Learning, 2009, pp. 87–95.
M. Everingham, L. Gool, C. Williams, J. Winn, A. Zisserman, The Pascal Visual Object Classes Challenge 2007 (VOC 2007) Results, 2007.
Hull (bib23) 1994; 16
D. Bertsekas, Nonlinear Programming, Athena Scientific, Belmont, 1999.
J. Wang, J. Yang, K. Yu, F. Lv, T.S. Huang, Y. Gong, Locality-constrained linear coding for image classification, in: IEEE Computer Vision and Pattern Recognition, vol. 2, 2010, pp. 3360–3367.
Meyer (bib19) 2000
Tseng, Yun (bib12) 2009; 117
S. Lazebnik, C. Schmid, J. Ponce, Beyond bags of features: spatial pyramid matching for recognizing natural scene categories, in: IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, 2006, pp. 2169–2178.
Zhang, Yao, Zhou, Sun, Liu (bib6) 2013; 100
D. Donoho, For Most Large Underdetermined Systems of Linear Equations, The Minimal L1-Norm Solution is also the Sparsest Solution, Technical Report, Stanford University.
Nesterov (bib18) 2004
L. Ladický, P. Torr, Locally linear support vector machines, in: International Conference on Machine Learning, 2011, pp. 985–992.
B. Xie, M. Song, D. Tao, Large-scale dictionary learning for local coordinate coding, in: British Machine Vision Conference, vol. 2, 2010, pp. 1–9.
Tibshirani (bib5) 1996; 58
J. Yang, K. Yu, Y. Gong, T.S. Huang, Linear spatial pyramid matching using sparse coding for image classification, in: IEEE Computer Vision and Pattern Recognition, 2009, pp. 1794–1801.
J. Pang, Q. Huang, B. Yin, L. Qin, D. Wang, Theoretical analysis of learning local anchors for classification, in: International Conference on Pattern Recognition, 2012, pp. 1803–1806.
Gao, Tsang, Chia (bib28) 2013; 35
Lazebnik, Raginsky (bib29) 2009; 31
H. Lee, A. Battle, R. Raina, A. Ng, Efficient sparse coding algorithms, in: Neural Information Processing Systems, 2007, pp. 801–808.
F. Samaria, A. Harter, Parameterisation of a stochastic model for human face identification, in: Proceedings of the IEEE Workshop on Applications of Computer Vision, 1994, pp. 138–142.
Bottou (bib24) 1998
K. Yu, T. Zhang, Y. Gong, Nonlinear learning using local coordinate coding, in: Neural Information Processing System, 2009, pp. 2223–2231.
L. Bottou, O. Bousquet, The trade-offs of large scale learning, in: Neural Information Processing Systems, vol. 20, 2008, pp. 161–168.
Nemirovski, Yudin (bib17) 1983
Lazebnik (10.1016/j.neucom.2015.01.035_bib29) 2009; 31
Tibshirani (10.1016/j.neucom.2015.01.035_bib5) 1996; 58
Tseng (10.1016/j.neucom.2015.01.035_bib12) 2009; 117
Gao (10.1016/j.neucom.2015.01.035_bib28) 2013; 35
Meyer (10.1016/j.neucom.2015.01.035_bib19) 2000
10.1016/j.neucom.2015.01.035_bib22
10.1016/j.neucom.2015.01.035_bib21
Wright (10.1016/j.neucom.2015.01.035_bib25) 2009; 31
10.1016/j.neucom.2015.01.035_bib26
10.1016/j.neucom.2015.01.035_bib27
Wei (10.1016/j.neucom.2015.01.035_bib8) 2013; 46
Bottou (10.1016/j.neucom.2015.01.035_bib24) 1998
Zhang (10.1016/j.neucom.2015.01.035_bib6) 2013; 100
10.1016/j.neucom.2015.01.035_bib7
Zhang (10.1016/j.neucom.2015.01.035_bib15) 2013; 46
Hull (10.1016/j.neucom.2015.01.035_bib23) 1994; 16
10.1016/j.neucom.2015.01.035_bib9
10.1016/j.neucom.2015.01.035_bib3
10.1016/j.neucom.2015.01.035_bib2
Mairal (10.1016/j.neucom.2015.01.035_bib20) 2011; 11
Nesterov (10.1016/j.neucom.2015.01.035_bib18) 2004
10.1016/j.neucom.2015.01.035_bib4
10.1016/j.neucom.2015.01.035_bib11
Nemirovski (10.1016/j.neucom.2015.01.035_bib17) 1983
10.1016/j.neucom.2015.01.035_bib1
10.1016/j.neucom.2015.01.035_bib10
10.1016/j.neucom.2015.01.035_bib16
10.1016/j.neucom.2015.01.035_bib13
10.1016/j.neucom.2015.01.035_bib14
References_xml – reference: D. Donoho, For Most Large Underdetermined Systems of Linear Equations, The Minimal L1-Norm Solution is also the Sparsest Solution, Technical Report, Stanford University.
