Extraordinary MHNet: Military high-level camouflage object detection network and dataset

We present the first systematic work on Military High-level Camouflage object Detection (MHCD), aiming to identify objects visibly embedded in chaotic backgrounds. The high intrinsic similarities (e.g., texture, intensity, color, etc.) between the attention object and its background give the task fa...

Full description

Saved in:
Bibliographic Details
Published inNeurocomputing (Amsterdam) Vol. 549; p. 126466
Main Authors Liu, Maozhen, Di, Xiaoguang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 07.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We present the first systematic work on Military High-level Camouflage object Detection (MHCD), aiming to identify objects visibly embedded in chaotic backgrounds. The high intrinsic similarities (e.g., texture, intensity, color, etc.) between the attention object and its background give the task far more challenging than general object detection. In this paper, we construct a benchmark MHCD2022 dataset, which consists of 3000 images with dense annotations covering 5 categories from multiple real-world scenes. Remarkably, based on the observation that biological vision usually first obtains perception from global search and strives to recover the complete object, we propose a novel Military High-level detection Network, called MHNet, which is characterized by four ingenious modules: Subject Perception Gathering (SPG), Part-object Relationships Mining (PRM), Concept Recovery/Feature Clue Supplement (CR/FCS) and Springboard Selection (SS). Firstly, a SPG is designed for global foreground rough perception by the exploitation of depth information. Second, a PRM is particularly used to mine part-object potential relations in diverse environments. After that, we propose CR/FCS and SS to enhance the destroyed instance-level representation and suppress the domain imbalance problem, respectively. Extensive experimental results show that previous methods suffered from poor performance, MHNet significantly outperforms camouflage baselines and competing methods on the MHCD2022 for the high-level camouflaged object. Finally, we also present and highlight the practical application value and several future directions of the research.
AbstractList We present the first systematic work on Military High-level Camouflage object Detection (MHCD), aiming to identify objects visibly embedded in chaotic backgrounds. The high intrinsic similarities (e.g., texture, intensity, color, etc.) between the attention object and its background give the task far more challenging than general object detection. In this paper, we construct a benchmark MHCD2022 dataset, which consists of 3000 images with dense annotations covering 5 categories from multiple real-world scenes. Remarkably, based on the observation that biological vision usually first obtains perception from global search and strives to recover the complete object, we propose a novel Military High-level detection Network, called MHNet, which is characterized by four ingenious modules: Subject Perception Gathering (SPG), Part-object Relationships Mining (PRM), Concept Recovery/Feature Clue Supplement (CR/FCS) and Springboard Selection (SS). Firstly, a SPG is designed for global foreground rough perception by the exploitation of depth information. Second, a PRM is particularly used to mine part-object potential relations in diverse environments. After that, we propose CR/FCS and SS to enhance the destroyed instance-level representation and suppress the domain imbalance problem, respectively. Extensive experimental results show that previous methods suffered from poor performance, MHNet significantly outperforms camouflage baselines and competing methods on the MHCD2022 for the high-level camouflaged object. Finally, we also present and highlight the practical application value and several future directions of the research.
ArticleNumber 126466
Author Liu, Maozhen
Di, Xiaoguang
Author_xml – sequence: 1
  givenname: Maozhen
  surname: Liu
  fullname: Liu, Maozhen
– sequence: 2
  givenname: Xiaoguang
  surname: Di
  fullname: Di, Xiaoguang
  email: dixiaoguang@hit.edu.cn
BookMark eNqFkLFOwzAURS1UJNrCHzDkB1JsJ3WSDkioKhSphaUDm_Viv7QOqY0cU-DvSRQmBpie3nCu7j0TMrLOIiHXjM4YZeKmnll8V-4445QnM8ZFKsQZGbM843HOczEiY1rwecwTxi_IpG1rSlnGeDEmL6vP4MF5bSz4r2i7fsKwiLamMaH_D2Z_iBs8YRMpOLr3qoE9Rq6sUYVIY-iOcTayGD6cf43A6khDgBbDJTmvoGnx6udOye5-tVuu483zw-PybhOrhIoQJww4ioyngBkFAUlaikJQIfg8y7niGXAGmKYUdAFlUgmR6KKCVJdprnKWTMliiFXeta3HSqqueV-qm2UayajsFclaDopkr0gOijo4_QW_eXPsdv-H3Q4YdrtOBr1slUGrUBvfCZHamb8DvgEO9oW8
CitedBy_id crossref_primary_10_32604_cmc_2024_055327
crossref_primary_10_1016_j_jvcir_2024_104366
crossref_primary_10_1007_s11760_024_03766_1
crossref_primary_10_1016_j_eswa_2024_124747
crossref_primary_10_1177_15485129241233299
crossref_primary_10_1016_j_asoc_2025_112972
crossref_primary_10_1016_j_engappai_2025_110223
crossref_primary_10_1007_s00371_024_03786_5
crossref_primary_10_1007_s10489_025_06264_0
crossref_primary_10_3390_drones8090421
crossref_primary_10_3390_electronics13193922
crossref_primary_10_1007_s00371_025_03805_z
crossref_primary_10_1117_1_JEI_33_5_053061
crossref_primary_10_54939_1859_1043_j_mst_CSCE8_2024_44_54
Cites_doi 10.1016/j.jksuci.2019.09.012
10.1007/s11042-021-11446-2
10.1007/978-3-030-58452-8_13
10.1109/ICCV48922.2021.00411
10.1109/CVPR46437.2021.00866
10.1109/LSP.2018.2825959
10.1109/CVPR42600.2020.00285
10.1007/s44267-023-00019-6
10.1016/j.inffus.2021.12.004
10.1007/s11633-022-1365-9
10.5539/mas.v5n4p152
10.1109/ICCV.2019.00132
10.1109/TMM.2021.3115344
10.1109/CVPR.2017.106
10.1109/CVPR52688.2022.00571
10.1109/JAS.2022.105686
10.1109/CVPR.2018.00644
10.1109/CVPR52688.2022.00529
10.1109/TIE.2021.3078379
10.1109/TCSVT.2022.3167114
10.1016/j.neucom.2022.01.020
10.1109/JAS.2022.106082
10.1609/aaai.v37i1.25156
10.1109/ICCV.2017.324
10.1007/s11263-021-01447-x
10.1016/j.cviu.2019.04.006
10.1007/s11042-015-2946-1
10.1007/s11263-014-0733-5
10.1109/TCSVT.2021.3124952
10.1109/TCSVT.2022.3150923
10.1109/TIP.2022.3217695
10.1007/s00521-018-3468-3
10.1371/journal.pone.0020233
10.1016/j.knosys.2022.108901
10.1016/j.patcog.2021.108414
10.1016/j.imavis.2021.104283
10.1007/978-3-030-01264-9_45
10.1109/TIFS.2021.3124734
10.1109/TCSVT.2022.3211734
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2023.126466
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
ExternalDocumentID 10_1016_j_neucom_2023_126466
S0925231223005891
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SSH
WUQ
XPP
ID FETCH-LOGICAL-c306t-31a2e6724ae70a6a34b69606625782c27a21ae440ad9ab3f663d9fa4db48c813
IEDL.DBID .~1
ISSN 0925-2312
IngestDate Tue Jul 01 04:24:53 EDT 2025
Thu Apr 24 23:16:10 EDT 2025
Fri Feb 23 02:35:49 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Datasets
Concealed objects
High-level military camouflage
Object detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c306t-31a2e6724ae70a6a34b69606625782c27a21ae440ad9ab3f663d9fa4db48c813
ParticipantIDs crossref_citationtrail_10_1016_j_neucom_2023_126466
crossref_primary_10_1016_j_neucom_2023_126466
elsevier_sciencedirect_doi_10_1016_j_neucom_2023_126466
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-07
PublicationDateYYYYMMDD 2023-09-07
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-07
  day: 07
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Tang, Yuan, Ma (b0250) 2022; 82
T. Zhi, S. Chunhua, C. Hao, and H. Tong, FCOS: fully convolutional one-stage object detection, In ICCV, 2019.
Bhajantri, Nagabhushan (b0065) 2006
Everingham, Eslami, Van Gool, Williams, Winn, Zisserman (b0180) 2015; 111
S. Peize, Z. Rufeng, J. Yi, K. Tao, X. Chenfeng, Z. Wei, M. Tomizuka, L. Lei, Y. Zehuan, W. Changhu, and L. Ping, Sparse R-CNN: end-to-end object detection with learnable proposals, In CVPR, 2021.
C. Tianyou, X. Jin, H. Xiaoguang, Z. Guofeng, W. Shaojie, Boundary-guided network for camouflaged object detection, in Knowledge-Based Systems, Volume 248, 2022, 108901, ISSN 0950-7051, https://doi.org/10.1016/j.knosys.2022.108901.
Y. Liu, Q. Zhang, D. Zhang, and J. Han, Employing deep part-object relationships for salient object detection, in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 1232–1241.
Hu X, Fan D P, Qin X, et al. High-resolution Iterative Feedback Network for Camouflaged Object Detection[J]. arXiv preprint arXiv:2203.11624, 2022.
Z. Gao, L. Wang, B. Han, et al., AdaMixer: A Fast-Converging Query-Based Object Detector, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 5364–5373.
Ma, Tang, Fan (b0255) 2022; 9
Fan, Ji, Sun, Cheng, Shen, Shao (b0145) 2020
Dimitrova, Stobbe, Schaefer, Merilaita (b0020) 2009
Z. Yao, L. Wang, Boundary Information Progressive Guidance Network for Salient Object Detection, in IEEE Transactions on Multimedia, 2021, 24: 4236–4249.
N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko, End-to-end object detection with transformers, In ECCV, 2020.
N.E. Scott-Samuel, R. Baddeley, C.E. Palmer, I.C. Cuthill. Dazzle camouflage affects speed perception, in PLoS One, 2011, pp. 6.
Y. Liu, D. Zhang, Q. Zhang, et al., Integrating part-object relationship and contrast for camouflaged object detection, in IEEE Transactions on Information Forensics and Security, 2021, 16: 5154–5166.
X. Shangliang, W. Xinxin, L. Wenyu, C. Qinyao, C. Cheng, D. Kaipeng, W. Guanzhong, D. Qingqing, W. Shengyu, D. Yuning, et al., PP-YOLOE: An evolved version of YOLO, arXiv preprint arXiv:2203.16250, 2022.
T. Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, S. Belongie, Feature pyramid networks for object detection, 2016, arXiv preprint arXiv:1612.03144.
Ji, Fan, Chou (b0280) 2023; 20
Sabour, Frosst, Hinton (b0160) 2018
Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollár, Zitnick (b0185) 2014
Stevens, Cuthill, Windsor, Walker (b0015) 2006
Liu, Anguelov, Erhan, Szegedy, Reed, Fu, Berg (b0190) 2016
Pan, Chen, Fu, Zhang, Xu (b0080) 2011; 5
Z. YunFei, Z. Xiongwei, F. Wang, C. Tiieyong, S. Meng, W. Xiaobing, Detection of People With Camouflage Pattern Via Dense Deconvolution Network, in IEEE Signal Processing Letters, 2018, PP. 1–1. DOI: 10.1109/LSP.2018.2825959.
X. Xiuqi, Z. Mingyu, Y. Jinhao, C. Shuhan, H. Xuelong, Y. Yuequan, Boundary guidance network for camouflage object detection, in Image and Vision Computing, Volume 114, 2021, 104283, ISSN 0262-8856, https://doi.org/10.1016/j.imavis.2021.104283.
Zhou, Zhou, Gong (b0285) 2022; 31
Y. Chen, H. Wang, W. Li, et al., Scale-Aware Domain Adaptive Faster R-CNN, in Int J Comput Vis, 2021, vol. 129, 2223–2243. doi: 10.1007/s11263-021-01447-x.
Fan, Deng-Ping, et al. Advances in Deep Concealed Scene Understanding. arXiv preprint arXiv:2304.11234 (2023).
L. Tang, B. Li, S. Kuang, et al., Re-thinking the relations in co-saliency detection, in IEEE Transactions on Circuits and Systems for Video Technology, 2022.
Liu J, Fan X, Huang Z, et al. Target-aware dual adversarial learning and a multi-scenario multi-modality benchmark to fuse infrared and visible for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 5802–5811.
H. Bi, C. Zhang, K. Wang, et al., Rethinking Camouflaged Object Detection: Models and Datasets, in IEEE Transactions on Circuits and Systems for Video Technology, 2021.
D.-P. Fan, G.-P. Ji, M.-M. Cheng, L. Shao, Concealed object detection, IEEE T. Pattern Anal. Mach. Intell. (2021).
Qiu (b0245) March 2023; 33
Wang, Shengyu Zhang, Qian, Wang (b0230) 2022; 481
F. Yang, Q. Zhai, X. Li, R. Huang, A. Luo, H. Cheng, D.-P. Fan, Uncertainty-guided transformer reasoning for camouflaged object detection, in: Int. Conf. Comput. Vis., 2021.
D.-P. Fan, G.-P. Ji, G. Sun, M.-M. Cheng, J. Shen, L. Shao, Camouflaged object detection, in: IEEE Conf. Comput. Vis. Pattern Recog., 2020, pp. 2777–2787.
Y. Lyu, J. Zhang, Y. Dai, L. Aixuan, B. Liu, N. Barnes, D.-P. Fan, Simultaneously localize, segment and rank the camouflaged objects, in: IEEE Conf. Comput. Vis. Pattern Recog., 2021.
S. Rani, D. Ghai, S. Kumar, Object detection and recognition using contour based edge detection and fast R-CNN, in Multimed Tools Appl, 2022, vol. 81, pp. 42183–42207. doi: 10.1007/s11042-021-11446-2.
D. Wang, K. Shang, H. Wu, et al., Decoupled R-CNN: Sensitivity-Specific Detector for Higher Accurate Localization, in IEEE Transactions on Circuits and Systems for Video Technology, 2022.
Tang, Deng, Ma (b0260) 2022; 9
V. Sharma, R. N. Mir, Saliency guided faster-RCNN (SGFr-RCNN) model for object detection and recognition, in Journal of King Saud University - Computer and Information Sciences, Volume 34, Issue 5, 2022, Pages 1687–1699, ISSN 1319–1578, doi: 10.1016/j.jksuci.2019.09.012.
Le, Nguyen, Nie, Tran, Sugimoto (b0140) Jul. 2019; 184
Xin, Jiahao, Bo, Yangtong, Longyao (b0150) 2021
Z. Cai and N. Vasconcelos, Cascade r-cnn: Delving into high quality object detection, in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 6154–6162.
Astapov, Preden, Ehala, Riid (b0025) 2014
P. Skurowski, H. Abdulameer, J. Blaszczyk, T. Depta, A. Kornacki, and P. Koziel, Animal camouflage analysis: Chameleon database, in Unpublished Manuscript, vol. 2, no. 6, p. 7, 2018.
H. Law and J. Deng, Cornernet: Detecting objects as paired keypoints, in Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 734–750.
Yang, Yu, Liang, Guo, Xia, Zhang, Ma, Ma (b0030) 2019; 31
G.-P. Ji, L. Zhu, M.C. Zhuge, K. Fu, Fast Camouflaged Object Detection via Edge-based Reversible Re-calibration Network, Pattern Recognition, Volume 123, 2022, 108414, ISSN 0031–3203.
Le, Nguyen, Nie, Tran, Sugimoto (b0085) 2019; 184
He R, Dong Q, Lin J, et al. Weakly-Supervised Camouflaged Object Detection with Scribble Annotations[J]. arXiv preprint arXiv:2207.14083, 2022.
Song, Geng (b0070) 2010
Xue, Yong, Xu, Dong, Luo, Jia (b0075) 2016; 75
Wang, Bi, Zhang (b0100) 2021; 69
H. Mei, G.-P. Ji, Z. Wei, X. Yang, X. Wei, D.-P. Fan, Camouflaged object segmentation with distraction mining, in: IEEE Conf. Comput. Vis. Pattern Recog., 2021.
S. Ren, K. He, R. Girshick, and J. Sun, Faster r-cnn: Towards real-time object detection with region proposal networks, in Advances in neural information processing systems, 2015, pp. 91–99.
T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, Focal loss for dense object detection, in Proceedings of the IEEE international conference on computer vision, 2017, pp. 2980–2988.
Astapov (10.1016/j.neucom.2023.126466_b0025) 2014
10.1016/j.neucom.2023.126466_b0110
10.1016/j.neucom.2023.126466_b0275
10.1016/j.neucom.2023.126466_b0155
Le (10.1016/j.neucom.2023.126466_b0140) 2019; 184
10.1016/j.neucom.2023.126466_b0270
Zhou (10.1016/j.neucom.2023.126466_b0285) 2022; 31
10.1016/j.neucom.2023.126466_b0195
10.1016/j.neucom.2023.126466_b0035
10.1016/j.neucom.2023.126466_b0235
10.1016/j.neucom.2023.126466_b0115
Liu (10.1016/j.neucom.2023.126466_b0190) 2016
Song (10.1016/j.neucom.2023.126466_b0070) 2010
10.1016/j.neucom.2023.126466_b0090
10.1016/j.neucom.2023.126466_b0290
Yang (10.1016/j.neucom.2023.126466_b0030) 2019; 31
Wang (10.1016/j.neucom.2023.126466_b0100) 2021; 69
Bhajantri (10.1016/j.neucom.2023.126466_b0065) 2006
10.1016/j.neucom.2023.126466_b0240
10.1016/j.neucom.2023.126466_b0120
10.1016/j.neucom.2023.126466_b0165
10.1016/j.neucom.2023.126466_b0045
10.1016/j.neucom.2023.126466_b0040
Ji (10.1016/j.neucom.2023.126466_b0280) 2023; 20
Lin (10.1016/j.neucom.2023.126466_b0185) 2014
10.1016/j.neucom.2023.126466_b0205
10.1016/j.neucom.2023.126466_b0200
Le (10.1016/j.neucom.2023.126466_b0085) 2019; 184
10.1016/j.neucom.2023.126466_b0125
10.1016/j.neucom.2023.126466_b0005
Sabour (10.1016/j.neucom.2023.126466_b0160) 2018
Fan (10.1016/j.neucom.2023.126466_b0145) 2020
Xin (10.1016/j.neucom.2023.126466_b0150) 2021
Wang (10.1016/j.neucom.2023.126466_b0230) 2022; 481
10.1016/j.neucom.2023.126466_b0130
10.1016/j.neucom.2023.126466_b0010
10.1016/j.neucom.2023.126466_b0175
10.1016/j.neucom.2023.126466_b0055
10.1016/j.neucom.2023.126466_b0210
10.1016/j.neucom.2023.126466_b0170
Everingham (10.1016/j.neucom.2023.126466_b0180) 2015; 111
10.1016/j.neucom.2023.126466_b0050
10.1016/j.neucom.2023.126466_b0095
Dimitrova (10.1016/j.neucom.2023.126466_b0020) 2009
10.1016/j.neucom.2023.126466_b0215
Pan (10.1016/j.neucom.2023.126466_b0080) 2011; 5
10.1016/j.neucom.2023.126466_b0135
Tang (10.1016/j.neucom.2023.126466_b0250) 2022; 82
Xue (10.1016/j.neucom.2023.126466_b0075) 2016; 75
10.1016/j.neucom.2023.126466_b0220
10.1016/j.neucom.2023.126466_b0265
10.1016/j.neucom.2023.126466_b0060
Stevens (10.1016/j.neucom.2023.126466_b0015) 2006
10.1016/j.neucom.2023.126466_b0105
Tang (10.1016/j.neucom.2023.126466_b0260) 2022; 9
Qiu (10.1016/j.neucom.2023.126466_b0245) 2023; 33
10.1016/j.neucom.2023.126466_b0225
Ma (10.1016/j.neucom.2023.126466_b0255) 2022; 9
References_xml – start-page: 1
  year: 2018
  end-page: 15
  ident: b0160
  article-title: Matrix capsules with em routing
  publication-title: Proc. Int. Conf. Learn. Represent
– volume: 31
  start-page: 7036
  year: 2022
  end-page: 7047
  ident: b0285
  article-title: Feature Aggregation and Propagation Network for Camouflaged Object Detection[J]
  publication-title: IEEE Trans. Image Processing
– volume: 184
  start-page: 45
  year: 2019
  end-page: 56
  ident: b0085
  article-title: Anabranch network for camouflaged object segmentation, in Comput
  publication-title: Vis. Image. Underst
– reference: T. Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, S. Belongie, Feature pyramid networks for object detection, 2016, arXiv preprint arXiv:1612.03144.
– reference: H. Law and J. Deng, Cornernet: Detecting objects as paired keypoints, in Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 734–750.
– start-page: 21
  year: 2016
  end-page: 37
  ident: b0190
  article-title: Ssd: Single shot multibox detector
  publication-title: European conference on computer vision
– volume: 5
  start-page: 152
  year: 2011
  end-page: 157
  ident: b0080
  article-title: Study on the camouflaged target detection method based on 3D convexity
  publication-title: Modern Appl. Sci
– reference: He R, Dong Q, Lin J, et al. Weakly-Supervised Camouflaged Object Detection with Scribble Annotations[J]. arXiv preprint arXiv:2207.14083, 2022.
– volume: 75
  start-page: 4065
  year: 2016
  end-page: 4082
  ident: b0075
  article-title: Camouflage performance analysis and evaluation framework based on features fusion
  publication-title: Multimedia Tools Appl.
– start-page: 145
  year: 2006
  end-page: 148
  ident: b0065
  article-title: Camouflage defect identification: A novel approach
  publication-title: Proc. 9th Int. Conf. Inf. Technol.
– reference: S. Peize, Z. Rufeng, J. Yi, K. Tao, X. Chenfeng, Z. Wei, M. Tomizuka, L. Lei, Y. Zehuan, W. Changhu, and L. Ping, Sparse R-CNN: end-to-end object detection with learnable proposals, In CVPR, 2021.
– reference: Y. Liu, D. Zhang, Q. Zhang, et al., Integrating part-object relationship and contrast for camouflaged object detection, in IEEE Transactions on Information Forensics and Security, 2021, 16: 5154–5166.
– reference: G.-P. Ji, L. Zhu, M.C. Zhuge, K. Fu, Fast Camouflaged Object Detection via Edge-based Reversible Re-calibration Network, Pattern Recognition, Volume 123, 2022, 108414, ISSN 0031–3203.
– volume: 31
  start-page: 6469
  year: 2019
  end-page: 6478
  ident: b0030
  article-title: Deep transfer learning for military object recognition under small training set condition
  publication-title: Neural Computing and Applications
– reference: Hu X, Fan D P, Qin X, et al. High-resolution Iterative Feedback Network for Camouflaged Object Detection[J]. arXiv preprint arXiv:2203.11624, 2022.
– reference: Fan, Deng-Ping, et al. Advances in Deep Concealed Scene Understanding. arXiv preprint arXiv:2304.11234 (2023).
– reference: D.-P. Fan, G.-P. Ji, M.-M. Cheng, L. Shao, Concealed object detection, IEEE T. Pattern Anal. Mach. Intell. (2021).
– reference: T. Zhi, S. Chunhua, C. Hao, and H. Tong, FCOS: fully convolutional one-stage object detection, In ICCV, 2019.
– volume: 69
  start-page: 5364
  year: 2021
  end-page: 5374
  ident: b0100
  article-title: D2C-Net: A Dual-Branch, Dual-Guidance and Cross-Refine Network for Camouflaged Object Detection
  publication-title: IEEE Trans. Ind. Electron.
– reference: F. Yang, Q. Zhai, X. Li, R. Huang, A. Luo, H. Cheng, D.-P. Fan, Uncertainty-guided transformer reasoning for camouflaged object detection, in: Int. Conf. Comput. Vis., 2021.
– volume: 82
  start-page: 28
  year: 2022
  end-page: 42
  ident: b0250
  article-title: Image fusion in the loop of high-level vision tasks: A semantic-aware real-time infrared and visible image fusion network[J]
  publication-title: Inform. Fusion
– reference: D. Wang, K. Shang, H. Wu, et al., Decoupled R-CNN: Sensitivity-Specific Detector for Higher Accurate Localization, in IEEE Transactions on Circuits and Systems for Video Technology, 2022.
– reference: T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, Focal loss for dense object detection, in Proceedings of the IEEE international conference on computer vision, 2017, pp. 2980–2988.
– reference: Liu J, Fan X, Huang Z, et al. Target-aware dual adversarial learning and a multi-scenario multi-modality benchmark to fuse infrared and visible for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 5802–5811.
– volume: 111
  start-page: 98
  year: 2015
  end-page: 136
  ident: b0180
  article-title: The pascal visual object classes challenge: A retrospective
  publication-title: Int. J. Computer Vision
– reference: C. Tianyou, X. Jin, H. Xiaoguang, Z. Guofeng, W. Shaojie, Boundary-guided network for camouflaged object detection, in Knowledge-Based Systems, Volume 248, 2022, 108901, ISSN 0950-7051, https://doi.org/10.1016/j.knosys.2022.108901.
– volume: 20
  start-page: 92
  year: 2023
  end-page: 108
  ident: b0280
  article-title: Deep Gradient Learning for Efficient Camouflaged Object Detection
  publication-title: Mach. Intell. Res.
– volume: 481
  start-page: 22
  year: 2022
  end-page: 32
  ident: b0230
  article-title: Enhancing representation learning by exploiting effective receptive fields for object detection
  publication-title: Neurocomputing
– volume: 9
  start-page: 1200
  year: 2022
  end-page: 1217
  ident: b0255
  article-title: SwinFusion: Cross-domain long-range learning for general image fusion via swin transformer[J]
  publication-title: IEEE/CAA J. Automatica Sinica
– start-page: 2433
  year: 2006
  end-page: 2438
  ident: b0015
  article-title: Disruptive contrast in animal camouflage, in PoRS
  publication-title: Biological Sciences
– reference: Y. Liu, Q. Zhang, D. Zhang, and J. Han, Employing deep part-object relationships for salient object detection, in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 1232–1241.
– reference: Z. Cai and N. Vasconcelos, Cascade r-cnn: Delving into high quality object detection, in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 6154–6162.
– reference: Z. Gao, L. Wang, B. Han, et al., AdaMixer: A Fast-Converging Query-Based Object Detector, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 5364–5373.
– reference: S. Rani, D. Ghai, S. Kumar, Object detection and recognition using contour based edge detection and fast R-CNN, in Multimed Tools Appl, 2022, vol. 81, pp. 42183–42207. doi: 10.1007/s11042-021-11446-2.
– reference: Z. Yao, L. Wang, Boundary Information Progressive Guidance Network for Salient Object Detection, in IEEE Transactions on Multimedia, 2021, 24: 4236–4249.
– year: 2021
  ident: b0150
  article-title: MOD: Benchmark for Military Object Detection
  publication-title: Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR)
– reference: L. Tang, B. Li, S. Kuang, et al., Re-thinking the relations in co-saliency detection, in IEEE Transactions on Circuits and Systems for Video Technology, 2022.
– reference: H. Mei, G.-P. Ji, Z. Wei, X. Yang, X. Wei, D.-P. Fan, Camouflaged object segmentation with distraction mining, in: IEEE Conf. Comput. Vis. Pattern Recog., 2021.
– volume: 9
  start-page: 2121
  year: 2022
  end-page: 2137
  ident: b0260
  article-title: SuperFusion: A versatile image registration and fusion network with semantic awareness[J]
  publication-title: IEEE/CAA J. Automatica Sinica
– reference: V. Sharma, R. N. Mir, Saliency guided faster-RCNN (SGFr-RCNN) model for object detection and recognition, in Journal of King Saud University - Computer and Information Sciences, Volume 34, Issue 5, 2022, Pages 1687–1699, ISSN 1319–1578, doi: 10.1016/j.jksuci.2019.09.012.
– start-page: 1905
  year: 2009
  end-page: 1910
  ident: b0020
  article-title: Concealed by conspicuousness: distractive prey markings and backgrounds, in PoRSB
  publication-title: Biological Sciences
– reference: D.-P. Fan, G.-P. Ji, G. Sun, M.-M. Cheng, J. Shen, L. Shao, Camouflaged object detection, in: IEEE Conf. Comput. Vis. Pattern Recog., 2020, pp. 2777–2787.
– reference: P. Skurowski, H. Abdulameer, J. Blaszczyk, T. Depta, A. Kornacki, and P. Koziel, Animal camouflage analysis: Chameleon database, in Unpublished Manuscript, vol. 2, no. 6, p. 7, 2018.
– reference: Z. YunFei, Z. Xiongwei, F. Wang, C. Tiieyong, S. Meng, W. Xiaobing, Detection of People With Camouflage Pattern Via Dense Deconvolution Network, in IEEE Signal Processing Letters, 2018, PP. 1–1. DOI: 10.1109/LSP.2018.2825959.
– reference: Y. Lyu, J. Zhang, Y. Dai, L. Aixuan, B. Liu, N. Barnes, D.-P. Fan, Simultaneously localize, segment and rank the camouflaged objects, in: IEEE Conf. Comput. Vis. Pattern Recog., 2021.
– reference: X. Xiuqi, Z. Mingyu, Y. Jinhao, C. Shuhan, H. Xuelong, Y. Yuequan, Boundary guidance network for camouflage object detection, in Image and Vision Computing, Volume 114, 2021, 104283, ISSN 0262-8856, https://doi.org/10.1016/j.imavis.2021.104283.
– reference: N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko, End-to-end object detection with transformers, In ECCV, 2020.
– start-page: 1
  year: 2010
  end-page: 4
  ident: b0070
  article-title: A new camouflage texture evaluation method based on WSSIM and nature image features
  publication-title: Proc. Int. Conf. Multimedia Technol.
– start-page: 2777
  year: 2020
  end-page: 2787
  ident: b0145
  article-title: Camouflaged object detection
  publication-title: Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR)
– volume: 33
  start-page: 1093
  year: March 2023
  end-page: 1108
  ident: b0245
  article-title: CrossDet++: Growing Crossline Representation for Object Detection
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– volume: 184
  start-page: 45
  year: Jul. 2019
  end-page: 56
  ident: b0140
  article-title: Anabranch network for camouflaged object segmentation
  publication-title: Comput. Vis. Image Understand.
– start-page: 740
  year: 2014
  end-page: 755
  ident: b0185
  article-title: Microsoft coco: Common objects in context
  publication-title: European conference on computer vision
– reference: S. Ren, K. He, R. Girshick, and J. Sun, Faster r-cnn: Towards real-time object detection with region proposal networks, in Advances in neural information processing systems, 2015, pp. 91–99.
– reference: N.E. Scott-Samuel, R. Baddeley, C.E. Palmer, I.C. Cuthill. Dazzle camouflage affects speed perception, in PLoS One, 2011, pp. 6.
– reference: X. Shangliang, W. Xinxin, L. Wenyu, C. Qinyao, C. Cheng, D. Kaipeng, W. Guanzhong, D. Qingqing, W. Shengyu, D. Yuning, et al., PP-YOLOE: An evolved version of YOLO, arXiv preprint arXiv:2203.16250, 2022.
– reference: Y. Chen, H. Wang, W. Li, et al., Scale-Aware Domain Adaptive Faster R-CNN, in Int J Comput Vis, 2021, vol. 129, 2223–2243. doi: 10.1007/s11263-021-01447-x.
– reference: H. Bi, C. Zhang, K. Wang, et al., Rethinking Camouflaged Object Detection: Models and Datasets, in IEEE Transactions on Circuits and Systems for Video Technology, 2021.
– start-page: 366
  year: 2014
  end-page: 371
  ident: b0025
  article-title: Object detection for military surveillance using distributed multimodal smart sensors
  publication-title: 2014 19th international conference on digital signal processing
– ident: 10.1016/j.neucom.2023.126466_b0115
  doi: 10.1016/j.jksuci.2019.09.012
– start-page: 1
  year: 2010
  ident: 10.1016/j.neucom.2023.126466_b0070
  article-title: A new camouflage texture evaluation method based on WSSIM and nature image features
– year: 2021
  ident: 10.1016/j.neucom.2023.126466_b0150
  article-title: MOD: Benchmark for Military Object Detection
– ident: 10.1016/j.neucom.2023.126466_b0120
  doi: 10.1007/s11042-021-11446-2
– ident: 10.1016/j.neucom.2023.126466_b0200
  doi: 10.1007/978-3-030-58452-8_13
– ident: 10.1016/j.neucom.2023.126466_b0130
  doi: 10.1109/ICCV48922.2021.00411
– ident: 10.1016/j.neucom.2023.126466_b0060
  doi: 10.1109/CVPR46437.2021.00866
– ident: 10.1016/j.neucom.2023.126466_b0195
– ident: 10.1016/j.neucom.2023.126466_b0010
  doi: 10.1109/LSP.2018.2825959
– start-page: 145
  year: 2006
  ident: 10.1016/j.neucom.2023.126466_b0065
  article-title: Camouflage defect identification: A novel approach
– ident: 10.1016/j.neucom.2023.126466_b0275
– ident: 10.1016/j.neucom.2023.126466_b0125
  doi: 10.1109/CVPR42600.2020.00285
– ident: 10.1016/j.neucom.2023.126466_b0290
  doi: 10.1007/s44267-023-00019-6
– start-page: 1905
  year: 2009
  ident: 10.1016/j.neucom.2023.126466_b0020
  article-title: Concealed by conspicuousness: distractive prey markings and backgrounds, in PoRSB
  publication-title: Biological Sciences
– volume: 82
  start-page: 28
  year: 2022
  ident: 10.1016/j.neucom.2023.126466_b0250
  article-title: Image fusion in the loop of high-level vision tasks: A semantic-aware real-time infrared and visible image fusion network[J]
  publication-title: Inform. Fusion
  doi: 10.1016/j.inffus.2021.12.004
– volume: 20
  start-page: 92
  year: 2023
  ident: 10.1016/j.neucom.2023.126466_b0280
  article-title: Deep Gradient Learning for Efficient Camouflaged Object Detection
  publication-title: Mach. Intell. Res.
  doi: 10.1007/s11633-022-1365-9
– volume: 5
  start-page: 152
  issue: 4
  year: 2011
  ident: 10.1016/j.neucom.2023.126466_b0080
  article-title: Study on the camouflaged target detection method based on 3D convexity
  publication-title: Modern Appl. Sci
  doi: 10.5539/mas.v5n4p152
– ident: 10.1016/j.neucom.2023.126466_b0165
  doi: 10.1109/ICCV.2019.00132
– ident: 10.1016/j.neucom.2023.126466_b0040
  doi: 10.1109/TMM.2021.3115344
– ident: 10.1016/j.neucom.2023.126466_b0155
  doi: 10.1109/CVPR.2017.106
– ident: 10.1016/j.neucom.2023.126466_b0265
  doi: 10.1109/CVPR52688.2022.00571
– ident: 10.1016/j.neucom.2023.126466_b0220
– volume: 9
  start-page: 1200
  issue: 7
  year: 2022
  ident: 10.1016/j.neucom.2023.126466_b0255
  article-title: SwinFusion: Cross-domain long-range learning for general image fusion via swin transformer[J]
  publication-title: IEEE/CAA J. Automatica Sinica
  doi: 10.1109/JAS.2022.105686
– ident: 10.1016/j.neucom.2023.126466_b0215
  doi: 10.1109/CVPR.2018.00644
– ident: 10.1016/j.neucom.2023.126466_b0240
  doi: 10.1109/CVPR52688.2022.00529
– start-page: 366
  year: 2014
  ident: 10.1016/j.neucom.2023.126466_b0025
  article-title: Object detection for military surveillance using distributed multimodal smart sensors
– volume: 69
  start-page: 5364
  issue: 5
  year: 2021
  ident: 10.1016/j.neucom.2023.126466_b0100
  article-title: D2C-Net: A Dual-Branch, Dual-Guidance and Cross-Refine Network for Camouflaged Object Detection
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2021.3078379
– ident: 10.1016/j.neucom.2023.126466_b0225
  doi: 10.1109/TCSVT.2022.3167114
– volume: 481
  start-page: 22
  year: 2022
  ident: 10.1016/j.neucom.2023.126466_b0230
  article-title: Enhancing representation learning by exploiting effective receptive fields for object detection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.01.020
– volume: 9
  start-page: 2121
  issue: 12
  year: 2022
  ident: 10.1016/j.neucom.2023.126466_b0260
  article-title: SuperFusion: A versatile image registration and fusion network with semantic awareness[J]
  publication-title: IEEE/CAA J. Automatica Sinica
  doi: 10.1109/JAS.2022.106082
– ident: 10.1016/j.neucom.2023.126466_b0270
  doi: 10.1609/aaai.v37i1.25156
– ident: 10.1016/j.neucom.2023.126466_b0135
– ident: 10.1016/j.neucom.2023.126466_b0210
  doi: 10.1109/ICCV.2017.324
– ident: 10.1016/j.neucom.2023.126466_b0175
  doi: 10.1007/s11263-021-01447-x
– volume: 184
  start-page: 45
  year: 2019
  ident: 10.1016/j.neucom.2023.126466_b0140
  article-title: Anabranch network for camouflaged object segmentation
  publication-title: Comput. Vis. Image Understand.
  doi: 10.1016/j.cviu.2019.04.006
– ident: 10.1016/j.neucom.2023.126466_b0055
– start-page: 2433
  year: 2006
  ident: 10.1016/j.neucom.2023.126466_b0015
  article-title: Disruptive contrast in animal camouflage, in PoRS
  publication-title: Biological Sciences
– volume: 75
  start-page: 4065
  issue: 7
  year: 2016
  ident: 10.1016/j.neucom.2023.126466_b0075
  article-title: Camouflage performance analysis and evaluation framework based on features fusion
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-015-2946-1
– start-page: 2777
  year: 2020
  ident: 10.1016/j.neucom.2023.126466_b0145
  article-title: Camouflaged object detection
– ident: 10.1016/j.neucom.2023.126466_b0090
  doi: 10.1109/CVPR42600.2020.00285
– start-page: 740
  year: 2014
  ident: 10.1016/j.neucom.2023.126466_b0185
  article-title: Microsoft coco: Common objects in context
– volume: 111
  start-page: 98
  issue: 1
  year: 2015
  ident: 10.1016/j.neucom.2023.126466_b0180
  article-title: The pascal visual object classes challenge: A retrospective
  publication-title: Int. J. Computer Vision
  doi: 10.1007/s11263-014-0733-5
– ident: 10.1016/j.neucom.2023.126466_b0235
– ident: 10.1016/j.neucom.2023.126466_b0105
  doi: 10.1109/TCSVT.2021.3124952
– ident: 10.1016/j.neucom.2023.126466_b0035
  doi: 10.1109/TCSVT.2022.3150923
– volume: 31
  start-page: 7036
  year: 2022
  ident: 10.1016/j.neucom.2023.126466_b0285
  article-title: Feature Aggregation and Propagation Network for Camouflaged Object Detection[J]
  publication-title: IEEE Trans. Image Processing
  doi: 10.1109/TIP.2022.3217695
– volume: 31
  start-page: 6469
  issue: 10
  year: 2019
  ident: 10.1016/j.neucom.2023.126466_b0030
  article-title: Deep transfer learning for military object recognition under small training set condition
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-018-3468-3
– start-page: 21
  year: 2016
  ident: 10.1016/j.neucom.2023.126466_b0190
  article-title: Ssd: Single shot multibox detector
– ident: 10.1016/j.neucom.2023.126466_b0005
  doi: 10.1371/journal.pone.0020233
– volume: 184
  start-page: 45
  year: 2019
  ident: 10.1016/j.neucom.2023.126466_b0085
  article-title: Anabranch network for camouflaged object segmentation, in Comput
  publication-title: Vis. Image. Underst
  doi: 10.1016/j.cviu.2019.04.006
– ident: 10.1016/j.neucom.2023.126466_b0110
  doi: 10.1016/j.knosys.2022.108901
– ident: 10.1016/j.neucom.2023.126466_b0095
  doi: 10.1016/j.patcog.2021.108414
– start-page: 1
  year: 2018
  ident: 10.1016/j.neucom.2023.126466_b0160
  article-title: Matrix capsules with em routing
– ident: 10.1016/j.neucom.2023.126466_b0205
– ident: 10.1016/j.neucom.2023.126466_b0170
  doi: 10.1016/j.imavis.2021.104283
– ident: 10.1016/j.neucom.2023.126466_b0050
  doi: 10.1007/978-3-030-01264-9_45
– ident: 10.1016/j.neucom.2023.126466_b0045
  doi: 10.1109/TIFS.2021.3124734
– volume: 33
  start-page: 1093
  issue: 3
  year: 2023
  ident: 10.1016/j.neucom.2023.126466_b0245
  article-title: CrossDet++: Growing Crossline Representation for Object Detection
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2022.3211734
SSID ssj0017129
Score 2.5002255
Snippet We present the first systematic work on Military High-level Camouflage object Detection (MHCD), aiming to identify objects visibly embedded in chaotic...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 126466
SubjectTerms Concealed objects
Datasets
High-level military camouflage
Object detection
Title Extraordinary MHNet: Military high-level camouflage object detection network and dataset
URI https://dx.doi.org/10.1016/j.neucom.2023.126466
Volume 549
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09a8MwEBUhXbr0u_QzaOiqxJYVy-4WQoLbkixNIZuRZRlSghNSBzr1t_dOskMLpYWOMhaIk3T3Trx7R8idp_uw675iOSyTiVjDnROBZCJE-Tcpg77G947JNExexOO8P2-RYVMLg7TK2vc7n269df2lV1uzt14ses9ezCGL8iG-ud54WMEuJJ7y7seO5uFLnzu9Pd5n-HdTPmc5XqXZImcEW4h3fYAGVivxh_D0JeSMj8hBjRXpwC3nmLRMeUIOmz4MtL6Wp2Q-eq82CrJIW1tLJ8nUVPd0YvW3YYyKxGyJ5CCqFWT6xRJ8CF1l-AJDc1NZMlZJS0cIp6rMKfJG30x1Rmbj0WyYsLpjAtMA_StwqIqbUHKhjPRUqAKRhTZFwYvJNZeK-8oI4ak8VllQANzI40KJPBORjvzgnLTLVWkuCI1yaUzh8wwQkAiVjGIN2AewBcR7VL27JEFjp1TXauLY1GKZNrSx19RZN0Xrps66l4TtZq2dmsYf_8tmC9JvpyIFh__rzKt_z7wm-ziyPDJ5Q9rVZmtuAXhUWceerA7ZGzw8JdNP_PrWxg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED6VMsDCG1GeHmAMbRw3bpAYEBS1QLtQpG6W4zhSUUmrNhWw8KP4hZydpAIJgYTEmIcj-3y5-2x9_g7guKbqOOuudCLspsMChf8c87jDfCP_xrlXV2a_o9P1Ww_spl_vl-C9OAtjaJV57M9iuo3W-Z1qbs3qeDCo3tcCiqsoF_NbVhsvZ1be6tdnXLdNz9tXOMknlF43e5ctJy8t4CjEyClGHkm1zymTmtekLz0W-hbLGw-minJJXakZq8kokKEXY16OgliyKGQN1XA9_OwCLDKMFqZqwunbnFbicpdm-n607pjeFcf1LKcs0TPDUTEly09dhCJWm_GbdPgpxV2vwUqOTclFNvx1KOlkA1aLug8kDwOb0G--pBOJo7dneUmn1dXpGelYvW-8NgrIztCQkYiST6NZPMSYRUah2fEhkU4t-SshSUZAJzKJiOGpTnW6Bb3_MOM2lJNRoneANCKudezSEBEX8yVvBAqxFmIZxBdGZa8CXmEnoXL1clNEYygKmtqjyKwrjHVFZt0KOPNW40y945f3eTEF4osXCkwwP7bc_XPLI1hq9Tp34q7dvd2DZfPEctj4PpTTyUwfIOhJw0PrZQTEP3v1B_T9EO8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extraordinary+MHNet%3A+Military+high-level+camouflage+object+detection+network+and+dataset&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Liu%2C+Maozhen&rft.au=Di%2C+Xiaoguang&rft.date=2023-09-07&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=549&rft_id=info:doi/10.1016%2Fj.neucom.2023.126466&rft.externalDocID=S0925231223005891
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon