Extraordinary MHNet: Military high-level camouflage object detection network and dataset
We present the first systematic work on Military High-level Camouflage object Detection (MHCD), aiming to identify objects visibly embedded in chaotic backgrounds. The high intrinsic similarities (e.g., texture, intensity, color, etc.) between the attention object and its background give the task fa...
Saved in:
Published in | Neurocomputing (Amsterdam) Vol. 549; p. 126466 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
07.09.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We present the first systematic work on Military High-level Camouflage object Detection (MHCD), aiming to identify objects visibly embedded in chaotic backgrounds. The high intrinsic similarities (e.g., texture, intensity, color, etc.) between the attention object and its background give the task far more challenging than general object detection. In this paper, we construct a benchmark MHCD2022 dataset, which consists of 3000 images with dense annotations covering 5 categories from multiple real-world scenes. Remarkably, based on the observation that biological vision usually first obtains perception from global search and strives to recover the complete object, we propose a novel Military High-level detection Network, called MHNet, which is characterized by four ingenious modules: Subject Perception Gathering (SPG), Part-object Relationships Mining (PRM), Concept Recovery/Feature Clue Supplement (CR/FCS) and Springboard Selection (SS). Firstly, a SPG is designed for global foreground rough perception by the exploitation of depth information. Second, a PRM is particularly used to mine part-object potential relations in diverse environments. After that, we propose CR/FCS and SS to enhance the destroyed instance-level representation and suppress the domain imbalance problem, respectively. Extensive experimental results show that previous methods suffered from poor performance, MHNet significantly outperforms camouflage baselines and competing methods on the MHCD2022 for the high-level camouflaged object. Finally, we also present and highlight the practical application value and several future directions of the research. |
---|---|
AbstractList | We present the first systematic work on Military High-level Camouflage object Detection (MHCD), aiming to identify objects visibly embedded in chaotic backgrounds. The high intrinsic similarities (e.g., texture, intensity, color, etc.) between the attention object and its background give the task far more challenging than general object detection. In this paper, we construct a benchmark MHCD2022 dataset, which consists of 3000 images with dense annotations covering 5 categories from multiple real-world scenes. Remarkably, based on the observation that biological vision usually first obtains perception from global search and strives to recover the complete object, we propose a novel Military High-level detection Network, called MHNet, which is characterized by four ingenious modules: Subject Perception Gathering (SPG), Part-object Relationships Mining (PRM), Concept Recovery/Feature Clue Supplement (CR/FCS) and Springboard Selection (SS). Firstly, a SPG is designed for global foreground rough perception by the exploitation of depth information. Second, a PRM is particularly used to mine part-object potential relations in diverse environments. After that, we propose CR/FCS and SS to enhance the destroyed instance-level representation and suppress the domain imbalance problem, respectively. Extensive experimental results show that previous methods suffered from poor performance, MHNet significantly outperforms camouflage baselines and competing methods on the MHCD2022 for the high-level camouflaged object. Finally, we also present and highlight the practical application value and several future directions of the research. |
ArticleNumber | 126466 |
Author | Liu, Maozhen Di, Xiaoguang |
Author_xml | – sequence: 1 givenname: Maozhen surname: Liu fullname: Liu, Maozhen – sequence: 2 givenname: Xiaoguang surname: Di fullname: Di, Xiaoguang email: dixiaoguang@hit.edu.cn |
BookMark | eNqFkLFOwzAURS1UJNrCHzDkB1JsJ3WSDkioKhSphaUDm_Viv7QOqY0cU-DvSRQmBpie3nCu7j0TMrLOIiHXjM4YZeKmnll8V-4445QnM8ZFKsQZGbM843HOczEiY1rwecwTxi_IpG1rSlnGeDEmL6vP4MF5bSz4r2i7fsKwiLamMaH_D2Z_iBs8YRMpOLr3qoE9Rq6sUYVIY-iOcTayGD6cf43A6khDgBbDJTmvoGnx6udOye5-tVuu483zw-PybhOrhIoQJww4ioyngBkFAUlaikJQIfg8y7niGXAGmKYUdAFlUgmR6KKCVJdprnKWTMliiFXeta3HSqqueV-qm2UayajsFclaDopkr0gOijo4_QW_eXPsdv-H3Q4YdrtOBr1slUGrUBvfCZHamb8DvgEO9oW8 |