– reference: J. Wang, J. Yang, K. Yu, F. Lv, T.S. Huang, Y. Gong, Locality-constrained linear coding for image classification, in: IEEE Computer Vision and Pattern Recognition, vol. 2, 2010, pp. 3360–3367.
– reference: B. Xie, M. Song, D. Tao, Large-scale dictionary learning for local coordinate coding, in: British Machine Vision Conference, vol. 2, 2010, pp. 1–9.
– year: 2000
  ident: bib19
  article-title: Matrix Analysis and Applied Linear Algebra
– volume: 11
  start-page: 19
  year: 2011
  end-page: 60
  ident: bib20
  article-title: Online learning for matrix factorization and sparse coding
  publication-title: J. Mach. Learn. Res.
– volume: 16
  start-page: 550
  year: 1994
  end-page: 554
  ident: bib23
  article-title: A database for handwritten text recognition research
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 35
  start-page: 92
  year: 2013
  end-page: 104
  ident: bib28
  article-title: Laplacian sparse coding, hypergraph Laplacian sparse coding, and applications
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: J. Pang, Q. Huang, B. Yin, L. Qin, D. Wang, Theoretical analysis of learning local anchors for classification, in: International Conference on Pattern Recognition, 2012, pp. 1803–1806.
– reference: H. Lee, A. Battle, R. Raina, A. Ng, Efficient sparse coding algorithms, in: Neural Information Processing Systems, 2007, pp. 801–808.
– reference: K. Yu, T. Zhang, Y. Gong, Nonlinear learning using local coordinate coding, in: Neural Information Processing System, 2009, pp. 2223–2231.
– reference: D. Donoho, For Most Large Underdetermined Systems of Linear Equations, The Minimal L1-Norm Near-Solution Approximates the Sparsest Near-Solution, Technical Report, Stanford University.
– reference: L. Ladický, P. Torr, Locally linear support vector machines, in: International Conference on Machine Learning, 2011, pp. 985–992.
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: bib5
  article-title: Regression shrinkage and selection via the LASSO
  publication-title: J. R. Stat. Soc. (Ser. B)
– reference: L. Bottou, O. Bousquet, The trade-offs of large scale learning, in: Neural Information Processing Systems, vol. 20, 2008, pp. 161–168.
– year: 1998
  ident: bib24
  article-title: Online Algorithms and Stochastic Approximations
– reference: F. Samaria, A. Harter, Parameterisation of a stochastic model for human face identification, in: Proceedings of the IEEE Workshop on Applications of Computer Vision, 1994, pp. 138–142.
– volume: 31
  start-page: 210
  year: 2009
  end-page: 227
  ident: bib25
  article-title: Robust face recognition via sparse representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Learn.
– reference: J. Mairal, F. Bach, J. Ponce, G. Sapiro, Online dictionary learning for sparse coding, in: International Conference on Machine Learning, 2009, pp. 87–95.
– reference: M. Everingham, L. Gool, C. Williams, J. Winn, A. Zisserman, The Pascal Visual Object Classes Challenge 2007 (VOC 2007) Results, 2007.
– reference: S. Lazebnik, C. Schmid, J. Ponce, Beyond bags of features: spatial pyramid matching for recognizing natural scene categories, in: IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, 2006, pp. 2169–2178.
– volume: 46
  start-page: 1772
  year: 2013
  end-page: 1788
  ident: bib15
  article-title: Sparse coding based visual tracking
  publication-title: Pattern Recognit.
– reference: D. Bertsekas, Nonlinear Programming, Athena Scientific, Belmont, 1999.
– volume: 117
  start-page: 387
  year: 2009
  end-page: 423
  ident: bib12
  article-title: A coordinate gradient descent method for nonsmooth separable minimization
  publication-title: Math. Prog.
