Normalized homoclinic solutions of discrete nonlocal double phase problems
The aim of this paper is to discuss the existence of normalized solutions to the following nonlocal double phase problems driving by the discrete fractional Laplacian: [Formula: see text] where [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] if...
Saved in:
Published in | Bulletin of mathematical sciences Vol. 14; no. 2 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
World Scientific Publishing
01.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The aim of this paper is to discuss the existence of normalized solutions to the following nonlocal double phase problems driving by the discrete fractional Laplacian: [Formula: see text] where [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] if [Formula: see text], [Formula: see text] if [Formula: see text], and [Formula: see text]([Formula: see text] or [Formula: see text], [Formula: see text] or [Formula: see text]) is the discrete fractional [Formula: see text]-Laplacian. By variational methods, we discuss the existence of non-negative normalized homoclinic solutions under the conditions that the nonlinear term satisfies sublinear growth or superlinear growth conditions. In particular, we establish the compactness of the associated energy functional of the problem without weights. Our paper is the first time to deal with the existence of normalized solutions for discrete double phase problems. |
---|---|
AbstractList | The aim of this paper is to discuss the existence of normalized solutions to the following nonlocal double phase problems driving by the discrete fractional Laplacian: [Formula: see text] where [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] if [Formula: see text], [Formula: see text] if [Formula: see text], and [Formula: see text]([Formula: see text] or [Formula: see text], [Formula: see text] or [Formula: see text]) is the discrete fractional [Formula: see text]-Laplacian. By variational methods, we discuss the existence of non-negative normalized homoclinic solutions under the conditions that the nonlinear term satisfies sublinear growth or superlinear growth conditions. In particular, we establish the compactness of the associated energy functional of the problem without weights. Our paper is the first time to deal with the existence of normalized solutions for discrete double phase problems. The aim of this paper is to discuss the existence of normalized solutions to the following nonlocal double phase problems driving by the discrete fractional Laplacian: ( − Δ𝔻)pαu(k) + μ(−Δ 𝔻)qβu(k) + ω(k)|u(k)|p−2u(k) = λ|u(k)|q−2u(k) + h(k)|u(k)|r−2u(k) for k ∈ ℤ,∑k∈ℤ|u(k)|q = ρq > 0, u(k) → 0 as |k|→∞, where [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] if [Formula: see text], [Formula: see text] if [Formula: see text], and [Formula: see text]([Formula: see text] or [Formula: see text], [Formula: see text] or [Formula: see text]) is the discrete fractional [Formula: see text]-Laplacian. By variational methods, we discuss the existence of non-negative normalized homoclinic solutions under the conditions that the nonlinear term satisfies sublinear growth or superlinear growth conditions. In particular, we establish the compactness of the associated energy functional of the problem without weights. Our paper is the first time to deal with the existence of normalized solutions for discrete double phase problems. |
Author | Yang, Miaomiao Ma, Yunfeng Xiang, Mingqi |
Author_xml | – sequence: 1 givenname: Mingqi orcidid: 0000-0002-0712-7149 surname: Xiang fullname: Xiang, Mingqi organization: College of Science, Civil Aviation, University of China, Tianjin 300300, P. R. China – sequence: 2 givenname: Yunfeng surname: Ma fullname: Ma, Yunfeng organization: College of Science, Civil Aviation, University of China, Tianjin 300300, P. R. China – sequence: 3 givenname: Miaomiao surname: Yang fullname: Yang, Miaomiao organization: School of Mathematics and Statistics, Qilu University of Technology (Shandong, Academy of Sciences), Jinan 250353, P. R. China |
BookMark | eNplkMtOwzAQRS1UJErpB7DLDxT8ih0vUcWjqIIFsI4ce0xdOXFlpwv4elyKumEzj6vRuaN7iSZDHACha4JvCOH09o0IwZnAkvIaY8zEGZoepAUTpJ6cZiwv0DznbTnBtVRKqil6fomp18F_g602sY8m-MGbKsewH30cchVdZX02CUaoim2IRofKxn0XoNptdC41xbL0-QqdOx0yzP_6DH083L8vnxbr18fV8m69MAyLsfwhqasZx9QoaUA4bpQTnbJAG4Edtg6cNoZKJhpLCZOgCahGUKw73VjBZmh15Nqot-0u-V6nrzZq3_4KMX22Oo3eBGgZ5cXTUKAgOa2dAqIY6yiz1GlFZGGRI8ukmHMCd-IR3B6ybf9ly34AibRt3Q |
Cites_doi | 10.1016/S0375-9601(00)00201-2 10.1515/fca-2016-0018 10.1007/s10231-018-0796-y 10.1080/03605300600987306 10.1515/anona-2020-0018 10.1007/s12220-023-01497-2 10.1016/j.jfa.2020.108610 10.1007/s00033-022-01741-9 10.1007/s00526-020-01814-5 10.1016/j.na.2013.08.011 10.1007/978-3-642-25361-4_3 10.1515/anona-2022-0252 10.1016/j.jmaa.2009.02.038 10.1016/j.na.2003.11.012 10.1515/anona-2022-0300 10.1007/s12220-022-01171-z 10.1006/jdeq.1997.3247 10.1007/978-1-4612-4146-1 10.1515/anona-2020-0194 10.1016/j.bulsci.2011.12.004 10.1016/j.aim.2018.03.023 10.1088/1361-6544/aaf2e0 10.1007/s12220-023-01463-y 10.1016/j.jmaa.2011.12.032 10.1016/j.na.2020.111886 10.1007/978-1-4419-7515-7 10.1515/anona-2020-0193 10.1007/s00245-016-9330-z 10.1016/j.jmaa.2013.02.011 10.1007/s10473-022-0323-5 10.1515/anona-2022-0291 10.1016/j.matpur.2020.08.011 10.1142/S0219199719500652 10.1016/j.jde.2013.06.016 10.1016/j.amc.2022.127443 10.1016/S0362-546X(96)00021-1 10.3934/dcds.2020379 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1142/S1664360724500036 |
DatabaseName | CrossRef Open Access: DOAJ - Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1664-3615 |
ExternalDocumentID | oai_doaj_org_article_324306c2e2e7425f9e1933b23d2fa917 10_1142_S1664360724500036 |
GroupedDBID | -A0 2VQ 4.4 40G 5VS 8FE 8FG AAKKN AAYXX AAYZJ ABEEZ ABJCF ACACY ACGFS ACIPV ACIWK ACULB ADBBV ADINQ AENEX AFGXO AFKRA AHBXF AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP BCNDV BENPR BGLVJ C24 C6C CCPQU CITATION EBS EJD GROUPED_DOAJ H4N HCIFZ HZ~ IAO ISR ITC J9A KQ8 L6V M7S M~E O9- OK1 PIMPY PROAC PTHSS RSV RWJ SMT SOJ U2A |
ID | FETCH-LOGICAL-c306t-3672f53402c97ce6f4c9f6b9de2860f0dfefacc27368d2137ea1e98620aba8d63 |
IEDL.DBID | DOA |
ISSN | 1664-3607 |
IngestDate | Tue Oct 22 15:06:01 EDT 2024 Thu Sep 26 20:36:26 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-3672f53402c97ce6f4c9f6b9de2860f0dfefacc27368d2137ea1e98620aba8d63 |
ORCID | 0000-0002-0712-7149 |
OpenAccessLink | https://doaj.org/article/324306c2e2e7425f9e1933b23d2fa917 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_324306c2e2e7425f9e1933b23d2fa917 crossref_primary_10_1142_S1664360724500036 |
PublicationCentury | 2000 |
PublicationDate | 2024-08-01 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Bulletin of mathematical sciences |
PublicationYear | 2024 |
Publisher | World Scientific Publishing |
Publisher_xml | – name: World Scientific Publishing |
References | S1664360724500036BIB031 S1664360724500036BIB030 S1664360724500036BIB013 S1664360724500036BIB035 S1664360724500036BIB012 Dimitrov N. (S1664360724500036BIB015) 2020; 25 S1664360724500036BIB010 S1664360724500036BIB032 Molica Bisci G. (S1664360724500036BIB034) 2015 S1664360724500036BIB017 S1664360724500036BIB039 S1664360724500036BIB016 S1664360724500036BIB038 S1664360724500036BIB037 Berestycki H. (S1664360724500036BIB006) 1983; 82 Diblik J. (S1664360724500036BIB014) 2023; 12 Ju X. (S1664360724500036BIB025) 2020; 559 S1664360724500036BIB036 S1664360724500036BIB019 Cheng J. (S1664360724500036BIB011) 2023; 12 S1664360724500036BIB018 Mihăilescu M. (S1664360724500036BIB033) 2011; 38 Applebaum D. (S1664360724500036BIB004) 2004; 51 S1664360724500036BIB042 S1664360724500036BIB041 Valdinoci E. (S1664360724500036BIB040) 2009; 49 S1664360724500036BIB002 S1664360724500036BIB024 S1664360724500036BIB046 S1664360724500036BIB001 S1664360724500036BIB023 S1664360724500036BIB045 S1664360724500036BIB022 S1664360724500036BIB044 S1664360724500036BIB021 S1664360724500036BIB043 S1664360724500036BIB028 S1664360724500036BIB005 S1664360724500036BIB027 S1664360724500036BIB026 S1664360724500036BIB003 S1664360724500036BIB047 S1664360724500036BIB009 Iannizzotto A. (S1664360724500036BIB020) 2014; 27 S1664360724500036BIB008 S1664360724500036BIB007 S1664360724500036BIB029 |
References_xml | – ident: S1664360724500036BIB026 doi: 10.1016/S0375-9601(00)00201-2 – ident: S1664360724500036BIB013 doi: 10.1515/fca-2016-0018 – volume: 82 start-page: 247 year: 1983 ident: S1664360724500036BIB006 publication-title: Arch. Ration. Mech. Anal. contributor: fullname: Berestycki H. – volume: 12 start-page: 20230105-1 issue: 1 year: 2023 ident: S1664360724500036BIB014 publication-title: Adv. Nonlinear Anal. contributor: fullname: Diblik J. – ident: S1664360724500036BIB007 doi: 10.1007/s10231-018-0796-y – ident: S1664360724500036BIB010 doi: 10.1080/03605300600987306 – ident: S1664360724500036BIB022 doi: 10.1515/anona-2020-0018 – ident: S1664360724500036BIB043 doi: 10.1007/s12220-023-01497-2 – ident: S1664360724500036BIB039 doi: 10.1016/j.jfa.2020.108610 – ident: S1664360724500036BIB002 doi: 10.1007/s00033-022-01741-9 – ident: S1664360724500036BIB030 doi: 10.1007/s00526-020-01814-5 – ident: S1664360724500036BIB018 doi: 10.1016/j.na.2013.08.011 – volume: 25 start-page: 555 year: 2020 ident: S1664360724500036BIB015 publication-title: Discrete Contin. Dyn. Syst. Ser. B contributor: fullname: Dimitrov N. – ident: S1664360724500036BIB009 doi: 10.1007/978-3-642-25361-4_3 – ident: S1664360724500036BIB029 doi: 10.1515/anona-2022-0252 – ident: S1664360724500036BIB008 doi: 10.1016/j.jmaa.2009.02.038 – ident: S1664360724500036BIB001 doi: 10.1016/j.na.2003.11.012 – ident: S1664360724500036BIB027 doi: 10.1515/anona-2022-0300 – ident: S1664360724500036BIB028 doi: 10.1007/s12220-022-01171-z – ident: S1664360724500036BIB032 doi: 10.1006/jdeq.1997.3247 – ident: S1664360724500036BIB042 doi: 10.1007/978-1-4612-4146-1 – ident: S1664360724500036BIB046 doi: 10.1515/anona-2020-0194 – ident: S1664360724500036BIB016 doi: 10.1016/j.bulsci.2011.12.004 – ident: S1664360724500036BIB012 doi: 10.1016/j.aim.2018.03.023 – ident: S1664360724500036BIB035 doi: 10.1088/1361-6544/aaf2e0 – ident: S1664360724500036BIB037 doi: 10.1007/s12220-023-01463-y – ident: S1664360724500036BIB038 doi: 10.1016/j.jmaa.2011.12.032 – volume: 49 start-page: 33 year: 2009 ident: S1664360724500036BIB040 publication-title: Bol. Soc. Esp. Mat. Apl. Se MA contributor: fullname: Valdinoci E. – ident: S1664360724500036BIB045 doi: 10.1016/j.na.2020.111886 – ident: S1664360724500036BIB017 doi: 10.1007/978-1-4419-7515-7 – ident: S1664360724500036BIB031 doi: 10.1515/anona-2020-0193 – ident: S1664360724500036BIB036 doi: 10.1007/s00245-016-9330-z – volume-title: Variational Methods for Nonlocal Fractional Problems year: 2015 ident: S1664360724500036BIB034 contributor: fullname: Molica Bisci G. – ident: S1664360724500036BIB021 doi: 10.1016/j.jmaa.2013.02.011 – volume: 51 start-page: 1336 year: 2004 ident: S1664360724500036BIB004 publication-title: Notices Amer. Math. Soc. contributor: fullname: Applebaum D. – ident: S1664360724500036BIB044 doi: 10.1007/s10473-022-0323-5 – ident: S1664360724500036BIB041 doi: 10.1515/anona-2022-0291 – volume: 559 start-page: 2020 year: 2020 ident: S1664360724500036BIB025 publication-title: Adv. Difference Equations contributor: fullname: Ju X. – volume: 38 start-page: 277 year: 2011 ident: S1664360724500036BIB033 publication-title: Topol. Methods Nonlinear Anal. contributor: fullname: Mihăilescu M. – ident: S1664360724500036BIB003 doi: 10.1016/j.matpur.2020.08.011 – volume: 12 start-page: 20220272-1 issue: 1 year: 2023 ident: S1664360724500036BIB011 publication-title: Adv. Nonlinear Anal. contributor: fullname: Cheng J. – ident: S1664360724500036BIB019 doi: 10.1142/S0219199719500652 – ident: S1664360724500036BIB005 doi: 10.1016/j.jde.2013.06.016 – ident: S1664360724500036BIB024 doi: 10.1016/j.amc.2022.127443 – volume: 27 start-page: 35 year: 2014 ident: S1664360724500036BIB020 publication-title: Differ. Integral Equ. contributor: fullname: Iannizzotto A. – ident: S1664360724500036BIB023 doi: 10.1016/S0362-546X(96)00021-1 – ident: S1664360724500036BIB047 doi: 10.3934/dcds.2020379 |
SSID | ssj0000579979 ssib050729703 ssib041538293 |
Score | 2.3485968 |
Snippet | The aim of this paper is to discuss the existence of normalized solutions to the following nonlocal double phase problems driving by the discrete fractional... |
SourceID | doaj crossref |
SourceType | Open Website Aggregation Database |
SubjectTerms | discrete fractional -Laplacian Double phase problem homoclinic solutions normalized solutions |
Title | Normalized homoclinic solutions of discrete nonlocal double phase problems |
URI | https://doaj.org/article/324306c2e2e7425f9e1933b23d2fa917 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz2IT6wv9uBJCE02-zyqWEqlBdFCb2E3maVCNaWPi7_e2SSWiAcvXnIYNq9vJplv2J1vCblhIGTqvIwgVyzioG1kuYmjQgmWGx_nedUoPBrLwYQPp2La2uorrAmr5YFr4HqY8JHV4hkMsIoT3gBSjtSxtGDeYq1R_X1j0yqmMJJ4-I5biUwEfWzVzDfWqt_KmEqIL5GSR6mMVTPlmXDWewnGYGNcVIotP5JWS9u_SkL9A7LfsEd6Vz_1IdmBjyOyN9pKr66OyXAcWOj87RMKOivfy7r1kW5DjJaehlbcJbJlirV_lcxoUW7cHOhihkmNNpvMrE7IpP_4-jCImg0TohwxWuNrKOZFiiVhblQO0nOEWzpTANMy9nHhwVtEX6VSFyxJFdgEDNY0sXVWFzI9JR28MZwRKqVyCXMCEH2uAVycA47SVjGrjdBdcvuNSLaodTGyuseZZb_g65L7gNl2YJC0rgzo6KxxdPaXo8__4yIXZJchK6lX8F2Sznq5gStkFWt3XQUQHp-e9RcptcOc |
link.rule.ids | 315,783,787,867,2109,27938,27939 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Normalized+homoclinic+solutions+of+discrete+nonlocal+double+phase+problems&rft.jtitle=Bulletin+of+mathematical+sciences&rft.au=Mingqi+Xiang&rft.au=Yunfeng+Ma&rft.au=Miaomiao+Yang&rft.date=2024-08-01&rft.pub=World+Scientific+Publishing&rft.issn=1664-3607&rft.eissn=1664-3615&rft.volume=14&rft.issue=2&rft_id=info:doi/10.1142%2FS1664360724500036&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_324306c2e2e7425f9e1933b23d2fa917 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-3607&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-3607&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-3607&client=summon |