Bactericidal effect of graphene oxide and reduced graphene oxide: Influence of shape of bacteria
The emergence of multi-drug resistant bacteria due to the misuse of antibiotics and inadequate development of antibiotic drugs is a global threat to human health. Recent development in materials research caused the emergence of nanomaterials with promising bactericidal properties. Carbon based nanom...
Saved in:
Published in | Colloid and interface science communications Vol. 28; pp. 60 - 68 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The emergence of multi-drug resistant bacteria due to the misuse of antibiotics and inadequate development of antibiotic drugs is a global threat to human health. Recent development in materials research caused the emergence of nanomaterials with promising bactericidal properties. Carbon based nanomaterials like graphene and graphene oxide(GO) have appealed researchers for antimicrobial properties, although some researchers claimed that they promote bacteria growth. To address the conflict, authors performed experiments to study the influence of GO and reduced GO(rGO) on gram positive Staphylococcus aureus and gram negative Pseudomonas aeruginosa bacteria. GO restricts S. aureus and P. aeruginosa cell growth by 93.7% and 48.6% whereas, percentage inhibition by rGO are 67.7% and 93.3% respectively. GO destructs bacteria by cell membrane damage through chemical reaction whereas, rGO induce mechanical stress and pierce the cell membrane. Shape and type of bacteria act as the controlling factors in determining the bactericidal efficacy of the nanomaterials.
[Display omitted]
•GO and rGO nanosheets impede bacterial growth significantly.•Bactericidal efficacy of GO and rGO are influenced by shape and type of bacteria.•GO damages bacteria cell membrane by reaction driven interaction with the functionalities.•Bactericidal efficacy of rGO is dependent upon application of mechanical stress and generation of ROS. |
---|---|
AbstractList | The emergence of multi-drug resistant bacteria due to the misuse of antibiotics and inadequate development of antibiotic drugs is a global threat to human health. Recent development in materials research caused the emergence of nanomaterials with promising bactericidal properties. Carbon based nanomaterials like graphene and graphene oxide(GO) have appealed researchers for antimicrobial properties, although some researchers claimed that they promote bacteria growth. To address the conflict, authors performed experiments to study the influence of GO and reduced GO(rGO) on gram positive Staphylococcus aureus and gram negative Pseudomonas aeruginosa bacteria. GO restricts S. aureus and P. aeruginosa cell growth by 93.7% and 48.6% whereas, percentage inhibition by rGO are 67.7% and 93.3% respectively. GO destructs bacteria by cell membrane damage through chemical reaction whereas, rGO induce mechanical stress and pierce the cell membrane. Shape and type of bacteria act as the controlling factors in determining the bactericidal efficacy of the nanomaterials.
[Display omitted]
•GO and rGO nanosheets impede bacterial growth significantly.•Bactericidal efficacy of GO and rGO are influenced by shape and type of bacteria.•GO damages bacteria cell membrane by reaction driven interaction with the functionalities.•Bactericidal efficacy of rGO is dependent upon application of mechanical stress and generation of ROS. |
Author | Pal, Surjya K. Neogi, Sudarsan Bhattacharya, Proma Sengupta, Iman Chakraborty, Sudipto Talukdar, Monikangkana |
Author_xml | – sequence: 1 givenname: Iman orcidid: 0000-0001-8282-0587 surname: Sengupta fullname: Sengupta, Iman organization: Department of Chemical Engineering, Indian Institute of Technology Kharagpur, 721302, India – sequence: 2 givenname: Proma surname: Bhattacharya fullname: Bhattacharya, Proma organization: Department of Chemical Engineering, Indian Institute of Technology Kharagpur, 721302, India – sequence: 3 givenname: Monikangkana surname: Talukdar fullname: Talukdar, Monikangkana organization: Department of Chemical Engineering, Indian Institute of Technology Kharagpur, 721302, India – sequence: 4 givenname: Sudarsan surname: Neogi fullname: Neogi, Sudarsan organization: Department of Chemical Engineering, Indian Institute of Technology Kharagpur, 721302, India – sequence: 5 givenname: Surjya K. surname: Pal fullname: Pal, Surjya K. organization: Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, 721302, India – sequence: 6 givenname: Sudipto surname: Chakraborty fullname: Chakraborty, Sudipto email: sc@che.iitkgp.ernet.in organization: Department of Chemical Engineering, Indian Institute of Technology Kharagpur, 721302, India |
BookMark | eNqFkM1Kw0AUhQepYK19Axd5gcQ7M0madiFo8adQcKPrcXLnjp2SZsokFX17E-NCutDVPXD5DpzvnI1qXxNjlxwSDjy_2iboK_S7RAAvEi4SAH7CxkLwLAZZiNGvfMamTbMFAMFTELIYs9dbjS0Fh87oKiJrCdvI2-gt6P2Gaor8hzMU6dpEgcwByRy9FtGqttWBaqSeazZ6_x3KoVdfsFOrq4amP3fCXu7vnpeP8frpYbW8WccoIW9jmckiJW1m1oA0pZyjphJmNpMppRzRAmYZWAuyLBFzyU1mSep8zo3ItRFywhZDLwbfNIGsQtfq1vm6DdpVioPqdamtGnSpXpfiQnW6Ojg9gvfB7XT4_A-7HjDqhr07CqpB15swLnQelfHu74IvZl6KJA |
CitedBy_id | crossref_primary_10_2174_1570179418666210113162124 crossref_primary_10_1016_j_watres_2022_118121 crossref_primary_10_1155_2022_1497910 crossref_primary_10_1088_2053_1591_ab15a6 crossref_primary_10_1016_j_mtchem_2023_101492 crossref_primary_10_1002_smtd_202300930 crossref_primary_10_1016_j_matchemphys_2021_125258 crossref_primary_10_1186_s10033_021_00667_z crossref_primary_10_3390_polym11122000 crossref_primary_10_1002_adhm_202304572 crossref_primary_10_1002_cphc_202000769 crossref_primary_10_1016_j_coco_2024_102147 crossref_primary_10_1016_j_jdent_2024_105319 crossref_primary_10_1126_sciadv_adl3262 crossref_primary_10_1038_s41598_024_73007_5 crossref_primary_10_3390_polym15020267 crossref_primary_10_1007_s10876_023_02522_8 crossref_primary_10_1021_acsomega_2c02328 crossref_primary_10_1063_5_0096644 crossref_primary_10_1016_j_aquatox_2023_106640 crossref_primary_10_1016_j_colcom_2020_100288 crossref_primary_10_1155_are_6897333 crossref_primary_10_1021_acsomega_1c05596 crossref_primary_10_1039_D2EN00716A crossref_primary_10_1016_j_colsurfb_2021_111588 crossref_primary_10_3390_molecules30020240 crossref_primary_10_1016_j_jwpe_2022_103193 crossref_primary_10_1007_s44351_024_00008_0 crossref_primary_10_1021_acsabm_3c00078 crossref_primary_10_3390_applbiosci2020011 crossref_primary_10_1007_s10876_021_02120_6 crossref_primary_10_1186_s12917_022_03560_6 crossref_primary_10_1016_j_mtcomm_2021_102743 crossref_primary_10_1007_s10853_023_08534_z crossref_primary_10_1016_j_chemosphere_2023_140166 crossref_primary_10_1016_j_chemosphere_2022_136642 crossref_primary_10_1155_2021_9941577 crossref_primary_10_1016_j_jmst_2020_07_028 crossref_primary_10_1016_j_vacuum_2023_112328 crossref_primary_10_3390_nano12132278 crossref_primary_10_1016_j_cej_2019_122906 crossref_primary_10_1016_j_mseb_2023_116555 crossref_primary_10_1016_j_envres_2023_115465 crossref_primary_10_1016_j_oceram_2023_100395 crossref_primary_10_3390_microorganisms10101994 crossref_primary_10_3390_microorganisms12040814 crossref_primary_10_1039_D1NR02927D crossref_primary_10_1002_jobm_202300579 crossref_primary_10_1016_j_molstruc_2023_135787 crossref_primary_10_3390_biom13111571 crossref_primary_10_1007_s00289_024_05322_w crossref_primary_10_1002_aoc_6162 crossref_primary_10_3390_toxics10100588 crossref_primary_10_1016_j_jiec_2021_04_050 crossref_primary_10_3390_ijms23169096 crossref_primary_10_1016_j_inoche_2024_113842 crossref_primary_10_1021_acsomega_4c00748 crossref_primary_10_1016_j_funbio_2023_10_003 crossref_primary_10_1002_adfm_202313043 crossref_primary_10_1002_adfm_202103048 crossref_primary_10_1016_j_jcis_2020_06_058 crossref_primary_10_1016_j_synthmet_2022_117033 crossref_primary_10_1016_j_colsurfa_2023_133065 crossref_primary_10_1557_jmr_2020_55 crossref_primary_10_1016_j_mtcomm_2020_101737 crossref_primary_10_1016_j_ijbiomac_2022_11_200 crossref_primary_10_1038_s41598_025_90270_2 crossref_primary_10_1016_j_colsurfb_2023_113230 crossref_primary_10_3390_pharmaceutics15020338 crossref_primary_10_1016_j_jmrt_2021_01_093 crossref_primary_10_1016_j_scitotenv_2022_159515 crossref_primary_10_3389_fmicb_2021_623853 crossref_primary_10_1016_j_jiec_2023_03_047 crossref_primary_10_1016_j_jallcom_2019_153456 crossref_primary_10_1016_j_matchemphys_2023_127355 crossref_primary_10_1088_2053_1591_ab26cd crossref_primary_10_1007_s00289_021_03763_1 crossref_primary_10_1016_j_inoche_2024_113181 crossref_primary_10_1016_j_bioadv_2023_213662 crossref_primary_10_3390_microorganisms11030745 crossref_primary_10_1016_j_colsurfb_2023_113323 crossref_primary_10_1016_j_microc_2025_112887 crossref_primary_10_1038_s41579_020_0414_z crossref_primary_10_1063_5_0012465 crossref_primary_10_1016_j_colsurfb_2020_111385 crossref_primary_10_1002_adsu_202000076 crossref_primary_10_1038_s41598_024_63452_7 crossref_primary_10_1039_D1TB00033K crossref_primary_10_21931_RB_CSS_2023_08_01_63 crossref_primary_10_3389_fbioe_2023_1149588 crossref_primary_10_1515_ntrev_2023_0168 crossref_primary_10_1039_D2RA00912A crossref_primary_10_1016_j_colcom_2020_100344 crossref_primary_10_1016_j_matchemphys_2020_122906 crossref_primary_10_1021_acsami_4c21046 crossref_primary_10_3390_jfb13020077 crossref_primary_10_1016_j_arabjc_2022_104075 crossref_primary_10_1039_D4NJ01823K crossref_primary_10_1021_acsanm_0c02463 crossref_primary_10_1021_acsbiomaterials_1c00875 crossref_primary_10_1063_5_0128803 crossref_primary_10_1016_j_jtice_2023_105194 crossref_primary_10_1016_j_nanoms_2024_01_006 crossref_primary_10_1088_2053_1591_acd73f crossref_primary_10_3390_nano9050737 crossref_primary_10_3390_ijms25105328 crossref_primary_10_1016_j_matchemphys_2019_122300 crossref_primary_10_1166_mex_2022_2138 crossref_primary_10_1007_s42247_020_00117_x crossref_primary_10_1016_j_colcom_2024_100778 crossref_primary_10_1016_j_mser_2021_100610 crossref_primary_10_3390_nano11061378 crossref_primary_10_1007_s10876_021_02116_2 crossref_primary_10_1007_s11270_025_07760_2 crossref_primary_10_1016_j_mtsust_2023_100544 crossref_primary_10_1016_j_cofs_2020_12_021 crossref_primary_10_1016_j_inoche_2025_114371 crossref_primary_10_1016_j_molstruc_2022_132958 crossref_primary_10_2139_ssrn_4170681 crossref_primary_10_3389_fmolb_2022_995853 crossref_primary_10_3390_nano12020191 crossref_primary_10_1016_j_bioadv_2023_213440 crossref_primary_10_3390_coatings11101197 crossref_primary_10_1016_j_molstruc_2021_130091 crossref_primary_10_1016_j_bioactmat_2022_01_045 crossref_primary_10_1021_acsanm_0c00852 crossref_primary_10_1016_j_jece_2024_113474 crossref_primary_10_1016_j_scitotenv_2019_05_162 crossref_primary_10_62184_acj_jacj1000202424 crossref_primary_10_1016_j_radphyschem_2022_110109 crossref_primary_10_1002_bip_23579 crossref_primary_10_1016_j_cej_2020_125189 crossref_primary_10_1016_j_ecoenv_2024_116221 crossref_primary_10_1039_D3SU00400G crossref_primary_10_1088_2053_1591_ab5414 crossref_primary_10_2174_18753183_v12_e2209260 crossref_primary_10_3390_nano13030488 crossref_primary_10_3390_nano10020366 crossref_primary_10_1038_s41545_024_00378_7 crossref_primary_10_1016_j_jclepro_2022_135518 crossref_primary_10_1002_app_49823 crossref_primary_10_1016_j_inoche_2023_111214 crossref_primary_10_1111_wrr_13238 crossref_primary_10_4103_jos_jos_3_24 crossref_primary_10_3390_jfb12040059 crossref_primary_10_1146_annurev_food_032519_051804 crossref_primary_10_1039_D2GC00073C crossref_primary_10_1007_s00449_024_03077_2 crossref_primary_10_1007_s10854_023_11076_4 crossref_primary_10_3390_coatings13081324 |
Cites_doi | 10.1002/adma.200903611 10.1039/C0JM02806A 10.1021/nn101390x 10.1007/s11051-016-3673-x 10.1021/nn202699t 10.1002/adma.200800757 10.1039/C4CC07836E 10.1038/nrmicro2333 10.1088/2053-1583/3/2/025025 10.1016/j.colcom.2016.12.003 10.1002/adma.201001068 10.4103/joacp.JOACP_349_15 10.1016/j.colcom.2018.11.002 10.1021/la801744a 10.2147/IJN.S37397 10.1021/la3023908 10.1016/j.actbio.2009.02.003 10.1016/j.toxlet.2010.12.010 10.1016/j.jcis.2004.02.012 10.1016/j.actbio.2013.04.022 10.1016/j.colsurfb.2010.10.033 10.1021/nn1006368 10.1016/j.snb.2017.07.179 10.1016/j.colcom.2015.11.003 10.1039/c0nr00680g 10.2147/IJN.S153167 10.1016/j.jcis.2018.01.014 10.1089/ars.2006.8.753 10.1021/acsnano.5b02067 10.1016/j.colcom.2018.07.002 10.1038/nrmicro3380 10.1038/srep32185 10.1021/nn202451x 10.1088/2053-1591/aa8652 10.1016/j.actbio.2007.11.006 10.1016/j.colcom.2017.11.006 10.1038/s41467-017-02502-3 10.1557/jmr.2018.338 10.1021/acsnano.6b05692 10.1016/j.ces.2012.08.054 10.1021/nn101081t 10.3109/17435390.2014.930195 10.1016/j.scib.2017.12.012 10.1002/pssb.201000247 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. |
Copyright_xml | – notice: 2018 Elsevier B.V. |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.colcom.2018.12.001 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2215-0382 |
EndPage | 68 |
ExternalDocumentID | 10_1016_j_colcom_2018_12_001 S2215038218301377 |
GroupedDBID | --M 0R~ 0SF 4.4 457 4G. 6I. 7-5 AABXZ AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEXQZ AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AHPOS AIEXJ AIKHN AITUG AJBFU AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FYGXN GROUPED_DOAJ IXB KOM KQ8 M41 M~E NCXOZ O9- OAUVE OK1 RIG ROL SPC SPCBC SSG SSK SSM SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ACVFH ADCNI ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c306t-35384ead7fd03db39caeb07f534e41ccf0c550ff03bbcc631d5fe3a691d26ad23 |
IEDL.DBID | AIKHN |
ISSN | 2215-0382 |
IngestDate | Tue Jul 01 01:24:27 EDT 2025 Thu Apr 24 22:52:33 EDT 2025 Fri Feb 23 02:26:45 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | GO Antimicrobial properties rGO Gram positive bacteria Gram negative bacteria |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-35384ead7fd03db39caeb07f534e41ccf0c550ff03bbcc631d5fe3a691d26ad23 |
ORCID | 0000-0001-8282-0587 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2215038218301377 |
PageCount | 9 |
ParticipantIDs | crossref_citationtrail_10_1016_j_colcom_2018_12_001 crossref_primary_10_1016_j_colcom_2018_12_001 elsevier_sciencedirect_doi_10_1016_j_colcom_2018_12_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2019 2019-01-00 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: January 2019 |
PublicationDecade | 2010 |
PublicationTitle | Colloid and interface science communications |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Park, Mohanty, Suk, Nagaraja, An, Piner, Cai, Dreyer, Berry, Ruoff (bb0130) 2010; 22 Ruiz, Fernando, Wang, Brown, Luo, McNamara, Vangsness, Sun, Bunker (bb0145) 2011; 5 Zheng, Ma, Gao, Tian, Li, Zeng, Li (bb0115) 2018; 63 Hu (bb0225) 2005; 44 Yu, Zhang, Bulin, Li, Xing (bb0205) 2016; 6 Mangadlao, Santos, Felipe, de Leon, Rodrigues, Advincula (bb0050) 2015; 51 Chen, Peng, Wang, Shao, Yuan, Han (bb0165) 2014; 6 Salas, Sun, Lu, Tour (bb0175) 2010; 4 Piao, Kang, Lee, Kim, Kim, Choi, Choi, Hyun (bb0240) 2011; 201 Liu, Zeng, Hofmann, Burcombe, Wei, Jiang, Kong, Chen (bb0070) 2011; 5 Kaushal, Sharma, Mittal, Singh (bb0090) 2015; 7 Tavakoli, Nemati, Kharaziha, Akbari-Alavijeh (bb0035) 2019; 28 Paredes, Villar-Rodil, Martínez-Alonso, Tascón (bb0195) 2008; 24 Barbolina, Woods, Lozano, Kostarelos, Novoselov, Roberts (bb0060) 2016; 3 Fang, Li, Shen, Perez-Aguilar, Chong, Gao, Chai, Chen, Ge, Zhou (bb0080) 2018; 9 Wang, Yang, Park, Gou, Wang, Liu, Yao (bb0200) 2008; 112 Ruparelia, Chatterjee, Duttagupta, Mukherji (bb0030) 2008; 4 Gurunathan, Han, Dayem, Eppakayala, Kim (bb0155) 2012; 7 Akhavan, Ghaderi (bb0125) 2010; 4 Zhu, Murali, Cai, Li, Suk, Potts, Ruoff (bb0190) 2010; 22 Sengupta, Chakraborty, Talukdar, Pal, Chakraborty (bb0185) 2018; 33 Masip, Veeravalli, Georgiou (bb0235) 2006; 8 Pinto, Marques, Neto, Trindade, Daina, Sadocco (bb0110) 2009; 5 Saleh, Al-Shalalfeh, Al-Saadi (bb0215) 2018; 254 Jorio, Ferreira, Moutinho, Stavale, Achete, Capaz (bb0210) 2010; 247 Li, Mansukhani, Guiney, Ji, Zhao, Chang, French, Miller, Hersam, Nel, Xia (bb0170) 2016; 10 Bhattacharya, Neogi (bb0085) 2017; 4 Alswat, Bin Ahmad, Saleh (bb0095) 2017; 16 Liu, Hu, Zeng, Wu, Jiang, Wei, Wang, Kong, Chen (bb0025) 2012; 28 Nam, Al Nahain, Kim, In, Park (bb0105) 2013; 9 Ma, Zhang, Xiong, Yong, Zhao (bb0160) 2011; 21 Das, Sarma, Saikia, Kale, Shelke, Sengupta (bb0140) 2011; 83 Bayón, Cacicedo, Álvarez, Castro (bb0045) 2018; 26 Kirk, Pires, Black, Caipo, Crump, Devleesschauwer, Döpfer, Fazil, Fischer-Walker, Hald, Hall, Keddy, Lake, Lanata, Torgerson, Havelaar, Angulo (bb0005) 2015; 12 Qi, Gunawan, Xu, Chang (bb0075) 2012; 84 Kapoor, Saigal, Elongavan (bb0015) 2017; 33 Khan, Saleh, Wahab, Khan, Khan, Khan, Rahim, Kamal, Khan, Fahad (bb0230) 2018; 13 Karimi, Ghanbarzadeh, Hamishehkar, Mehramuz, Kafil (bb0100) 2018; 22 Marcano, Kosynkin, Berlin, Sinitskii, Sun, Slesarev, Alemany, Lu, Tour (bb0180) 2010; 4 Chen, Müller, Gilmore, Wallace, Li (bb0135) 2008; 20 Olivi, Alfè, Gargiulo, Valle, Mura, Di Giosia, Rapino, Palleschi, Uccelletti, Fiorito (bb0120) 2016; 18 Saleh, Al-Shalalfeh, Al-Saadi (bb0220) 2016; 6 Sondi, Salopek-Sondi (bb0040) 2004; 275 Blair, Webber, Baylay, Ogbolu, Piddock (bb0020) 2014; 13 Kohanski, Dwyer, Collins (bb0010) 2010; 8 Gajewicz, Schaeublin, Rasulev, Hussain, Leszczynska, Puzyn, Leszczynski (bb0245) 2015; 9 Perreault, De Faria, Nejati, Elimelech (bb0055) 2015; 9 Xu, Liao, Li, Li, Zhang, Wang, Hu, Li (bb0065) 2018; 514 Feng, Zhang, Liu (bb0150) 2011; 3 Zheng (10.1016/j.colcom.2018.12.001_bb0115) 2018; 63 Bhattacharya (10.1016/j.colcom.2018.12.001_bb0085) 2017; 4 Liu (10.1016/j.colcom.2018.12.001_bb0070) 2011; 5 Pinto (10.1016/j.colcom.2018.12.001_bb0110) 2009; 5 Paredes (10.1016/j.colcom.2018.12.001_bb0195) 2008; 24 Gurunathan (10.1016/j.colcom.2018.12.001_bb0155) 2012; 7 Masip (10.1016/j.colcom.2018.12.001_bb0235) 2006; 8 Wang (10.1016/j.colcom.2018.12.001_bb0200) 2008; 112 Khan (10.1016/j.colcom.2018.12.001_bb0230) 2018; 13 Kohanski (10.1016/j.colcom.2018.12.001_bb0010) 2010; 8 Kaushal (10.1016/j.colcom.2018.12.001_bb0090) 2015; 7 Xu (10.1016/j.colcom.2018.12.001_bb0065) 2018; 514 Hu (10.1016/j.colcom.2018.12.001_bb0225) 2005; 44 Nam (10.1016/j.colcom.2018.12.001_bb0105) 2013; 9 Marcano (10.1016/j.colcom.2018.12.001_bb0180) 2010; 4 Chen (10.1016/j.colcom.2018.12.001_bb0135) 2008; 20 Tavakoli (10.1016/j.colcom.2018.12.001_bb0035) 2019; 28 Sengupta (10.1016/j.colcom.2018.12.001_bb0185) 2018; 33 Gajewicz (10.1016/j.colcom.2018.12.001_bb0245) 2015; 9 Piao (10.1016/j.colcom.2018.12.001_bb0240) 2011; 201 Yu (10.1016/j.colcom.2018.12.001_bb0205) 2016; 6 Feng (10.1016/j.colcom.2018.12.001_bb0150) 2011; 3 Saleh (10.1016/j.colcom.2018.12.001_bb0220) 2016; 6 Blair (10.1016/j.colcom.2018.12.001_bb0020) 2014; 13 Das (10.1016/j.colcom.2018.12.001_bb0140) 2011; 83 Akhavan (10.1016/j.colcom.2018.12.001_bb0125) 2010; 4 Park (10.1016/j.colcom.2018.12.001_bb0130) 2010; 22 Jorio (10.1016/j.colcom.2018.12.001_bb0210) 2010; 247 Kirk (10.1016/j.colcom.2018.12.001_bb0005) 2015; 12 Bayón (10.1016/j.colcom.2018.12.001_bb0045) 2018; 26 Saleh (10.1016/j.colcom.2018.12.001_bb0215) 2018; 254 Mangadlao (10.1016/j.colcom.2018.12.001_bb0050) 2015; 51 Perreault (10.1016/j.colcom.2018.12.001_bb0055) 2015; 9 Alswat (10.1016/j.colcom.2018.12.001_bb0095) 2017; 16 Liu (10.1016/j.colcom.2018.12.001_bb0025) 2012; 28 Sondi (10.1016/j.colcom.2018.12.001_bb0040) 2004; 275 Zhu (10.1016/j.colcom.2018.12.001_bb0190) 2010; 22 Barbolina (10.1016/j.colcom.2018.12.001_bb0060) 2016; 3 Qi (10.1016/j.colcom.2018.12.001_bb0075) 2012; 84 Ruiz (10.1016/j.colcom.2018.12.001_bb0145) 2011; 5 Fang (10.1016/j.colcom.2018.12.001_bb0080) 2018; 9 Ma (10.1016/j.colcom.2018.12.001_bb0160) 2011; 21 Li (10.1016/j.colcom.2018.12.001_bb0170) 2016; 10 Chen (10.1016/j.colcom.2018.12.001_bb0165) 2014; 6 Salas (10.1016/j.colcom.2018.12.001_bb0175) 2010; 4 Karimi (10.1016/j.colcom.2018.12.001_bb0100) 2018; 22 Olivi (10.1016/j.colcom.2018.12.001_bb0120) 2016; 18 Kapoor (10.1016/j.colcom.2018.12.001_bb0015) 2017; 33 Ruparelia (10.1016/j.colcom.2018.12.001_bb0030) 2008; 4 |
References_xml | – volume: 51 start-page: 2886 year: 2015 end-page: 2889 ident: bb0050 article-title: On the antibacterial mechanism of graphene oxide (GO) Langmuir–Blodgett films publication-title: Chem. Commun. – volume: 514 start-page: 733 year: 2018 end-page: 739 ident: bb0065 article-title: Vancomycin-assisted green synthesis of reduced graphene oxide for antimicrobial applications publication-title: J. Colloid Interface Sci. – volume: 112 start-page: 8192 year: 2008 end-page: 8195 ident: bb0200 article-title: Facile synthesis and characterization of graphene nanosheets publication-title: J. Phys. Chem. B. – volume: 9 year: 2018 ident: bb0080 article-title: Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against Gram-positive and Gram-negative bacteria publication-title: Nat. Commun. – volume: 5 start-page: 6971 year: 2011 end-page: 6980 ident: bb0070 article-title: Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress publication-title: ACS Nano. – volume: 4 start-page: 4806 year: 2010 end-page: 4814 ident: bb0180 article-title: Improved synthesis of graphene oxide publication-title: ACS Nano. – volume: 44 start-page: 2259 year: 2005 end-page: 2261 ident: bb0225 article-title: A simple reduction route to carbon hollow spheres publication-title: Indian J. Chem. - Sect. A Inorganic, Phys. Theor. Anal. Chem. – volume: 33 start-page: 4113 year: 2018 end-page: 4122 ident: bb0185 article-title: Thermal reduction of graphene oxide: how temperature influences purity publication-title: J. Mater. Res. – volume: 84 start-page: 552 year: 2012 end-page: 556 ident: bb0075 article-title: Cefalexin-immobilized multi-walled carbon nanotubes show strong antimicrobial and anti-adhesion properties publication-title: Chem. Eng. Sci. – volume: 5 start-page: 2279 year: 2009 end-page: 2289 ident: bb0110 article-title: Antibacterial activity of nanocomposites of silver and bacterial or vegetable cellulosic fibers publication-title: Acta Biomater. – volume: 21 start-page: 3350 year: 2011 end-page: 3352 ident: bb0160 article-title: Preparation, characterization and antibacterial properties of silver-modified graphene oxide publication-title: J. Mater. Chem. – volume: 28 start-page: 20 year: 2019 end-page: 28 ident: bb0035 article-title: Embedding CuO nanoparticles in PDMS-SiO publication-title: Colloid Interface Sci. Commun. – volume: 4 start-page: 5731 year: 2010 end-page: 5736 ident: bb0125 article-title: Toxicity of graphene and graphene oxide nanowalls against bacteria publication-title: ACS Nano. – volume: 20 start-page: 3557 year: 2008 end-page: 3561 ident: bb0135 article-title: Mechanically strong, electrically conductive, and biocompatible graphene paper publication-title: Adv. Mater. – volume: 4 year: 2017 ident: bb0085 article-title: Gentamicin coated iron oxide nanoparticles as novel antibacterial agents publication-title: Mater. Res. Express. – volume: 8 start-page: 423 year: 2010 end-page: 435 ident: bb0010 article-title: How antibiotics kill bacteria: from targets to networks publication-title: Nat. Rev. Microbiol. – volume: 18 year: 2016 ident: bb0120 article-title: Antimicrobial properties of graphene-like nanoparticles: coating effect on publication-title: J. Nanoparticle Res. – volume: 254 start-page: 1110 year: 2018 end-page: 1117 ident: bb0215 article-title: Silver loaded graphene as a substrate for sensing 2-thiouracil using surface-enhanced Raman scattering publication-title: Sensors Actuators B Chem. – volume: 201 start-page: 92 year: 2011 end-page: 100 ident: bb0240 article-title: Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis publication-title: Toxicol. Lett. – volume: 24 start-page: 10560 year: 2008 end-page: 10564 ident: bb0195 article-title: Graphene oxide dispersions in organic solvents publication-title: Langmuir. – volume: 16 start-page: 19 year: 2017 end-page: 24 ident: bb0095 article-title: Preparation and characterization of zeolite\zinc oxide-copper oxide nanocomposite: antibacterial activities publication-title: Colloid Interface Sci. Commun. – volume: 5 start-page: 8100 year: 2011 end-page: 8107 ident: bb0145 article-title: Graphene oxide: a nonspecific enhancer of cellular growth publication-title: ACS Nano. – volume: 9 start-page: 313 year: 2015 end-page: 325 ident: bb0245 article-title: Towards understanding mechanisms governing cytotoxicity of metal oxides nanoparticles: Hints from nano-QSAR studies publication-title: Nanotoxicology. – volume: 13 start-page: 733 year: 2018 end-page: 762 ident: bb0230 article-title: Nanosilver: new ageless and versatile biomedical therapeutic scaffold publication-title: Int. J. Nanomedicine. – volume: 247 start-page: 2980 year: 2010 end-page: 2982 ident: bb0210 article-title: Measuring disorder in graphene with the G and D bands publication-title: Phys. Status Solidi Basic Res. – volume: 6 start-page: 32185 year: 2016 ident: bb0220 article-title: Graphene Dendrimer-stabilized silver nanoparticles for detection of methimazole using Surface-enhanced Raman scattering with computational assignment publication-title: Sci. Rep. – volume: 6 year: 2014 ident: bb0165 article-title: Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation publication-title: Nanoscale. – volume: 4 start-page: 4852 year: 2010 end-page: 4856 ident: bb0175 article-title: Reduction of graphene oxide via bacteria respiration publication-title: ACS Nano. – volume: 275 start-page: 177 year: 2004 end-page: 182 ident: bb0040 article-title: Silver nanoparticles as antimicrobial agent: a case study on publication-title: J. Colloid Interface Sci. – volume: 13 start-page: 42 year: 2014 ident: bb0020 article-title: Molecular mechanisms of antibiotic resistance publication-title: Nat. Rev. Microbiol. – volume: 33 start-page: 300 year: 2017 end-page: 305 ident: bb0015 article-title: Action and resistance mechanisms of antibiotics: a guide for clinicians publication-title: J. Anaesthesiol. Clin. Pharmacol. – volume: 63 start-page: 133 year: 2018 end-page: 142 ident: bb0115 article-title: Antibacterial applications of graphene oxides: structure-activity relationships, molecular initiating events and biosafety publication-title: Sci. Bull. – volume: 26 start-page: 7 year: 2018 end-page: 13 ident: bb0045 article-title: Self-assembly stereo-specific synthesis of silver phosphate microparticles on bacterial cellulose membrane surface for antimicrobial applications publication-title: Colloid Interface Sci. Commun. – volume: 3 start-page: 1252 year: 2011 ident: bb0150 article-title: Graphene based gene transfection publication-title: Nanoscale. – volume: 22 start-page: 1736 year: 2010 end-page: 1740 ident: bb0130 article-title: Biocompatible, robust free-standing paper composed of a TWEEN/graphene composite publication-title: Adv. Mater. – volume: 8 start-page: 753 year: 2006 end-page: 762 ident: bb0235 article-title: The many faces of glutathione in bacteria publication-title: Antioxid. Redox Signal. – volume: 83 start-page: 16 year: 2011 end-page: 22 ident: bb0140 article-title: Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity publication-title: Colloids Surfaces B Biointerfaces. – volume: 9 start-page: 7996 year: 2013 end-page: 8003 ident: bb0105 article-title: Successful stabilization of functionalized hybrid graphene for high-performance antimicrobial activity publication-title: Acta Biomater. – volume: 22 start-page: 3906 year: 2010 end-page: 3924 ident: bb0190 article-title: Graphene and graphene oxide: synthesis, properties, and applications publication-title: Adv. Mater. – volume: 28 start-page: 12364 year: 2012 end-page: 12372 ident: bb0025 article-title: Lateral dimension-dependent antibacterial activity of graphene oxide sheets publication-title: Langmuir – volume: 22 start-page: 18 year: 2018 end-page: 24 ident: bb0100 article-title: Antioxidant, antimicrobial and physicochemical properties of turmeric extract-loaded nanostructured lipid carrier (NLC) publication-title: Colloid Interface Sci. Commun. – volume: 4 start-page: 707 year: 2008 end-page: 716 ident: bb0030 article-title: Strain specificity in antimicrobial activity of silver and copper nanoparticles publication-title: Acta Biomater. – volume: 3 year: 2016 ident: bb0060 article-title: Purity of graphene oxide determines its antibacterial activity publication-title: 2D Mater. – volume: 7 start-page: 5901 year: 2012 end-page: 5914 ident: bb0155 article-title: Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa publication-title: Int. J. Nanomedicine. – volume: 12 year: 2015 ident: bb0005 article-title: Correction: world health organization estimates of the global and regional disease burden of 22 foodborne bacterial, protozoal, and viral diseases, 2010: a data synthesis publication-title: PLOS Med. – volume: 7 start-page: 1 year: 2015 end-page: 6 ident: bb0090 article-title: A novel zinc oxide–zirconium (IV) phosphate nanocomposite as antibacterial material with enhanced ion exchange properties publication-title: Colloids Interface Sci. Commun. – volume: 10 start-page: 10966 year: 2016 end-page: 10980 ident: bb0170 article-title: Identification and optimization of carbon radicals on hydrated graphene oxide for ubiquitous antibacterial coatings publication-title: ACS Nano. – volume: 9 start-page: 7226 year: 2015 end-page: 7236 ident: bb0055 article-title: Antimicrobial properties of graphene oxide nanosheets: why size matters publication-title: ACS Nano. – volume: 6 year: 2016 ident: bb0205 article-title: High-efficient synthesis of graphene oxide based on improved hummers method publication-title: Sci. Rep. – volume: 22 start-page: 1736 year: 2010 ident: 10.1016/j.colcom.2018.12.001_bb0130 article-title: Biocompatible, robust free-standing paper composed of a TWEEN/graphene composite publication-title: Adv. Mater. doi: 10.1002/adma.200903611 – volume: 21 start-page: 3350 year: 2011 ident: 10.1016/j.colcom.2018.12.001_bb0160 article-title: Preparation, characterization and antibacterial properties of silver-modified graphene oxide publication-title: J. Mater. Chem. doi: 10.1039/C0JM02806A – volume: 4 start-page: 5731 year: 2010 ident: 10.1016/j.colcom.2018.12.001_bb0125 article-title: Toxicity of graphene and graphene oxide nanowalls against bacteria publication-title: ACS Nano. doi: 10.1021/nn101390x – volume: 18 year: 2016 ident: 10.1016/j.colcom.2018.12.001_bb0120 article-title: Antimicrobial properties of graphene-like nanoparticles: coating effect on Staphylococcus aureus publication-title: J. Nanoparticle Res. doi: 10.1007/s11051-016-3673-x – volume: 5 start-page: 8100 year: 2011 ident: 10.1016/j.colcom.2018.12.001_bb0145 article-title: Graphene oxide: a nonspecific enhancer of cellular growth publication-title: ACS Nano. doi: 10.1021/nn202699t – volume: 20 start-page: 3557 year: 2008 ident: 10.1016/j.colcom.2018.12.001_bb0135 article-title: Mechanically strong, electrically conductive, and biocompatible graphene paper publication-title: Adv. Mater. doi: 10.1002/adma.200800757 – volume: 6 year: 2016 ident: 10.1016/j.colcom.2018.12.001_bb0205 article-title: High-efficient synthesis of graphene oxide based on improved hummers method publication-title: Sci. Rep. – volume: 51 start-page: 2886 year: 2015 ident: 10.1016/j.colcom.2018.12.001_bb0050 article-title: On the antibacterial mechanism of graphene oxide (GO) Langmuir–Blodgett films publication-title: Chem. Commun. doi: 10.1039/C4CC07836E – volume: 8 start-page: 423 year: 2010 ident: 10.1016/j.colcom.2018.12.001_bb0010 article-title: How antibiotics kill bacteria: from targets to networks publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro2333 – volume: 3 year: 2016 ident: 10.1016/j.colcom.2018.12.001_bb0060 article-title: Purity of graphene oxide determines its antibacterial activity publication-title: 2D Mater. doi: 10.1088/2053-1583/3/2/025025 – volume: 16 start-page: 19 year: 2017 ident: 10.1016/j.colcom.2018.12.001_bb0095 article-title: Preparation and characterization of zeolite\zinc oxide-copper oxide nanocomposite: antibacterial activities publication-title: Colloid Interface Sci. Commun. doi: 10.1016/j.colcom.2016.12.003 – volume: 22 start-page: 3906 year: 2010 ident: 10.1016/j.colcom.2018.12.001_bb0190 article-title: Graphene and graphene oxide: synthesis, properties, and applications publication-title: Adv. Mater. doi: 10.1002/adma.201001068 – volume: 33 start-page: 300 year: 2017 ident: 10.1016/j.colcom.2018.12.001_bb0015 article-title: Action and resistance mechanisms of antibiotics: a guide for clinicians publication-title: J. Anaesthesiol. Clin. Pharmacol. doi: 10.4103/joacp.JOACP_349_15 – volume: 28 start-page: 20 year: 2019 ident: 10.1016/j.colcom.2018.12.001_bb0035 article-title: Embedding CuO nanoparticles in PDMS-SiO2 coating to improve antibacterial characteristic and corrosion resistance publication-title: Colloid Interface Sci. Commun. doi: 10.1016/j.colcom.2018.11.002 – volume: 24 start-page: 10560 year: 2008 ident: 10.1016/j.colcom.2018.12.001_bb0195 article-title: Graphene oxide dispersions in organic solvents publication-title: Langmuir. doi: 10.1021/la801744a – volume: 7 start-page: 5901 year: 2012 ident: 10.1016/j.colcom.2018.12.001_bb0155 article-title: Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa publication-title: Int. J. Nanomedicine. doi: 10.2147/IJN.S37397 – volume: 28 start-page: 12364 year: 2012 ident: 10.1016/j.colcom.2018.12.001_bb0025 article-title: Lateral dimension-dependent antibacterial activity of graphene oxide sheets publication-title: Langmuir doi: 10.1021/la3023908 – volume: 5 start-page: 2279 year: 2009 ident: 10.1016/j.colcom.2018.12.001_bb0110 article-title: Antibacterial activity of nanocomposites of silver and bacterial or vegetable cellulosic fibers publication-title: Acta Biomater. doi: 10.1016/j.actbio.2009.02.003 – volume: 201 start-page: 92 year: 2011 ident: 10.1016/j.colcom.2018.12.001_bb0240 article-title: Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis publication-title: Toxicol. Lett. doi: 10.1016/j.toxlet.2010.12.010 – volume: 275 start-page: 177 year: 2004 ident: 10.1016/j.colcom.2018.12.001_bb0040 article-title: Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2004.02.012 – volume: 44 start-page: 2259 year: 2005 ident: 10.1016/j.colcom.2018.12.001_bb0225 article-title: A simple reduction route to carbon hollow spheres publication-title: Indian J. Chem. - Sect. A Inorganic, Phys. Theor. Anal. Chem. – volume: 9 start-page: 7996 year: 2013 ident: 10.1016/j.colcom.2018.12.001_bb0105 article-title: Successful stabilization of functionalized hybrid graphene for high-performance antimicrobial activity publication-title: Acta Biomater. doi: 10.1016/j.actbio.2013.04.022 – volume: 83 start-page: 16 year: 2011 ident: 10.1016/j.colcom.2018.12.001_bb0140 article-title: Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity publication-title: Colloids Surfaces B Biointerfaces. doi: 10.1016/j.colsurfb.2010.10.033 – volume: 4 start-page: 4806 year: 2010 ident: 10.1016/j.colcom.2018.12.001_bb0180 article-title: Improved synthesis of graphene oxide publication-title: ACS Nano. doi: 10.1021/nn1006368 – volume: 254 start-page: 1110 year: 2018 ident: 10.1016/j.colcom.2018.12.001_bb0215 article-title: Silver loaded graphene as a substrate for sensing 2-thiouracil using surface-enhanced Raman scattering publication-title: Sensors Actuators B Chem. doi: 10.1016/j.snb.2017.07.179 – volume: 7 start-page: 1 year: 2015 ident: 10.1016/j.colcom.2018.12.001_bb0090 article-title: A novel zinc oxide–zirconium (IV) phosphate nanocomposite as antibacterial material with enhanced ion exchange properties publication-title: Colloids Interface Sci. Commun. doi: 10.1016/j.colcom.2015.11.003 – volume: 3 start-page: 1252 year: 2011 ident: 10.1016/j.colcom.2018.12.001_bb0150 article-title: Graphene based gene transfection publication-title: Nanoscale. doi: 10.1039/c0nr00680g – volume: 13 start-page: 733 year: 2018 ident: 10.1016/j.colcom.2018.12.001_bb0230 article-title: Nanosilver: new ageless and versatile biomedical therapeutic scaffold publication-title: Int. J. Nanomedicine. doi: 10.2147/IJN.S153167 – volume: 514 start-page: 733 year: 2018 ident: 10.1016/j.colcom.2018.12.001_bb0065 article-title: Vancomycin-assisted green synthesis of reduced graphene oxide for antimicrobial applications publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2018.01.014 – volume: 8 start-page: 753 year: 2006 ident: 10.1016/j.colcom.2018.12.001_bb0235 article-title: The many faces of glutathione in bacteria publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2006.8.753 – volume: 9 start-page: 7226 year: 2015 ident: 10.1016/j.colcom.2018.12.001_bb0055 article-title: Antimicrobial properties of graphene oxide nanosheets: why size matters publication-title: ACS Nano. doi: 10.1021/acsnano.5b02067 – volume: 26 start-page: 7 year: 2018 ident: 10.1016/j.colcom.2018.12.001_bb0045 article-title: Self-assembly stereo-specific synthesis of silver phosphate microparticles on bacterial cellulose membrane surface for antimicrobial applications publication-title: Colloid Interface Sci. Commun. doi: 10.1016/j.colcom.2018.07.002 – volume: 13 start-page: 42 year: 2014 ident: 10.1016/j.colcom.2018.12.001_bb0020 article-title: Molecular mechanisms of antibiotic resistance publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro3380 – volume: 6 start-page: 32185 year: 2016 ident: 10.1016/j.colcom.2018.12.001_bb0220 article-title: Graphene Dendrimer-stabilized silver nanoparticles for detection of methimazole using Surface-enhanced Raman scattering with computational assignment publication-title: Sci. Rep. doi: 10.1038/srep32185 – volume: 5 start-page: 6971 year: 2011 ident: 10.1016/j.colcom.2018.12.001_bb0070 article-title: Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress publication-title: ACS Nano. doi: 10.1021/nn202451x – volume: 4 year: 2017 ident: 10.1016/j.colcom.2018.12.001_bb0085 article-title: Gentamicin coated iron oxide nanoparticles as novel antibacterial agents publication-title: Mater. Res. Express. doi: 10.1088/2053-1591/aa8652 – volume: 4 start-page: 707 year: 2008 ident: 10.1016/j.colcom.2018.12.001_bb0030 article-title: Strain specificity in antimicrobial activity of silver and copper nanoparticles publication-title: Acta Biomater. doi: 10.1016/j.actbio.2007.11.006 – volume: 22 start-page: 18 year: 2018 ident: 10.1016/j.colcom.2018.12.001_bb0100 article-title: Antioxidant, antimicrobial and physicochemical properties of turmeric extract-loaded nanostructured lipid carrier (NLC) publication-title: Colloid Interface Sci. Commun. doi: 10.1016/j.colcom.2017.11.006 – volume: 12 year: 2015 ident: 10.1016/j.colcom.2018.12.001_bb0005 article-title: Correction: world health organization estimates of the global and regional disease burden of 22 foodborne bacterial, protozoal, and viral diseases, 2010: a data synthesis publication-title: PLOS Med. – volume: 6 year: 2014 ident: 10.1016/j.colcom.2018.12.001_bb0165 article-title: Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation publication-title: Nanoscale. – volume: 9 year: 2018 ident: 10.1016/j.colcom.2018.12.001_bb0080 article-title: Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against Gram-positive and Gram-negative bacteria publication-title: Nat. Commun. doi: 10.1038/s41467-017-02502-3 – volume: 33 start-page: 4113 year: 2018 ident: 10.1016/j.colcom.2018.12.001_bb0185 article-title: Thermal reduction of graphene oxide: how temperature influences purity publication-title: J. Mater. Res. doi: 10.1557/jmr.2018.338 – volume: 112 start-page: 8192 year: 2008 ident: 10.1016/j.colcom.2018.12.001_bb0200 article-title: Facile synthesis and characterization of graphene nanosheets publication-title: J. Phys. Chem. B. – volume: 10 start-page: 10966 year: 2016 ident: 10.1016/j.colcom.2018.12.001_bb0170 article-title: Identification and optimization of carbon radicals on hydrated graphene oxide for ubiquitous antibacterial coatings publication-title: ACS Nano. doi: 10.1021/acsnano.6b05692 – volume: 84 start-page: 552 year: 2012 ident: 10.1016/j.colcom.2018.12.001_bb0075 article-title: Cefalexin-immobilized multi-walled carbon nanotubes show strong antimicrobial and anti-adhesion properties publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2012.08.054 – volume: 4 start-page: 4852 year: 2010 ident: 10.1016/j.colcom.2018.12.001_bb0175 article-title: Reduction of graphene oxide via bacteria respiration publication-title: ACS Nano. doi: 10.1021/nn101081t – volume: 9 start-page: 313 year: 2015 ident: 10.1016/j.colcom.2018.12.001_bb0245 article-title: Towards understanding mechanisms governing cytotoxicity of metal oxides nanoparticles: Hints from nano-QSAR studies publication-title: Nanotoxicology. doi: 10.3109/17435390.2014.930195 – volume: 63 start-page: 133 year: 2018 ident: 10.1016/j.colcom.2018.12.001_bb0115 article-title: Antibacterial applications of graphene oxides: structure-activity relationships, molecular initiating events and biosafety publication-title: Sci. Bull. doi: 10.1016/j.scib.2017.12.012 – volume: 247 start-page: 2980 year: 2010 ident: 10.1016/j.colcom.2018.12.001_bb0210 article-title: Measuring disorder in graphene with the G and D bands publication-title: Phys. Status Solidi Basic Res. doi: 10.1002/pssb.201000247 |
SSID | ssj0002140238 |
Score | 2.493786 |
Snippet | The emergence of multi-drug resistant bacteria due to the misuse of antibiotics and inadequate development of antibiotic drugs is a global threat to human... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 60 |
SubjectTerms | Antimicrobial properties Gram negative bacteria Gram positive bacteria rGO |
Title | Bactericidal effect of graphene oxide and reduced graphene oxide: Influence of shape of bacteria |
URI | https://dx.doi.org/10.1016/j.colcom.2018.12.001 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61vXgRRcX6KDl4Xbqb7NNbWyythR7UYm9rnliRbakV_PlOHlt8gIKnfWQnLB_DfJPwZQahSxlHOi9iGWSaqwACngzyVFqVBUtzbnJiq7aYpqNZfDNP5g00qM_CGFmlj_0uptto7d90PZrd1WLRvSPAViHNDcfbunk7qEVokYJrt3rjyWi63WohsIggtqe1MQmMTX2Iziq9AHGjHAEqzO3WoG8Q84OkPhHPcB_t-YwR99xPHaCGqg7RY99VWRYLCWNOlIGXGtv60xC-8PJ9IRVmlcRrU5xVyW9DV3hctycxdq9PbGVvuJuXHaHZ8Pp-MAp8s4RAQNa_CShErhjcItMypJLTQjDFw0wnNFZxJIQOBQCvdUg5FyKlkUy0oiwtIklSJgk9Rs1qWakThHWWMWB2wgtiVlSCF7mUsMzRRQx8zpM2ojU6pfCVxE1Di5eylow9lw7T0mBaRsQo59oo2FqtXCWNP77PauDLLx5RQrD_1fL035ZnaBeeCrfFco6am_WbuoCkY8M73qnMdXL7MOmgnfG8_wGRaNhO |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSgMxFA21LnQjior1mYXb0JnJdB7ubLG0Wruxhe5injgi01Ir-PneJDPFByi4Gya5w3AI59yEk3sRulRxaLI8ViQ1QhMgPEWyRDmXBU8yYXNi57YYJ4NpfDvrzBqoV9-FsbbKivs9pzu2rt60KzTbi6JoP0SgVgHNrMa7unkbaBOygdT2bxjOuuuDlgi2EJHraG0DiI2or9A5nxfgbX0jIISZOxis2sP8kKhPstPfRTtVvoiv_S_toYYu99Fj19dYloWCMW_JwHODXfVpIC88fy-UxrxUeGlLs2r1begKD-vmJDbu9Ykv3IPw3-UHaNq_mfQGpGqVQCTk_CtCgbdiWBSpUQFVguaSaxGkpkNjHYdSmkAC7MYEVAgpExqqjtGUJ3moooSriB6iZjkv9RHCJk056Hok8sjup6TIM6Vgk2PyGNRcdFqI1ugwWdURt-0sXlhtGHtmHlNmMWVhZH1zLUTWUQtfR-OP-WkNPPuyHhhQ_a-Rx_-OvEBbg8n9iI2G47sTtA0juT9sOUXN1fJNn0H6sRLnbnl9AKD713Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bactericidal+effect+of+graphene+oxide+and+reduced+graphene+oxide%3A+Influence+of+shape+of+bacteria&rft.jtitle=Colloid+and+interface+science+communications&rft.au=Sengupta%2C+Iman&rft.au=Bhattacharya%2C+Proma&rft.au=Talukdar%2C+Monikangkana&rft.au=Neogi%2C+Sudarsan&rft.date=2019-01-01&rft.issn=2215-0382&rft.eissn=2215-0382&rft.volume=28&rft.spage=60&rft.epage=68&rft_id=info:doi/10.1016%2Fj.colcom.2018.12.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_colcom_2018_12_001 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2215-0382&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2215-0382&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2215-0382&client=summon |