– reference: J. Yang, K. Yu, Y. Gong, T.S. Huang, Linear spatial pyramid matching using sparse coding for image classification, in: IEEE Computer Vision and Pattern Recognition, 2009, pp. 1794–1801.
– volume: 31
  start-page: 1294
  year: 2009
  end-page: 1309
  ident: bib29
  article-title: Supervised learning of quantizer codebooks by information loss minimization
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 1983
  ident: bib17
  article-title: Problem Complexity and Method Efficiency in Optimization
– year: 2004
  ident: bib18
  article-title: Introductory Lectures on Convex Optimization
– volume: 100
  start-page: 31
  year: 2013
  end-page: 40
  ident: bib6
  article-title: Robust visual tracking based on online learning sparse representation
  publication-title: Neurocomputing
– volume: 46
  start-page: 1277
  year: 2013
  end-page: 1287
  ident: bib8
  article-title: Locality-sensitive dictionary learning for sparse representation based classification
  publication-title: Pattern Recognit.
– volume: 31
  start-page: 210
  issue: 2
  year: 2009
  ident: 10.1016/j.neucom.2015.01.035_bib25
  article-title: Robust face recognition via sparse representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Learn.
  doi: 10.1109/TPAMI.2008.79
– volume: 46
  start-page: 1277
  year: 2013
  ident: 10.1016/j.neucom.2015.01.035_bib8
  article-title: Locality-sensitive dictionary learning for sparse representation based classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2012.11.014
– ident: 10.1016/j.neucom.2015.01.035_bib16
  doi: 10.5244/C.24.36
– ident: 10.1016/j.neucom.2015.01.035_bib21
– volume: 35
  start-page: 92
  issue: 1
  year: 2013
  ident: 10.1016/j.neucom.2015.01.035_bib28
  article-title: Laplacian sparse coding, hypergraph Laplacian sparse coding, and applications
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.63
– ident: 10.1016/j.neucom.2015.01.035_bib27
  doi: 10.1109/CVPR.2010.5540018
– ident: 10.1016/j.neucom.2015.01.035_bib22
  doi: 10.1109/ACV.1994.341300
– ident: 10.1016/j.neucom.2015.01.035_bib7
  doi: 10.7551/mitpress/7503.003.0105
– ident: 10.1016/j.neucom.2015.01.035_bib14
– volume: 31
  start-page: 1294
  issue: 7
  year: 2009
  ident: 10.1016/j.neucom.2015.01.035_bib29
  article-title: Supervised learning of quantizer codebooks by information loss minimization
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2008.138
– ident: 10.1016/j.neucom.2015.01.035_bib10
– ident: 10.1016/j.neucom.2015.01.035_bib2
– ident: 10.1016/j.neucom.2015.01.035_bib4
  doi: 10.1109/CVPR.2010.5540018
– volume: 46
  start-page: 1772
  year: 2013
  ident: 10.1016/j.neucom.2015.01.035_bib15
  article-title: Sparse coding based visual tracking
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2012.10.006
– year: 2004
  ident: 10.1016/j.neucom.2015.01.035_bib18
– volume: 16
  start-page: 550
  issue: 5
  year: 1994
  ident: 10.1016/j.neucom.2015.01.035_bib23
  article-title: A database for handwritten text recognition research
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.291440
– volume: 117
  start-page: 387
  year: 2009
  ident: 10.1016/j.neucom.2015.01.035_bib12
  article-title: A coordinate gradient descent method for nonsmooth separable minimization
  publication-title: Math. Prog.
  doi: 10.1007/s10107-007-0170-0
– year: 1998
  ident: 10.1016/j.neucom.2015.01.035_bib24
– ident: 10.1016/j.neucom.2015.01.035_bib13
– volume: 58
  start-page: 267
  year: 1996
  ident: 10.1016/j.neucom.2015.01.035_bib5
  article-title: Regression shrinkage and selection via the LASSO
  publication-title: J. R. Stat. Soc. (Ser. B)
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: 10.1016/j.neucom.2015.01.035_bib11
  doi: 10.1145/1553374.1553463
– ident: 10.1016/j.neucom.2015.01.035_bib26
  doi: 10.1109/CVPR.2006.68
– volume: 11
  start-page: 19
  issue: 1
  year: 2011
  ident: 10.1016/j.neucom.2015.01.035_bib20
  article-title: Online learning for matrix factorization and sparse coding
  publication-title: J. Mach. Learn. Res.
– year: 2000
  ident: 10.1016/j.neucom.2015.01.035_bib19
– ident: 10.1016/j.neucom.2015.01.035_bib1
– ident: 10.1016/j.neucom.2015.01.035_bib3
– ident: 10.1016/j.neucom.2015.01.035_bib9
– year: 1983
  ident: 10.1016/j.neucom.2015.01.035_bib17
– volume: 100
  start-page: 31
  year: 2013
  ident: 10.1016/j.neucom.2015.01.035_bib6
  article-title: Robust visual tracking based on online learning sparse representation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.11.031
SSID ssj0017129
Score 2.1178567
Snippet Dictionary in Local Coordinate Coding (LCC) is important to approximate a non-linear function with linear ones. Optimizing dictionary from predefined coding...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 61
SubjectTerms Large scale problem
Local Coordinate Coding
Locality Coding Adaptor
Online training
Surrogate function
Title Online dictionary learning for Local Coordinate Coding with Locality Coding Adaptors
URI https://dx.doi.org/10.1016/j.neucom.2015.01.035
Volume 157
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED71sbDwRpRH5YE1NLETJx6riqq8utBK3awkdlAQSquqHVj47ZxjB4GEQGJLnFyUnOy775y77wCuuBaRUoX2hFluocp9L0lp4YVC01RzGvCau_Nxyifz8G4RLVowamphTFqls_3WptfW2o0MnDYHq7IcPPmCYhRl2BEM8OCiDV3KBI860B3e3k-mnz8T4oBayj0aeUagqaCr07wqvTVpI-gHLX9n3fftBw_1xeuM92HXwUUytG90AC1dHcJe04qBuJV5BDNLGUpUWdcppOs34vpBPBOEpeTBuCwyWmKoWVYIL_HQOC1itmHtRUTjzeBQpSvThOcY5uOb2WjiuYYJXo7If-MxLnL8QESiWsUqKASlAYsLpjHmSn2FC0wniUpz9EiFyrM8iVXCc0aTwk9FhtjjBDrVstKnQFRoqOAUAgrGQp0UQuETdBDGmmWFn6gesEZJMnds4qapxats0sZepFWtNKqVfiBRtT3wPqVWlk3jj_vjRv_y26yQaPB_lTz7t-Q57Jgzmw52AZ3NeqsvEXhssj60r9-DvpteH_YD2DA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjShPD6ymiZ2HPVYVVYG2C63UzUpsBxWhtKragYXfzjl2KpAQSGyRH1Fysu8-W999h9BtYkSsdWGIsNst0iogPKMFiYShmUlomFTancNR0p9Ej9N42kDdOhfG0iq973c-vfLWvqXtrdlezGbt50BQOEVZdQQLPBKxhbajmKWW13f3seF5hGlIneAejYkdXufPVSSv0qwtaQSioFPvrKq-_RCfvsSc3gHa82ARd9z3HKKGKY_Qfl2IAft9eYzGTjAU61mVpZAt37GvBvGCAZTigQ1YuDuHg-asBHAJjzZkYXsJ6zoBi9eNHZ0tbAmeEzTp3Y-7feLLJRAFuH9FWCIU_CDgUKNTHRaC0pClBTNw4soCDdvLcK4zBfGo0CpXPNU8UYzyIshEDsjjFDXLeWnOENaRFYLTACcYiwwvhIY3mDBKDcuLgOsWYrWRpPJa4rakxZusSWOv0plWWtPKIJRg2hYim1kLp6Xxx_i0tr_8tiYkuPtfZ57_e-YN2umPhwM5eBg9XaBd2-OIYZeouVquzRVAkFV-XS2xT8dN2Ps
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+dictionary+learning+for+Local+Coordinate+Coding+with+Locality+Coding+Adaptors&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Pang%2C+Junbiao&rft.au=Zhang%2C+Chunjie&rft.au=Qin%2C+Lei&rft.au=Zhang%2C+Weigang&rft.date=2015-06-01&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=157&rft.spage=61&rft.epage=69&rft_id=info:doi/10.1016%2Fj.neucom.2015.01.035&rft.externalDocID=S0925231215000569
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon