Topological constraints-induced radiation shielding efficiency of SiO2 α-cristobalite polymorphism: Signatures from Hirshfeld pseudo-surfaces
The paper presents a synergetic and comprehensive investigation into γ-radiation shields properties on SiO2 α-cristobalite subject varying external pressures (0<p < 9.1 GPa). Utilizing crystallographic methods involving γ-rays and Hirshfeld pseudo-surface (HPSs) analyses, we explore the struct...
Saved in:
Published in | Optical materials Vol. 155; p. 115821 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The paper presents a synergetic and comprehensive investigation into γ-radiation shields properties on SiO2 α-cristobalite subject varying external pressures (0<p < 9.1 GPa). Utilizing crystallographic methods involving γ-rays and Hirshfeld pseudo-surface (HPSs) analyses, we explore the structural responses of SiO2 α-cristobalite to external pressure and its consequent impact on MAC and LAC. The study encompasses a broad energy range (0.015<E < 15.0 MeV), employing online tool for analysis. Our findings reveal that the fundamental shielding characteristics of SiO2 α-cristobalite, including (5.809<MAC<0.021 cm2/g), (3.10 × 1023<Neff< 3.74 × 1023 e/g), (10.32<Zeff<12.43), and (10.79<Zeq<11.56), remain reliable across different polymorphic forms within the energy domain and varying pressures. The LAC values exhibit a clear dependency on both incident photon energies where it's LAC ∈ [0.042 to 11.776] cm−1 as pressure elevated on the crystal. This relationship underscores the influence of pressure-induced changes in crystal density on LAC values. Additionally, changes in lattice parameters (4.975<a<4.599 Å) and bond lengths under pressure contribute to this observed variation in the LAC values. Further analysis of the topological constraints (TCs) (i.e., 1.603<Si⋯O < 1.610 Å, 111.42°<O⋯Si⋯O < 112.00°, and 146.49°<Si⋯O⋯Si < 127.80° bending and twisting angles respectively) reveals defined correlations with LAC values.
HPS topological analyses were also employed shed light on valuable insights into the mutual forces of interaction between atoms in the crystal unit cell. Changes in external stress lead to transformations in the HPSs, reflecting the impact of pressure on topological constraints. The evolution of HPS volume (i.e., 179.59-35.24 Å3) and area (i.e., 205.73-161.51 Å2) as well as void's volume (i.e., 10.20-0.17 Å3) and surface area (i.e., 46.10-3.12 Å2) within the crystal lattice is also observed, indicating a direct relationship between HPSs, crystal compactness, electron density and radiation effectiveness. These signatures have been correlated with TCs and thus on the γ-rays shield effectiveness.
[Display omitted]
•Pressure dependence of LAC is investigated.•Optimization relationship between lattice parameters and LAC.•Crystal structure modifications via Hirschfield topology for improved shielding.•Role of cell parameters and topological voids in shielding properties. |
---|---|
AbstractList | The paper presents a synergetic and comprehensive investigation into γ-radiation shields properties on SiO2 α-cristobalite subject varying external pressures (0<p < 9.1 GPa). Utilizing crystallographic methods involving γ-rays and Hirshfeld pseudo-surface (HPSs) analyses, we explore the structural responses of SiO2 α-cristobalite to external pressure and its consequent impact on MAC and LAC. The study encompasses a broad energy range (0.015<E < 15.0 MeV), employing online tool for analysis. Our findings reveal that the fundamental shielding characteristics of SiO2 α-cristobalite, including (5.809<MAC<0.021 cm2/g), (3.10 × 1023<Neff< 3.74 × 1023 e/g), (10.32<Zeff<12.43), and (10.79<Zeq<11.56), remain reliable across different polymorphic forms within the energy domain and varying pressures. The LAC values exhibit a clear dependency on both incident photon energies where it's LAC ∈ [0.042 to 11.776] cm−1 as pressure elevated on the crystal. This relationship underscores the influence of pressure-induced changes in crystal density on LAC values. Additionally, changes in lattice parameters (4.975<a<4.599 Å) and bond lengths under pressure contribute to this observed variation in the LAC values. Further analysis of the topological constraints (TCs) (i.e., 1.603<Si⋯O < 1.610 Å, 111.42°<O⋯Si⋯O < 112.00°, and 146.49°<Si⋯O⋯Si < 127.80° bending and twisting angles respectively) reveals defined correlations with LAC values.
HPS topological analyses were also employed shed light on valuable insights into the mutual forces of interaction between atoms in the crystal unit cell. Changes in external stress lead to transformations in the HPSs, reflecting the impact of pressure on topological constraints. The evolution of HPS volume (i.e., 179.59-35.24 Å3) and area (i.e., 205.73-161.51 Å2) as well as void's volume (i.e., 10.20-0.17 Å3) and surface area (i.e., 46.10-3.12 Å2) within the crystal lattice is also observed, indicating a direct relationship between HPSs, crystal compactness, electron density and radiation effectiveness. These signatures have been correlated with TCs and thus on the γ-rays shield effectiveness.
[Display omitted]
•Pressure dependence of LAC is investigated.•Optimization relationship between lattice parameters and LAC.•Crystal structure modifications via Hirschfield topology for improved shielding.•Role of cell parameters and topological voids in shielding properties. |
ArticleNumber | 115821 |
Author | Khattari, Z.Y. Afaneh, F. Al-Omari, S. |
Author_xml | – sequence: 1 givenname: Z.Y. orcidid: 0000-0003-0050-8472 surname: Khattari fullname: Khattari, Z.Y. email: zkhattari@hu.edu.jo – sequence: 2 givenname: F. surname: Afaneh fullname: Afaneh, F. – sequence: 3 givenname: S. surname: Al-Omari fullname: Al-Omari, S. |
BookMark | eNqFkE1OwzAQRr0oEr83YOELpNhO4qZdICHEn4TEAlhbjj1up0rsyHaRegnuwkU4EyllxQJWs5n3pO8dk4kPHgg552zKGZcX62kYcq_zVDBRTTmvG8En5IjNRV2UlZwdkuOU1owxUUt5RN5fwhC6sESjO2qCTzlq9DkV6O3GgKVRW9QZg6dphdBZ9EsKzqFB8GZLg6PP-CTo50dhIqYcWt1hBjpKt32IwwpTvxhfll7nTYREXQw9vceYVm600SHBxoYibaLTBtIpOXC6S3D2c0_I6-3Ny_V98fh093B99ViYkslclLWAxvIWTMlb1zamrJmUumzn7aysXNOKam5tbbVouK2B1XJmjdScz1pdcQ3lCVnsvSaGlCI4ZTB_z9zt7xRnaldTrdW-ptrVVPuaI1z9goeIvY7b_7DLPQbjsDeEqNJ3RLAYwWRlA_4t-AJiH5s9 |
CitedBy_id | crossref_primary_10_1016_j_radphyschem_2025_112676 |
Cites_doi | 10.1088/0953-8984/20/20/202101 10.1111/ijag.12009 10.1016/j.radphyschem.2023.111377 10.1103/PhysRevB.84.054201 10.1103/PhysRevB.71.174201 10.1080/14786446408643668 10.1007/s12633-023-02687-x 10.1039/B818330A 10.1016/j.jnoncrysol.2017.02.017 10.1016/j.optmat.2024.115000 10.1016/j.radphyschem.2024.111660 10.1007/s12633-023-02794-9 10.1007/BF00549096 10.1007/s12633-023-02666-2 10.1038/ncomms7398 10.1107/S1600576721002910 10.1002/(SICI)1521-3765(19981102)4:11<2136::AID-CHEM2136>3.0.CO;2-G 10.1103/PhysRevLett.110.165501 10.1016/j.optmat.2024.115197 10.1107/S010876739101067X 10.1039/B203191B 10.1016/0022-3093(79)90033-4 10.1016/j.radphyschem.2024.111527 10.1021/jp208796b 10.1016/S0009-2614(97)00100-0 10.1007/s00269-011-0424-5 10.1103/PhysRevLett.114.125502 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.optmat.2024.115821 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
ExternalDocumentID | 10_1016_j_optmat_2024_115821 S0925346724010048 |
GroupedDBID | --K --M .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABFNM ABJNI ABMAC ABNEU ABTAH ABXDB ABXRA ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE AEBSH AEIPS AEKER AENEX AEZYN AFFNX AFJKZ AFRZQ AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMV HVGLF HZ~ IHE J1W KOM M24 M38 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SEW SMS SPC SPCBC SPD SPG SSH SSM SSQ SSZ T5K UHS WUQ XPP ZMT ZY4 ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKYEP CITATION EFKBS |
ID | FETCH-LOGICAL-c306t-352e8d1bec31bfb8c35066a3b9b734f8b249dd5da281d5e0567dc6a117ba41ae3 |
IEDL.DBID | .~1 |
ISSN | 0925-3467 |
IngestDate | Thu Apr 24 23:04:44 EDT 2025 Tue Aug 05 12:05:41 EDT 2025 Sat Apr 19 15:59:57 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | α-cristobalite Radiation shielding Hirshfeld surfaces Tetrahedra Topological constraints |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-352e8d1bec31bfb8c35066a3b9b734f8b249dd5da281d5e0567dc6a117ba41ae3 |
ORCID | 0000-0003-0050-8472 |
ParticipantIDs | crossref_citationtrail_10_1016_j_optmat_2024_115821 crossref_primary_10_1016_j_optmat_2024_115821 elsevier_sciencedirect_doi_10_1016_j_optmat_2024_115821 |
PublicationCentury | 2000 |
PublicationDate | September 2024 2024-09-00 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: September 2024 |
PublicationDecade | 2020 |
PublicationTitle | Optical materials |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Anoop Krishnan, Le Pape, Sant, Bauchy (bib12) 2021; 564 Wang, Krishnan, Yu, Wang, Le Pape, Sant, Bauchy (bib11) 2017; 463 Dera, Lazarz, Prakapenka (bib13) 2011; 38 Smedskjaer, Mauro, Youngman, Hogue, Potuzak, Yue (bib4) 2011; 115 Spackman, Turner, McKinnon, Wolff, Jayatilaka, CrystalExplorer (bib32) 2021; 54 Khattari (bib21) 2024; 150 Bauchy, Micoulaut, Boero, Massobrio (bib8) 2013; 110 Al-Omari, Afaneh, Alsaif, Al-Ghamdi, Rammah, Khattari (bib22) 2024; 217 Hirshfeld (bib29) 1977; 44 Rompicharla, Novita, Chen, Boolchand, Micoulaut, Huff (bib9) 2008; 20 Al-Omari, Shaaban, Rammah (bib26) 2023; 15 Shaaban, Afaneh, Elsad (bib27) 2024; 16 Khattari (bib19) 2024; 16 Maxwell (bib5) 1864; 27 Khattari (bib18) 2024; 149 Khattari (bib25) 2024 Phillips (bib1) 1979; 34 Hall, Allen, Brown (bib16) 1991; A47 Spackman, Jayatilaka (bib30) 2009; 11 Bauchy, Micoulaut, Celino, Le Roux, Boero, Massobrio (bib10) 2011; 84 Al-Omari, Afaneh, Elsad, Rammah, Khattari (bib24) 2024; 215 Wang, Mamedov, Boolchand, Goodman, Chandrasekhar (bib6) 2005; 71 Khattari (bib20) 2024; 219 Bauchy, Qomi, Bichara, Ulm, Pellenq (bib2) 2015; 114 Spackman, Byrom (bib14) 1997; 267 Khattari (bib17) 2024; 149 Khattari (bib28) 2024 Mauro, Ellison, Allan, Smedskjaer (bib3) 2013; 4 Spackman, McKinnon (bib31) 2002; 4 Joshua, Mitchell, Spackman (bib15) 1998; 4 Bauchy, Micoulaut (bib7) 2015; 6 Khattari (bib23) 2024 Rompicharla (10.1016/j.optmat.2024.115821_bib9) 2008; 20 Anoop Krishnan (10.1016/j.optmat.2024.115821_bib12) 2021; 564 Khattari (10.1016/j.optmat.2024.115821_bib23) 2024 Khattari (10.1016/j.optmat.2024.115821_bib20) 2024; 219 Wang (10.1016/j.optmat.2024.115821_bib11) 2017; 463 Phillips (10.1016/j.optmat.2024.115821_bib1) 1979; 34 Bauchy (10.1016/j.optmat.2024.115821_bib2) 2015; 114 Khattari (10.1016/j.optmat.2024.115821_bib18) 2024; 149 Mauro (10.1016/j.optmat.2024.115821_bib3) 2013; 4 Al-Omari (10.1016/j.optmat.2024.115821_bib22) 2024; 217 Shaaban (10.1016/j.optmat.2024.115821_bib27) 2024; 16 Khattari (10.1016/j.optmat.2024.115821_bib25) 2024 Bauchy (10.1016/j.optmat.2024.115821_bib7) 2015; 6 Smedskjaer (10.1016/j.optmat.2024.115821_bib4) 2011; 115 Spackman (10.1016/j.optmat.2024.115821_bib32) 2021; 54 Hall (10.1016/j.optmat.2024.115821_bib16) 1991; A47 Bauchy (10.1016/j.optmat.2024.115821_bib8) 2013; 110 Joshua (10.1016/j.optmat.2024.115821_bib15) 1998; 4 Spackman (10.1016/j.optmat.2024.115821_bib14) 1997; 267 Dera (10.1016/j.optmat.2024.115821_bib13) 2011; 38 Khattari (10.1016/j.optmat.2024.115821_bib21) 2024; 150 Wang (10.1016/j.optmat.2024.115821_bib6) 2005; 71 Khattari (10.1016/j.optmat.2024.115821_bib19) 2024; 16 Spackman (10.1016/j.optmat.2024.115821_bib31) 2002; 4 Bauchy (10.1016/j.optmat.2024.115821_bib10) 2011; 84 Al-Omari (10.1016/j.optmat.2024.115821_bib26) 2023; 15 Maxwell (10.1016/j.optmat.2024.115821_bib5) 1864; 27 Spackman (10.1016/j.optmat.2024.115821_bib30) 2009; 11 Al-Omari (10.1016/j.optmat.2024.115821_bib24) 2024; 215 Khattari (10.1016/j.optmat.2024.115821_bib28) 2024 Hirshfeld (10.1016/j.optmat.2024.115821_bib29) 1977; 44 Khattari (10.1016/j.optmat.2024.115821_bib17) 2024; 149 |
References_xml | – volume: 114 year: 2015 ident: bib2 article-title: Rigidity transition in materials: hardness is driven by weak atomic constraints publication-title: Phys. Rev. Lett. – volume: 4 start-page: 408 year: 2013 ident: bib3 article-title: Topological model for the viscosity of multicomponent glass-forming liquids publication-title: Int. J. Appl. Glass Sci. – volume: 219 year: 2024 ident: bib20 publication-title: Radiat. Phys. Chem. – volume: 84 year: 2011 ident: bib10 article-title: Angular rigidity in tetrahedral network glasses with changing composition publication-title: Phys. Rev. B – volume: 215 year: 2024 ident: bib24 publication-title: Radiat. Phys. Chem. – start-page: 107 year: 2024 ident: bib23 article-title: J. Of American Cermanic Society – volume: 4 start-page: 2136 year: 1998 end-page: 2141 ident: bib15 article-title: Hirshfeld surfaces: a new tool for visualizing and exploring molecular crystals publication-title: Chem. Eur J. – volume: 149 year: 2024 ident: bib17 publication-title: Opt. Mater. – volume: 16 start-page: 1753 year: 2024 end-page: 1764 ident: bib19 publication-title: Silicon – volume: 564 year: 2021 ident: bib12 article-title: Disorder-induced expansion of silicate minerals arises from the breakage of weak topological constraints publication-title: J. Non-Cryst. Solids – volume: 4 start-page: 378 year: 2002 end-page: 392 ident: bib31 article-title: Fingerprinting intermolecular interactions in molecular crystals publication-title: CrystEngComm – volume: 15 start-page: 7875 year: 2023 ident: bib26 article-title: The influence of unit cell parameters, intertetrahedral bridging angle and chemical composition on the crystal γ-ray attenuation of α-quartz homeotypes publication-title: Silicon – volume: 115 year: 2011 ident: bib4 article-title: Topological principles of borosilicate glass chemistry publication-title: J. Phys. Chem. B – volume: 71 year: 2005 ident: bib6 article-title: Pressure Raman effects and internal stress in network glasses publication-title: Phys. Rev. B – volume: 110 year: 2013 ident: bib8 article-title: Compositional thresholds and anomalies in connection with stiffness transitions in network glasses publication-title: Phys. Rev. Lett. – year: 2024 ident: bib25 publication-title: Silicon – volume: 27 start-page: 294 year: 1864 end-page: 299 ident: bib5 article-title: On the calculation of the equilibrium and stiffness of frames publication-title: London, Edinburgh Dublin Phil. Mag. J. Sci. – volume: 267 start-page: 215 year: 1997 end-page: 220 ident: bib14 article-title: A novel definition of a molecule in a crystal publication-title: Chem. Phys. Lett. – volume: 16 start-page: 407 year: 2024 end-page: 414 ident: bib27 article-title: Exploring the influence of intra- and inter-tetrahedral distances and angles, as well as tetrahedral volume, on the radiation shielding efficiency of high-pressure α-quartz publication-title: Silicon – volume: 149 year: 2024 ident: bib18 publication-title: Opt. Mater. – volume: 44 start-page: 129 year: 1977 end-page: 138 ident: bib29 article-title: Bonded-atom fragments for describing molecular charge densities publication-title: Theor. Chim. Acta – volume: 34 start-page: 153 year: 1979 ident: bib1 article-title: Topology of covalent non-crystalline solids I: short-range order in chalcogenide alloys publication-title: J. Non-Cryst. Solids – volume: 38 start-page: 517 year: 2011 end-page: 529 ident: bib13 article-title: New insights into the high-pressure polymorphism of SiO2 cristobalite publication-title: Phys. Chem. Miner. – volume: 11 start-page: 19 year: 2009 end-page: 32 ident: bib30 article-title: Hirshfeld surface analysis publication-title: CrystEngComm – volume: 150 year: 2024 ident: bib21 publication-title: Opt. Mater. – volume: 463 start-page: 25 year: 2017 end-page: 30 ident: bib11 article-title: Irradiation-induced topological transition in SiO2: structural signature of networks' rigidity publication-title: J. Non-Cryst. Solids – year: 2024 ident: bib28 publication-title: Silicon – volume: 54 start-page: 1006 year: 2021 end-page: 1011 ident: bib32 article-title: A program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular publication-title: J. Appl. Crystallogr. – volume: 6 start-page: 6398 year: 2015 ident: bib7 article-title: Densified network glasses and liquids with thermodynamically reversible and structurally adaptive behaviour publication-title: Nat. Commun. – volume: A47 start-page: 655 year: 1991 end-page: 685 ident: bib16 article-title: The crystallographic information file (CIF): a new standard archive file for crystallography publication-title: Acta Crystallogr. – volume: 217 year: 2024 ident: bib22 publication-title: Radiat. Phys. Chem. – volume: 20 year: 2008 ident: bib9 article-title: Abrupt boundaries of intermediate phases and space filling in oxide glasses publication-title: J. Phys. Condens. Matter – volume: 20 year: 2008 ident: 10.1016/j.optmat.2024.115821_bib9 article-title: Abrupt boundaries of intermediate phases and space filling in oxide glasses publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/20/20/202101 – volume: 564 year: 2021 ident: 10.1016/j.optmat.2024.115821_bib12 article-title: Disorder-induced expansion of silicate minerals arises from the breakage of weak topological constraints publication-title: J. Non-Cryst. Solids – volume: 4 start-page: 408 year: 2013 ident: 10.1016/j.optmat.2024.115821_bib3 article-title: Topological model for the viscosity of multicomponent glass-forming liquids publication-title: Int. J. Appl. Glass Sci. doi: 10.1111/ijag.12009 – volume: 215 year: 2024 ident: 10.1016/j.optmat.2024.115821_bib24 publication-title: Radiat. Phys. Chem. doi: 10.1016/j.radphyschem.2023.111377 – volume: 84 year: 2011 ident: 10.1016/j.optmat.2024.115821_bib10 article-title: Angular rigidity in tetrahedral network glasses with changing composition publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.054201 – start-page: 107 year: 2024 ident: 10.1016/j.optmat.2024.115821_bib23 – volume: 71 year: 2005 ident: 10.1016/j.optmat.2024.115821_bib6 article-title: Pressure Raman effects and internal stress in network glasses publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.71.174201 – volume: 27 start-page: 294 issue: 182 year: 1864 ident: 10.1016/j.optmat.2024.115821_bib5 article-title: On the calculation of the equilibrium and stiffness of frames publication-title: London, Edinburgh Dublin Phil. Mag. J. Sci. doi: 10.1080/14786446408643668 – volume: 16 start-page: 407 year: 2024 ident: 10.1016/j.optmat.2024.115821_bib27 article-title: Exploring the influence of intra- and inter-tetrahedral distances and angles, as well as tetrahedral volume, on the radiation shielding efficiency of high-pressure α-quartz publication-title: Silicon doi: 10.1007/s12633-023-02687-x – volume: 11 start-page: 19 year: 2009 ident: 10.1016/j.optmat.2024.115821_bib30 article-title: Hirshfeld surface analysis publication-title: CrystEngComm doi: 10.1039/B818330A – volume: 463 start-page: 25 year: 2017 ident: 10.1016/j.optmat.2024.115821_bib11 article-title: Irradiation-induced topological transition in SiO2: structural signature of networks' rigidity publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2017.02.017 – volume: 149 year: 2024 ident: 10.1016/j.optmat.2024.115821_bib17 publication-title: Opt. Mater. doi: 10.1016/j.optmat.2024.115000 – volume: 219 year: 2024 ident: 10.1016/j.optmat.2024.115821_bib20 publication-title: Radiat. Phys. Chem. doi: 10.1016/j.radphyschem.2024.111660 – volume: 16 start-page: 1753 year: 2024 ident: 10.1016/j.optmat.2024.115821_bib19 publication-title: Silicon doi: 10.1007/s12633-023-02794-9 – year: 2024 ident: 10.1016/j.optmat.2024.115821_bib25 publication-title: Silicon – volume: 44 start-page: 129 year: 1977 ident: 10.1016/j.optmat.2024.115821_bib29 article-title: Bonded-atom fragments for describing molecular charge densities publication-title: Theor. Chim. Acta doi: 10.1007/BF00549096 – volume: 15 start-page: 7875 year: 2023 ident: 10.1016/j.optmat.2024.115821_bib26 article-title: The influence of unit cell parameters, intertetrahedral bridging angle and chemical composition on the crystal γ-ray attenuation of α-quartz homeotypes publication-title: Silicon doi: 10.1007/s12633-023-02666-2 – volume: 6 start-page: 6398 year: 2015 ident: 10.1016/j.optmat.2024.115821_bib7 article-title: Densified network glasses and liquids with thermodynamically reversible and structurally adaptive behaviour publication-title: Nat. Commun. doi: 10.1038/ncomms7398 – volume: 54 start-page: 1006 issue: 3 year: 2021 ident: 10.1016/j.optmat.2024.115821_bib32 article-title: A program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular publication-title: J. Appl. Crystallogr. doi: 10.1107/S1600576721002910 – volume: 4 start-page: 2136 year: 1998 ident: 10.1016/j.optmat.2024.115821_bib15 article-title: Hirshfeld surfaces: a new tool for visualizing and exploring molecular crystals publication-title: Chem. Eur J. doi: 10.1002/(SICI)1521-3765(19981102)4:11<2136::AID-CHEM2136>3.0.CO;2-G – volume: 110 year: 2013 ident: 10.1016/j.optmat.2024.115821_bib8 article-title: Compositional thresholds and anomalies in connection with stiffness transitions in network glasses publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.165501 – volume: 149 year: 2024 ident: 10.1016/j.optmat.2024.115821_bib18 publication-title: Opt. Mater. doi: 10.1016/j.optmat.2024.115000 – volume: 150 year: 2024 ident: 10.1016/j.optmat.2024.115821_bib21 publication-title: Opt. Mater. doi: 10.1016/j.optmat.2024.115197 – volume: A47 start-page: 655 year: 1991 ident: 10.1016/j.optmat.2024.115821_bib16 article-title: The crystallographic information file (CIF): a new standard archive file for crystallography publication-title: Acta Crystallogr. doi: 10.1107/S010876739101067X – volume: 4 start-page: 378 year: 2002 ident: 10.1016/j.optmat.2024.115821_bib31 article-title: Fingerprinting intermolecular interactions in molecular crystals publication-title: CrystEngComm doi: 10.1039/B203191B – volume: 34 start-page: 153 year: 1979 ident: 10.1016/j.optmat.2024.115821_bib1 article-title: Topology of covalent non-crystalline solids I: short-range order in chalcogenide alloys publication-title: J. Non-Cryst. Solids doi: 10.1016/0022-3093(79)90033-4 – volume: 217 year: 2024 ident: 10.1016/j.optmat.2024.115821_bib22 publication-title: Radiat. Phys. Chem. doi: 10.1016/j.radphyschem.2024.111527 – volume: 115 year: 2011 ident: 10.1016/j.optmat.2024.115821_bib4 article-title: Topological principles of borosilicate glass chemistry publication-title: J. Phys. Chem. B doi: 10.1021/jp208796b – volume: 267 start-page: 215 year: 1997 ident: 10.1016/j.optmat.2024.115821_bib14 article-title: A novel definition of a molecule in a crystal publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(97)00100-0 – volume: 38 start-page: 517 year: 2011 ident: 10.1016/j.optmat.2024.115821_bib13 article-title: New insights into the high-pressure polymorphism of SiO2 cristobalite publication-title: Phys. Chem. Miner. doi: 10.1007/s00269-011-0424-5 – year: 2024 ident: 10.1016/j.optmat.2024.115821_bib28 publication-title: Silicon – volume: 114 year: 2015 ident: 10.1016/j.optmat.2024.115821_bib2 article-title: Rigidity transition in materials: hardness is driven by weak atomic constraints publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.125502 |
SSID | ssj0002566 |
Score | 2.4227972 |
Snippet | The paper presents a synergetic and comprehensive investigation into γ-radiation shields properties on SiO2 α-cristobalite subject varying external pressures... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 115821 |
SubjectTerms | Hirshfeld surfaces Radiation shielding Tetrahedra Topological constraints α-cristobalite |
Title | Topological constraints-induced radiation shielding efficiency of SiO2 α-cristobalite polymorphism: Signatures from Hirshfeld pseudo-surfaces |
URI | https://dx.doi.org/10.1016/j.optmat.2024.115821 |
Volume | 155 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KIngRn1gfZQ9e1zbZzaPeSrFUxXpoC72F3ezGRmxTmvTgxZ_gf_GP-JucycMHiILHhNkQZjYz35BvviXkTLjS9aCsM-NrnwlAtMxXqsWM9H2uhWsZjYPCtwO3PxbXE2dSI91qFgZplWXuL3J6nq3LO83Sm81FHDeHrbbtcPjOoSah7BkO_Arh4S4_f_6keUBJz_9XgjFD62p8Lud4JYsMcCF0ibaA3IEzoz-Xpy8lp7dNtkqsSDvF6-yQmpnvko2csxmme-RlVBxwgG6mIeI8PO4hSxm02RAwTZeoO4COp-kUiWpQpajJJSNw3pImER3GdzZ9e2VhrjCgEJMbCg99miXg_zidXYDJfSH-mVIcRaH9eJlOI3gaXaRmpROWrpYR8rr2ybh3Oer2WXm8AguhT8gYQC8IkAVB5JaKlB9yB_CH5KqtPC4iX0FnprWjpQ2Y1jGAlDwdutKyPCWFJQ0_IGvzZG4OCQ1FG3Xwbc8IDxrGNhjxiEtXOsKOImXVCa-8GoSl9jj65DGoSGYPQRGLAGMRFLGoE_axalFob_xh71UBC77toQDKw68rj_698phs4lXBOjsha9lyZU4BpmSqke_DBlnvXN30B-_gfuvN |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVYhOCCWEVZfeBq2sTOUm4IgcrScmgr9RbZsUODaFM16YELn8C_8CN8EzNZWCQEEtdkbEXz7Jk3yiyEHAtXuh64dWZ87TMBjJb5SjWYkb7PtXAto7FQuN1xW31xPXAGc-S8qoXBtMrS9hc2PbfW5ZN6qc36JI7r3UbTdjjcc_BJ2PbMnyeLAq4vjjE4ef7M8wCfnv-wBGmG4lX9XJ7klUwyIIYQJtoCjAcWjf7sn774nMs1slqSRXpWfM86mTPjDbKUJ22G6SZ56RUTDlDPNESih_MespRBnA2IaTrFxgOoeZoOMVMN3BQ1ec8ILLikSUS78Z1N315ZmLcYUEjKDYVNn0YJABCno1MQuS-6f6YUa1FoK56mwwh2o5PUzHTC0tk0wsSuLdK_vOidt1g5X4GFEChkDLgXIGQBitxSkfJD7gABkVw1lcdF5CsIzbR2tLSB1DoGqJKnQ1dalqeksKTh22RhnIzNDqGhaGIjfNszwoOIsQlCPOLSlY6wo0hZNcIrrQZh2XwcdfIYVFlmD0GBRYBYBAUWNcI-Vk2K5ht_yHsVYMG3QxSAf_h15e6_Vx6R5VavfRvcXnVu9sgKvilS0PbJQjadmQPgLJk6zM_kO0tk7Vs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topological+constraints-induced+radiation+shielding+efficiency+of+SiO2+%CE%B1-cristobalite+polymorphism%3A+Signatures+from+Hirshfeld+pseudo-surfaces&rft.jtitle=Optical+materials&rft.au=Khattari%2C+Z.Y.&rft.au=Afaneh%2C+F.&rft.au=Al-Omari%2C+S.&rft.date=2024-09-01&rft.pub=Elsevier+B.V&rft.issn=0925-3467&rft.volume=155&rft_id=info:doi/10.1016%2Fj.optmat.2024.115821&rft.externalDocID=S0925346724010048 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-3467&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-3467&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-3467&client=summon |