Bactericidal effect of graphene oxide and reduced graphene oxide: Influence of shape of bacteria

The emergence of multi-drug resistant bacteria due to the misuse of antibiotics and inadequate development of antibiotic drugs is a global threat to human health. Recent development in materials research caused the emergence of nanomaterials with promising bactericidal properties. Carbon based nanom...

Full description

Saved in:
Bibliographic Details
Published inColloid and interface science communications Vol. 28; pp. 60 - 68
Main Authors Sengupta, Iman, Bhattacharya, Proma, Talukdar, Monikangkana, Neogi, Sudarsan, Pal, Surjya K., Chakraborty, Sudipto
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The emergence of multi-drug resistant bacteria due to the misuse of antibiotics and inadequate development of antibiotic drugs is a global threat to human health. Recent development in materials research caused the emergence of nanomaterials with promising bactericidal properties. Carbon based nanomaterials like graphene and graphene oxide(GO) have appealed researchers for antimicrobial properties, although some researchers claimed that they promote bacteria growth. To address the conflict, authors performed experiments to study the influence of GO and reduced GO(rGO) on gram positive Staphylococcus aureus and gram negative Pseudomonas aeruginosa bacteria. GO restricts S. aureus and P. aeruginosa cell growth by 93.7% and 48.6% whereas, percentage inhibition by rGO are 67.7% and 93.3% respectively. GO destructs bacteria by cell membrane damage through chemical reaction whereas, rGO induce mechanical stress and pierce the cell membrane. Shape and type of bacteria act as the controlling factors in determining the bactericidal efficacy of the nanomaterials. [Display omitted] •GO and rGO nanosheets impede bacterial growth significantly.•Bactericidal efficacy of GO and rGO are influenced by shape and type of bacteria.•GO damages bacteria cell membrane by reaction driven interaction with the functionalities.•Bactericidal efficacy of rGO is dependent upon application of mechanical stress and generation of ROS.
AbstractList The emergence of multi-drug resistant bacteria due to the misuse of antibiotics and inadequate development of antibiotic drugs is a global threat to human health. Recent development in materials research caused the emergence of nanomaterials with promising bactericidal properties. Carbon based nanomaterials like graphene and graphene oxide(GO) have appealed researchers for antimicrobial properties, although some researchers claimed that they promote bacteria growth. To address the conflict, authors performed experiments to study the influence of GO and reduced GO(rGO) on gram positive Staphylococcus aureus and gram negative Pseudomonas aeruginosa bacteria. GO restricts S. aureus and P. aeruginosa cell growth by 93.7% and 48.6% whereas, percentage inhibition by rGO are 67.7% and 93.3% respectively. GO destructs bacteria by cell membrane damage through chemical reaction whereas, rGO induce mechanical stress and pierce the cell membrane. Shape and type of bacteria act as the controlling factors in determining the bactericidal efficacy of the nanomaterials. [Display omitted] •GO and rGO nanosheets impede bacterial growth significantly.•Bactericidal efficacy of GO and rGO are influenced by shape and type of bacteria.•GO damages bacteria cell membrane by reaction driven interaction with the functionalities.•Bactericidal efficacy of rGO is dependent upon application of mechanical stress and generation of ROS.
Author Pal, Surjya K.
Neogi, Sudarsan
Bhattacharya, Proma
Sengupta, Iman
Chakraborty, Sudipto
Talukdar, Monikangkana
Author_xml – sequence: 1
  givenname: Iman
  orcidid: 0000-0001-8282-0587
  surname: Sengupta
  fullname: Sengupta, Iman
  organization: Department of Chemical Engineering, Indian Institute of Technology Kharagpur, 721302, India
– sequence: 2
  givenname: Proma
  surname: Bhattacharya
  fullname: Bhattacharya, Proma
  organization: Department of Chemical Engineering, Indian Institute of Technology Kharagpur, 721302, India
– sequence: 3
  givenname: Monikangkana
  surname: Talukdar
  fullname: Talukdar, Monikangkana
  organization: Department of Chemical Engineering, Indian Institute of Technology Kharagpur, 721302, India
– sequence: 4
  givenname: Sudarsan
  surname: Neogi
  fullname: Neogi, Sudarsan
  organization: Department of Chemical Engineering, Indian Institute of Technology Kharagpur, 721302, India
– sequence: 5
  givenname: Surjya K.
  surname: Pal
  fullname: Pal, Surjya K.
  organization: Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, 721302, India
– sequence: 6
  givenname: Sudipto
  surname: Chakraborty
  fullname: Chakraborty, Sudipto
  email: sc@che.iitkgp.ernet.in
  organization: Department of Chemical Engineering, Indian Institute of Technology Kharagpur, 721302, India
BookMark eNqFkM1Kw0AUhQepYK19Axd5gcQ7M0madiFo8adQcKPrcXLnjp2SZsokFX17E-NCutDVPXD5DpzvnI1qXxNjlxwSDjy_2iboK_S7RAAvEi4SAH7CxkLwLAZZiNGvfMamTbMFAMFTELIYs9dbjS0Fh87oKiJrCdvI2-gt6P2Gaor8hzMU6dpEgcwByRy9FtGqttWBaqSeazZ6_x3KoVdfsFOrq4amP3fCXu7vnpeP8frpYbW8WccoIW9jmckiJW1m1oA0pZyjphJmNpMppRzRAmYZWAuyLBFzyU1mSep8zo3ItRFywhZDLwbfNIGsQtfq1vm6DdpVioPqdamtGnSpXpfiQnW6Ojg9gvfB7XT4_A-7HjDqhr07CqpB15swLnQelfHu74IvZl6KJA
CitedBy_id crossref_primary_10_2174_1570179418666210113162124
crossref_primary_10_1016_j_watres_2022_118121
crossref_primary_10_1155_2022_1497910
crossref_primary_10_1088_2053_1591_ab15a6
crossref_primary_10_1016_j_mtchem_2023_101492
crossref_primary_10_1002_smtd_202300930
crossref_primary_10_1016_j_matchemphys_2021_125258
crossref_primary_10_1186_s10033_021_00667_z
crossref_primary_10_3390_polym11122000
crossref_primary_10_1002_adhm_202304572
crossref_primary_10_1002_cphc_202000769
crossref_primary_10_1016_j_coco_2024_102147
crossref_primary_10_1016_j_jdent_2024_105319
crossref_primary_10_1126_sciadv_adl3262
crossref_primary_10_1038_s41598_024_73007_5
crossref_primary_10_3390_polym15020267
crossref_primary_10_1007_s10876_023_02522_8
crossref_primary_10_1021_acsomega_2c02328
crossref_primary_10_1063_5_0096644
crossref_primary_10_1016_j_aquatox_2023_106640
crossref_primary_10_1016_j_colcom_2020_100288
crossref_primary_10_1155_are_6897333
crossref_primary_10_1021_acsomega_1c05596
crossref_primary_10_1039_D2EN00716A
crossref_primary_10_1016_j_colsurfb_2021_111588
crossref_primary_10_3390_molecules30020240
crossref_primary_10_1016_j_jwpe_2022_103193
crossref_primary_10_1007_s44351_024_00008_0
crossref_primary_10_1021_acsabm_3c00078
crossref_primary_10_3390_applbiosci2020011
crossref_primary_10_1007_s10876_021_02120_6
crossref_primary_10_1186_s12917_022_03560_6
crossref_primary_10_1016_j_mtcomm_2021_102743
crossref_primary_10_1007_s10853_023_08534_z
crossref_primary_10_1016_j_chemosphere_2023_140166
crossref_primary_10_1016_j_chemosphere_2022_136642
crossref_primary_10_1155_2021_9941577
crossref_primary_10_1016_j_jmst_2020_07_028
crossref_primary_10_1016_j_vacuum_2023_112328
crossref_primary_10_3390_nano12132278
crossref_primary_10_1016_j_cej_2019_122906
crossref_primary_10_1016_j_mseb_2023_116555
crossref_primary_10_1016_j_envres_2023_115465
crossref_primary_10_1016_j_oceram_2023_100395
crossref_primary_10_3390_microorganisms10101994
crossref_primary_10_3390_microorganisms12040814
crossref_primary_10_1039_D1NR02927D
crossref_primary_10_1002_jobm_202300579
crossref_primary_10_1016_j_molstruc_2023_135787
crossref_primary_10_3390_biom13111571
crossref_primary_10_1007_s00289_024_05322_w
crossref_primary_10_1002_aoc_6162
crossref_primary_10_3390_toxics10100588
crossref_primary_10_1016_j_jiec_2021_04_050
crossref_primary_10_3390_ijms23169096
crossref_primary_10_1016_j_inoche_2024_113842
crossref_primary_10_1021_acsomega_4c00748
crossref_primary_10_1016_j_funbio_2023_10_003
crossref_primary_10_1002_adfm_202313043
crossref_primary_10_1002_adfm_202103048
crossref_primary_10_1016_j_jcis_2020_06_058
crossref_primary_10_1016_j_synthmet_2022_117033
crossref_primary_10_1016_j_colsurfa_2023_133065
crossref_primary_10_1557_jmr_2020_55
crossref_primary_10_1016_j_mtcomm_2020_101737
crossref_primary_10_1016_j_ijbiomac_2022_11_200
crossref_primary_10_1038_s41598_025_90270_2
crossref_primary_10_1016_j_colsurfb_2023_113230
crossref_primary_10_3390_pharmaceutics15020338
crossref_primary_10_1016_j_jmrt_2021_01_093
crossref_primary_10_1016_j_scitotenv_2022_159515
crossref_primary_10_3389_fmicb_2021_623853
crossref_primary_10_1016_j_jiec_2023_03_047
crossref_primary_10_1016_j_jallcom_2019_153456
crossref_primary_10_1016_j_matchemphys_2023_127355
crossref_primary_10_1088_2053_1591_ab26cd
crossref_primary_10_1007_s00289_021_03763_1
crossref_primary_10_1016_j_inoche_2024_113181
crossref_primary_10_1016_j_bioadv_2023_213662
crossref_primary_10_3390_microorganisms11030745
crossref_primary_10_1016_j_colsurfb_2023_113323
crossref_primary_10_1016_j_microc_2025_112887
crossref_primary_10_1038_s41579_020_0414_z
crossref_primary_10_1063_5_0012465
crossref_primary_10_1016_j_colsurfb_2020_111385
crossref_primary_10_1002_adsu_202000076
crossref_primary_10_1038_s41598_024_63452_7
crossref_primary_10_1039_D1TB00033K
crossref_primary_10_21931_RB_CSS_2023_08_01_63
crossref_primary_10_3389_fbioe_2023_1149588
crossref_primary_10_1515_ntrev_2023_0168
crossref_primary_10_1039_D2RA00912A
crossref_primary_10_1016_j_colcom_2020_100344
crossref_primary_10_1016_j_matchemphys_2020_122906
crossref_primary_10_1021_acsami_4c21046
crossref_primary_10_3390_jfb13020077
crossref_primary_10_1016_j_arabjc_2022_104075
crossref_primary_10_1039_D4NJ01823K
crossref_primary_10_1021_acsanm_0c02463
crossref_primary_10_1021_acsbiomaterials_1c00875
crossref_primary_10_1063_5_0128803
crossref_primary_10_1016_j_jtice_2023_105194
crossref_primary_10_1016_j_nanoms_2024_01_006
crossref_primary_10_1088_2053_1591_acd73f
crossref_primary_10_3390_nano9050737
crossref_primary_10_3390_ijms25105328
crossref_primary_10_1016_j_matchemphys_2019_122300
crossref_primary_10_1166_mex_2022_2138
crossref_primary_10_1007_s42247_020_00117_x
crossref_primary_10_1016_j_colcom_2024_100778
crossref_primary_10_1016_j_mser_2021_100610
crossref_primary_10_3390_nano11061378
crossref_primary_10_1007_s10876_021_02116_2
crossref_primary_10_1007_s11270_025_07760_2
crossref_primary_10_1016_j_mtsust_2023_100544
crossref_primary_10_1016_j_cofs_2020_12_021
crossref_primary_10_1016_j_inoche_2025_114371
crossref_primary_10_1016_j_molstruc_2022_132958
crossref_primary_10_2139_ssrn_4170681
crossref_primary_10_3389_fmolb_2022_995853
crossref_primary_10_3390_nano12020191
crossref_primary_10_1016_j_bioadv_2023_213440
crossref_primary_10_3390_coatings11101197
crossref_primary_10_1016_j_molstruc_2021_130091
crossref_primary_10_1016_j_bioactmat_2022_01_045
crossref_primary_10_1021_acsanm_0c00852
crossref_primary_10_1016_j_jece_2024_113474
crossref_primary_10_1016_j_scitotenv_2019_05_162
crossref_primary_10_62184_acj_jacj1000202424
crossref_primary_10_1016_j_radphyschem_2022_110109
crossref_primary_10_1002_bip_23579
crossref_primary_10_1016_j_cej_2020_125189
crossref_primary_10_1016_j_ecoenv_2024_116221
crossref_primary_10_1039_D3SU00400G
crossref_primary_10_1088_2053_1591_ab5414
crossref_primary_10_2174_18753183_v12_e2209260
crossref_primary_10_3390_nano13030488
crossref_primary_10_3390_nano10020366
crossref_primary_10_1038_s41545_024_00378_7
crossref_primary_10_1016_j_jclepro_2022_135518
crossref_primary_10_1002_app_49823
crossref_primary_10_1016_j_inoche_2023_111214
crossref_primary_10_1111_wrr_13238
crossref_primary_10_4103_jos_jos_3_24
crossref_primary_10_3390_jfb12040059
crossref_primary_10_1146_annurev_food_032519_051804
crossref_primary_10_1039_D2GC00073C
crossref_primary_10_1007_s00449_024_03077_2
crossref_primary_10_1007_s10854_023_11076_4
crossref_primary_10_3390_coatings13081324
Cites_doi 10.1002/adma.200903611
10.1039/C0JM02806A
10.1021/nn101390x
10.1007/s11051-016-3673-x
10.1021/nn202699t
10.1002/adma.200800757
10.1039/C4CC07836E
10.1038/nrmicro2333
10.1088/2053-1583/3/2/025025
10.1016/j.colcom.2016.12.003
10.1002/adma.201001068
10.4103/joacp.JOACP_349_15
10.1016/j.colcom.2018.11.002
10.1021/la801744a
10.2147/IJN.S37397
10.1021/la3023908
10.1016/j.actbio.2009.02.003
10.1016/j.toxlet.2010.12.010
10.1016/j.jcis.2004.02.012
10.1016/j.actbio.2013.04.022
10.1016/j.colsurfb.2010.10.033
10.1021/nn1006368
10.1016/j.snb.2017.07.179
10.1016/j.colcom.2015.11.003
10.1039/c0nr00680g
10.2147/IJN.S153167
10.1016/j.jcis.2018.01.014
10.1089/ars.2006.8.753
10.1021/acsnano.5b02067
10.1016/j.colcom.2018.07.002
10.1038/nrmicro3380
10.1038/srep32185
10.1021/nn202451x
10.1088/2053-1591/aa8652
10.1016/j.actbio.2007.11.006
10.1016/j.colcom.2017.11.006
10.1038/s41467-017-02502-3
10.1557/jmr.2018.338
10.1021/acsnano.6b05692
10.1016/j.ces.2012.08.054
10.1021/nn101081t
10.3109/17435390.2014.930195
10.1016/j.scib.2017.12.012
10.1002/pssb.201000247
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.colcom.2018.12.001
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2215-0382
EndPage 68
ExternalDocumentID 10_1016_j_colcom_2018_12_001
S2215038218301377
GroupedDBID --M
0R~
0SF
4.4
457
4G.
6I.
7-5
AABXZ
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEXQZ
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
GROUPED_DOAJ
IXB
KOM
KQ8
M41
M~E
NCXOZ
O9-
OAUVE
OK1
RIG
ROL
SPC
SPCBC
SSG
SSK
SSM
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c306t-35384ead7fd03db39caeb07f534e41ccf0c550ff03bbcc631d5fe3a691d26ad23
IEDL.DBID AIKHN
ISSN 2215-0382
IngestDate Tue Jul 01 01:24:27 EDT 2025
Thu Apr 24 22:52:33 EDT 2025
Fri Feb 23 02:26:45 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords GO
Antimicrobial properties
rGO
Gram positive bacteria
Gram negative bacteria
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-35384ead7fd03db39caeb07f534e41ccf0c550ff03bbcc631d5fe3a691d26ad23
ORCID 0000-0001-8282-0587
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2215038218301377
PageCount 9
ParticipantIDs crossref_citationtrail_10_1016_j_colcom_2018_12_001
crossref_primary_10_1016_j_colcom_2018_12_001
elsevier_sciencedirect_doi_10_1016_j_colcom_2018_12_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2019
2019-01-00
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: January 2019
PublicationDecade 2010
PublicationTitle Colloid and interface science communications
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Park, Mohanty, Suk, Nagaraja, An, Piner, Cai, Dreyer, Berry, Ruoff (bb0130) 2010; 22
Ruiz, Fernando, Wang, Brown, Luo, McNamara, Vangsness, Sun, Bunker (bb0145) 2011; 5
Zheng, Ma, Gao, Tian, Li, Zeng, Li (bb0115) 2018; 63
Hu (bb0225) 2005; 44
Yu, Zhang, Bulin, Li, Xing (bb0205) 2016; 6
Mangadlao, Santos, Felipe, de Leon, Rodrigues, Advincula (bb0050) 2015; 51
Chen, Peng, Wang, Shao, Yuan, Han (bb0165) 2014; 6
Salas, Sun, Lu, Tour (bb0175) 2010; 4
Piao, Kang, Lee, Kim, Kim, Choi, Choi, Hyun (bb0240) 2011; 201
Liu, Zeng, Hofmann, Burcombe, Wei, Jiang, Kong, Chen (bb0070) 2011; 5
Kaushal, Sharma, Mittal, Singh (bb0090) 2015; 7
Tavakoli, Nemati, Kharaziha, Akbari-Alavijeh (bb0035) 2019; 28
Paredes, Villar-Rodil, Martínez-Alonso, Tascón (bb0195) 2008; 24
Barbolina, Woods, Lozano, Kostarelos, Novoselov, Roberts (bb0060) 2016; 3
Fang, Li, Shen, Perez-Aguilar, Chong, Gao, Chai, Chen, Ge, Zhou (bb0080) 2018; 9
Wang, Yang, Park, Gou, Wang, Liu, Yao (bb0200) 2008; 112
Ruparelia, Chatterjee, Duttagupta, Mukherji (bb0030) 2008; 4
Gurunathan, Han, Dayem, Eppakayala, Kim (bb0155) 2012; 7
Akhavan, Ghaderi (bb0125) 2010; 4
Zhu, Murali, Cai, Li, Suk, Potts, Ruoff (bb0190) 2010; 22
Sengupta, Chakraborty, Talukdar, Pal, Chakraborty (bb0185) 2018; 33
Masip, Veeravalli, Georgiou (bb0235) 2006; 8
Pinto, Marques, Neto, Trindade, Daina, Sadocco (bb0110) 2009; 5
Saleh, Al-Shalalfeh, Al-Saadi (bb0215) 2018; 254
Jorio, Ferreira, Moutinho, Stavale, Achete, Capaz (bb0210) 2010; 247
Li, Mansukhani, Guiney, Ji, Zhao, Chang, French, Miller, Hersam, Nel, Xia (bb0170) 2016; 10
Bhattacharya, Neogi (bb0085) 2017; 4
Alswat, Bin Ahmad, Saleh (bb0095) 2017; 16
Liu, Hu, Zeng, Wu, Jiang, Wei, Wang, Kong, Chen (bb0025) 2012; 28
Nam, Al Nahain, Kim, In, Park (bb0105) 2013; 9
Ma, Zhang, Xiong, Yong, Zhao (bb0160) 2011; 21
Das, Sarma, Saikia, Kale, Shelke, Sengupta (bb0140) 2011; 83
Bayón, Cacicedo, Álvarez, Castro (bb0045) 2018; 26
Kirk, Pires, Black, Caipo, Crump, Devleesschauwer, Döpfer, Fazil, Fischer-Walker, Hald, Hall, Keddy, Lake, Lanata, Torgerson, Havelaar, Angulo (bb0005) 2015; 12
Qi, Gunawan, Xu, Chang (bb0075) 2012; 84
Kapoor, Saigal, Elongavan (bb0015) 2017; 33
Khan, Saleh, Wahab, Khan, Khan, Khan, Rahim, Kamal, Khan, Fahad (bb0230) 2018; 13
Karimi, Ghanbarzadeh, Hamishehkar, Mehramuz, Kafil (bb0100) 2018; 22
Marcano, Kosynkin, Berlin, Sinitskii, Sun, Slesarev, Alemany, Lu, Tour (bb0180) 2010; 4
Chen, Müller, Gilmore, Wallace, Li (bb0135) 2008; 20
Olivi, Alfè, Gargiulo, Valle, Mura, Di Giosia, Rapino, Palleschi, Uccelletti, Fiorito (bb0120) 2016; 18
Saleh, Al-Shalalfeh, Al-Saadi (bb0220) 2016; 6
Sondi, Salopek-Sondi (bb0040) 2004; 275
Blair, Webber, Baylay, Ogbolu, Piddock (bb0020) 2014; 13
Kohanski, Dwyer, Collins (bb0010) 2010; 8
Gajewicz, Schaeublin, Rasulev, Hussain, Leszczynska, Puzyn, Leszczynski (bb0245) 2015; 9
Perreault, De Faria, Nejati, Elimelech (bb0055) 2015; 9
Xu, Liao, Li, Li, Zhang, Wang, Hu, Li (bb0065) 2018; 514
Feng, Zhang, Liu (bb0150) 2011; 3
Zheng (10.1016/j.colcom.2018.12.001_bb0115) 2018; 63
Bhattacharya (10.1016/j.colcom.2018.12.001_bb0085) 2017; 4
Liu (10.1016/j.colcom.2018.12.001_bb0070) 2011; 5
Pinto (10.1016/j.colcom.2018.12.001_bb0110) 2009; 5
Paredes (10.1016/j.colcom.2018.12.001_bb0195) 2008; 24
Gurunathan (10.1016/j.colcom.2018.12.001_bb0155) 2012; 7
Masip (10.1016/j.colcom.2018.12.001_bb0235) 2006; 8
Wang (10.1016/j.colcom.2018.12.001_bb0200) 2008; 112
Khan (10.1016/j.colcom.2018.12.001_bb0230) 2018; 13
Kohanski (10.1016/j.colcom.2018.12.001_bb0010) 2010; 8
Kaushal (10.1016/j.colcom.2018.12.001_bb0090) 2015; 7
Xu (10.1016/j.colcom.2018.12.001_bb0065) 2018; 514
Hu (10.1016/j.colcom.2018.12.001_bb0225) 2005; 44
Nam (10.1016/j.colcom.2018.12.001_bb0105) 2013; 9
Marcano (10.1016/j.colcom.2018.12.001_bb0180) 2010; 4
Chen (10.1016/j.colcom.2018.12.001_bb0135) 2008; 20
Tavakoli (10.1016/j.colcom.2018.12.001_bb0035) 2019; 28
Sengupta (10.1016/j.colcom.2018.12.001_bb0185) 2018; 33
Gajewicz (10.1016/j.colcom.2018.12.001_bb0245) 2015; 9
Piao (10.1016/j.colcom.2018.12.001_bb0240) 2011; 201
Yu (10.1016/j.colcom.2018.12.001_bb0205) 2016; 6
Feng (10.1016/j.colcom.2018.12.001_bb0150) 2011; 3
Saleh (10.1016/j.colcom.2018.12.001_bb0220) 2016; 6
Blair (10.1016/j.colcom.2018.12.001_bb0020) 2014; 13
Das (10.1016/j.colcom.2018.12.001_bb0140) 2011; 83
Akhavan (10.1016/j.colcom.2018.12.001_bb0125) 2010; 4
Park (10.1016/j.colcom.2018.12.001_bb0130) 2010; 22
Jorio (10.1016/j.colcom.2018.12.001_bb0210) 2010; 247
Kirk (10.1016/j.colcom.2018.12.001_bb0005) 2015; 12
Bayón (10.1016/j.colcom.2018.12.001_bb0045) 2018; 26
Saleh (10.1016/j.colcom.2018.12.001_bb0215) 2018; 254
Mangadlao (10.1016/j.colcom.2018.12.001_bb0050) 2015; 51
Perreault (10.1016/j.colcom.2018.12.001_bb0055) 2015; 9
Alswat (10.1016/j.colcom.2018.12.001_bb0095) 2017; 16
Liu (10.1016/j.colcom.2018.12.001_bb0025) 2012; 28
Sondi (10.1016/j.colcom.2018.12.001_bb0040) 2004; 275
Zhu (10.1016/j.colcom.2018.12.001_bb0190) 2010; 22
Barbolina (10.1016/j.colcom.2018.12.001_bb0060) 2016; 3
Qi (10.1016/j.colcom.2018.12.001_bb0075) 2012; 84
Ruiz (10.1016/j.colcom.2018.12.001_bb0145) 2011; 5
Fang (10.1016/j.colcom.2018.12.001_bb0080) 2018; 9
Ma (10.1016/j.colcom.2018.12.001_bb0160) 2011; 21
Li (10.1016/j.colcom.2018.12.001_bb0170) 2016; 10
Chen (10.1016/j.colcom.2018.12.001_bb0165) 2014; 6
Salas (10.1016/j.colcom.2018.12.001_bb0175) 2010; 4
Karimi (10.1016/j.colcom.2018.12.001_bb0100) 2018; 22
Olivi (10.1016/j.colcom.2018.12.001_bb0120) 2016; 18
Kapoor (10.1016/j.colcom.2018.12.001_bb0015) 2017; 33
Ruparelia (10.1016/j.colcom.2018.12.001_bb0030) 2008; 4
References_xml – volume: 51
  start-page: 2886
  year: 2015
  end-page: 2889
  ident: bb0050
  article-title: On the antibacterial mechanism of graphene oxide (GO) Langmuir–Blodgett films
  publication-title: Chem. Commun.
– volume: 514
  start-page: 733
  year: 2018
  end-page: 739
  ident: bb0065
  article-title: Vancomycin-assisted green synthesis of reduced graphene oxide for antimicrobial applications
  publication-title: J. Colloid Interface Sci.
– volume: 112
  start-page: 8192
  year: 2008
  end-page: 8195
  ident: bb0200
  article-title: Facile synthesis and characterization of graphene nanosheets
  publication-title: J. Phys. Chem. B.
– volume: 9
  year: 2018
  ident: bb0080
  article-title: Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against Gram-positive and Gram-negative bacteria
  publication-title: Nat. Commun.
– volume: 5
  start-page: 6971
  year: 2011
  end-page: 6980
  ident: bb0070
  article-title: Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress
  publication-title: ACS Nano.
– volume: 4
  start-page: 4806
  year: 2010
  end-page: 4814
  ident: bb0180
  article-title: Improved synthesis of graphene oxide
  publication-title: ACS Nano.
– volume: 44
  start-page: 2259
  year: 2005
  end-page: 2261
  ident: bb0225
  article-title: A simple reduction route to carbon hollow spheres
  publication-title: Indian J. Chem. - Sect. A Inorganic, Phys. Theor. Anal. Chem.
– volume: 33
  start-page: 4113
  year: 2018
  end-page: 4122
  ident: bb0185
  article-title: Thermal reduction of graphene oxide: how temperature influences purity
  publication-title: J. Mater. Res.
– volume: 84
  start-page: 552
  year: 2012
  end-page: 556
  ident: bb0075
  article-title: Cefalexin-immobilized multi-walled carbon nanotubes show strong antimicrobial and anti-adhesion properties
  publication-title: Chem. Eng. Sci.
– volume: 5
  start-page: 2279
  year: 2009
  end-page: 2289
  ident: bb0110
  article-title: Antibacterial activity of nanocomposites of silver and bacterial or vegetable cellulosic fibers
  publication-title: Acta Biomater.
– volume: 21
  start-page: 3350
  year: 2011
  end-page: 3352
  ident: bb0160
  article-title: Preparation, characterization and antibacterial properties of silver-modified graphene oxide
  publication-title: J. Mater. Chem.
– volume: 28
  start-page: 20
  year: 2019
  end-page: 28
  ident: bb0035
  article-title: Embedding CuO nanoparticles in PDMS-SiO
  publication-title: Colloid Interface Sci. Commun.
– volume: 4
  start-page: 5731
  year: 2010
  end-page: 5736
  ident: bb0125
  article-title: Toxicity of graphene and graphene oxide nanowalls against bacteria
  publication-title: ACS Nano.
– volume: 20
  start-page: 3557
  year: 2008
  end-page: 3561
  ident: bb0135
  article-title: Mechanically strong, electrically conductive, and biocompatible graphene paper
  publication-title: Adv. Mater.
– volume: 4
  year: 2017
  ident: bb0085
  article-title: Gentamicin coated iron oxide nanoparticles as novel antibacterial agents
  publication-title: Mater. Res. Express.
– volume: 8
  start-page: 423
  year: 2010
  end-page: 435
  ident: bb0010
  article-title: How antibiotics kill bacteria: from targets to networks
  publication-title: Nat. Rev. Microbiol.
– volume: 18
  year: 2016
  ident: bb0120
  article-title: Antimicrobial properties of graphene-like nanoparticles: coating effect on
  publication-title: J. Nanoparticle Res.
– volume: 254
  start-page: 1110
  year: 2018
  end-page: 1117
  ident: bb0215
  article-title: Silver loaded graphene as a substrate for sensing 2-thiouracil using surface-enhanced Raman scattering
  publication-title: Sensors Actuators B Chem.
– volume: 201
  start-page: 92
  year: 2011
  end-page: 100
  ident: bb0240
  article-title: Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis
  publication-title: Toxicol. Lett.
– volume: 24
  start-page: 10560
  year: 2008
  end-page: 10564
  ident: bb0195
  article-title: Graphene oxide dispersions in organic solvents
  publication-title: Langmuir.
– volume: 16
  start-page: 19
  year: 2017
  end-page: 24
  ident: bb0095
  article-title: Preparation and characterization of zeolite\zinc oxide-copper oxide nanocomposite: antibacterial activities
  publication-title: Colloid Interface Sci. Commun.
– volume: 5
  start-page: 8100
  year: 2011
  end-page: 8107
  ident: bb0145
  article-title: Graphene oxide: a nonspecific enhancer of cellular growth
  publication-title: ACS Nano.
– volume: 9
  start-page: 313
  year: 2015
  end-page: 325
  ident: bb0245
  article-title: Towards understanding mechanisms governing cytotoxicity of metal oxides nanoparticles: Hints from nano-QSAR studies
  publication-title: Nanotoxicology.
– volume: 13
  start-page: 733
  year: 2018
  end-page: 762
  ident: bb0230
  article-title: Nanosilver: new ageless and versatile biomedical therapeutic scaffold
  publication-title: Int. J. Nanomedicine.
– volume: 247
  start-page: 2980
  year: 2010
  end-page: 2982
  ident: bb0210
  article-title: Measuring disorder in graphene with the G and D bands
  publication-title: Phys. Status Solidi Basic Res.
– volume: 6
  start-page: 32185
  year: 2016
  ident: bb0220
  article-title: Graphene Dendrimer-stabilized silver nanoparticles for detection of methimazole using Surface-enhanced Raman scattering with computational assignment
  publication-title: Sci. Rep.
– volume: 6
  year: 2014
  ident: bb0165
  article-title: Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation
  publication-title: Nanoscale.
– volume: 4
  start-page: 4852
  year: 2010
  end-page: 4856
  ident: bb0175
  article-title: Reduction of graphene oxide via bacteria respiration
  publication-title: ACS Nano.
– volume: 275
  start-page: 177
  year: 2004
  end-page: 182
  ident: bb0040
  article-title: Silver nanoparticles as antimicrobial agent: a case study on
  publication-title: J. Colloid Interface Sci.
– volume: 13
  start-page: 42
  year: 2014
  ident: bb0020
  article-title: Molecular mechanisms of antibiotic resistance
  publication-title: Nat. Rev. Microbiol.
– volume: 33
  start-page: 300
  year: 2017
  end-page: 305
  ident: bb0015
  article-title: Action and resistance mechanisms of antibiotics: a guide for clinicians
  publication-title: J. Anaesthesiol. Clin. Pharmacol.
– volume: 63
  start-page: 133
  year: 2018
  end-page: 142
  ident: bb0115
  article-title: Antibacterial applications of graphene oxides: structure-activity relationships, molecular initiating events and biosafety
  publication-title: Sci. Bull.
– volume: 26
  start-page: 7
  year: 2018
  end-page: 13
  ident: bb0045
  article-title: Self-assembly stereo-specific synthesis of silver phosphate microparticles on bacterial cellulose membrane surface for antimicrobial applications
  publication-title: Colloid Interface Sci. Commun.
– volume: 3
  start-page: 1252
  year: 2011
  ident: bb0150
  article-title: Graphene based gene transfection
  publication-title: Nanoscale.
– volume: 22
  start-page: 1736
  year: 2010
  end-page: 1740
  ident: bb0130
  article-title: Biocompatible, robust free-standing paper composed of a TWEEN/graphene composite
  publication-title: Adv. Mater.
– volume: 8
  start-page: 753
  year: 2006
  end-page: 762
  ident: bb0235
  article-title: The many faces of glutathione in bacteria
  publication-title: Antioxid. Redox Signal.
– volume: 83
  start-page: 16
  year: 2011
  end-page: 22
  ident: bb0140
  article-title: Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity
  publication-title: Colloids Surfaces B Biointerfaces.
– volume: 9
  start-page: 7996
  year: 2013
  end-page: 8003
  ident: bb0105
  article-title: Successful stabilization of functionalized hybrid graphene for high-performance antimicrobial activity
  publication-title: Acta Biomater.
– volume: 22
  start-page: 3906
  year: 2010
  end-page: 3924
  ident: bb0190
  article-title: Graphene and graphene oxide: synthesis, properties, and applications
  publication-title: Adv. Mater.
– volume: 28
  start-page: 12364
  year: 2012
  end-page: 12372
  ident: bb0025
  article-title: Lateral dimension-dependent antibacterial activity of graphene oxide sheets
  publication-title: Langmuir
– volume: 22
  start-page: 18
  year: 2018
  end-page: 24
  ident: bb0100
  article-title: Antioxidant, antimicrobial and physicochemical properties of turmeric extract-loaded nanostructured lipid carrier (NLC)
  publication-title: Colloid Interface Sci. Commun.
– volume: 4
  start-page: 707
  year: 2008
  end-page: 716
  ident: bb0030
  article-title: Strain specificity in antimicrobial activity of silver and copper nanoparticles
  publication-title: Acta Biomater.
– volume: 3
  year: 2016
  ident: bb0060
  article-title: Purity of graphene oxide determines its antibacterial activity
  publication-title: 2D Mater.
– volume: 7
  start-page: 5901
  year: 2012
  end-page: 5914
  ident: bb0155
  article-title: Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa
  publication-title: Int. J. Nanomedicine.
– volume: 12
  year: 2015
  ident: bb0005
  article-title: Correction: world health organization estimates of the global and regional disease burden of 22 foodborne bacterial, protozoal, and viral diseases, 2010: a data synthesis
  publication-title: PLOS Med.
– volume: 7
  start-page: 1
  year: 2015
  end-page: 6
  ident: bb0090
  article-title: A novel zinc oxide–zirconium (IV) phosphate nanocomposite as antibacterial material with enhanced ion exchange properties
  publication-title: Colloids Interface Sci. Commun.
– volume: 10
  start-page: 10966
  year: 2016
  end-page: 10980
  ident: bb0170
  article-title: Identification and optimization of carbon radicals on hydrated graphene oxide for ubiquitous antibacterial coatings
  publication-title: ACS Nano.
– volume: 9
  start-page: 7226
  year: 2015
  end-page: 7236
  ident: bb0055
  article-title: Antimicrobial properties of graphene oxide nanosheets: why size matters
  publication-title: ACS Nano.
– volume: 6
  year: 2016
  ident: bb0205
  article-title: High-efficient synthesis of graphene oxide based on improved hummers method
  publication-title: Sci. Rep.
– volume: 22
  start-page: 1736
  year: 2010
  ident: 10.1016/j.colcom.2018.12.001_bb0130
  article-title: Biocompatible, robust free-standing paper composed of a TWEEN/graphene composite
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200903611
– volume: 21
  start-page: 3350
  year: 2011
  ident: 10.1016/j.colcom.2018.12.001_bb0160
  article-title: Preparation, characterization and antibacterial properties of silver-modified graphene oxide
  publication-title: J. Mater. Chem.
  doi: 10.1039/C0JM02806A
– volume: 4
  start-page: 5731
  year: 2010
  ident: 10.1016/j.colcom.2018.12.001_bb0125
  article-title: Toxicity of graphene and graphene oxide nanowalls against bacteria
  publication-title: ACS Nano.
  doi: 10.1021/nn101390x
– volume: 18
  year: 2016
  ident: 10.1016/j.colcom.2018.12.001_bb0120
  article-title: Antimicrobial properties of graphene-like nanoparticles: coating effect on Staphylococcus aureus
  publication-title: J. Nanoparticle Res.
  doi: 10.1007/s11051-016-3673-x
– volume: 5
  start-page: 8100
  year: 2011
  ident: 10.1016/j.colcom.2018.12.001_bb0145
  article-title: Graphene oxide: a nonspecific enhancer of cellular growth
  publication-title: ACS Nano.
  doi: 10.1021/nn202699t
– volume: 20
  start-page: 3557
  year: 2008
  ident: 10.1016/j.colcom.2018.12.001_bb0135
  article-title: Mechanically strong, electrically conductive, and biocompatible graphene paper
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200800757
– volume: 6
  year: 2016
  ident: 10.1016/j.colcom.2018.12.001_bb0205
  article-title: High-efficient synthesis of graphene oxide based on improved hummers method
  publication-title: Sci. Rep.
– volume: 51
  start-page: 2886
  year: 2015
  ident: 10.1016/j.colcom.2018.12.001_bb0050
  article-title: On the antibacterial mechanism of graphene oxide (GO) Langmuir–Blodgett films
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC07836E
– volume: 8
  start-page: 423
  year: 2010
  ident: 10.1016/j.colcom.2018.12.001_bb0010
  article-title: How antibiotics kill bacteria: from targets to networks
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro2333
– volume: 3
  year: 2016
  ident: 10.1016/j.colcom.2018.12.001_bb0060
  article-title: Purity of graphene oxide determines its antibacterial activity
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/3/2/025025
– volume: 16
  start-page: 19
  year: 2017
  ident: 10.1016/j.colcom.2018.12.001_bb0095
  article-title: Preparation and characterization of zeolite\zinc oxide-copper oxide nanocomposite: antibacterial activities
  publication-title: Colloid Interface Sci. Commun.
  doi: 10.1016/j.colcom.2016.12.003
– volume: 22
  start-page: 3906
  year: 2010
  ident: 10.1016/j.colcom.2018.12.001_bb0190
  article-title: Graphene and graphene oxide: synthesis, properties, and applications
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201001068
– volume: 33
  start-page: 300
  year: 2017
  ident: 10.1016/j.colcom.2018.12.001_bb0015
  article-title: Action and resistance mechanisms of antibiotics: a guide for clinicians
  publication-title: J. Anaesthesiol. Clin. Pharmacol.
  doi: 10.4103/joacp.JOACP_349_15
– volume: 28
  start-page: 20
  year: 2019
  ident: 10.1016/j.colcom.2018.12.001_bb0035
  article-title: Embedding CuO nanoparticles in PDMS-SiO2 coating to improve antibacterial characteristic and corrosion resistance
  publication-title: Colloid Interface Sci. Commun.
  doi: 10.1016/j.colcom.2018.11.002
– volume: 24
  start-page: 10560
  year: 2008
  ident: 10.1016/j.colcom.2018.12.001_bb0195
  article-title: Graphene oxide dispersions in organic solvents
  publication-title: Langmuir.
  doi: 10.1021/la801744a
– volume: 7
  start-page: 5901
  year: 2012
  ident: 10.1016/j.colcom.2018.12.001_bb0155
  article-title: Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa
  publication-title: Int. J. Nanomedicine.
  doi: 10.2147/IJN.S37397
– volume: 28
  start-page: 12364
  year: 2012
  ident: 10.1016/j.colcom.2018.12.001_bb0025
  article-title: Lateral dimension-dependent antibacterial activity of graphene oxide sheets
  publication-title: Langmuir
  doi: 10.1021/la3023908
– volume: 5
  start-page: 2279
  year: 2009
  ident: 10.1016/j.colcom.2018.12.001_bb0110
  article-title: Antibacterial activity of nanocomposites of silver and bacterial or vegetable cellulosic fibers
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2009.02.003
– volume: 201
  start-page: 92
  year: 2011
  ident: 10.1016/j.colcom.2018.12.001_bb0240
  article-title: Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis
  publication-title: Toxicol. Lett.
  doi: 10.1016/j.toxlet.2010.12.010
– volume: 275
  start-page: 177
  year: 2004
  ident: 10.1016/j.colcom.2018.12.001_bb0040
  article-title: Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2004.02.012
– volume: 44
  start-page: 2259
  year: 2005
  ident: 10.1016/j.colcom.2018.12.001_bb0225
  article-title: A simple reduction route to carbon hollow spheres
  publication-title: Indian J. Chem. - Sect. A Inorganic, Phys. Theor. Anal. Chem.
– volume: 9
  start-page: 7996
  year: 2013
  ident: 10.1016/j.colcom.2018.12.001_bb0105
  article-title: Successful stabilization of functionalized hybrid graphene for high-performance antimicrobial activity
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2013.04.022
– volume: 83
  start-page: 16
  year: 2011
  ident: 10.1016/j.colcom.2018.12.001_bb0140
  article-title: Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity
  publication-title: Colloids Surfaces B Biointerfaces.
  doi: 10.1016/j.colsurfb.2010.10.033
– volume: 4
  start-page: 4806
  year: 2010
  ident: 10.1016/j.colcom.2018.12.001_bb0180
  article-title: Improved synthesis of graphene oxide
  publication-title: ACS Nano.
  doi: 10.1021/nn1006368
– volume: 254
  start-page: 1110
  year: 2018
  ident: 10.1016/j.colcom.2018.12.001_bb0215
  article-title: Silver loaded graphene as a substrate for sensing 2-thiouracil using surface-enhanced Raman scattering
  publication-title: Sensors Actuators B Chem.
  doi: 10.1016/j.snb.2017.07.179
– volume: 7
  start-page: 1
  year: 2015
  ident: 10.1016/j.colcom.2018.12.001_bb0090
  article-title: A novel zinc oxide–zirconium (IV) phosphate nanocomposite as antibacterial material with enhanced ion exchange properties
  publication-title: Colloids Interface Sci. Commun.
  doi: 10.1016/j.colcom.2015.11.003
– volume: 3
  start-page: 1252
  year: 2011
  ident: 10.1016/j.colcom.2018.12.001_bb0150
  article-title: Graphene based gene transfection
  publication-title: Nanoscale.
  doi: 10.1039/c0nr00680g
– volume: 13
  start-page: 733
  year: 2018
  ident: 10.1016/j.colcom.2018.12.001_bb0230
  article-title: Nanosilver: new ageless and versatile biomedical therapeutic scaffold
  publication-title: Int. J. Nanomedicine.
  doi: 10.2147/IJN.S153167
– volume: 514
  start-page: 733
  year: 2018
  ident: 10.1016/j.colcom.2018.12.001_bb0065
  article-title: Vancomycin-assisted green synthesis of reduced graphene oxide for antimicrobial applications
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2018.01.014
– volume: 8
  start-page: 753
  year: 2006
  ident: 10.1016/j.colcom.2018.12.001_bb0235
  article-title: The many faces of glutathione in bacteria
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2006.8.753
– volume: 9
  start-page: 7226
  year: 2015
  ident: 10.1016/j.colcom.2018.12.001_bb0055
  article-title: Antimicrobial properties of graphene oxide nanosheets: why size matters
  publication-title: ACS Nano.
  doi: 10.1021/acsnano.5b02067
– volume: 26
  start-page: 7
  year: 2018
  ident: 10.1016/j.colcom.2018.12.001_bb0045
  article-title: Self-assembly stereo-specific synthesis of silver phosphate microparticles on bacterial cellulose membrane surface for antimicrobial applications
  publication-title: Colloid Interface Sci. Commun.
  doi: 10.1016/j.colcom.2018.07.002
– volume: 13
  start-page: 42
  year: 2014
  ident: 10.1016/j.colcom.2018.12.001_bb0020
  article-title: Molecular mechanisms of antibiotic resistance
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro3380
– volume: 6
  start-page: 32185
  year: 2016
  ident: 10.1016/j.colcom.2018.12.001_bb0220
  article-title: Graphene Dendrimer-stabilized silver nanoparticles for detection of methimazole using Surface-enhanced Raman scattering with computational assignment
  publication-title: Sci. Rep.
  doi: 10.1038/srep32185
– volume: 5
  start-page: 6971
  year: 2011
  ident: 10.1016/j.colcom.2018.12.001_bb0070
  article-title: Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress
  publication-title: ACS Nano.
  doi: 10.1021/nn202451x
– volume: 4
  year: 2017
  ident: 10.1016/j.colcom.2018.12.001_bb0085
  article-title: Gentamicin coated iron oxide nanoparticles as novel antibacterial agents
  publication-title: Mater. Res. Express.
  doi: 10.1088/2053-1591/aa8652
– volume: 4
  start-page: 707
  year: 2008
  ident: 10.1016/j.colcom.2018.12.001_bb0030
  article-title: Strain specificity in antimicrobial activity of silver and copper nanoparticles
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2007.11.006
– volume: 22
  start-page: 18
  year: 2018
  ident: 10.1016/j.colcom.2018.12.001_bb0100
  article-title: Antioxidant, antimicrobial and physicochemical properties of turmeric extract-loaded nanostructured lipid carrier (NLC)
  publication-title: Colloid Interface Sci. Commun.
  doi: 10.1016/j.colcom.2017.11.006
– volume: 12
  year: 2015
  ident: 10.1016/j.colcom.2018.12.001_bb0005
  article-title: Correction: world health organization estimates of the global and regional disease burden of 22 foodborne bacterial, protozoal, and viral diseases, 2010: a data synthesis
  publication-title: PLOS Med.
– volume: 6
  year: 2014
  ident: 10.1016/j.colcom.2018.12.001_bb0165
  article-title: Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation
  publication-title: Nanoscale.
– volume: 9
  year: 2018
  ident: 10.1016/j.colcom.2018.12.001_bb0080
  article-title: Differential Pd-nanocrystal facets demonstrate distinct antibacterial activity against Gram-positive and Gram-negative bacteria
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02502-3
– volume: 33
  start-page: 4113
  year: 2018
  ident: 10.1016/j.colcom.2018.12.001_bb0185
  article-title: Thermal reduction of graphene oxide: how temperature influences purity
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2018.338
– volume: 112
  start-page: 8192
  year: 2008
  ident: 10.1016/j.colcom.2018.12.001_bb0200
  article-title: Facile synthesis and characterization of graphene nanosheets
  publication-title: J. Phys. Chem. B.
– volume: 10
  start-page: 10966
  year: 2016
  ident: 10.1016/j.colcom.2018.12.001_bb0170
  article-title: Identification and optimization of carbon radicals on hydrated graphene oxide for ubiquitous antibacterial coatings
  publication-title: ACS Nano.
  doi: 10.1021/acsnano.6b05692
– volume: 84
  start-page: 552
  year: 2012
  ident: 10.1016/j.colcom.2018.12.001_bb0075
  article-title: Cefalexin-immobilized multi-walled carbon nanotubes show strong antimicrobial and anti-adhesion properties
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2012.08.054
– volume: 4
  start-page: 4852
  year: 2010
  ident: 10.1016/j.colcom.2018.12.001_bb0175
  article-title: Reduction of graphene oxide via bacteria respiration
  publication-title: ACS Nano.
  doi: 10.1021/nn101081t
– volume: 9
  start-page: 313
  year: 2015
  ident: 10.1016/j.colcom.2018.12.001_bb0245
  article-title: Towards understanding mechanisms governing cytotoxicity of metal oxides nanoparticles: Hints from nano-QSAR studies
  publication-title: Nanotoxicology.
  doi: 10.3109/17435390.2014.930195
– volume: 63
  start-page: 133
  year: 2018
  ident: 10.1016/j.colcom.2018.12.001_bb0115
  article-title: Antibacterial applications of graphene oxides: structure-activity relationships, molecular initiating events and biosafety
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2017.12.012
– volume: 247
  start-page: 2980
  year: 2010
  ident: 10.1016/j.colcom.2018.12.001_bb0210
  article-title: Measuring disorder in graphene with the G and D bands
  publication-title: Phys. Status Solidi Basic Res.
  doi: 10.1002/pssb.201000247
SSID ssj0002140238
Score 2.493786
Snippet The emergence of multi-drug resistant bacteria due to the misuse of antibiotics and inadequate development of antibiotic drugs is a global threat to human...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 60
SubjectTerms Antimicrobial properties
Gram negative bacteria
Gram positive bacteria
rGO
Title Bactericidal effect of graphene oxide and reduced graphene oxide: Influence of shape of bacteria
URI https://dx.doi.org/10.1016/j.colcom.2018.12.001
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61vXgRRcX6KDl4Xbqb7NNbWyythR7UYm9rnliRbakV_PlOHlt8gIKnfWQnLB_DfJPwZQahSxlHOi9iGWSaqwACngzyVFqVBUtzbnJiq7aYpqNZfDNP5g00qM_CGFmlj_0uptto7d90PZrd1WLRvSPAViHNDcfbunk7qEVokYJrt3rjyWi63WohsIggtqe1MQmMTX2Iziq9AHGjHAEqzO3WoG8Q84OkPhHPcB_t-YwR99xPHaCGqg7RY99VWRYLCWNOlIGXGtv60xC-8PJ9IRVmlcRrU5xVyW9DV3hctycxdq9PbGVvuJuXHaHZ8Pp-MAp8s4RAQNa_CShErhjcItMypJLTQjDFw0wnNFZxJIQOBQCvdUg5FyKlkUy0oiwtIklSJgk9Rs1qWakThHWWMWB2wgtiVlSCF7mUsMzRRQx8zpM2ojU6pfCVxE1Di5eylow9lw7T0mBaRsQo59oo2FqtXCWNP77PauDLLx5RQrD_1fL035ZnaBeeCrfFco6am_WbuoCkY8M73qnMdXL7MOmgnfG8_wGRaNhO
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSgMxFA21LnQjior1mYXb0JnJdB7ubLG0Wruxhe5injgi01Ir-PneJDPFByi4Gya5w3AI59yEk3sRulRxaLI8ViQ1QhMgPEWyRDmXBU8yYXNi57YYJ4NpfDvrzBqoV9-FsbbKivs9pzu2rt60KzTbi6JoP0SgVgHNrMa7unkbaBOygdT2bxjOuuuDlgi2EJHraG0DiI2or9A5nxfgbX0jIISZOxis2sP8kKhPstPfRTtVvoiv_S_toYYu99Fj19dYloWCMW_JwHODXfVpIC88fy-UxrxUeGlLs2r1begKD-vmJDbu9Ykv3IPw3-UHaNq_mfQGpGqVQCTk_CtCgbdiWBSpUQFVguaSaxGkpkNjHYdSmkAC7MYEVAgpExqqjtGUJ3moooSriB6iZjkv9RHCJk056Hok8sjup6TIM6Vgk2PyGNRcdFqI1ugwWdURt-0sXlhtGHtmHlNmMWVhZH1zLUTWUQtfR-OP-WkNPPuyHhhQ_a-Rx_-OvEBbg8n9iI2G47sTtA0juT9sOUXN1fJNn0H6sRLnbnl9AKD713Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bactericidal+effect+of+graphene+oxide+and+reduced+graphene+oxide%3A+Influence+of+shape+of+bacteria&rft.jtitle=Colloid+and+interface+science+communications&rft.au=Sengupta%2C+Iman&rft.au=Bhattacharya%2C+Proma&rft.au=Talukdar%2C+Monikangkana&rft.au=Neogi%2C+Sudarsan&rft.date=2019-01-01&rft.issn=2215-0382&rft.eissn=2215-0382&rft.volume=28&rft.spage=60&rft.epage=68&rft_id=info:doi/10.1016%2Fj.colcom.2018.12.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_colcom_2018_12_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2215-0382&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2215-0382&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2215-0382&client=summon