CitedBy_id | crossref_primary_10_32604_cmc_2024_055327 crossref_primary_10_1016_j_jvcir_2024_104366 crossref_primary_10_1007_s11760_024_03766_1 crossref_primary_10_1016_j_eswa_2024_124747 crossref_primary_10_1177_15485129241233299 crossref_primary_10_1016_j_asoc_2025_112972 crossref_primary_10_1016_j_engappai_2025_110223 crossref_primary_10_1007_s00371_024_03786_5 crossref_primary_10_1007_s10489_025_06264_0 crossref_primary_10_3390_drones8090421 crossref_primary_10_3390_electronics13193922 crossref_primary_10_1007_s00371_025_03805_z crossref_primary_10_1117_1_JEI_33_5_053061 crossref_primary_10_54939_1859_1043_j_mst_CSCE8_2024_44_54 |
Cites_doi | 10.1016/j.jksuci.2019.09.012 10.1007/s11042-021-11446-2 10.1007/978-3-030-58452-8_13 10.1109/ICCV48922.2021.00411 10.1109/CVPR46437.2021.00866 10.1109/LSP.2018.2825959 10.1109/CVPR42600.2020.00285 10.1007/s44267-023-00019-6 10.1016/j.inffus.2021.12.004 10.1007/s11633-022-1365-9 10.5539/mas.v5n4p152 10.1109/ICCV.2019.00132 10.1109/TMM.2021.3115344 10.1109/CVPR.2017.106 10.1109/CVPR52688.2022.00571 10.1109/JAS.2022.105686 10.1109/CVPR.2018.00644 10.1109/CVPR52688.2022.00529 10.1109/TIE.2021.3078379 10.1109/TCSVT.2022.3167114 10.1016/j.neucom.2022.01.020 10.1109/JAS.2022.106082 10.1609/aaai.v37i1.25156 10.1109/ICCV.2017.324 10.1007/s11263-021-01447-x 10.1016/j.cviu.2019.04.006 10.1007/s11042-015-2946-1 10.1007/s11263-014-0733-5 10.1109/TCSVT.2021.3124952 10.1109/TCSVT.2022.3150923 10.1109/TIP.2022.3217695 10.1007/s00521-018-3468-3 10.1371/journal.pone.0020233 10.1016/j.knosys.2022.108901 10.1016/j.patcog.2021.108414 10.1016/j.imavis.2021.104283 10.1007/978-3-030-01264-9_45 10.1109/TIFS.2021.3124734 10.1109/TCSVT.2022.3211734 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. |
Copyright_xml | – notice: 2023 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.neucom.2023.126466 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-8286 |
ExternalDocumentID | 10_1016_j_neucom_2023_126466 S0925231223005891 |
GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB HLZ HVGLF HZ~ R2- RIG SBC SSH WUQ XPP |
ID | FETCH-LOGICAL-c306t-31a2e6724ae70a6a34b69606625782c27a21ae440ad9ab3f663d9fa4db48c813 |
IEDL.DBID | .~1 |
ISSN | 0925-2312 |
IngestDate | Tue Jul 01 04:24:53 EDT 2025 Thu Apr 24 23:16:10 EDT 2025 Fri Feb 23 02:35:49 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Datasets Concealed objects High-level military camouflage Object detection |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c306t-31a2e6724ae70a6a34b69606625782c27a21ae440ad9ab3f663d9fa4db48c813 |
ParticipantIDs | crossref_citationtrail_10_1016_j_neucom_2023_126466 crossref_primary_10_1016_j_neucom_2023_126466 elsevier_sciencedirect_doi_10_1016_j_neucom_2023_126466 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-07 |
PublicationDateYYYYMMDD | 2023-09-07 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-07 day: 07 |
PublicationDecade | 2020 |
PublicationTitle | Neurocomputing (Amsterdam) |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Tang, Yuan, Ma (b0250) 2022; 82 T. Zhi, S. Chunhua, C. Hao, and H. Tong, FCOS: fully convolutional one-stage object detection, In ICCV, 2019. Bhajantri, Nagabhushan (b0065) 2006 Everingham, Eslami, Van Gool, Williams, Winn, Zisserman (b0180) 2015; 111 S. Peize, Z. Rufeng, J. Yi, K. Tao, X. Chenfeng, Z. Wei, M. Tomizuka, L. Lei, Y. Zehuan, W. Changhu, and L. Ping, Sparse R-CNN: end-to-end object detection with learnable proposals, In CVPR, 2021. C. Tianyou, X. Jin, H. Xiaoguang, Z. Guofeng, W. Shaojie, Boundary-guided network for camouflaged object detection, in Knowledge-Based Systems, Volume 248, 2022, 108901, ISSN 0950-7051, https://doi.org/10.1016/j.knosys.2022.108901. Y. Liu, Q. Zhang, D. Zhang, and J. Han, Employing deep part-object relationships for salient object detection, in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 1232–1241. Hu X, Fan D P, Qin X, et al. High-resolution Iterative Feedback Network for Camouflaged Object Detection[J]. arXiv preprint arXiv:2203.11624, 2022. Z. Gao, L. Wang, B. Han, et al., AdaMixer: A Fast-Converging Query-Based Object Detector, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 5364–5373. Ma, Tang, Fan (b0255) 2022; 9 Fan, Ji, Sun, Cheng, Shen, Shao (b0145) 2020 Dimitrova, Stobbe, Schaefer, Merilaita (b0020) 2009 Z. Yao, L. Wang, Boundary Information Progressive Guidance Network for Salient Object Detection, in IEEE Transactions on Multimedia, 2021, 24: 4236–4249. N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko, End-to-end object detection with transformers, In ECCV, 2020. N.E. Scott-Samuel, R. Baddeley, C.E. Palmer, I.C. Cuthill. Dazzle camouflage affects speed perception, in PLoS One, 2011, pp. 6. Y. Liu, D. Zhang, Q. Zhang, et al., Integrating part-object relationship and contrast for camouflaged object detection, in IEEE Transactions on Information Forensics and Security, 2021, 16: 5154–5166. X. Shangliang, W. Xinxin, L. Wenyu, C. Qinyao, C. Cheng, D. Kaipeng, W. Guanzhong, D. Qingqing, W. Shengyu, D. Yuning, et al., PP-YOLOE: An evolved version of YOLO, arXiv preprint arXiv:2203.16250, 2022. T. Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, S. Belongie, Feature pyramid networks for object detection, 2016, arXiv preprint arXiv:1612.03144. Ji, Fan, Chou (b0280) 2023; 20 Sabour, Frosst, Hinton (b0160) 2018 Lin, Maire, Belongie, Hays, Perona, Ramanan, Dollár, Zitnick (b0185) 2014 Stevens, Cuthill, Windsor, Walker (b0015) 2006 Liu, Anguelov, Erhan, Szegedy, Reed, Fu, Berg (b0190) 2016 Pan, Chen, Fu, Zhang, Xu (b0080) 2011; 5 Z. YunFei, Z. Xiongwei, F. Wang, C. Tiieyong, S. Meng, W. Xiaobing, Detection of People With Camouflage Pattern Via Dense Deconvolution Network, in IEEE Signal Processing Letters, 2018, PP. 1–1. DOI: 10.1109/LSP.2018.2825959. X. Xiuqi, Z. Mingyu, Y. Jinhao, C. Shuhan, H. Xuelong, Y. Yuequan, Boundary guidance network for camouflage object detection, in Image and Vision Computing, Volume 114, 2021, 104283, ISSN 0262-8856, https://doi.org/10.1016/j.imavis.2021.104283. Zhou, Zhou, Gong (b0285) 2022; 31 Y. Chen, H. Wang, W. Li, et al., Scale-Aware Domain Adaptive Faster R-CNN, in Int J Comput Vis, 2021, vol. 129, 2223–2243. doi: 10.1007/s11263-021-01447-x. Fan, Deng-Ping, et al. Advances in Deep Concealed Scene Understanding. arXiv preprint arXiv:2304.11234 (2023). L. Tang, B. Li, S. Kuang, et al., Re-thinking the relations in co-saliency detection, in IEEE Transactions on Circuits and Systems for Video Technology, 2022. Liu J, Fan X, Huang Z, et al. Target-aware dual adversarial learning and a multi-scenario multi-modality benchmark to fuse infrared and visible for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 5802–5811. H. Bi, C. Zhang, K. Wang, et al., Rethinking Camouflaged Object Detection: Models and Datasets, in IEEE Transactions on Circuits and Systems for Video Technology, 2021. D.-P. Fan, G.-P. Ji, M.-M. Cheng, L. Shao, Concealed object detection, IEEE T. Pattern Anal. Mach. Intell. (2021). Qiu (b0245) March 2023; 33 Wang, Shengyu Zhang, Qian, Wang (b0230) 2022; 481 F. Yang, Q. Zhai, X. Li, R. Huang, A. Luo, H. Cheng, D.-P. Fan, Uncertainty-guided transformer reasoning for camouflaged object detection, in: Int. Conf. Comput. Vis., 2021. D.-P. Fan, G.-P. Ji, G. Sun, M.-M. Cheng, J. Shen, L. Shao, Camouflaged object detection, in: IEEE Conf. Comput. Vis. Pattern Recog., 2020, pp. 2777–2787. Y. Lyu, J. Zhang, Y. Dai, L. Aixuan, B. Liu, N. Barnes, D.-P. Fan, Simultaneously localize, segment and rank the camouflaged objects, in: IEEE Conf. Comput. Vis. Pattern Recog., 2021. S. Rani, D. Ghai, S. Kumar, Object detection and recognition using contour based edge detection and fast R-CNN, in Multimed Tools Appl, 2022, vol. 81, pp. 42183–42207. doi: 10.1007/s11042-021-11446-2. D. Wang, K. Shang, H. Wu, et al., Decoupled R-CNN: Sensitivity-Specific Detector for Higher Accurate Localization, in IEEE Transactions on Circuits and Systems for Video Technology, 2022. Tang, Deng, Ma (b0260) 2022; 9 V. Sharma, R. N. Mir, Saliency guided faster-RCNN (SGFr-RCNN) model for object detection and recognition, in Journal of King Saud University - Computer and Information Sciences, Volume 34, Issue 5, 2022, Pages 1687–1699, ISSN 1319–1578, doi: 10.1016/j.jksuci.2019.09.012. Le, Nguyen, Nie, Tran, Sugimoto (b0140) Jul. 2019; 184 Xin, Jiahao, Bo, Yangtong, Longyao (b0150) 2021 Z. Cai and N. Vasconcelos, Cascade r-cnn: Delving into high quality object detection, in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 6154–6162. Astapov, Preden, Ehala, Riid (b0025) 2014 P. Skurowski, H. Abdulameer, J. Blaszczyk, T. Depta, A. Kornacki, and P. Koziel, Animal camouflage analysis: Chameleon database, in Unpublished Manuscript, vol. 2, no. 6, p. 7, 2018. H. Law and J. Deng, Cornernet: Detecting objects as paired keypoints, in Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 734–750. Yang, Yu, Liang, Guo, Xia, Zhang, Ma, Ma (b0030) 2019; 31 G.-P. Ji, L. Zhu, M.C. Zhuge, K. Fu, Fast Camouflaged Object Detection via Edge-based Reversible Re-calibration Network, Pattern Recognition, Volume 123, 2022, 108414, ISSN 0031–3203. Le, Nguyen, Nie, Tran, Sugimoto (b0085) 2019; 184 He R, Dong Q, Lin J, et al. Weakly-Supervised Camouflaged Object Detection with Scribble Annotations[J]. arXiv preprint arXiv:2207.14083, 2022. Song, Geng (b0070) 2010 Xue, Yong, Xu, Dong, Luo, Jia (b0075) 2016; 75 Wang, Bi, Zhang (b0100) 2021; 69 H. Mei, G.-P. Ji, Z. Wei, X. Yang, X. Wei, D.-P. Fan, Camouflaged object segmentation with distraction mining, in: IEEE Conf. Comput. Vis. Pattern Recog., 2021. S. Ren, K. He, R. Girshick, and J. Sun, Faster r-cnn: Towards real-time object detection with region proposal networks, in Advances in neural information processing systems, 2015, pp. 91–99. T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, Focal loss for dense object detection, in Proceedings of the IEEE international conference on computer vision, 2017, pp. 2980–2988. Astapov (10.1016/j.neucom.2023.126466_b0025) 2014 10.1016/j.neucom.2023.126466_b0110 10.1016/j.neucom.2023.126466_b0275 10.1016/j.neucom.2023.126466_b0155 Le (10.1016/j.neucom.2023.126466_b0140) 2019; 184 10.1016/j.neucom.2023.126466_b0270 Zhou (10.1016/j.neucom.2023.126466_b0285) 2022; 31 10.1016/j.neucom.2023.126466_b0195 10.1016/j.neucom.2023.126466_b0035 10.1016/j.neucom.2023.126466_b0235 10.1016/j.neucom.2023.126466_b0115 Liu (10.1016/j.neucom.2023.126466_b0190) 2016 Song (10.1016/j.neucom.2023.126466_b0070) 2010 10.1016/j.neucom.2023.126466_b0090 10.1016/j.neucom.2023.126466_b0290 Yang (10.1016/j.neucom.2023.126466_b0030) 2019; 31 Wang (10.1016/j.neucom.2023.126466_b0100) 2021; 69 Bhajantri (10.1016/j.neucom.2023.126466_b0065) 2006 10.1016/j.neucom.2023.126466_b0240 10.1016/j.neucom.2023.126466_b0120 10.1016/j.neucom.2023.126466_b0165 10.1016/j.neucom.2023.126466_b0045 10.1016/j.neucom.2023.126466_b0040 Ji (10.1016/j.neucom.2023.126466_b0280) 2023; 20 Lin (10.1016/j.neucom.2023.126466_b0185) 2014 10.1016/j.neucom.2023.126466_b0205 10.1016/j.neucom.2023.126466_b0200 Le (10.1016/j.neucom.2023.126466_b0085) 2019; 184 10.1016/j.neucom.2023.126466_b0125 10.1016/j.neucom.2023.126466_b0005 Sabour (10.1016/j.neucom.2023.126466_b0160) 2018 Fan (10.1016/j.neucom.2023.126466_b0145) 2020 Xin (10.1016/j.neucom.2023.126466_b0150) 2021 Wang (10.1016/j.neucom.2023.126466_b0230) 2022; 481 10.1016/j.neucom.2023.126466_b0130 10.1016/j.neucom.2023.126466_b0010 10.1016/j.neucom.2023.126466_b0175 10.1016/j.neucom.2023.126466_b0055 10.1016/j.neucom.2023.126466_b0210 10.1016/j.neucom.2023.126466_b0170 Everingham (10.1016/j.neucom.2023.126466_b0180) 2015; 111 10.1016/j.neucom.2023.126466_b0050 10.1016/j.neucom.2023.126466_b0095 Dimitrova (10.1016/j.neucom.2023.126466_b0020) 2009 10.1016/j.neucom.2023.126466_b0215 Pan (10.1016/j.neucom.2023.126466_b0080) 2011; 5 10.1016/j.neucom.2023.126466_b0135 Tang (10.1016/j.neucom.2023.126466_b0250) 2022; 82 Xue (10.1016/j.neucom.2023.126466_b0075) 2016; 75 10.1016/j.neucom.2023.126466_b0220 10.1016/j.neucom.2023.126466_b0265 10.1016/j.neucom.2023.126466_b0060 Stevens (10.1016/j.neucom.2023.126466_b0015) 2006 10.1016/j.neucom.2023.126466_b0105 Tang (10.1016/j.neucom.2023.126466_b0260) 2022; 9 Qiu (10.1016/j.neucom.2023.126466_b0245) 2023; 33 10.1016/j.neucom.2023.126466_b0225 Ma (10.1016/j.neucom.2023.126466_b0255) 2022; 9 |
References_xml | – start-page: 1 year: 2018 end-page: 15 ident: b0160 article-title: Matrix capsules with em routing publication-title: Proc. Int. Conf. Learn. Represent – volume: 31 start-page: 7036 year: 2022 end-page: 7047 ident: b0285 article-title: Feature Aggregation and Propagation Network for Camouflaged Object Detection[J] publication-title: IEEE Trans. Image Processing – volume: 184 start-page: 45 year: 2019 end-page: 56 ident: b0085 article-title: Anabranch network for camouflaged object segmentation, in Comput publication-title: Vis. Image. Underst – reference: T. Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, S. Belongie, Feature pyramid networks for object detection, 2016, arXiv preprint arXiv:1612.03144. – reference: H. Law and J. Deng, Cornernet: Detecting objects as paired keypoints, in Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 734–750. – start-page: 21 year: 2016 end-page: 37 ident: b0190 article-title: Ssd: Single shot multibox detector publication-title: European conference on computer vision – volume: 5 start-page: 152 year: 2011 end-page: 157 ident: b0080 article-title: Study on the camouflaged target detection method based on 3D convexity publication-title: Modern Appl. Sci – reference: He R, Dong Q, Lin J, et al. Weakly-Supervised Camouflaged Object Detection with Scribble Annotations[J]. arXiv preprint arXiv:2207.14083, 2022. – volume: 75 start-page: 4065 year: 2016 end-page: 4082 ident: b0075 article-title: Camouflage performance analysis and evaluation framework based on features fusion publication-title: Multimedia Tools Appl. – start-page: 145 year: 2006 end-page: 148 ident: b0065 article-title: Camouflage defect identification: A novel approach publication-title: Proc. 9th Int. Conf. Inf. Technol. – reference: S. Peize, Z. Rufeng, J. Yi, K. Tao, X. Chenfeng, Z. Wei, M. Tomizuka, L. Lei, Y. Zehuan, W. Changhu, and L. Ping, Sparse R-CNN: end-to-end object detection with learnable proposals, In CVPR, 2021. – reference: Y. Liu, D. Zhang, Q. Zhang, et al., Integrating part-object relationship and contrast for camouflaged object detection, in IEEE Transactions on Information Forensics and Security, 2021, 16: 5154–5166. – reference: G.-P. Ji, L. Zhu, M.C. Zhuge, K. Fu, Fast Camouflaged Object Detection via Edge-based Reversible Re-calibration Network, Pattern Recognition, Volume 123, 2022, 108414, ISSN 0031–3203. – volume: 31 start-page: 6469 year: 2019 end-page: 6478 ident: b0030 article-title: Deep transfer learning for military object recognition under small training set condition publication-title: Neural Computing and Applications – reference: Hu X, Fan D P, Qin X, et al. High-resolution Iterative Feedback Network for Camouflaged Object Detection[J]. arXiv preprint arXiv:2203.11624, 2022. – reference: Fan, Deng-Ping, et al. Advances in Deep Concealed Scene Understanding. arXiv preprint arXiv:2304.11234 (2023). – reference: D.-P. Fan, G.-P. Ji, M.-M. Cheng, L. Shao, Concealed object detection, IEEE T. Pattern Anal. Mach. Intell. (2021). – reference: T. Zhi, S. Chunhua, C. Hao, and H. Tong, FCOS: fully convolutional one-stage object detection, In ICCV, 2019. – volume: 69 start-page: 5364 year: 2021 end-page: 5374 ident: b0100 article-title: D2C-Net: A Dual-Branch, Dual-Guidance and Cross-Refine Network for Camouflaged Object Detection publication-title: IEEE Trans. Ind. Electron. – reference: F. Yang, Q. Zhai, X. Li, R. Huang, A. Luo, H. Cheng, D.-P. Fan, Uncertainty-guided transformer reasoning for camouflaged object detection, in: Int. Conf. Comput. Vis., 2021. – volume: 82 start-page: 28 year: 2022 end-page: 42 ident: b0250 article-title: Image fusion in the loop of high-level vision tasks: A semantic-aware real-time infrared and visible image fusion network[J] publication-title: Inform. Fusion – reference: D. Wang, K. Shang, H. Wu, et al., Decoupled R-CNN: Sensitivity-Specific Detector for Higher Accurate Localization, in IEEE Transactions on Circuits and Systems for Video Technology, 2022. – reference: T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, Focal loss for dense object detection, in Proceedings of the IEEE international conference on computer vision, 2017, pp. 2980–2988. – reference: Liu J, Fan X, Huang Z, et al. Target-aware dual adversarial learning and a multi-scenario multi-modality benchmark to fuse infrared and visible for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 5802–5811. – volume: 111 start-page: 98 year: 2015 end-page: 136 ident: b0180 article-title: The pascal visual object classes challenge: A retrospective publication-title: Int. J. Computer Vision – reference: C. Tianyou, X. Jin, H. Xiaoguang, Z. Guofeng, W. Shaojie, Boundary-guided network for camouflaged object detection, in Knowledge-Based Systems, Volume 248, 2022, 108901, ISSN 0950-7051, https://doi.org/10.1016/j.knosys.2022.108901. – volume: 20 start-page: 92 year: 2023 end-page: 108 ident: b0280 article-title: Deep Gradient Learning for Efficient Camouflaged Object Detection publication-title: Mach. Intell. Res. – volume: 481 start-page: 22 year: 2022 end-page: 32 ident: b0230 article-title: Enhancing representation learning by exploiting effective receptive fields for object detection publication-title: Neurocomputing – volume: 9 start-page: 1200 year: 2022 end-page: 1217 ident: b0255 article-title: SwinFusion: Cross-domain long-range learning for general image fusion via swin transformer[J] publication-title: IEEE/CAA J. Automatica Sinica – start-page: 2433 year: 2006 end-page: 2438 ident: b0015 article-title: Disruptive contrast in animal camouflage, in PoRS publication-title: Biological Sciences – reference: Y. Liu, Q. Zhang, D. Zhang, and J. Han, Employing deep part-object relationships for salient object detection, in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 1232–1241. – reference: Z. Cai and N. Vasconcelos, Cascade r-cnn: Delving into high quality object detection, in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 6154–6162. – reference: Z. Gao, L. Wang, B. Han, et al., AdaMixer: A Fast-Converging Query-Based Object Detector, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 5364–5373. – reference: S. Rani, D. Ghai, S. Kumar, Object detection and recognition using contour based edge detection and fast R-CNN, in Multimed Tools Appl, 2022, vol. 81, pp. 42183–42207. doi: 10.1007/s11042-021-11446-2. – reference: Z. Yao, L. Wang, Boundary Information Progressive Guidance Network for Salient Object Detection, in IEEE Transactions on Multimedia, 2021, 24: 4236–4249. – year: 2021 ident: b0150 article-title: MOD: Benchmark for Military Object Detection publication-title: Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR) – reference: L. Tang, B. Li, S. Kuang, et al., Re-thinking the relations in co-saliency detection, in IEEE Transactions on Circuits and Systems for Video Technology, 2022. – reference: H. Mei, G.-P. Ji, Z. Wei, X. Yang, X. Wei, D.-P. Fan, Camouflaged object segmentation with distraction mining, in: IEEE Conf. Comput. Vis. Pattern Recog., 2021. – volume: 9 start-page: 2121 year: 2022 end-page: 2137 ident: b0260 article-title: SuperFusion: A versatile image registration and fusion network with semantic awareness[J] publication-title: IEEE/CAA J. Automatica Sinica – reference: V. Sharma, R. N. Mir, Saliency guided faster-RCNN (SGFr-RCNN) model for object detection and recognition, in Journal of King Saud University - Computer and Information Sciences, Volume 34, Issue 5, 2022, Pages 1687–1699, ISSN 1319–1578, doi: 10.1016/j.jksuci.2019.09.012. – start-page: 1905 year: 2009 end-page: 1910 ident: b0020 article-title: Concealed by conspicuousness: distractive prey markings and backgrounds, in PoRSB publication-title: Biological Sciences – reference: D.-P. Fan, G.-P. Ji, G. Sun, M.-M. Cheng, J. Shen, L. Shao, Camouflaged object detection, in: IEEE Conf. Comput. Vis. Pattern Recog., 2020, pp. 2777–2787. – reference: P. Skurowski, H. Abdulameer, J. Blaszczyk, T. Depta, A. Kornacki, and P. Koziel, Animal camouflage analysis: Chameleon database, in Unpublished Manuscript, vol. 2, no. 6, p. 7, 2018. – reference: Z. YunFei, Z. Xiongwei, F. Wang, C. Tiieyong, S. Meng, W. Xiaobing, Detection of People With Camouflage Pattern Via Dense Deconvolution Network, in IEEE Signal Processing Letters, 2018, PP. 1–1. DOI: 10.1109/LSP.2018.2825959. – reference: Y. Lyu, J. Zhang, Y. Dai, L. Aixuan, B. Liu, N. Barnes, D.-P. Fan, Simultaneously localize, segment and rank the camouflaged objects, in: IEEE Conf. Comput. Vis. Pattern Recog., 2021. – reference: X. Xiuqi, Z. Mingyu, Y. Jinhao, C. Shuhan, H. Xuelong, Y. Yuequan, Boundary guidance network for camouflage object detection, in Image and Vision Computing, Volume 114, 2021, 104283, ISSN 0262-8856, https://doi.org/10.1016/j.imavis.2021.104283. – reference: N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko, End-to-end object detection with transformers, In ECCV, 2020. – start-page: 1 year: 2010 end-page: 4 ident: b0070 article-title: A new camouflage texture evaluation method based on WSSIM and nature image features publication-title: Proc. Int. Conf. Multimedia Technol. – start-page: 2777 year: 2020 end-page: 2787 ident: b0145 article-title: Camouflaged object detection publication-title: Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR) – volume: 33 start-page: 1093 year: March 2023 end-page: 1108 ident: b0245 article-title: CrossDet++: Growing Crossline Representation for Object Detection publication-title: IEEE Trans. Circuits Syst. Video Technol. – volume: 184 start-page: 45 year: Jul. 2019 end-page: 56 ident: b0140 article-title: Anabranch network for camouflaged object segmentation publication-title: Comput. Vis. Image Understand. – start-page: 740 year: 2014 end-page: 755 ident: b0185 article-title: Microsoft coco: Common objects in context publication-title: European conference on computer vision – reference: S. Ren, K. He, R. Girshick, and J. Sun, Faster r-cnn: Towards real-time object detection with region proposal networks, in Advances in neural information processing systems, 2015, pp. 91–99. – reference: N.E. Scott-Samuel, R. Baddeley, C.E. Palmer, I.C. Cuthill. Dazzle camouflage affects speed perception, in PLoS One, 2011, pp. 6. – reference: X. Shangliang, W. Xinxin, L. Wenyu, C. Qinyao, C. Cheng, D. Kaipeng, W. Guanzhong, D. Qingqing, W. Shengyu, D. Yuning, et al., PP-YOLOE: An evolved version of YOLO, arXiv preprint arXiv:2203.16250, 2022. – reference: Y. Chen, H. Wang, W. Li, et al., Scale-Aware Domain Adaptive Faster R-CNN, in Int J Comput Vis, 2021, vol. 129, 2223–2243. doi: 10.1007/s11263-021-01447-x. – reference: H. Bi, C. Zhang, K. Wang, et al., Rethinking Camouflaged Object Detection: Models and Datasets, in IEEE Transactions on Circuits and Systems for Video Technology, 2021. – start-page: 366 year: 2014 end-page: 371 ident: b0025 article-title: Object detection for military surveillance using distributed multimodal smart sensors publication-title: 2014 19th international conference on digital signal processing – ident: 10.1016/j.neucom.2023.126466_b0115 doi: 10.1016/j.jksuci.2019.09.012 – start-page: 1 year: 2010 ident: 10.1016/j.neucom.2023.126466_b0070 article-title: A new camouflage texture evaluation method based on WSSIM and nature image features – year: 2021 ident: 10.1016/j.neucom.2023.126466_b0150 article-title: MOD: Benchmark for Military Object Detection – ident: 10.1016/j.neucom.2023.126466_b0120 doi: 10.1007/s11042-021-11446-2 – ident: 10.1016/j.neucom.2023.126466_b0200 doi: 10.1007/978-3-030-58452-8_13 – ident: 10.1016/j.neucom.2023.126466_b0130 doi: 10.1109/ICCV48922.2021.00411 – ident: 10.1016/j.neucom.2023.126466_b0060 doi: 10.1109/CVPR46437.2021.00866 – ident: 10.1016/j.neucom.2023.126466_b0195 – ident: 10.1016/j.neucom.2023.126466_b0010 doi: 10.1109/LSP.2018.2825959 – start-page: 145 year: 2006 ident: 10.1016/j.neucom.2023.126466_b0065 article-title: Camouflage defect identification: A novel approach – ident: 10.1016/j.neucom.2023.126466_b0275 – ident: 10.1016/j.neucom.2023.126466_b0125 doi: 10.1109/CVPR42600.2020.00285 – ident: 10.1016/j.neucom.2023.126466_b0290 doi: 10.1007/s44267-023-00019-6 – start-page: 1905 year: 2009 ident: 10.1016/j.neucom.2023.126466_b0020 article-title: Concealed by conspicuousness: distractive prey markings and backgrounds, in PoRSB publication-title: Biological Sciences – volume: 82 start-page: 28 year: 2022 ident: 10.1016/j.neucom.2023.126466_b0250 article-title: Image fusion in the loop of high-level vision tasks: A semantic-aware real-time infrared and visible image fusion network[J] publication-title: Inform. Fusion doi: 10.1016/j.inffus.2021.12.004 – volume: 20 start-page: 92 year: 2023 ident: 10.1016/j.neucom.2023.126466_b0280 article-title: Deep Gradient Learning for Efficient Camouflaged Object Detection publication-title: Mach. Intell. Res. doi: 10.1007/s11633-022-1365-9 – volume: 5 start-page: 152 issue: 4 year: 2011 ident: 10.1016/j.neucom.2023.126466_b0080 article-title: Study on the camouflaged target detection method based on 3D convexity publication-title: Modern Appl. Sci doi: 10.5539/mas.v5n4p152 – ident: 10.1016/j.neucom.2023.126466_b0165 doi: 10.1109/ICCV.2019.00132 – ident: 10.1016/j.neucom.2023.126466_b0040 doi: 10.1109/TMM.2021.3115344 – ident: 10.1016/j.neucom.2023.126466_b0155 doi: 10.1109/CVPR.2017.106 – ident: 10.1016/j.neucom.2023.126466_b0265 doi: 10.1109/CVPR52688.2022.00571 – ident: 10.1016/j.neucom.2023.126466_b0220 – volume: 9 start-page: 1200 issue: 7 year: 2022 ident: 10.1016/j.neucom.2023.126466_b0255 article-title: SwinFusion: Cross-domain long-range learning for general image fusion via swin transformer[J] publication-title: IEEE/CAA J. Automatica Sinica doi: 10.1109/JAS.2022.105686 – ident: 10.1016/j.neucom.2023.126466_b0215 doi: 10.1109/CVPR.2018.00644 – ident: 10.1016/j.neucom.2023.126466_b0240 doi: 10.1109/CVPR52688.2022.00529 – start-page: 366 year: 2014 ident: 10.1016/j.neucom.2023.126466_b0025 article-title: Object detection for military surveillance using distributed multimodal smart sensors – volume: 69 start-page: 5364 issue: 5 year: 2021 ident: 10.1016/j.neucom.2023.126466_b0100 article-title: D2C-Net: A Dual-Branch, Dual-Guidance and Cross-Refine Network for Camouflaged Object Detection publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2021.3078379 – ident: 10.1016/j.neucom.2023.126466_b0225 doi: 10.1109/TCSVT.2022.3167114 – volume: 481 start-page: 22 year: 2022 ident: 10.1016/j.neucom.2023.126466_b0230 article-title: Enhancing representation learning by exploiting effective receptive fields for object detection publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.01.020 – volume: 9 start-page: 2121 issue: 12 year: 2022 ident: 10.1016/j.neucom.2023.126466_b0260 article-title: SuperFusion: A versatile image registration and fusion network with semantic awareness[J] publication-title: IEEE/CAA J. Automatica Sinica doi: 10.1109/JAS.2022.106082 – ident: 10.1016/j.neucom.2023.126466_b0270 doi: 10.1609/aaai.v37i1.25156 – ident: 10.1016/j.neucom.2023.126466_b0135 – ident: 10.1016/j.neucom.2023.126466_b0210 doi: 10.1109/ICCV.2017.324 – ident: 10.1016/j.neucom.2023.126466_b0175 doi: 10.1007/s11263-021-01447-x – volume: 184 start-page: 45 year: 2019 ident: 10.1016/j.neucom.2023.126466_b0140 article-title: Anabranch network for camouflaged object segmentation publication-title: Comput. Vis. Image Understand. doi: 10.1016/j.cviu.2019.04.006 – ident: 10.1016/j.neucom.2023.126466_b0055 – start-page: 2433 year: 2006 ident: 10.1016/j.neucom.2023.126466_b0015 article-title: Disruptive contrast in animal camouflage, in PoRS publication-title: Biological Sciences – volume: 75 start-page: 4065 issue: 7 year: 2016 ident: 10.1016/j.neucom.2023.126466_b0075 article-title: Camouflage performance analysis and evaluation framework based on features fusion publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-015-2946-1 – start-page: 2777 year: 2020 ident: 10.1016/j.neucom.2023.126466_b0145 article-title: Camouflaged object detection – ident: 10.1016/j.neucom.2023.126466_b0090 doi: 10.1109/CVPR42600.2020.00285 – start-page: 740 year: 2014 ident: 10.1016/j.neucom.2023.126466_b0185 article-title: Microsoft coco: Common objects in context – volume: 111 start-page: 98 issue: 1 year: 2015 ident: 10.1016/j.neucom.2023.126466_b0180 article-title: The pascal visual object classes challenge: A retrospective publication-title: Int. J. Computer Vision doi: 10.1007/s11263-014-0733-5 – ident: 10.1016/j.neucom.2023.126466_b0235 – ident: 10.1016/j.neucom.2023.126466_b0105 doi: 10.1109/TCSVT.2021.3124952 – ident: 10.1016/j.neucom.2023.126466_b0035 doi: 10.1109/TCSVT.2022.3150923 – volume: 31 start-page: 7036 year: 2022 ident: 10.1016/j.neucom.2023.126466_b0285 article-title: Feature Aggregation and Propagation Network for Camouflaged Object Detection[J] publication-title: IEEE Trans. Image Processing doi: 10.1109/TIP.2022.3217695 – volume: 31 start-page: 6469 issue: 10 year: 2019 ident: 10.1016/j.neucom.2023.126466_b0030 article-title: Deep transfer learning for military object recognition under small training set condition publication-title: Neural Computing and Applications doi: 10.1007/s00521-018-3468-3 – start-page: 21 year: 2016 ident: 10.1016/j.neucom.2023.126466_b0190 article-title: Ssd: Single shot multibox detector – ident: 10.1016/j.neucom.2023.126466_b0005 doi: 10.1371/journal.pone.0020233 – volume: 184 start-page: 45 year: 2019 ident: 10.1016/j.neucom.2023.126466_b0085 article-title: Anabranch network for camouflaged object segmentation, in Comput publication-title: Vis. Image. Underst doi: 10.1016/j.cviu.2019.04.006 – ident: 10.1016/j.neucom.2023.126466_b0110 doi: 10.1016/j.knosys.2022.108901 – ident: 10.1016/j.neucom.2023.126466_b0095 doi: 10.1016/j.patcog.2021.108414 – start-page: 1 year: 2018 ident: 10.1016/j.neucom.2023.126466_b0160 article-title: Matrix capsules with em routing – ident: 10.1016/j.neucom.2023.126466_b0205 – ident: 10.1016/j.neucom.2023.126466_b0170 doi: 10.1016/j.imavis.2021.104283 – ident: 10.1016/j.neucom.2023.126466_b0050 doi: 10.1007/978-3-030-01264-9_45 – ident: 10.1016/j.neucom.2023.126466_b0045 doi: 10.1109/TIFS.2021.3124734 – volume: 33 start-page: 1093 issue: 3 year: 2023 ident: 10.1016/j.neucom.2023.126466_b0245 article-title: CrossDet++: Growing Crossline Representation for Object Detection publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2022.3211734 |
SSID | ssj0017129 |
Score | 2.5002255 |
Snippet | We present the first systematic work on Military High-level Camouflage object Detection (MHCD), aiming to identify objects visibly embedded in chaotic... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 126466 |
SubjectTerms | Concealed objects Datasets High-level military camouflage Object detection |
Title | Extraordinary MHNet: Military high-level camouflage object detection network and dataset |
URI | https://dx.doi.org/10.1016/j.neucom.2023.126466 |
Volume | 549 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09a8MwEBUhXbr0u_QzaOiqxJYVy-4WQoLbkixNIZuRZRlSghNSBzr1t_dOskMLpYWOMhaIk3T3Trx7R8idp_uw675iOSyTiVjDnROBZCJE-Tcpg77G947JNExexOO8P2-RYVMLg7TK2vc7n269df2lV1uzt14ses9ezCGL8iG-ud54WMEuJJ7y7seO5uFLnzu9Pd5n-HdTPmc5XqXZImcEW4h3fYAGVivxh_D0JeSMj8hBjRXpwC3nmLRMeUIOmz4MtL6Wp2Q-eq82CrJIW1tLJ8nUVPd0YvW3YYyKxGyJ5CCqFWT6xRJ8CF1l-AJDc1NZMlZJS0cIp6rMKfJG30x1Rmbj0WyYsLpjAtMA_StwqIqbUHKhjPRUqAKRhTZFwYvJNZeK-8oI4ak8VllQANzI40KJPBORjvzgnLTLVWkuCI1yaUzh8wwQkAiVjGIN2AewBcR7VL27JEFjp1TXauLY1GKZNrSx19RZN0Xrps66l4TtZq2dmsYf_8tmC9JvpyIFh__rzKt_z7wm-ziyPDJ5Q9rVZmtuAXhUWceerA7ZGzw8JdNP_PrWxg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED6VMsDCG1GeHmAMbRw3bpAYEBS1QLtQpG6W4zhSUUmrNhWw8KP4hZydpAIJgYTEmIcj-3y5-2x9_g7guKbqOOuudCLspsMChf8c87jDfCP_xrlXV2a_o9P1Ww_spl_vl-C9OAtjaJV57M9iuo3W-Z1qbs3qeDCo3tcCiqsoF_NbVhsvZ1be6tdnXLdNz9tXOMknlF43e5ctJy8t4CjEyClGHkm1zymTmtekLz0W-hbLGw-minJJXakZq8kokKEXY16OgliyKGQN1XA9_OwCLDKMFqZqwunbnFbicpdm-n607pjeFcf1LKcs0TPDUTEly09dhCJWm_GbdPgpxV2vwUqOTclFNvx1KOlkA1aLug8kDwOb0G--pBOJo7dneUmn1dXpGelYvW-8NgrIztCQkYiST6NZPMSYRUah2fEhkU4t-SshSUZAJzKJiOGpTnW6Bb3_MOM2lJNRoneANCKudezSEBEX8yVvBAqxFmIZxBdGZa8CXmEnoXL1clNEYygKmtqjyKwrjHVFZt0KOPNW40y945f3eTEF4osXCkwwP7bc_XPLI1hq9Tp34q7dvd2DZfPEctj4PpTTyUwfIOhJw0PrZQTEP3v1B_T9EO8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extraordinary+MHNet%3A+Military+high-level+camouflage+object+detection+network+and+dataset&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Liu%2C+Maozhen&rft.au=Di%2C+Xiaoguang&rft.date=2023-09-07&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=549&rft_id=info:doi/10.1016%2Fj.neucom.2023.126466&rft.externalDocID=S0925231223005891 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |